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Abstract. A Stein manifold is called S�parabolic in case there exits a special
plurisubharmonic exhaustion function that is maximal outside a compact set.
If a continuous special plurisubharmonic exits then we will call the manifold
S�� parabolic: In one dimensional case these notions are equivalent. However
in several variables the question as to weather these notions coincide seems
open. In this note we establish an interrelation between these two notions.

1. Introduction

In this note we establish an interrelation between two notions of paraboliticity
in several complex variables that exit in the literature. We start by giving the
relevant de�nitions.

Definition 1. A Stein manifold X of dimension n is called S�parabolic in case
there exits a special plurisubharmonic function � 2 PSH (X) with the properties:

a) The set fz 2 X : � (z) � Cg �� X is relatively compact in X, for every
C 2 R: That is � is an exhaustion,

b) (ddc�)n = 0 o¤ a compact set, i.e. � is maximal outside a compact
set.([7])

In the previous papers on parabolic manifolds (see for example [9],[10],[4]) au-
thors usually required the conditions of continuity or C1� smoothness of � in the
above de�nition. In this note we distinguish the case of continuity and call a com-
plex manifold S� � parabolic, in case it possesses a continuous plurisubharmonic
exhaustion that is maximal outside a compact subset.

We note, that without maximality condition b) an exhaustion function always
exist for any Stein manifold X, since in general Stein manifolds can be properly
embedded into CNw for some large N and one take for � the restriction of ln jwj to
X.
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Special plurisubharmonic exhaustion functions on parabolic manifolds X play
a key role in Navanlinna�s value distribution theory of holomorphic maps from X
into projective spaces (see for example [4], [6]).

Stein manifolds, on which every bounded above plurisubharmonic function re-
duces to a constant play a role in the study of the Fréchet spaces of analytic func-
tions on Stein manifolds, the bases on them and in �nding continuous extension
operators for analytic functions from complex submanifolds (see for example [1],[2]).
Such spaces will be called parabolic in this paper.

It is not di¢ cult to see that S�parabolic manifolds are parabolic:In particular
there are no bounded non constant analytic functions on such manifolds.

The most important example of a S� � parabolic manifold is Cnz with the spe-
cial plurisubharmonic function ln jzj: A¢ ne algebraic manifolds, parabolic Riemann
surfaces also among the examples of S� � parabolic manifolds

S�� parabolic manifolds (also S�� parabolic Stein spaces) and the structure
of certain plurisubharmonic functions and currents on them where studied in detail
by Demailly([3]), and Zeriahi ([13]),([14]). Moreover on such manifolds one can
de�ne extremal Green functions and apply it to the pluripotential theory on such
manifolds.

Let us �x an S� parabolic manifold X and a special exhaustion function � on
it. Let

L� =
�
u 2 PSH (X) : u (z) � �+ (z) + C, where �+ = max (�; 0) , C = C (�) �R

	
be the Lelong class of plurisubharmonic functions and for a compact setK � X;

and set
L� (K) = fu 2 L� : ujK � 0g :

Definition 2. Let X and K be as above, the upper regularization V � (z;K) =
lim supw!z V (z;K) of V (z;K) = sup (u (z) : u 2 L� (K)) is called the Green
function of K.

We note that the Green function is either +1 (K is pluripolar) or belongs to
the class L�: An analytic function f on X will be called a � � polynomial in case
ln jf j
d belongs to L� for some integer d. The minimal such d is called the degree of

the polynomial. The space of all �-polynomials of degree less than or equal to d,
Pd� (X), is a �nite dimensional space and dim Pd� (X) �

�
n+dn
n

�
: This result was

proved in[13] for S�� parabolic manifolds but the same proof also works for S�
parabolic manifolds. . In the special case of a¢ ne algebraic manifolds a detailed
analysis of these generalized polynomials is given in [14].

In the one dimensional case the notions of S� parabolicity; S�� parabolicity
and parabolicity coincide, ([8]) : However in several variables the question as to
weather these notions coincide seems open.

The aim of this short note is establish an interrelation between S� parabolicity
and S�� parabolicity:

2. Results

Let X be a S� parabolic manifold and choose a special plurisubharmonic ex-
haustion function �: If � is not continuous it is of interest to examine the jumps at
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its discontinuities. Note that for any plurisubharmonic function � and any point z
in its domain of de�nition ; �� (z) = lim supw!z � (w) = � (z) : For a given point
z in the domain of de�nition of the function we set �� (z) = lim infw!z � (w) : If
�� (z) < � (z) then we have a jump at z:

Definition 3. Let � be a plurisubharmonic function exhaustion of a complex
manifold. We say that � is strongly continuous at the point at in�nity in case

lim
�(z)!1

� (z)

�� (z)
= 1:

Lemma 1. Let X be a S� parabolic manifold and � its special exhaustion
function. Then the following are equivalent:

a) The function � is strongly continuous at the point at in�nity

b) The Green function V � (z;K) corresponding to � is strongly continuous at
the point at in�nity for any nonpluripolar compact set K:

Proof. Fix a nonpluripolar compact set K � X . There are positive constants
C1 and C2 such that

� (z)� C1 � V � (z;K) � � (z) + C2 .

The �rst inequality is by de�nition of the Green function and the second follows from
the remarks given in section 1. The Lemma follows easily from these inequalities.

�

Now we can state our result.

Theorem 1. Let X be a S � parabolic manifold. Then X is S� � parabolic if
and only if there is an plurisubharmonic exhaustion function on X that is maximal
outside a compact set and strongly continuous at the point at in�nity.

Proof. Lets assume that there exits a plurisubharmonic exhaustion function
on X that is maximal outside a compact set and is strongly continuous at the point
at in�nity. We �x a big pluriregular compact set K � X: Let us denote Green
function V � (z;K) corresponding to this compact set by v (z) : Then in view of the
lemma v (z) is strongly continuous at the point at in�nity. Using the approximation
theorem given in [11] (this fact was also proved independently, but later by the
second author see [12]) we can �nd a sequence of plurisubharmonic functions vj (z)
2 PSH (X) \ C1 (X) ; vj (z) # v (z) 8z 2 X:

Since K is pluriregular, vjK = 0: In view of Hartog�s theorem for an arbitrary
� > 0; we can �nd a j0 such that vj < � uniformly on K; j � j0:

Since v is strongly continuous at in�nity, there is an R > 0 such that

v (z) � v� (z) + �v� (z) for z =2 BR where BR = fz "X : v (z) < Rg :
In particular we have vj@BR � (1 + �) R: Applying again Hartog�s theorem we

can �nd an j1 so that

vj (z) � (1 + 2�)R; j > j1 � j0, z "@BR:
For j > j1 we put:

w (z) =
max fvj (z) ; (1 + 3�) v (z)� �Rg if z 2 BR

(1 + 3�) v (z)� �R if z =2 BR
:
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Since for z 2 BR we have w (z) = (1 + 3�) v (z)� �R � (1 + 2�)R � vj (z) the
function w (z) is plurisubharmonic onX: It follows that the function 1

1+3� [w (z)� �]
belongs to the Lelong class L� (K) : So we have

1

1 + 3�
[w (z)� �] � V � (z;K) = v (z) :

In particular vj (z) � (1 + 3�)V � (z;K) + �: Since vj (z) � V � (z;K) the conti-
nuity of V � (z;K) follows. �

Corollary 1. If the "jumps" of the special exhaustion function � of an S �
parabolic manifold X satisfy

� (z)� �� (z) = o (�� (z)) ;

then X is S� � parabolic:
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