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Parabolic Stein Manifolds

A. Aytuna and A. Sadullaev

Abstract. An open Riemann surface is called parabolic in case every bounded
subharmonic function on it reduces to a constant. Several authors introduced
seemingly different analogs of this notion for Stein manifolds of arbitrary di-
mension. In the first part of this note we compile these notions of parabolicity
and give some immediate relations among these different definitions. In sec-
tion 3 we relate some of these notions to the linear topological type of the
Fréchet space of analytic functions on the given manifold. In sections 4 and 5
we look at some examples and show, for example, that the complement of the
zero set of a Weierstrass polynomial possesses a continuous plurisubharmonic
exhaustion function that is maximal off a compact subset.

1. Introduction

In the theory of Riemann surfaces, simply connected manifolds which equal to
complex plane are usually called parabolic and the ones which equal to the unit
disk are called hyperbolic. Several authors introduced analogs of these notions for
general complex manifolds of arbitrary dimension in different ways; in terms of
triviality (parabolic type) and non-triviality (hyperbolic type) of the Kobayashi or
Caratheodory metrics, in terms of plurisubharmonic (psh) functions etc. In some
of these considerations existence of rich family of bounded holomorphic functions
plays a significant role.

On the other hand attempts to generalize Nevanlinna’s value distribution theory
to several variables by Stoll, Griffiths, King et al. produced notions of ”parabolitic-
ity” in several complex variables defined by requiring the existence of certain special
plurisubharmonic functions. The common feature of these special plurisubharmonic
functions ρ defined, say on a complex manifold X of dimension n, were:

a) {z ∈ X : ρ (z) 6 C} ⊂⊂ X , ∀CεR+ i.e. ρ is exhaustive, and
b) the Monge - Ampère operator (ddcρ)n is zero off a compact K ⊂⊂ X . That

is ρ is maximal plurisubharmonic outside K.
Following Stoll, we will call a complex manifold X, S − Parabolic in case

there is a plurisubharmonic function ρ on X that satisfies the conditions à) and b)
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2 A. AYTUNA AND A. SADULLAEV

above. If a continuous plurisubharmonic function ρ that satisfies the conditions
à) and b) above exits on X , we will call X , S∗-Parabolic.

Special exhaustion functions with certain regularity properties plays a key role
in the Nevanlinna’s’ value distribution theory of holomorphic maps f : X → Pm,
where Pm − m dimensional projective manifold (see.[17],[24],[28],[29]).

We note that without the maximality condition b), an exhaustion function
σ (z) ∈ psh (X) ∩ C∞ (X) always exist for any Stein manifold X , because such
manifolds can be properly embedded in C2n+1

w and one can take for σ the restriction
of ln |w| to X .

The special exhaustion function ρ (z) is a key object in the Nevanlinna’s’ value
distribution theory of holomorphic maps f : X → Pm, where Pm − m dimensional
projective manifold (see.[17],[24],[28],[29]).

On S − Parabolic manifolds any bounded above plurisubharmonic function is
constant. In particular, there are no nonconstant bounded holomorphic functions
on such manifolds.

The complex manifolds, on which every bounded above plurisubharmonic func-
tion reduces to a constant, a characteristic shared by affine-algebraic manifolds ,
play an important role in the structure theory of Fréchet spaces of analytic func-
tions on Stein manifolds and in finding continuous extension operators for analytic
functions from complex submanifolds (see, papers of first author [3],[4],[5],[6], [7]).
Such spaces will be called ”parabolic” in this paper.

The parabolic manifolds (also the parabolic Stein spaces) and the structure
of certain plurisubharmonic functions and currents on them here studied in detail
by J.P.Demailly[10] and A.Zeriahi [40],[41]. Moreover for manifolds which have
a special exhaustion function one can define extremal Green functions as in the
classical case and apply it to the pluripotential theory on such manifolds. In the
special case of an affine algebraic manifolds such a program was successfully carried
out in [41]

The aim of this paper is to study and compare the different definitions of
parabolicity and bring to attention a problem in complex potential theory that arise
in this context. This problem could be looked at from a functional analysis point
of view. In section 2, we compile different definitions of paraboliticity that exits in
the literature, try to collate them and state some problems. In the third section
we relate the notion of paraboliticity of a Stein manifold to the linear topological
type of the Fréchet space of analytic functions on it. We introduce the notion of
tame isomorphism to the space of entire functions and show that a Stein manifold
of dimension d is S∗-parabolic if and only if it is tamely isomorphic to the entire
functions in d variables. In section four we look at some examples and ways of
generating parabolic manifolds. In the last section we look at complements of
analytic multifunctions and show that, the Stein manifold Cn\A , where A ⊂ Cn is
the zero variety of a Weierstrass polynomial ( algebroidal function), is S∗-parabolic.

2. Different definitions of parabolicity

Definition 1. A Stein manifold is called parabolic, in case it does not possess
a non-constant bounded above plurisubharmonic function.
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Thus, parabolicity of is equal to following; if u (z) ∈ psh (X) and u (z) 6 C ,
then u (z) ≡ const on X . It is convenient to describe of parabolicity in term of P-
measures , which is the fundamental notion of pluripotential theory [18]. Without
loss a generality in the discussion below we will assume that our Stein manifold X is
properly imbedded in C2n+1

w , n = dimX , and σ (z) is the restriction of ln |w| to X .
Then σ (z) ∈ psh (X)∩C∞ (X) , {σ (z) 6 C} ⊂⊂ X ∀C ∈ R. We further assume
that 0 /∈ X and min σ (z) < 0. We consider (σ) balls BR = {z ∈ X : σ (z) < lnR}
and as usual, define the class ℵ

(

B1, BR

)

, R > 1, of functions u (z) ∈ psh (BR)
such, that u|BR

6 0 , u|B1
6 −1. We put

ω
(

z , B1 , BR

)

= sup
{

u (z) : u ∈ ℵ
(

B1, BR

)}

.

Then regularization ω∗
(

z , B1 , BR

)

is called the P- measure of B1 to relation BR.
( Definition and properties of the P- measure see: [20],[18],[36],[37]).

The P- measure ω∗
(

z , B1 , BR

)

is plurisubharmonic on BR, is equal to -1 on

B1 and tends to 0 in z → ∂BR. It is maximal, that is (ddcω∗)n = 0 in BR\B1 and
decreasing in R. We put ω∗

(

z,B1

)

= limR→∞ ω∗
(

z,B1, BR

)

.
It follows that

ω∗
(

z,B1

)

∈ psh (X) , −1 6 ω∗
(

z,B1

)

6 0

and is maximal, i.e.
(

ddcω∗
(

z,B1

))n
= 0, off B1.

In the construction of ω∗
(

z,B1

)

we have used the exhaustion function σ (z) ,

however it is not difficult to see that ω∗
(

z,B1

)

depends only on X and B1and
not on the choice of exhaustion function. Moreover, defining the P-measure for any
nonpluripolar compact K ⊂ X by selecting a sequence of domainsDj ⊂⊂ Dj+1 ⊂⊂
X , X =

⋃∞
j=1 Dj and considering the limit ω∗ (z,K) ⊜ limj→∞ ω∗ (z,K,Dj), it is

clear, that ω∗ (z,K) ≡ −1 if and only if ω∗
(

z,B1

)

≡ −1. Hence the later property
is an inner property of X.

Vanishing of ω∗ (z,K)+1 on a parabolic manifold not only imply the triviality
of bounded holomorphic functions but also give some information on their growth.
In fact on parabolic manifolds a kind of ”Hadamard three domains theorem” with
controlled exponents, is true. The precise formulation of this characteristic, that
will appear below, is an adaptation of the property (DN) of Vogt [31], which was
defined for general Fréchet spaces, to the Fréchet spaces of analytic functions. As
usual we will denote by O (M) the Fréchet spaces of analytic functions defined on
a complex manifold M with the topology of uniform convergence on its compact
subsets. The proposition we will give below is due to Zaharyuta [38] and it has
been independently rediscovered by several other authors [4],[33]. We will include
a proof of this result for the convinience of the reader.

Proposition 1. . The following are equivalent for a Stein manifold X
a) Xis parabolic,
b) P-measures are trivial on X i.e. ω∗ (z,K) = −1 for every non polar compact

K ⊆ X,
c ) For every nonpolar compact set K0 ⊂ X and for every compact set K of

X there is another compact set
L containing K such that

‖f‖K ≤ ‖f‖
1
2

L ‖f‖
1
2

K0
,∀ fεO (X) (DN condition of Vogt)
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where ‖∗‖H denotes the sup norm on H.

Proof. If X is parabolic, then ω∗
(

z,B1

)

being bounded and plurisubhar-
monic on X reduces to -1.

Conversely, let u (z) be an arbitrary bounded above psh function on X . Let

uR = supBR
u (z) , R > 1. If u (z) 6= const, then u(z)−uR

uR−u1
∈ ℵ

(

B1, BR

)

and hence
u(z)−uR

uR−u1
6 ω∗

(

z,B1, BR

)

. It follows,that

u (z) 6 −u1ω
∗
(

z,B1, BR

)

+
(

1 + ω∗
(

z,B1, BR

))

, z ∈ BR , (1)

which in R → ∞ gives

u (z) 6 −u1ω
∗
(

z,B1

)

+ u∞

(

1 + ω∗
(

z,B1

))

, z ∈ X . (2)

Now, if ω∗(z,B1) ≡ −1, then u(z) ≤ u1, z ∈ X , and by maximal principle we have
u (z) = u1 ≡ const, so that a) and b) are equivalent.

Now we fix a non-polar compact set K0 and look at the sup norms | . |m on
the sublevel balls Bm. Choose an increasing sequence of norms ‖ . ‖k = | . |mk

,

k=0,1,. . . , that satisfy the condition c) with the dominating norm ‖ . ‖0:

‖f‖k 6 ‖f‖
1
2

k0
‖f‖

1
2

k+1 ∀f ∈ O(X)

Iterating this inequality one gets:

‖f‖1 6 ‖f‖
2k−1−1

2k−1

0 ‖f‖
1

2k−1

k ∀ f ∈ O(X) (3).

Now, denoting the sequence of domains corresponding to these norms by Dk =
Bnk

we will consider the P- measures ω∗ (z,K0, Dk+1) , k = 1, 2... Since these
functions are continuous for a fixed k, we can find analytic functions f1, f2, ...., fm
on Dk+1 and positive numbers a1, a2, ..., am such that

ω∗ (z,K0, Dk+1) + 1− ε 6 max
16j6m

(aj ln |fj (z)|) 6 ω∗ (z,K0, Dk+1) + 1

pointwise on Dk. We note that the compact Dk is polynomially convex in C2n+1 ⊃
X so by Runge’s theorem the functions fj can be uniformly approximated onDk by
functions F ∈ O(X) .This in turn by (3) gives us the estimate ω∗ (z,K0, Dk+1) +
1 6 1

2k−1 + ε, z ∈ D1. Now playing the same game with D1 replaced by a given Dj

we see that ω∗ (z,K0, Dk+1) converge uniformly to -1 on any compact subset of X ,
i.e. ω∗ (z,K0) = −1. This in turn implies that c) ⇒ b).

Conversely, suppose that the P measure ω∗
(

z,B0

)

= −1. Then for a given
k and 0 < ǫ < 1, we can, in view of Dini’s theorem, choose l so large that
ω∗
(

z,B0, Bl

)

6 − 1 + ǫ on Bk. Since ω∗
(

z,B0, Bl

)

is maximal on Bl\B0, the
inequality

ln |f(z)|
|f |0

ln
|f |l
|f |0

6 ω∗
(

z,B0, Bl

)

+ 1 , z ∈ Bl , f ∈ O (X)

is valid. This in turn implies that |f |k 6 |f |1−ǫ
0 |f |ǫl ,for all f ∈ O(X). Now

fix a nonpolar compact set K0. We can, replacing B0with Bk, k large if neces-
sary, assume that K0 ⊆ B0. For a fixed large l, there is a λε (0, 1) such that
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ω∗ (z,K0, Bl) 6 −λ on B0.As above this implies:

|f |0
|f |K0

≤

(

|f |l
|f |K0

)1−λ

∀ non identically zero f ∈ O (X) .

Choose ǫ > 0 so that ǫ
λ
< 1

2 . In view of the above analysis we can find an l+

such that |f |l 6 |f |1−ǫ
0 |f |ǫl+ ∀f ∈ O(X) .We have:

(

|f |l
|f |K0

)λ

≤
|f |l
|f |0

≤

(

|f |l+
|f |0

)ǫ

≤

(

|f |l+
|f |K0

)ǫ

∀ non identically zero f ∈ O (X)

This finishes the proof of the proposition. �

Definition 2. A Stein manifold X is called S −parabolic,if there exit exhaus-
tion function ρ (z) ∈ psh (X) that is maximal outside a compact subset of X. If in
addition we can choose ρ to be continuous then we will say that X is S∗−parabolic.

In previous papers on parabolic manifolds (see for example [11],[28]) authors
usually required the condition of continuity or C∞ - smoothness of ρ. Here we
only distinguish the case when the exhaustion function ρ (z) ∈ psh(X) ∩ C(X) is
continuous.

It is not difficult to prove, that S − parabolic manifolds are parabolic. In
fact, since ρ (z) is maximal off some compact K ⊂⊂ X , then the balls Br =
{ρ (z) 6 ln r} , r > r0, consist K for big enough r0 and it is not difficult to see, that

ω∗ (z,Br0 , BR) =
max { −1, ρ (z)−R}

R − r0
.

Consequently,

ω∗ (z,Br0) = lim
R→∞

ω∗ (z,Br0 , BR) ≡ −1 , z ∈ X.

For Stein manifolds of dimension one the notions of S −parabolicity, S∗ −
paraboliticity, and parabolicity coincide. This is a consequence of the existence
of Evans-Selberg potentials ( subharmonic exhaustion functions that are harmonic
outside a given point) on a parabolic Riemann surfaces [23].

Problem 1. Do the notions of S −parabolicity and S∗ − paraboliticity co-
incide for Stein manifolds of arbitrary dimension?

Problem 2. Do the notions of parabolicity and S∗ −paraboliticity coincide
for Stein manifolds of arbitrary dimension?
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3. Spaces of Analytic Functions on Parabolic Manifolds

In this section we will relate the above discussed notions of parabolicity of a
Stein manifold X to the linear topological structure of O(X). Next result, which is
due to Aytuna-Krone-Terzioglu [7] and the characterizes paraboliticity of a Stein
manifold X of dimension n in terms of the similarity of the linear topological struc-
tures of O (X) and O (Cn)

Theorem 1. For a Stein manifold X of dimension n the following are equiv-
alent:

a) X is parabolic;
b) O(X) is isomorphic as Fréchet spaces to O(Cn).

The correspondence that sends an entire function to its Taylor coefficients
establishes an isomorphism between O

(

Cd
)

and the infinite type power series

space Λ∞ (αn) :=
(

x = (xn) : |x|k :=
∑

|xn| ekαn < ∞ ∀k = 1, 2, ....
)

with αn = n
1
d

n = 1, 2, .. A graded Fréchet space is a tuple (X, (|∗|k)) where X is a Fréchet space
and (|∗|k)

∞
k=1 is a fixed system of seminorms defining the topology of X. Whenever

we deal with Λ∞ (αn) , we will tacitly assume that we are dealing with a graded
space and that the grading is given by the norms defined in the above expression .
We will need a definition from the structure theory of Fréchet spaces;

Definition 3. A continuous linear operator T between two graded Fréchet
spaces (X, (|∗|k)) and (Y, (‖∗‖k)) is tame in case: ∃ A > 0 ∀k ∃C > 0 : ‖T (x)‖k ≤
C |x|k+A , ∀x ∈ X. Two graded Fréchet spaces are called tamely isomorphic in case
there is a one to one tame linear operator from one onto the other whose inverse
is also tame.

The graded space (O (C) , ‖∗‖n) where ‖∗‖n is the sup norm on the disc with
radius en is tamely isomorphic, under the correspondence between an entire function
and the sequence of its Taylor coefficients, to the power series space Λ∞ (n) , in view
of the Cauchy’s inequality. This observation motivates our next definition:

Definition 4. Let M be a Stein manifold. The space O (M) is said to be tamely
isomorphic to an infinite type power series space in case there is an exhaustion of
M by connected holomorphically convex compact sets (Kn)

∞
k=1 with Kn ⊂ (Kn+1)

◦

, n = 1, 2, ., such that the graded space
(

O (M) ,
(

supKn
|∗|
))

is tamely isomorphic
to a power series space Λ∞ (αn) .

The supremum norms are in some sense associated with the function theory
whereas the power series norms are associated with the structure theory of Fréchet
spaces and tameness gives one a controlled equivalence between these generating
norm systems. For two nonnegative real valued functions α and β on a set T we
will use the notation α (t)≺ β (t) to mean ∃ C > 0 such that α (t)≤ Cβ (t) ∀t ∈ T.

Theorem 2. Let M be a Stein manifold. The space of analytic functions on
M , O (M) , is tamely isomorphic to an infinite type power series space if and only
if M is S∗ − Parabolic.
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Proof. ⇒: Suppose that O (M) is tamely isomorphic to a power series space.
Fix a tame isomorphism T : Λ∞ (αn) → O (M) .By assumption there is an exhaus-
tion {Kn}n of M and an integer B′ such that for all n large enough

‖T (x)‖n ≺ |x|n+B′ and |x|n ≺ ‖T (x)‖n+B′ ∀x ∈ O (M) ,

where ‖∗‖n denotes the sup norm on Kn, n = 1, 2... Let en ⊜ T (εn) where ,as
usual, εn = (0, ..., 0, 1, 0, ...) ∈ Λ∞ (αn) , n = 1, 2.... Set

ρ (z) ⊜ lim sup
ξ→z

lim sup
n

log |en (ξ)|

αn

.

Clearly ρ is a plurisubharmonic function on M and if we set Dα ⊜ {z : ρ (z) < α}
for α ∈ R ,we have:

Kn ⊆ Dn+B for large n, where B = B′ + 1.

Now fix an arbitrary z0 ∈ Dα choose, in view of Hartog’s lemma, a small ǫ > 0 and
a closed neighborhood ηz0 of z0 such that for some C > 0 : supw∈ηz0

|T (εn) (w)| ≤

Ceαn(α−ǫ) for all n large. ‘For any x =
∑

xnεn ∈ Λ∞ (αn) and 0 < ǫ′ << ǫ, we

have:

sup
w∈ηz0

|T (x) (w)| ≤ C′

(

∑

n

|xn|
2
e2(α−ǫ′)αn

)
1
2

≤ C′ ‖T (x)‖L(α)+B for some

C′ > 0 ,where L (α) = [[α]] + 1.

Since T is onto and Km’s are holomorphically convex, we have that ηz0 ⊆ K
L(α)+B

. Since zo ∈ Dα was arbitrary we conclude that Dα ⊆ K
L(α)+B

. Combining this
with our previous findings we get

∃ d > 0 such that Dα ⊆ Dα+d ∀α large

Now fix a nice compact set K, say K = D for some domain, with the property that

∃ K ′ ⊆ D compact and β0 > 0 such that |x|β0
≺ sup

w∈K′

|T (x)| ∀x ∈ Λ∞ (αn) .

We wish to show that

Φ (z) ⊜ lim sup
ξ→z

{ϕ (ξ) : ϕ ∈ psh (M) , ϕ|K ≤ 0, ϕ ≤ ρ+ C for some C = C (ϕ) }

defines a plurisubharmonic function on M. To this end we choose a ϕ ∈ psh (M)

such that ϕ|K ≤ 0 and ϕ ≤ ρ+C for some C = C (ϕ) > 0. Choose a representation

ϕ (z) = lim supξ→z lim supn
log|fn(ξ)|

cn
of ϕ on M for some fn ∈ O (M)

′
s and positive

real numbers cn , n = 1, 2, 3... In view of our assumptions we have:

∀ ǫ > 0 ∃ C′ > 0 : sup
w∈K′

|fn (x)| ≤ C′eǫcn , ∀n.

In particular if yn ⊜ T−1 (fn) we have:

lim sup
n

log |yn|β0

cn
≤ 0.

Moreover since
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sup
w∈Dα

|fn (w)| ≺ e(α+d+C)cn ∀n,

we have for large m,

|yn|m ≺ e(m+d+C+2B)cn ,∀n.

Setting |y|t ⊜
∑

|yn| etαn for any non negative real number t, we define h (t) ⊜

lim supn
log|yn|t

cn
for t > 0. This function is an increasing convex function on the

positive real numbers. Moreover it follows from the analysis above that

h (t) ≤

(

N +D

N − β0

)

t−

(

N +D

N − β0

)

β0 on the interval [β0, N ] for every N ∈ N large .

Hence h (t) ≤ t − β0 for t >> β0.Now going back, since supw∈Dα
|fn (w)| ≺

|yn|α+2+2B ,we see that for z with ρ (z) = α,

ϕ (z) = lim sup
ξ→z

lim sup
n

log |fn (ξ)|

cn
≤ h (α+ 2 + 2B + d) ≤ α+ 2 + 2B + d− β0

= ρ (z) +Q, where Q = Q (B, d, β0) ∈ R+.

In particular indeed Φ is a plurisubharmonic function on M and satisfies

∃ C1 > 0 and C2 > 0 such that ρ (z)− C1 ≤ Φ (z) ≤ ρ (z) + C2 on M.

Hence Φ is an exhaustion and being a free envelope [8], is maximal outside a
compact set. Observe also that the sublevel sets Ωr ⊜ {z : Φ (z) < r} satisfy :

∃ κ > 0 such that Ωr ⊆ Ωr+κ for r large enough.

Now fix a decreasing sequence{un} of continuous plurisubharmonic functions on

M converging to Φ. Fix a compact set K̇ an ǫ > 0. Choose an r so large

that
(

r+ κ− ǫ
2

r
− 1
)

maxξ∈K̇ Φ (ξ) ≤ ǫ
2 . There exits an n0 such that for n ≥ n0 on Ωr

un ≤ r + κ and un|K ≤ ǫ
2 . Hence on Ωr :

un − ǫ
2

r + κ− ǫ
2

≤ ω (K,Ωr) =
1

r
Φ.

It follows that on K̇, 0 ≤ un− Φ ≤
(

r+ κ− ǫ
2

r
− 1
)

maxξ∈K̇ Φ (ξ)+ ǫ
2 ≤ ǫ for n ≥ n0.

Hence the convergence is uniform on K̇. It follows that Φ is continuous.

⇐: Let M be a Stein manifold with a plurisubharmonic exhaustion function
that is maximal outside a compact set. We will first examine a linear topological
properties that a plurisubharmonic exhaustion function imposes on the space of
analytic functions on M.Let M be a Stein manifold and Φ : M → [−∞,∞) a
plurisubharmonic function that is an exhaustion. Let Dt = (x |Φ (x) < t) for t ∈ R.
Choose an increasing function ℓ so that for each t ∈ R, Dt ⊂ Dℓ(t). We Fix a volume
form dµ on M and using the notation of Lemma 1 [A2] , we let

Ut =

{

f ∈ O (M) :

∫

Dt

|f |2 dε ≤ 1

}

.

Fix positive numbers s1, s2, s such that ℓ (0) < s1 ≤ ℓ (s1) ≤ s2 ≤ ℓ (s2) ≤ s and
L ≥ 0 . Let

ΦL (z) ⊜
0 if Φ (z) ≤ 0

LΦ(z)
s

otherwise
.



PARABOLIC STEIN MANIFOLDS 9

Consider an analytic function f ∈ Us2 . In view of Lemma 1 of [A2] , choose a
decomposition of f on W+∩ W− ,as f = f+ − f− , where f± ∈ O (W±) , W+ =
(

Ds1

)c
, W− = Ds2 , so that the estimates

∫

W±

∣

∣f±

∣

∣

2
e−ΦLdε ≤ K

∫

W+∩W−

|f |2 e−ΦLdµ

hold with K = K (M, s1,s2,s,Φ) > 0. On the other hand, using again the notation
of Lemma 1 of [A]

∫

W+∩W−

|f |2 e−ΦLdµ ≤ C

∫

W+∩W−

|f |2 e−ΦLdε ≤ Ce−
Ls1
s for some C > 0.

Hence
∫

W±

∣

∣f±

∣

∣

2
e−ΦLdε ≤ C1e

−
Ls1
s for some C1 > 0.

Now ,
∫

D0

|f−|
2
dε =

∫

D0

|f−|
2
e−ΦLdε ≤

∫

W−

|f−|
2
e−ΦLdε ≤ C1e

−
Ls1
s

and
∫

W−

|f − f−|
2
dε ≤ C2e

L(s2−s1)

s .

Set

G =

(

f+ on W+

f − f− on W−

)

.

Clearly G ∈ O (M) , and,
∫

Ds

|G|2 dε ≤

∫

Ds∩W+

|G|2 dε+

∫

W=

|G|2 dε ≤ C3

(

e
L(s−s1)

s + e
L(s2−s1)

s

)

≤ C4e
L(s−s1)

s .

Moreover
∫

D0

|G− f |2 dε =

∫

D0

|f−|
2
dε ≤ C1e

−
Ls1
s .

Hence we obtain:

Us2 ⊆ Ce−
Ls1
s U0 + Ce

L(s−s1)
s Us

for some constant C > 0 which does not depend upon L.
Set t ⊜ 1 − s1

s
, and r = eL(1−t)−logC . Varying the parameter L, a short com-

putation yields

∃ C > 0 such that: Us2 ⊆
1

r
U0 + Cr

t
1−tUs for all r ∈ [1,∞] .

Since the above inclusion obviously holds for 0 < r ≤ 1, and writing the value of t
we have:

∃ D > 0 such that: Us2 ⊆
D

r
U0 +

r
s
s1

r
Us for all r ∈ (0,∞) .

This is the conditon Ω of Vogt and Wagner [32] In terms of the ”dual norms” this
condition can we expressed as :

∃ C > 0 such that ‖x∗‖−s2
≤ C

(

‖x∗‖−0

)1−
s1
s2
(

‖x∗‖−s

)

s1
s2 , ∀ x∗ ∈ O (M)

∗
,

where ‖x∗‖−t ⊜ supy∈Ut
|x∗ (y)| ( See [32]). We collect our findings in:
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Proposition: Let M be a Stein manifold and Φ a plurisubharmonic function
on M that is proper, i.e. Dt ⊜ {z |Φ (z) < t} ⊂⊂ M , ∀t ∈ R. If we have

Ds0 ⊆ Ds1 ⊆ Ds1 ⊆ Ds2 ⊆ Ds2 ⊆ Ds

for some indexes s0 < s1 < s2 < s, then the Fréchet space O (M) has
the following Ω− condition:

∃C > 0 : ‖x∗‖−s2
≤ C

(

‖x∗‖−s0

)

s−s1
s−s0

(

‖x∗‖−s

)

s1−s0
s−s0 , ∀x∗ ∈ O (M)

∗
.

Now we return to the proof of our theorem. Lets fix a continuous proper
plurisubharmonic function Φ on M that is maximal outside a compact set. We can
arrange things so that Φ is maximal outside a compact subset of D0, where as usual

Dt = {x | Φ (x) < t} . Let us put on O (M) the grading ‖f‖n =

(

∫

D
n− 1

n

|f |2 dε

)
1
2

,

n = 1, 2, .... In view of the proposition above we have an Ω− condition of type:

∃Cn > 0 :
‖x∗‖−n

‖x∗‖−(n+1)

≤ Cn

(

‖x∗‖−(n−1)

‖x∗‖−(n+1)

)

s−s1
s−s0

, ∀x∗ ∈ O (M)
∗ ∀n = 2, 3....

where s = n+ 1− 1
n+1 , s0 = n− 1− 1

n−1 and n− 1− 1
n+1 < s1 < n− 1

n
is chosen

so that s−s1
s−s0

≤ 1
2 . With this choose of s1 we obtain

∀n ∃Cn > 0 : ‖x∗‖−n ≤ Cn

(

‖x∗‖−(n+1)

)
1
2
(

‖x∗‖−(n−1)

)
1
2

, ∀x∗ ∈ O (M)
∗

In the terminology of [33], O (M) with the grading ‖f‖n =

(

∫

D
n− 1

n

|f |2 dε

)
1
2

,

n = 1, 2.... is an Ω−space in standard form. On the other hand O (M) with the
grading |f |n = supDn

|f | , n = 0, 1, 2...,satisfies

∀n = 1, 2, ∃Cn > 0 |f |2n ≤ Cn |f |n+1 |f |n

in view of the maximality of Φ. In the terminology of [33] ,O (M) with the grading
|f |n = supDn

|f |, n = 0, 1, 2.. is a DN− space in standard form. Moreover for every
n = 1, 2..., there is a Kn > 0,such that ‖f‖n ≤ |f |n and |f |n ≤ Kn ‖f‖n+2 . Now
all the requirements of 2.3 Theorem of [33] are satisfied with A = I, so O (M) is
tamely isomorphic to an infinite type power space. This finishes the proof of the
theorem. �

Now let X be a Stein manifold with a continuous plurisubharmonic exhaustion
function Φ that is maximal off K0 = (z : Φ (z) ≤ 0) . We will choose a grading

(||∗||n)n of O (X) so that the Hilbert spaces Hn ⊜
(

O (X) ,||∗||n
)

∞
n=0 satisfy:

a) The tuple (H0, Hk) is admissible for the pair (K0, Dk)in the sense of Za-
haryuta [38], where Dk = (z : Φ (z) < k) , kǫN
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b) The theorem above is valid i.e. there is an infinite type power series space

Λ∞ (α) so that
(

O (X) ,
||∗||n

)

is tamely isomorphic to Λ∞ (α) .

We will only use a special property of admissible pairs, so we will just refer the
reader to [38] for the definition and a detailed discussion of this notion. However
we should mention that for a given Stein manifold with a continuous exhaustion
function there is a canonical way of getting admissible hilbertian norms [38],[39]
and in the case of a special exhaustion function, the existence of an infinite type
power series space satisfying the required property for this choice of generating
norms follows from the proof the theorem given above. In what follows, we will
denote the corresponding graded space by

(

O (X) ,Φ
)

.
Hence the theorem above associates to every special plurisubharmonic contin-

uous exhaustion function Φ on a S∗ − parabolic Stein manifold X, an exponent
sequence (αm)m such that the spaces

(

O (X) ,Φ
)

and Λ∞ (αm) are tamely isomor-

phic. It might be of interest to examine the exponent sequences (αm)
∞
m=0 obtained

in this way and see how they depend upon the special exhaustion function Φ .
Since O (X) , for a parabolic Stein manifold X of dimension n, is isomorphic to

Λ∞

(

m
1
n

)

, regardless of the special exhaustion function we have:

∃C > 0 :
1

C
≤ lim inf

m

αm

m
1
n

≤ lim sup
m

αm

m
1
n

≤ C

for all such obtained exponent sequences (αm)
∞
m=0 . To proceed further we need the

notion of a Kolmogorov diameter. For a vector space X , let us denote the collection
of all subspaces of Y ⊂ X with dimY ≤ m, by Xm.

Definition 5. Let
(

X,|∗|k
)

be a graded Fréchet space with an increasing se-

quence of seminorms. Let Ui = (xǫX : |x|i ≤ 1) , i = 1, 2.... The mth diameter of
Ui with respect to Uj, i < j, is defined by

dm (Ui, Uj) ⊜ inf (λ > 0 : ∃ Y ǫ Xk such that Ui ⊆ λUj + Y ) .

Now fix a S∗ − parabolic Stein manifold X and suppose that
(

O (X) ,Φ
)

and
Λ∞ (αm) are tamely isomorphic under an isomorphism T. So there exits an A > 0
such that,

∀k ∃C > 0 : ||T (x)||k ≤ C |x|k+A and C ||T (x)||k+A ≥ |x|k , ∀xǫΛ∞ (αn) .

We will denote by Ui and Vi the unit balls corresponding to the ith norms of
(

O (X) ,Φ
)

and Λ∞ (αn) respectively.
Fix a k >> l large and suppose

Uk ⊆ λUl + L,

for some λ > 0 some m-dimensional subspace of O (X) . Applying T−1 to both sides
and using the tame continuity estimates we have:

1

c
Vk+A ⊆ T−1 (Uk) ⊆ λT−1 (Ul) + L′ ⊆ λCVl−A + L′, L′ ⊜ T−1 (L) .

Hence
dm (Vk+A, Vl−A) ≤ Cdm (Uk, Ul)

for all m, where the constant depends only on indices k and l.
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On the other hand that, arguing in a similar fashion, we also have

dm (Uk+A, Ul−A) ≤ Cdm (Vk, Vl)

for all m and for some constant C > 0 that depends only on indices k and l.

It is a standard fact that dm (Vk, Vl) = e(l−k)αm for k >> l . On the other
hand our requirement of admissibility of the norms (||∗||k)k gives , in view of a
result of Nivoch-Poletsky-Zaharyuta (see, [14], [39]) the asymptotics

lim
m

− lndm (Uk, Ul)

m
1
n

=
2π (n!)

1
n

C
(

Dl, Dk

)

where Ds = (z : Φ (z) < s) as above and ∀s, k >> l and C
(

Dl, Dl

)

is the Bedford-

Taylor capacity of the condenser
(

Dl, Dk

)

.( [8])
Putting all these things together we have:

lim inf
m

αm

m
1
n

≥ lim
m

[

− lndm (Uk+A, Ul−A)

m
1
n

(

lnC

(k − l + 2A)− ln dm (UK , UL)
+

1

(k − l+ 2A)

)]

=

2π (n!)
1
n

(

C
(

Dl−A, Dk+A

))
1
n

.
1

(k − l+ 2A)
.

lim sup
m

αm

m
1
n

≤ lim
m

[

− lndm (Uk+A, Ul−A)

m
1
n

(

lnC

(k − l)− ln dm (Uk, Ul)
+

1

(k − l+)

)]

=

2π (n!)
1
n

(

C
(

Dl−A, Dk+A

))
1
n

.
1

(k − l)
.

On the other hand, since Φ is maximal off a compact set we can use the function

ρ (z) =
Φ− (l −A)

(k +A)− (l −A)

to compute the capacity of the condenser
(

Dl−A, Dk+A

)

for k and l large enough
. To be precise, in our case we get [8]:

C
(

Dl−A, Dk+A

)

=
1

(k − l + 2A)
n

∫

X

(ddcΦ)
n
.

Taking the limit as k and l goes to infinity we get:

lim
m

αm

m
1
n

=

∫

X

(ddcΦ)
n
.

We collect our findings in the proposition below. As usual ||∗||K denote the
sup norm on a given compact set K.

Proposition 2. Let X be a S∗ − parabolic Stein manifold of dimension n.
Fix a plurisubharmonic exhaustion function Φ on X that is maximal outside a
compact set. Then the exponent sequence (αm)n of the infinite type power series
space associated to X by Theorem 2 above satisfies:

lim
m

αm

m
1
n

=

∫

X

(ddcΦ)
n
.
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Corollary 1. A Stein manifold X of dimension n is S∗−parabolic if and only
if there exits an exhaustion of X by compact holomorphically convex sets (Km)m
such that

(

O (M) ,||∗||Km

)

and
(

O (Cn) ,||∗||∆m

)

are tamely isomorphic where ∆m

is the polydisc in Cn with radius m = 1, 2, ...

.

4. Some Examples

In this section we will look at some ways of generating parabolic manifolds and
give some examples.

An immediate class of parabolic manifolds can be obtained by considering Stein
manifolds that admit a proper analytic surjections onto some Cn. Affine algebraic
manifolds belong to this class. Moreover such manifolds are S∗-parabolic [29].

Demailly [10] considered the manifolds X which admit a continuous plurisub-
harmonic exhaustion function with the property that,

lim
r→∞

∫

Br
(ddcϕ)n

ln r
= 0, (4)

where Br = {ϕ (z) < ln r}.
We note , that S∗ –parabolic manifolds satisfy the condition (4) . In fact , if

ρ (z) is special exhaustion function ,then (ddcρ)
n
= 0 off a compact K ⊂⊂ X so

∫

Br
(ddcρ)

n
=
∫

K
(ddcρ)

n
= const , r > r0. Hence, (4) holds.

If the X has a continuous plurisubharmonic exhaustion function satisfying the
condition (4), then every bounded above plurisubharmonic function on X is con-
stant [10], so that this kind of manifolds are parabolic . In fact a more general
result is also true.

Theorem 3. . If on a Stein manifold X there exist a plurisubharmonic (not
necessary continuous) exhaustion function that satisfies the following condition:

lim inf
r→∞

∫

Br
(ddcϕ)

n

[ln r]n
= 0, (5)

then X is parabolic.

Proof. Lets assume that X satisfies the condition (5), but X is not para-
bolic.We take a sequence 1 < r1 < r2 < ...., rk → ∞, such, that

lim
r→∞

∫

Brk

(ddcϕ)
n

[ln rk]n
= 0 (6)

Without loss of generalization we can assume that the ball B1 = {ϕ (z) < 0} 6=
∅. Then according the proposition 1 the P-measure ω∗

(

z,B1, Brk

)

decreases to

ω∗
(

z,B1

)

6= −1 as k → ∞ . The function ω∗
(

z,B1

)

is maximal, that is (ddcω∗)n =

0 , in X\B1 and is equal −1 on B1. Hence, by comparison principle of Bedford-
Taylor ([8]) we have:
∫

Brk

[

ddcω∗
(

z,B1, Brk

)]n
=

∫

B1

[

ddcω∗
(

z,B1, Brk

)]n
>

∫

B1

[

ddcω∗
(

z,B1

)]n
= α > 0 .
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However, if we apply again the comparison principle to ω∗
(

z,B1, Brk

)

and w (z) =
ϕ(z)−ln rk

ln rk
, then

1

(lnrk)
n

∫

Brk

[ddcϕ (z)]
n
=

∫

Brk

[ddcw (z)]
n
>

∫

Brk

[

ddcω∗
(

z,B1, Brk

)]n
> α > 0 .

This contradiction proves the theorem. �

Remark: Stoll [29] consider an analytic set, for which the solution of the
equation

ddcωR ∧Ψ = 0 , ωR|∂B0 = −1 , ωR|∂BR
= 0 ,

has the parabolic property, that ωR → −1 , inR ր ∞, where Ψ is close, positive
(n− 1 , n− 1) form. Atakhanov [2] called this kind of sets parabolic type and
prove,that the sets which satisfies the (4) are this type. Moreover , he construct
the Nevanlinna’s equidistribution theory for holomorphic map f : X → Pm. In
particular, on this kind of sets theorems of Picard , Nevanlinna , Valiron on defect
hyperplanes are true.

In the literature there exits quite a number of Liouville- type theorems for
specific complex manifolds. However the property that every bounded analytic
function reduces to a constant need not imply parabolicity as is well known to
people working on capacity theory in Riemann surfaces. The simple example below
example illustrates this point.

Example 1: We choose on complex plane Cz1 a subharmonic function u with
the property that {u (z1) = −∞} =

{

0, 1, 12 ,
1
3 , ...

}

. We let w (z1, z2) = u (z1) +

ln |z2| . Then w ∈ psh
(

C2
)

and the component D of
{

(z1, z2) ∈ C2 : w (z1, z2) < 0
}

containing the origin is pseudoconvex, and hence is a Stein manifold. Any bounded
holomorphic function on it is constant by the Liouville’s theorem. However, the
plurisubharmonic function w (z1, z2) 6= const and is bounded from above i.e. D is
not parabolic.

Example 2: Now we consider an important class of Stein manifolds (analytic
sets) with the Luoiville property, which were introduced by Sibony - Wong [25].
To describe these spaces we need to introduce some notation. For an n dimensional
closed subvarietyX of CN

w let us denote by ϕ, the restriction of ln |w| onX.Denoting
the intersection of the r ball in CN with X by Br = {z ∈ X : ϕ (z) < ln r} we can

describe Sibony - Wong class as those X ′s so that supr
vol(Br)

ln r
< ∞ , where the

projective volume, vol (Br) , is equal to H2n(Br)
r2n

, H2n –the Hausdorff measure

(R2n -volume) of Br. Sibony - Wong showed that on such spaces any bounded
holomorphic on function is constant. In the context when n=1, a special case of a
result by Takegoshi [30] states that if

lim sup
r

vol (Br)

g (r)
< ∞

where g : R+ → R+ is a nondecreasing continuous function such that
∫∞

0
dr
g(r) = ∞,

then every smooth subharmonic function on the open Riemann surface X reduces
to a constant.
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The proof of this proposition is based on the following estimation:

v (r)
2 ≤ Cg (r)

d

dr
(v (r))

where v (r) =
∫

Br
du ∧ dcu and C > 0 is a constant. We note that if u is

an arbitrary subharmonic function we can approximate it by smooth subharmonic
functions uj ↓ u and since the corresponding vj ’s converge to v we conclude that
the above expression is also valid for arbitrary subharmonic functions and hence
the proof given in [30] shows that such an X is parabolic.

On the other hand if n > 1, taking into account that v (Br) =
∫

Br
(ddcϕ)n by

Wirtingers’ theorem , we can deduce from Theorem 1 above that X is parabolic.
Hence Sibony-Wong manifolds are parabolic. In connection with Problem 2 above
it will be of interest to investigate S∗ – paraboliticity of Sibony-Wong manifolds.
Affine algebraic manifolds are among this class since their projective volume is
finite. Moreover they are S∗ – parabolic as we have already seen. On the other hand
special exhaustion functions for S∗ – parabolic Sibony-Wong manifolds other than
the algebraic ones can not be asymptotically bigger than σ (z) = ln |z| restricted to
X.

Theorem 4. Let X ⊂ CN be a Stein manifold and ρ (z) a special exhaustion

function on it. If lim ρ(z)
σ(z) > α > 0, then X is an affine-algebraic set in CN .

Proof. Taking Cρ instead ρ, if it is necessary, we can assume that, there is

some compact K ⊂⊂ X such, that ρ(z)
σ(z) > 1 , z ∈ X\K. Let supK ρ (z) = r0. Then

Br = {z ∈ X : ρ (z) < ln r} , r > r0, is not empty and open. Hence, the closure
Br is not pluripolar. Therefore, the extremal Green function

Vρ

(

z,Br

)

= sup {u (z) ∈ psh (X) : u|Br
6 0, u (z) 6 Cu + ρ (z) ∀z ∈ X}

is locally bounded on X (see [38]). In other side, since ρ (z) > σ (z) outside of
compact K, then

V
(

z,Br

)

6 Vρ

(

z,Br

)

,whereV
(

z,Br

)

= Vσ

(

w,Br

)

|X ,

Vσ

(

w,Br

)

= sup
{

u (w) ∈ psh
(

CN
)

: u|Br
6 0, u (w) 6 Cu + ln |w|

}

But the extremal function V
(

z,Br

)

locally bounded on X if and only if X affine-
algebraic [18]. This completes the proof. �

Remark: In connection with Problem 2 it is tempting to choose a suitable
plurisubharmonic exhaustion function and try to construct a special exhaustion
function using the P-harmonic measures corresponding to the balls determined by
this exhaustion. For example for a Stein manifold X imbedded in CN we can use
σ (z) = ln |z| restricted to X, and consider σ - balls Br = {z ∈ X : σ (z) < ln r}
. As above, we can assume that 0 /∈ X and that supX σ (z) < 0. Let vj (z) =

1 + ω∗
(

z,B1, Bj

)

, j = 2, 3, .... . Then vj |B1
= 0 , vj |∂Bj

= 1 and (ddcvj)
n = 0 in

Bj\B1.Moreover,Bj−1 ⊂ Bj and vj (z) >
σ(z)
j

, z ∈ Bj\B1. Let αj :=max vj |∂Bj−1 >
j−1
j

. Then the quantities αj satisfy the inequalities j−1
j

6 αj < 1, j = 1, 2... Fi-

nally, we take uj (z) =
vj

α2α3...αj
, z ∈ Bj . Then

uj|∂Bj−1 =
1

α2α3...αj−1

vj
αj

|∂Bj−1 ≤
1

α2α3...αj−1
=

1

α2α3...αj−1
vj−1|

∂Bj−1
= uj−1|∂Bj−1 .
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Therefore uj (z) ≤ uj−1 (z) , z ∈ Bj−1 and for some neighborhood of any fixed

point z0 ∈ X\B1 the sequence {uj (z)} is defined and is decreasing a for big enough

j > j0
(

z0
)

. Since, (ddcuj)
n
= 0 in Bj\B1, the limit ρ (z) = limj→∞ uj (z) will be

maximal outside the set compact B1. The question is how to manage things so
that such an obtained ρ will be maximal. This depends, among other things, on
speed of converge to zero of the sequence of P-measures (vj)j .

5. Complements of analytic multifunctions

In this section we will take up Problem 2 stated above in the class of parabolic
manifolds obtained by looking at the complement in Cnof a zero sets of an entire
function. More generally let A ⊂ Cn be a closed pluripolar set whose complement
is pseudoconvex. Such sets are sometimes called ”analytic multifunctions” by some
authors. These kind of sets are very important in approximation theory, in the
continuation of holomorphic functions and in the description of polynomial convex
hulls. and were studied by various authors ( [15], [13], [35], [26], [27],[9], [1], [22]
and others). These sets are removable for the class of bonded plurisubharmonic
functions defined on their complements. Hence their complements are parabolic
Stein manifolds. We would like to restate Problem 2 given above in this setting
since we hope that it will be more tractable.

Problem 3. Is the M = Cn\A S − parabolic?

In classical case, n=l, every closed polar set is an analytic multifunction. As
is well-known, if K ⊂⊂ C is a closed polar set in the extended complex plane C,
then there exist a u(z) ∈ Subharmonic(C)∩harmonic(C\K) such that uK ≡ −∞
and u(z)− ln |z| → 0 as z → ∞. One can use such functions to construct a special
exhaustion function on C\A.To this end fix a z0 /∈ K ⊜ A ∪ {∞} an arbitrary
but fixed point, then there exist u(z) ∈ psh(C\{z0}) ∩ h(C\K) : u|E ≡ −∞ and
u(z) → +∞ in z → z0. Therefore, ρ(z) = −u(z) is exhaustion for M = C\A , with
one singular point z0.

On the other hand if A = {p(z) = 0} ⊂ Cn is an algebraic set, then it is easy to
see that the function ρ(z) ⊜ − 1

deg p
ln |p|+ 2 ln |z| is a special exhaustion function

for Cn\A [40]

Theorem 5. Let A = {F (z) = zkn+f1(
′z)zk−1

n +...+fk(
′z) = 0} - a Weierstrass

polynomial (algebraiodal) set in Cn, where fj ∈ O(Cn−1) - entire functions, j =
1,2,...,k, k > 1. Then M = Cn\A is S*-parabolic manifold.

Proof. We put

ρ(z) = − ln |F (z)|+ ln(|′z|
2
+ |F (z)− 1|2). (14)

Then ρ(z) = −∞ precisely on the finite set Q = {′z = 0, F (′0, zn) = 1} . ......
Moreover,ρ is maximal, (ddcρ)

n
= 0 and continuous outside of Q its finite logarith-

mic poles in Q. We will show , that ρ (z) is exhaustion on Cn/Γ, i.e.

{ρ (z) < R} ⊂⊂ Cn\Γ for every R ∈ R (15)

If F (z) = 0 then ρ(z) = +∞ + ln(|′z|2 + 1) = +∞, so that ρ|A = +∞. (15) is
clear, if all fj , j = 0, 1, ..., k, are constant and we assume that, among at least one
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is not constant. Then MR = max|′z|6R{|f1(
′z)| , ..., |fk(′z)|} → ∞. We have: for

|′z| = R > 1 and |zn| 6 M2
R the

ρ(z) = ln
|′z|2 + |F (z)− 1|2

|F (z)|
> ln

|′z|2 + |F (z)− 1|2

1 + |F (z)− 1|
> ln

|′z|2 + |F (z)− 1|2

|′z|+ |F (z)− 1|
>

> ln
|′z|+ |F (z)− 1|

2
> ln

R

2
On the other hand on |′z| 6 R and |zn| = M2

R we have:

ρ (z) = ln
|′z|2 + |F (z)− 1|2

|F (z)|
≥ ln

(M2k
R −MRM

2k−2
R − ...−MR − 1)2

M2k
R +MRM

2k−2
R + ...+MR

=

= lnM2k
R (1 + αk) ,

where αk → 0 in R → ∞.I follows that, ρ|∂UR
→ +∞ in R → ∞, where UR =

{(

|′z| 6 R, |zn| 6 M2
R

)}

. Let us now consider the level set DC = {ρ (z) < C} , C−
constant. It is an open set and it contains the pole set Q. If is so big, that UR ⊃
Q and min

{

ln R
2 , lnM

2k
R (1 + αR)

}

> C , then DC ⊂⊂ UR , since DC has no any
component outside UR because of maximality of ρ on M\UR This completes the
proof that ρ is an exhaustion function. �

Corollary 2. The complement , Cn/Γ , of the graph Γ = {(′z, zn) εCn: zn = f (′z)}
of an entire function f is S∗-parabolic
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[31] Vogt D., Charakterisierung der Unterräume von s, Math. Z. 155 (1977), no. 2, 109–11
[32] Vogt, D., Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau,
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