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A. Suyabatmaz, and all those others who directly and indirectly helped me.

My parents deserve special mention for their invaluable support and gentle love.
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Abstract

We consider the non-preemptive single-machine total weighted tardiness (TWT)
problem with general weights, processing times, and due dates. We first develop a
family of preemptive lower bounds for this problem and explore their structural prop-
erties. Then, we show that the solution corresponding to the least tight lower-bound
among those investigated features some desirable properties that can be exploited
to build excellent feasible solutions to the original non-preemptive problem in short
computational times. We present results on standard benchmark instances from the
literature.
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Özet

Bu tezde, kesintisiz tek makinalı toplam ağırlıklı gecikme problemi genel gecikme
ağırlıkları, işlem zamanları ve teslim tarihleri ile birlikte incelenmiştir. İlk olarak bu
problem için bir grup kesintili gevşetilmiş alt sınır geliştirilmiş ve bunların yapısal
özellikleri araştırılmıştır. Sonrasında, göz önüne alınanlar arasında en gevşek alt
sınıra karşılık gelen kesintili çözümün, çok kısa hesaplama süreleri içerisinde asıl kesin-
tisiz problem için çok kaliteli olurlu çözümler oluşturmak üzere kullanılabilecek bazı
özellikler sağladığı gösterilmiştir. Literatürdeki standart denektaşı problem örnekleri
çözülmüş ve bulunan sonuçlar takdim edilmiştir.
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CHAPTER 1

Introduction and Motivation

Single-machine scheduling problems are one of the classical combinatorial optimiza-

tion problems and are encountered commonly across the manufacturing industry and

computer science. This single-machine may be a workbench, a device or a CPU, and

the problem is to find the schedule of the tasks that have to be performed by the

machine. Also, these tasks may carry a penalty under various objective functions. In

practice, this penalty may be due to an article of an agreement or may represent a

loss that arises from user dissatisfaction.

In classifying scheduling problems, we follow the three field notation of Graham et

al. [24]. The single-machine total weighted tardiness (TWT) problem is represented

as 1 | |
∑

j wjTj where in the first field, 1 indicates a single machine problem and the

last field identifies the objective function to be minimized. It has been already shown

that TWT is strongly NP-hard by Lawler, Lenstra et al. in [35, 40].

In TWT, there are n jobs to be processed without interruption on a single-machine

that cannot process more than one job at a time. Job j = 1, . . . , n, becomes available

for processing at time zero (i.e. the release date rj = 0 ∀j). A job j requires a

processing time pj > 0 without interruption on the machine, has a due date dj by

which it should be finished and has a positive tardiness cost wj per unit time if job

j completes processing after dj. We assume that the processing times and due dates

are integral. Let sj be the time at which job j starts processing, Cj = sj + pj be the

completion time of job j, and Tj = max(0, Cj − dj) be the tardiness of job j. The

objective is to minimize the weighted sum of the tardiness costs of all jobs. Then,
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our problem is stated as:

(P1) min
n∑

j=1

wjTj (1.1)

Ci ≤ Cj − pj or Cj ≤ Ci − pi ∀i, j, i ̸= j (1.2)

Tj ≥ Cj − dj ∀j (1.3)

Cj ≥ pj + rj ∀j (1.4)

Tj ≥ 0 ∀j. (1.5)

The constraints (1.2) ensure that jobs do not overlap and constraints (1.4) are the

release date constraints. The tardiness of a job is computed by constraints (1.3) and

(1.5).

1.1 Contributions

The aim of the study is to develop a fast and effective heuristic for the TWT problem.

The following list shows the contributions of this study:

• The lower bound that we develop belongs to a well-known family of preemp-

tive lower bounds for the single-machine weighted earliness/tardiness problems.

We deliberately choose a particular relaxation within this family that does not

lead to the tightest possible lower bound for the original problem; however, it

exhibits structural properties that may be exploited to obtain excellent feasi-

ble non-preemptive solutions to the original single-machine weighted tardiness

problem.

• The heuristic solves large-scale TWT problems in short computational times.

• The heuristic is simple, easy to implement, and fast.

1.2 Outline

The structure of the thesis is as follows. We start with the literature on TWT in

Chapter 2. We introduce the proposed algorithms and heuristics and present our

2



observations in Chapter 3. In Chapter 4, the computational results are given. The

conclusions and directions for future work are presented in Chapter 5.
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CHAPTER 2

Literature Survey

In 2003, an extensive survey of the research on the single-machine total tardiness

problem (TT)1 and TWT was provided by Sen et al. [54]. Other noteworthy sur-

veys were done by Graham et al. [24] and Abdul-Razaq et al. [2] in 1979 and 1990,

respectively.

According to Sen et al., the single-machine TWT problem is one of the most thor-

oughly investigated research problems in the machine scheduling domain. Although

the first study was done more than five decades ago by McNaughton [41], the topic is

still challenging for ongoing research. Studies related to this topic can be examined

in two major groups as exact algorithms and heuristics. Our algorithm falls under

the second group.

Holsenback et al. [27] state that “Progress in expanding the size of problems that

can be solved optimally has come incrementally as new dominance properties have

been identified and with improvements in computing hardware.”, and this is valid

for both exact and heuristic methods. The threshold of maximum size of solvable

instances was 20 jobs in the late 1950s and exceeded 100 jobs after year 2000.

2.1 Exact Algorithms

Exact algorithms mainly use Branch and Bound (B&B) method and Dynamic Pro-

gramming (DP) with dominance rules in order to restrict the search space.

McNaughton [41] developed rules regarding the relative positioning of tardy jobs

by using the ratio ri, where ri =
wi

pi
, and he showed that job splitting (preemption in

1TT problem is a TWT problem where wj = 1, ∀j ∈ {1, . . . , n}.
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the classical sense) has no advantage in terms of TWT in 1959. In other words, the

complexity of finding an optimal preemptive schedule, where a cost is charged only

to the last portion of a job, is identical to that of TWT. Schild and Fredman [52]

generalized the theorem of McNaughton which was relatively restrictive.

In 1962, Held and Karp [26] and two years later, Lawler [37] presented DP formu-

lations which consider 2n possible subsets. No computational results were reported

since this method was computationally infeasible even for 20-job problems in those

years. Lawler also restated the TWT problem as an LP with n+ 2
∑

pj constraints.

In 1968, Elmaghraby [18] presented a network model which is similar to the back-

ward DP algorithm where the optimal schedule is built sequentially starting from

the end of the schedule. Also he introduced new dominance rules which are used by

others (e.g. [8, 49]).

Emmons [19] investigated the relationships between job parameters pj and dj

and developed three dominance theorems with a great number of corollaries in 1969.

These theorems of Emmons have played major role in the TWT literature to date;

many authors used these theorems in their B&B (e.g. [21, 22, 49, 51]), DP (e.g. [36, 53,

58]) and decomposition (e.g. [17, 47, 59, 60, 62]) approaches. Also, he proposed a B&B

algorithm for the TT problem. Later these results were extended by Rinnooy Kan

et al. [51].

From 1972 to 1976 several B&B algorithms were proposed by Shwimer [55],

Gelders and Kleindorfer [22, 23], Fisher [21], Rinnooy Kan et al. [51]. Rinnooy Kan

et al. also generalized Emmons’ rules and the theorems they formalized have provided

a stronger form of Shwimer’s precedence constraints.

In 1977, Lawler [35], Lenstra et al. [40] showed that the problem is NP-hard in

the strong sense. Lawler [38] also provided a pseudo-polynomial time DP algorithm

when the tardiness weights are agreeable, that is, given two jobs i and j, pi < pj

implies wi ≥ wj.

Picard and Queyranne [46] developed a B&B algorithm for the Traveling Salesman

Problem (TSP) which may be stated as a single-machine TWT problem with setup

costs. They solved 20-job instances within 13 seconds with this method. The same

year, Baker and Schrage [6] developed the “chain algorithm”, which is a DP algorithm

enhanced by Emmons’ dominance rules. They reported that the algorithm solved 20-

5



job instances in an average of 3 seconds. In another paper of the same authors [53],

a labeling procedure based DP algorithm was devised that dominated the previous

methods till that year. One year later, in 1979, Lawler [36] came up with a faster

and less memory demanding DP algorithm.

Potts and Wassenhove [49] used Lagrangian relaxation to obtain sharp lower-

bounds and a DP algorithm for checking dominance rules along with the B&B algo-

rithm they developed. With this structure, they were able to solve 40-job instances

within a minute in 1985.

In 1988, Abdul-Razaq and Potts [1] presented a DP formulation of the single-

machine Total Weighted Earliness-Tardiness (TWET) problem without machine idle

time, which is a general case of our problem, and computed the lower-bound by

a state-space relaxation of this formulation. To make the lower-bound stronger,

they used penalties, state-space modifiers and additional constraints on successive

jobs. Abdul-Razaq and Potts integrated this lower-bounding approach into a B&B

algorithm and solved 25-job instances within 100 seconds. Three years later, Azizoglu

and Kondakci [5] proposed a B&B algorithm along with the lower and upper bounding

methods that they developed. They reported computational results with problems

up to 20 jobs.

This problem was also studied by Ibaraki and Nakamura [29] in 1994, but they

applied a Successive Sublimation Dynamic Programming (SSDP) algorithm. They

solved 35-job TT instances and reported that SSDP is faster than the B&B algorithm

of Abdul-Razaq and Potts. However, on the TWT problem, the B&B algorithm of

Potts and Wassenhove outperforms the SSDP algorithm due to its heavy memory

usage which arises because of the longer planning horizons in bigger instances. The

same year, Kondakci et al. [34] proposed a B&B algorithm for TWT and reported

computational results with problems up to 35 jobs.

Akturk and Yildirim [3], Kanet and Li [32], Rachamadugu [50] provided local

dominance rules for determining the order of two adjacent jobs. These new dominance

rules differ from the others in that they require neither agreeable nor proportional

tardiness weights.

In a recent study, Kanet [31] introduced three new dominance rules and general-

ized some rules of Emmons [19], Rinnooy Kan et al. [51]. He also provided a B&B

6



scheme for how the new rules might be implemented.

In 2007, Pan and Shi [43] showed that the strongest lower-bound provided by

an appropriate transportation (TR) problem and the lower-bound from the LP re-

laxation of the time-indexed formulation of TWT are equal. They used this new

lower-bounding scheme within a B&B algorithm, and solved 100-job instances in an

average of 30 minutes with a maximum of 9 hours.

Parallel to the work of Pan and Shi, Bigras et al. [8] proposed a solution approach

to solve the time-indexed formulation of the problem with a column-generation tech-

nique in 2008. They decomposed the planning horizon into subperiods to solve the

linear relaxation faster. With a B&B algorithm along with dominance rules, they

solved 100-job instances in the OR-Library within a max of 12 hours, except for 8

instances.

The same year, Pessoa et al. [44] proposed a new arc-time indexed formulation

for lower-bounding which is applicable to large instances by additional techniques

such as fixing variables by reduced costs, a dual stabilization procedure to speed

up column generation and others. This formulation gives better lower-bounds than

the time-indexed formulation and reduces the root gap of B&B to zero in almost

all OR-Library instances. Thus, in their computational experiments branching was

performed in a few instances and they succeed to solve all 100-job instances in an

average of 10.8 minutes with a max 142 minutes.

Finally, last year, Tanaka et al. [61] enhanced the SSDP algorithm of Ibaraki

and Nakamura by a lower-bound improvement based on the dominance of two and

four adjacent jobs, an adaptive step sizing method in the subgradient optimization

employed for solving a series of Lagrangian relaxations of the problem, a tight up-

per bound computation by the enhanced DynaSearch algorithm (Congram et al.

[15], Grosso et al. [25]), and choosing better state-space modifiers. With these im-

provements, they were able to solve 100-job instances within a max of 39 sec. and

300-job instances in 350 sec. on the average.

7



2.2 Heuristics

The exact algorithms assure optimality but as Abdul-Razaq et al. [2] already pointed

out, before nineties, the exact algorithms struggled when the problem size exceeds 50.

Even though Tanaka et al. [61] was able to solve 300-job instances within 35 minutes,

this time is relatively high and solving instances with more than 100 jobs to optimality

is still inefficient. Therefore, along with the exact ones, several heuristic methods have

been applied by a great number of authors since the 1960s. In those studies, several

dominance rule based heuristics (e.g. [30, 33, 52]), Tabu Search (TS), Simulated

Annealing (SA), Genetic Algorithm (GA) and Local Search (LS) algorithms (e.g.

[7, 16, 20]), and some other greedy and non-greedy heuristics (e.g. [27, 33, 42, 66])

are used.

In 1961, Schild and Fredman [52] suggested a heuristic based on the weighted

shortest processing time rule, and ten years later, Wilkerson and Irwin [66] suggested

a similar heuristic, but generated an initial solution with the earliest due date rule.

Both heuristics start with an initial sequence and then try to improve this solution

by comparing two jobs at a time according to rules.

In 1982, Morton and Rachamadugu [42] introduced a new property for adjacent

jobs and they used this property to developed a new heuristic which they call “Myopic

Heuristic [H3]”. They also compared this heuristic to the previous ones and showed

that it performs better. In the computational study, they used maximum 30-job

instances due to memory and/or CPU time limitations.

In 1991, Chambers et al. [14] developed a decomposition heuristic which uses a

decomposition scheme and dominance rules for shrinking the search space and also

the labeling technique of Schrage and Baker [53]. The heuristic was tested and

shown to be superior to others on up to 50-job instances. In the same year, Potts

and Van Wassenhove [48] tested several basic and complex heuristics and noted that

their SA approach is viable for TWT.

Huegler and Vasko [28] compared some interchange-based heuristics to simple

heuristics. They also developed a DP-based heuristic with several subsequent im-

provements to this heuristic. The enhanced heuristic gave the best results on up to

500-job instances.

8



Crauwels et al. [16] compared several heuristics such as TS, SA, GA and descent,

threshold search algorithms in 1998. Their own TS algorithm was found to be superior

to the other tested search methods. One year later, Holsenback et al. [27], Volgenant

and Teerhuis [64] presented new heuristics. Besten et al. [7] developed an iterated LS

algorithm and were able to solve all standard benchmark instances to optimality.

In 2002, Congram et al. [15] presented a new Neighborhood Search (NS) algorithm,

called DynaSearch (DS). To search exponentially-sized neighborhoods in polynomial

time, they used a DP algorithm along with DS. Differently from the other LS tech-

niques, DS is able to make more than one move in the neighborhood at each iteration.

Computational results of Congram et al. showed that DS was superior to all other

known LS algorithms, even to the state-of-the-art TS algorithm of Crauwels et al..

Two years later, Grosso et al. [25] integrated Generalized Pairwise Interchange (GPI)

operators to the algorithm of Congram et al. and reported significantly better com-

putational results on the OR-Library instances. Later, the LS approach of Congram

et al. has been applied to the TWT problem with start time dependent processing

times by Angel and Bampis [4].

Kanet and Li [33] introduced a new rule, called Weighted Modified Due Date

(WMDD), and in their simulation study with other plausible rules for 40-job instances

showed that WMDD clearly had an advantage over other rules by its simplicity and

performance.

In 2006, Tasgetiren et al. [63] presented two metaheuristics, particle swarm opti-

mization and differential evolution algorithms, and embedded Variable Neighborhood

Search (VNS) in both algorithms. They succeeded to find optimal solutions of all

standard benchmark instances with both algorithms within an average of 9 seconds.

The same year, Bozejko et al. [10] proposed a TS algorithm with compound moves,

and they solved all benchmark instances 4.5 times faster on average then Congram

et al. within a max of 2.5 seconds. One year later, Bilge et al. [9] proposed a TS

algorithm with four different versions but they were not able to solve all instances

to optimality and their CPU times were very high. Ferrolho and Crisostomo [20]

developed a GA-based tool, called HybFlexGA, along with new genetic operators for

scheduling problems. They concluded that HybFlexGA had good performance and

efficiency on standard benchmark instances. Jouglet et al. [30] proposed a TS algo-
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rithm with neighborhood search algorithm to cover new dominance rules that they

described. They solved up to 250-job instances with this method effectively.

Last year, Wang and Tang [65] noted that VNS, which is applied to many other

combinatorial problems such as TSP, the continuous location allocation problem and

so on, has not been used much in TWT problem, and they presented a population-

based VNS (PVNS) algorithm for the problem and pointed out that PVNS outper-

forms the VNS of Tasgetiren et al. [63] in terms of optimality gaps but in terms of

CPU time VNS is much more faster than PVNS.

At present, the best exact algorithm is the SSDP algorithm of Tanaka et al. [61]; they

are able to solve up to 300-job instances in 350 seconds on the average and 100-job

instances in an average of 6.42 seconds with a maximum of 39 seconds. In the domain

of heuristics, the best is the GPI-DynaSearch of Grosso et al. [25]. GPI-DynaSearch

solves 100-job instances to optimality in an average of 0.11 seconds with a maximum

of 3.91 seconds.
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CHAPTER 3

Proposed Algorithm

McNaughton [41, Theorem 2.2] shows that preemption in the classical sense, that is,

splitting job j into any number of parts where the process time of the parts should

be integer and assigning a weighted tardiness cost only to the completion time of the

last part of the job, is not useful. Such a preemptive schedule can easily be converted

into a non-preemptive schedule with no larger cost. That is, 1 | |
∑

j wjTj is unary

NP-hard. However, if we break job j into pj unit-jobs, allow jobs to be preempted

at integer points in time and assign a cost to the completion time of each unit-job,

this preemptive relaxation of TWT boils down to a transportation problem (TR) as

discussed later, and is solvable in pseudo-polynomial time.

Our solution approach relies on the idea that the second type of preemptive relax-

ation of P1 as discussed above has some desirable properties that allows us to build

excellent feasible solutions to the original non-preemptive problem in short compu-

tational times. The key issue here is that the information contained in the optimal

solution of the preemptive relaxation reveals sufficient structure about near-optimal

job processing sequences for P1. To determine possible sequences for the jobs and

convert a preemptive schedule into a non-preemptive schedule, one may use the first,

last or average completion time of the unit-jobs as an information. At this point, the

structure of the preemptive schedule is important for constructing the non-preemptive

schedule easily.

Both schedules in Figure 3.1 are preemptive but schedule in Figure 3.1(b) has a

special structure which can be useful for building non-preemptive schedules easily.

In the schedule in Figure 3.1(a) job j preempts job i and gets preempted by job i.

11
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(a)

j i k jki

(b)

Figure 3.1: Structure of preemptions.

On the contrary, in the other schedule a job does not resume processing until the job

that preempts it completes processing. Thus, a job j may be preempted by job i no

more than once. Also, since second schedule has less preemption, it may be converted

into a non-preemptive schedule more easily and may yield a solution which is closer

to the optimal.

To find a type of preemptive schedule with the above properties, first in Section

3.1.1 we show that the optimal objective value of an appropriate TR is a lower bound

on the optimal objective value of P1, and then in Section 3.2 we show that the cost

coefficients we are using in TR yield an optimal preemptive solution which can always

be converted into a solution with the above properties by Algorithm 1. In Section

3.4, we present our heuristic to turn this optimal solution of the TR problem into a

feasible solution for the original problem P1.

3.1 A Lower Bound for P1

An approximation to P1 could be obtained by dividing each job j into pj unit-jobs,

allowing preemption at integer points in time, associating costs with each unit-job

and planning for a horizon consisting of P =
∑n

j=1 pj time periods.

This type of preemption-based relaxation is used before by Bülbül et al. [11], Sourd

and Kedad-Sidhoum [57]. In their studies they approximate total weighted earliness

tardiness problem (TWET) as a transportation problem and determine appropriate

cost coefficients for the jobs. In a similar vein, in order to find a preemptive schedule

whose objective value is a lower bound on P1, with the properties discussed above,

we approximate P1 by TR with appropriate cost coefficients.

12



3.1.1 Transportation Problem

Here, we reformulate P1 as a time-indexed formulation while allowing preemptions

at integer time points.

(TR) min
∑
j

∑
t∈H

cjtxjt (3.1)

∑
t∈H

xjt = pj ∀j (3.2)

∑
j

xjt = 1 ∀t ∈ H (3.3)

xjt ∈ {0, 1} ∀j, ∀t ∈ H. (3.4)

This new formulation is equivalent to a transportation problem (TR) where xjt

is the decision variable and it equals to 1 if a unit-job of job j processed in period t,

otherwise it equals to 0 and cjt is the cost coefficient associated with job j in time

period t corresponding to the time interval (t−1, t]. The objective is to minimize the

total assignment cost of all jobs in the planning horizon H = [1, P ], where P =
∑

j pj.

The constraints (3.2) ensure that the number of scheduled unit-jobs of job j equals

to pj and constraints (3.3) assure that exactly one unit-job is processed in a period

t. Since the binary constraints do not need to be stated explicitly, the problem can

be solved very efficiently as an LP or by the transportation simplex algorithm.

The cost coefficients used in this formulation are of great importance. They have

to provide a lower bound on the optimal objective value of P1 and there has to exist

a “nested” optimal solution to TR with them. Now, we introduce the concepts and

definitions related to “nestedness” and then discuss the development of appropriate

cost coefficients.

In the presentation below, a feasible solution (schedule) of the transportation

problem is denoted by STR, where an optimal solution is marked by an ∗ in the su-

perscript. STR(t), t = 1, . . . , P , represents the job processed in period t and STR(t1, t2)

represents the ordered set of jobs processed in periods t1, . . . , t2, and j(t1, t2) is the

ordered set of all time periods t1 ≤ t ≤ t2 so that STR(t) = j. Similarly, if J denotes
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a set of jobs, then J(t1, t2) is the ordered set of all time periods t1 ≤ t ≤ t2 so that

STR(t) ∈ J . The rth elements of j(t1, t2) and J(t1, t2) are referred to by j(t1, t2)[r]

and J(t1, t2)[r], respectively. A unit job of job j performed in period t is referred to

as ujt. Furthermore, the cost of STR is computed as CTR(STR) =
∑P

t=1 cSTR(t)t.

Definition 3.1 A job j is said to be preempted by job k at time t1, if there exist

two time periods t1 and t2 such that 1 ≤ t1 < t2 < P , STR(t1) = j, STR(t2) = k,

| j(t1 + 1, t2 − 1) |= 0, and | j(t2 + 1, P ) |≥ 1.

In other words, if at least one unit job of job k appears between two successive unit

jobs of job j, then job k is said to preempt job j. Under this definition, job k may

preempt job j even if these two jobs are never processed in two adjacent time slots.

Definition 3.2 A feasible schedule STR for TR is said to be preemptive, if it contains

at least one preempted job.

Definition 3.3 A feasible preemptive schedule STR is nested, if for any pair of jobs

j and k and any three time periods t1 < t2 < t3 such that STR(t1) = j, STR(t2) =

k, and STR(t3) = j implies that all unit jobs of job k are processed in the periods

t1 + 1, . . . , t3 − 1; that is, | k(t1 + 1, t3 − 1) |= pk.

In a nested schedule in which job k preempts job j, all unit jobs of job k are processed

before job j is resumed. Equivalently, if job k preempts job j, then job j cannot

preempt job k. In this thesis, we develop an algorithm that can transform any feasible

schedule of TR into another feasible schedule with no larger cost. In particular, we

prove that the proposed algorithm converts an optimal schedule of TR into a nested

optimal schedule. These results are only valid if our cost coefficients described next

are used in TR.

3.1.2 Cost Coefficients

When we study the structure of the preemptions, we observe that in a preemptive

schedule, if a job with higher priority needs to be scheduled then this job may preempt

jobs with lower priority. This priority is determined by the cost coefficients of the

jobs in the time period in which the preemption occurs.
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To obtain a nested structure similar to the structure in Figure 3.1(b), we need to

determine suitable cost coefficients for this purpose. Since a preemption is related to

the priority between two jobs, we have to select the cost coefficients in a way that, a

lower priority job is preempted by a higher priority job at most once. This property

can be achieved by selecting cost coefficients that lie on a piecewise linear function

with a single breakpoint. In Figure 3.2(a), the priority of job i1 is higher than the

priority of job i2 in the entire planning horizon and in the next figure, the relative

priorities of job i1 and i2 change at time period di1 . Job i2 is scheduled before job i1

in the time interval [1, di1 ] and after time period di1 , the priority of job i1 is higher

than the priority of job i2.

t

j = i2

cjt

di1 . . .di2

j = i1

. . . . . .

(a)

t

cjt

di1 . . .di2. . . . . .

j = i2

j = i1

(b)

Figure 3.2: Cost functions.

The idea underlying our proposed cost structure is intuitive. Each unit-duration

portion of each job has a cost coefficient given by the ratio of the tardiness weight of

the job to its processing time.

cjt =


0 t ≤ dj

wj

pj
(t− dj) t > dj

∀j, t ∈ H. (3.5)

Below, we provide a proof that the solution of TR with the coefficients given above

provides a lower bound on the optimal objective function value of P1. Furthermore,

we study the cost coefficients of Bülbül et al. [11], Sourd and Kedad-Sidhoum [57]

and give a counterexample to show that the TR problem does not necessarily admit a

nested optimal solution with these cost coefficients. The proof of Theorem 3.4 follows

closely that of Bülbül et al. [11, Theorem 3.2].
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Theorem 3.4 The optimal objective value of TR, CTR(S
∗
TR), is a lower bound on

the optimal objective value CWT (S
∗
P1) of P1.

Proof. We show that for any optimal solution S∗
P1 for P1, there exists a corresponding

feasible schedule STR for TR such that CTR(STR) ≤ CWT (S
∗
P1). In particular, we

consider a solution STR for TR constructed by converting S∗
P1 into a feasible solution

of TR. This is accomplished by dividing each job in S∗
P1 into contiguous unit-duration

segments. We demonstrate that for a schedule STR constructed in this manner,

CTR(STR) ≤ CWT (S
∗
P1). Clearly, an optimal solution S∗

P1 for P1 exists in which

all job completion times belong to H = {k|k ∈ Z, k ∈ [1, P ]} which is the same

time horizon considered in problem TR. Our strategy is to consider each job in S∗
P1

separately. If Cj ≤ dj in S∗
P1, then the cost that job j incurs in STR is 0 as in S∗

P1.

If job j is tardy in S∗
P1, then we need to distinguish between two cases. If Cj ≥

dj + pj, then the cost that job j incurs in STR is given by:

Cj∑
k=Cj−pj+1

cjk =
wj

pj

Cj∑
k=Cj−pj+1

(k − dj) =
wj

pj

pj∑
k=1

(Cj − pj − dj) + k

=
wj

pj

[
pj(t− dj)− p2j +

pj∑
k=1

k

]
= wj(t− dj) +

[
pj(pj + 1)

2
−

2p2j
2

]
wj

pj

= wj(t− dj) +

[
(pj + 1)− 2pj

2

]
wj = wj(t− dj)−

[
(pj − 1)

2

]
wj

≤ wj(t− dj)

(because pj ≥ 1).

However, if dj + 1 ≤ Cj ≤ dj + pj − 1 when pj ≥ 2, then x = Cj − dj unit jobs of

job j incur a tardiness cost in STR while the remaining (pj − x) unit jobs incur zero

cost as in S∗
P1. In this case, the cost incurred by job j in STR is given by:

Cj∑
k=Cj−pj+1

cjk =

dj+x∑
k=dj+x−pj+1

cjk =

dj+x∑
k=dj+1

cjk,

where 1 ≤ x ≤ pj − 1.
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The costs incurred by the unit jobs completed after dj is:

dj+x∑
k=dj+1

cjk =
wj

pj

dj+x∑
k=dj+1

(k − dj) =
wj

pj

x (x+ 1)

2
< wj

(x+ 1)

2
≤ wjx

(because x ≤ pj − 1 and x ≥ 1).

Therefore, we have
∑Cj

k=Cj−pj+1 cjk < wjx = wj(Cj − dj) when dj +1 ≤ Cj ≤ dj +

pj−1. Finally, summing over all jobs, we obtain CTR(S
∗
TR) ≤ CTR(STR) ≤ CWT (S

∗
P1)

as desired because the cost incurred by any job j in STR is no larger than that in

S∗
P1. 2

Bülbül et al. [11] propose a lower bound for the problem 1 | |
∑

j ϵjEj + wjTj

based on a similar transportation problem with the following cost coefficients:

c
′

jk =


ϵj
pj

[
(dj − pj

2
)− (k − 1

2
)
]

k ≤ dj
wj

pj

[
(k − 1

2
)− (dj − pj

2
)
]

k > dj.
(3.6)

These cost coefficients can be applied to TR where the earliness cost ϵj equals

to 0 for all j. Since they satisfy
∑Cj

k=Cj−pj+1 c
′

jk = wjTj for the completion times

Cj ≥ dj + pj, this set of cost coefficients gives better lower bounds then the cost

coefficients in (3.5). Note that, our cost coefficients satisfy
∑Cj

k=Cj−pj+1 cjk = wjTj −

[
(pj−1)

2
]wj < wjTj for Cj ≥ dj + pj and pj ≥ 2 and with equality only for pj = 1.

However, the TR problem does not necessarily have a nested optimal solution with

these cost coefficients. The only optimal solution to the instance below with the cost

coefficients in (3.6) is S∗
TR(1) = 1, S∗

TR(2) = 2, S∗
TR(3) = 1, S∗

TR(4) = 2, S∗
TR(5) = 2

and this solution is not nested according to the Definition 3.3.

i pi di wi

1 2 1 1
2 3 2 1

Table 3.1: Transportation problem does not necessarily have a nested solution with
the cost coefficients in (3.6) and (3.7)

Sourd and Kedad-Sidhoum [57] propose a similar lower bound based on the trans-

portation problem for 1 | |
∑

j ϵjEj + wjTj. The cost coefficients in TR are given

by:
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c
′′

jk =


⌊
(dj−k)

pj

⌋
ϵj k ≤ dj − pj

0 dj − pj + 1 ≤ k ≤ dj⌈
(k−dj)

pj

⌉
wj k ≥ dj + 1.

(3.7)

These cost coefficients satisfy
∑Cj

k=Cj−pj+1 c
′′

jk = wjTj for all completion times Cj and

give better lower bounds than those by our cost coefficients. These coefficients form

a (discrete) step function, and they stay constant for pj consecutive periods. That is,

they do not have a two piecewise linear structure. The only optimal solution to the

instance in Table 3.1 with these cost coefficients is the same solution with the cost

coefficients in (3.6). Thus, the TR problem does not admit a nested optimal solution

with these cost coefficients.

TR with cost coefficients (3.6), (3.7) provides tighter lower bounds compared to

TR with cost coefficients (3.5). However, as we demonstrate in Section 4.3, higher

quality feasible solutions are obtained from TR under the cost coefficients (3.5).

3.2 Nester Algorithm

In this section, we present Algorithm 1 which is called Nester Algorithm and show

that it converts any feasible schedule STR of TR into a feasible schedule S ′
TR with

no larger cost. Furthermore, we prove that Nester Algorithm constructs a “nested”

optimal schedule, this optimal schedule S ′
TR when applied to any optimal schedule

S∗
TR. A direct corollary of this result is that there exists a nested optimal solution to

TR under our cost coefficients.

Algorithm 1 performs two types of tasks. First, it rearranges the current schedule

so that the unit jobs of job j succeed all unit jobs of the jobs with no larger due dates

over the time periods 1, . . . , dj. We denote this set of jobs by J j
prec = {k| k < j},

where we assume that the jobs are sorted and re-labeled in non-decreasing order

of their due dates in the rest of our presentation. (See Steps 3-4 of Algorithm 1.)

Second, we define J j
succ = {k| wj

pj
> wk

pk
} ∪ {k < j| wj

pj
= wk

pk
}, and Algorithm 1 ensures

that the unit jobs of the jobs in J j
succ appear following all unit jobs of job j over the

time periods dj + 1, . . . , P . (See Steps 12-13 of Algorithm 1.)
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Algorithm 1: Converting a feasible schedule into a feasible schedule with no

larger cost

input : A feasible schedule STR for TR. Without loss of generality, assume

that d1 ≤ d2 ≤ . . . ≤ dn.

output: A feasible schedule S ′
TR for TR, where CTR(S

′
TR) ≤ CTR(STR).

1 for j = 1 to n do

2 if j > 1 then

3 nj =| j(1, dj) |; // # of unit jobs of j processed in time

periods 1, . . . , dj

4 if nj > 0 then

5 J j
prec = {k| k < j}; // Jobs in J j

prec precede j in periods

1, . . . , dj.

6 if | J j
prec(1, dj) |> 0 then

7 J = {j} ∪ J j
prec;

/* Move unit jobs of jobs in J j
prec before those of j in

time periods 1, . . . , dj in the next two loops. */

8 for r = 1 to | J(1, dj) | −nj do

9 STR(J(1, dj)[r]) = STR(J
j
prec(1, dj)[r]);

10 for r =| J(1, dj) | −nj + 1 to | J(1, dj) | do

11 STR(J(1, dj)[r]) = j;

12 nj =| j(dj + 1, P ) |; // # of unit jobs of j processed in time

periods dj + 1, . . . , P

13 if nj > 0 then

14 J j
succ = {k| wj

pj
> wk

pk
} ∪ {k < j| wj

pj
= wk

pk
}; /* Jobs in J j

succ succeed j

in periods dj + 1, . . . , P. */

15 if | J j
succ(dj + 1, P ) |> 0 then

16 J = {j} ∪ J j
succ;

/* Move unit jobs of jobs in J j
succ after those of j in

time periods dj + 1, . . . , P in the next two loops. */

17 for r =| J j
succ(dj + 1, P ) | to 1 do

18 STR(J(dj + 1, P )[nj + r]) = STR(J
j
succ(dj + 1, P )[r]);

19 for r = 1 to nj do

20 STR(J(dj + 1, P )[r]) = j;
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Lemma 3.5 The cost of the final schedule S ′
TR obtained by Algorithm 1 is no larger

than that of the initial feasible solution STR, that is, CTR(S
′
TR) ≤ CTR(STR).

Proof. Algorithm 1 performs two types of actions for job j. First, in Steps 3-4 it

moves the unit jobs of job j after the unit jobs of jobs k ∈ J j
prec in the time interval

[0, dj]. Thus, the total cost incurred by the unit jobs of job j before and after the move

is zero. Furthermore, for any job k = 1, . . . , n, the assignment costs ckt, t = 1, . . . , P,

are non-decreasing in t and the unit jobs of job k ∈ J j
prec can only be shifted earlier by

this operation. Thus, the cost of the schedule cannot increase in Steps 3-4. Second,

in Steps 12-13 the schedule in the time periods dj + 1, . . . , P, is modified by shifting

some of the unit jobs of the jobs k ∈ J j
succ later while the unit jobs of job j are

moved earlier. Note that the updates to the schedule in the for-loops in Steps 17-19

can also be regarded as a series of (not necessarily adjacent) pairwise interchanges

between the unit jobs of job j and the unit jobs of jobs k ∈ J j
succ. Therefore, in

order to complete the proof we only need to argue that such a pairwise interchange

is not cost increasing. To this end, consider a swap of ukt1 , k ∈ J j
succ, and ujt2 , where

dj < t1 < t2. For job j, the decrease in cost is cjt2 − cjt1 =
wj

pj
(t2 − t1) because the

unit job of job j completes after its due date in either case. On the other hand, the

increase in cost for the unit job of job k is given by ckt2 − ckt1 which is bounded from

above by wk

pk
(t2 − t1). The actual increase depends on the relative location of dk with

respect to t1 and t2. In any case, we have cjt2 − cjt1 ≥ ckt2 − ckt1 because
wj

pj
≥ wk

pk
for

any job k ∈ J j
succ.

The proof of Lemma 3.5 clearly demonstrates that there is no step in Algorithm

1 that ever increases the total cost of the current schedule. This observation leads to

the corollary below.

Corollary 3.6 When applied to an optimal schedule S∗
TR, Algorithm 1 preserves op-

timality at every step of the algorithm and terminates with an optimal solution S ′
TR.

Lemma 3.7 When applied to an optimal schedule S∗
TR, Algorithm 1 satisfies two

properties.

a. In Steps 3-4, no unit job ukt1, where k ∈ J j
prec and t1 ≥ dk +1, is moved to a time

period t2 < t1.
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b. In Steps 12-13, a unit job ukt1, where k ∈ J j
succ, may be moved to a time period

t2 > t1 > dj only if dk ≤ t1 and
wj

pj
= wk

pk
.

Proof. According to Corollary 3.6, starting with an optimal solution Algorithm 1

preserves optimality at every step because it modifies the solution while guaranteeing

that the total cost does not increase. Both Parts a and b of Lemma 3.7 follow from

this invariant property of Algorithm 1.

For Part a, observe that the unit jobs of jobs k ∈ J j
prec can only be completed

earlier after the current schedule is modified in Steps 3-4 of Algorithm 1. Since the

total cost incurred by the unit jobs of job j is constant at zero, the total cost would

strictly decrease if a unit job of a job k ∈ J j
prec that is currently processed in a period

t1 ≥ dk+1 is moved to a time period t2 < t1 as a result of the updates to the schedule

in Steps 3-4. This would contradict the optimality of the current schedule.

For Part b, note that the modifications of the schedule in Steps 12-13 may also

be regarded as a series of (not necessarily) pairwise interchanges between the unit

jobs of job j and the unit jobs of the jobs in k ∈ J j
succ. By Corollary 3.6, the

total cost is not affected by any of these interchanges. Now, consider a swap of

ukt1 and ujt2 , where k ∈ Jk
succ. The decrease in the the total cost is calculated as

(cjt2 − cjt1)− (ckt2 − ckt1) ≥ 0 because
wj

pj
≥ wk

pk
and dj < t1 < t2. The inequality holds

as equality only if dk ≤ t1 < t2 and
wj

pj
= wk

pk
as required.

Lemma 3.7 helps us prove the next result which is instrumental in characterizing

the nature of preemptions in an optimal schedule constructed by Algorithm 1.

Lemma 3.8 When applied to an optimal schedule S∗
TR, the optimal schedule S ′

TR

constructed by Algorithm 1 satisfies two properties at termination:

a. All unit jobs of job j succeed all unit jobs of the jobs in the set J j
prec = {k| k < j}

over the time periods 1, . . . , dj.

b. All unit jobs of job j precede all unit jobs of the jobs in the set J j
succ = {k| wj

pj
>

wk

pk
} ∪ {k < j| wj

pj
= wk

pk
} over the time periods dj + 1, . . . , P .

Proof. We carry out this proof by induction by showing that these two properties

hold for jobs k = 1, . . . , j, at the end of iteration j of the main loop of Algorithm 1
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in Steps 1-1. Both of the properties clearly hold for job 1 at the end of iteration 1.

Thus, our induction hypothesis asserts that both of the properties are satisfied for

jobs k = 1, . . . , j − 1, at the end of iteration j − 1 of the main loop in Steps 1-1.

In the induction step, we prove that we extend these properties to job j in the jth

iteration while preserving them for jobs k = 1, . . . , j − 1.

Steps 3-4 of iteration j ensure that Lemma 3.8a is satisfied for job j. Furthermore,

for any job k < j we have ({k} ∪ Jk
prec) ⊆ J j

prec, and thus the relative order of the

unit jobs of job k and the unit jobs of the jobs in Jk
prec is preserved during these steps

in the entire schedule although some of them may be shifted earlier. Thus, Lemma

3.8a may only be violated for job k during Steps 3-4 if a unit job ult1 , where l < k

and t1 > dk, is shifted earlier into a time period t2 ≤ dk as a result of these updates

to the schedule. Lemma 3.7a guarantees that this never happens since l < k implies

that dl ≤ dk < t1. Furthermore, in Steps 12-13 the algorithm modifies the schedule

only in the time periods dj + 1, . . . , P , where dj ≥ dk; and thus, Lemma 3.8a holds

for all jobs 1, . . . , j, upon completion of the jth iteration of Steps 1-1 in Algorithm 1.

In Steps 12-13 of the jth iteration of the main loop of Algorithm 1, Lemma 3.8b

is satisfied for job j. Thus, in order to complete the proof we need to argue that

Lemma 3.8b still holds for any job k < j following the completion of the jth iteration

of the main loop. To this end, we note that during the course of Algorithm 1 we

never encounter a schedule in which a unit job of a job l with wl

pl
< wk

pk
precedes a

unit job of job k over the time periods dk + 1, . . . , P . Such a solution would not

be optimal and contradict Corollary 3.6. In other words, Corollary 3.6 establishes

Lemma 3.8b for the unit jobs of the jobs in the set {l| wk

pk
> wl

pl
}. Consequently, here

it is sufficient to prove that if l < k < j and wl

pl
= wk

pk
then all unit jobs of job k

appear before those of l in the time periods dk + 1, . . . , P , when the jth iteration

of the main loop of Algorithm 1 terminates. In Steps 3-4, some unit jobs of jobs l

and k may be shifted earlier because both l and k belong to J j
prec. However, these

operations cannot lead to a violation of Lemma 3.8b for job k because the relative

order of these unit jobs is maintained throughout the schedule and the unit jobs of

job k already precede those of job l over dk+1, . . . , P . Steps 12-13 result in two cases.

If wl

pl
= wk

pk
̸= wj

pj
, then the unit jobs of jobs k and l remain intact in their current

positions in the schedule because Lemma 3.7b implies that a unit job of a job k < j
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may only be moved around in Steps 12-13 if wk

pk
=

wj

pj
. Otherwise, if wl

pl
= wk

pk
=

wj

pj
and

l, k ∈ J j
succ then any updates to the schedule in periods dj+1, . . . , P , does not change

the relative order of the unit jobs of jobs k and l over the time periods dk +1, . . . , P ,

where dk ≤ dj. Thus, Lemma 3.8b remains valid for job k. This argument completes

the final piece of the proof.

In the next lemma, we establish the structure of preemptions in an optimal sched-

ule constructed by Algorithm 1. Note that if job j is preempted by job k at time

t1, Definition 3.1 asserts that there exist three unit jobs ujt1 , ukt2 , and ukt3 , where

t1 < t2 < t3.

Lemma 3.9 A job j can only be preempted by a job k > j with wk

pk
≥ wj

pj
in a time

period t1 ≤ dk in an optimal schedule S ′
TR constructed by Algorithm 1 starting from

an arbitrary optimal solution S∗
TR.

Proof. We consider four cases:

Case 1 Consider two jobs j < k, where
wj

pj
> wk

pk
. The optimality of S ′

TR requires

that t3 ≤ dj. However, in this case ukt2 appears before ujt3 over the time periods

1, . . . , dk, and this violates Lemma 3.8a for job k.

Case 2 Consider two jobs j < k, where
wj

pj
≤ wk

pk
. In this case, we need to rule out

the possibility that t1 > dk. If dk < t1 < t2 < t3, ukt2 succeeds ujt1 over the time

periods dk + 1, . . . , P , which contradicts Lemma 3.8b for job k.

Case 3 Consider two jobs j > k, where wk

pk
>

wj

pj
. The optimality of S ′

TR requires

that t2 ≤ dk. However, in this case ujt1 appears before ukt2 over the time periods

1, . . . , dj, and this violates Lemma 3.8a for job j.

Case 4 Consider two jobs j > k, where wk

pk
≤ wj

pj
. If t2 ≤ dj, then this would

contradict Lemma 3.8a for job j. On the other hand, t2 > dj is ruled out by Lemma

3.8b for job j.

The possible ways that a job k > j with wk

pk
≥ wj

pj
may preempt job j is illustrated

in Figure 3.3. Note that we also need t3 > dk; otherwise, Lemma 3.8a would not hold

for job k.
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dj ≤ dk

jj j kk

0 t3djt1 t1 dkt2 t2

t1 ≤ dk
t3 > dk

wj

pj
≤ wk

pk

Figure 3.3: Structure of preemptions in an optimal schedule S ′
TR constructed by

Algorithm 1.

Finally, we present our main result which stipulates that the optimal solution S ′
TR

for TR constructed by Algorithm 1 is nested according to the Definition 3.3.

Theorem 3.10 When applied to an arbitrary optimal schedule S∗
TR, Algorithm 1

constructs a nested optimal schedule S ′
TR.

Proof. Suppose that the optimal schedule S ′
TR constructed by Algorithm 1 is not

nested. Then, there must exist at least one pair of jobs j and k and two time periods

t1 and t2 such that job k preempts job j at time t1 and job j preempts job k at time

t2. This is clearly not possible by Lemma 3.9 because we either have j > k or k > j.

Corollary 3.11 There exists a nested optimal solution to TR under the cost coeffi-

cients in (3.5).

Proof. We can always apply Algorithm 1 to an arbitrary optimal solution S∗
TR of

TR and obtain a nested optimal solution S ′
TR.

3.3 Further Remarks on the Structure of TR and

Nester Algorithm

In this section, we characterize a dominance rule for TR which is not necessarily

valid for TWT. We demonstrate that Nester Algorithm is oblivious to this dominance

rule and may convert a preemptive schedule that observes this dominance rule into

a preemptive schedule in which the dominance rule is violated. Also, we give an
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example to show that a non-preemptive optimal solution of TR is not necessarily

optimal for TWT.

Property 3.12 If j < k (dj ≤ dk) and
wj

pj
≥ wk

pk
, then there exists an optimal solution

to TR in which all unit jobs of job j are scheduled before those of job k.

Proof. Suppose that we are given an optimal solution S∗
TR for an instance of TR

in which there exist two jobs j and k that satisfy the conditions of this property,

but some unit jobs of job k appear before those of job j. We complete the proof by

demonstrating that an alternate optimal schedule may be constructed by modifying

S∗
TR appropriately so that no unit job of job k is processed before all unit jobs of job

j are performed. This task is accomplished in two steps. First, we set J = {j, k}

and identify all time periods J(1, P ) in the optimal schedule S∗
TR in which we either

process job j or job k. Then, we assign the unit jobs of job j to the first pj time

periods in the set J(1, P ) while the unit jobs of job k are processed in the remaining

time periods of J(1, P ). These changes to S∗
TR do not lead to an increase in the total

cost and we obtain an alternate optimal solution because ckt ≤ cjt for all t ∈ J(1, P )

and the unit jobs of the other jobs are clearly not affected.

However, our algorithm is oblivious to this dominance rule and may even convert

a non-preemptive optimal solution to TR that obeys the dominance rule in Property

3.12 into a nested preemptive optimal solution. Consider the instance given in Table

3.2. There exists a non-preemptive optimal solution to this instance of TR in which

all unit jobs of 1 are scheduled before those of 2. However, our algorithm converts

this non-preemptive optimal solution into the following nested preemptive optimal

solution: S∗
TR(1) = 1, S∗

TR(2) = 1, S∗
TR(3) = 1, S∗

TR(4) = 2, S∗
TR(5) = 2, S∗

TR(6) = 2,

S∗
TR(7) = 1.

Job 1 2
wj 4 3
pj 4 3
dj 2 3

Table 3.2: Our algorithm does not observe Property 3.12.
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An interesting question regarding the optimality structure of TR is whether the

nested structure of preemptive optimal solutions may be employed to decompose

the original non-preemptive problem into smaller independent subproblems. In other

words, we investigate whether it is possible to solve the original non-preemptive prob-

lem to optimality by solving one relatively smaller non-preemptive single-machine

weighted tardiness problem for each parenthesis structure present in a nested pre-

emptive optimal solution and then appending the optimal solutions of these subprob-

lems one after another. Consider the instance in Table 3.3. Assume that the optimal

solution of TR retrieved from the solver is S∗
TR(1) = 1, S∗

TR(2) = 2, S∗
TR(3) = 2,

S∗
TR(4) = 2, S∗

TR(5) = 2 with an objective value of 10.5. This optimal solution is

also obtained by applying our algorithm to an alternate optimal solution S∗
TR(1) = 2,

S∗
TR(2) = 1, S∗

TR(3) = 2, S∗
TR(4) = 2, S∗

TR(5) = 2. In this case, each non-preemptively

scheduled job forms its own parenthesis, and the decomposition approach described

above would yield a sequence 1 → 2 for the original non-preemptive problem with

an objective value of 21. We can easily verify that 2 → 1 is the optimal sequence for

the original non-preemptive problem with an associated objective value of 20.

Job 1 2
wj 2 7
pj 1 4
dj 2 2

Table 3.3: A non-preemptive optimal solution to TR is not necessarily optimal with
respect to the original non-preemptive problem.

3.4 Heuristics

Now, we present three simple heuristics based on job statistics along with the de-

velopment of Non-Preemptive Heuristic (NPH) which converts a nested preemptive

schedule into a feasible schedule for TWT.

3.4.1 Simple Heuristics

These three greedy heuristics only use completion time of the unit-jobs of jobs as

information to construct a job processing sequence.
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• ACT: Sequence jobs in non-decreasing order of the average completion time of

their unit-jobs, where the average completion time of the unit-jobs of job j is

defined as Cj =
∑

l∈{k:xjk=1}
l/pj.

• LCT: Sequence jobs in non-decreasing order of the completion time of their last

unit-jobs, where the completion time of the last unit-job of job j is defined as

max{k : xjk = 1}.

• MCT: Sequence jobs in non-decreasing order of the median completion time of

their unit-jobs.

The last two heuristics are related to the α-point concept which is introduced by

Phillips et al. [45]. An α-point of a job defined as the first time point where α-

portion of the job is completed.

3.4.2 Non-Preemptive Heuristic

A nested schedule may be represented as a parenthesis structure, where the first and

last unit-jobs of a job are denoted by opening and closing parentheses, respectively.

( l )( i ( m )( j ( k ) j ) i )( n ) is the parenthesis represen-

tation of the schedule in Figure 3.4. Observe that, there is only one job (e.g. l, n)

inside some parenthesis, this job is a non-preempted job. The second parenthesis

(i.e. parenthesis i), has two more parentheses inside. These are parenthesis m and

j, parenthesis m is non-preemptive however, parenthesis j has one more parenthesis

inside.

Figure 3.4: A nested schedule of TR

The non-preemptive heuristic (NPH) described in Algorithm 2, basically, finds a

preempted parenthesis p and locates all unit-jobs of job p between other parenthe-

ses non-preemptively. While performing these placement operations, NPH calculates

weighted tardiness costs and then schedules job p in the place with minimum cost.
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Algorithm 2: Converting a nested schedule into a non-preemptive schedule.

input : A nested feasible schedule S ′
TR of TR.

output : A feasible schedule SWT for TWT.

initialization: t = 1, SWT = S ′
TR.

1 while t ≤ P do

2 j = SWT(t);

3 Cj = max{m | SWT(m) = j} ; // Completion time of job j.

4 if Cj − t = pj − 1 then // If job j is scheduled non-preemptively.

5 t = t+ pj;

6 else // If job j is preempted.

7 Cost = ∞;

8 S = SWT(t, Cj);

9 Delete all unit-jobs of job j from the set S;

10 S ′ = ∅;

11 for l = 1 to pj do

12 S ′(l) = j;

13 l =| S |;

14 while l ≥ 0 do

/* Generating schedule part S′ to find the place for job j with minimum cost. */

15 S ′′ = S(1, l) ∪ S ′ ∪ S(l + 1, | S |);

16 l = min{m | S(m) = S(l)} − 1 ; // Index of the last job of the previous

parenthesis.

17 if CWT (S
′′, t− 1) < Cost then

18 Cost = CWT (S
′′, t− 1);

19 Sbest = S ′′;

20 SWT(t, Cj) = Sbest;

In the description of the non-preemptive heuristic, SWT(t) denotes the tth unit-job

in the schedule SWT, S is the set of unit-jobs except those of job j in the parenthesis

j, SWT(t1, t2) and S(t1, t2) represent the ordered set of jobs processed in the periods

t1, . . . , t2, and S ′′ is the schedule part corresponding to SWT(t, Cj), which is modified
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in order to make the job j non-preemptive. NPH calculates weighted tardiness cost

of a schedule part S ′′ (i.e. a parenthesis) that starts in time period k, with Proce-

dure CWT (S, k) (Algorithm 3). This procedure first finds the last completion time

sequence of the jobs, since there may be another parenthesis in S ′′. Then it calculates

the weighted tardiness cost of the sequence.

Algorithm 3: Procedure CWT (S
′′, t)

input : S ′′ and t.

output : Tardiness cost of schedule part S ′′.

initialization: S ′′
seq = LCT sequence of the jobs in schedule part S ′′, CWT = 0.

1 for i = 1 to | S ′′
seq | do

2 j = S ′′
seq(i);

3 t = t+ pj;

4 CWT = CWT + wj max{0, t− dj};

In Figure 3.5, there is an example of how NPH finds the position with minimum

weighted tardiness cost for job i. When the heuristic comes across a preempted

parenthesis i, starting from the end, it locates all unit-jobs of job i between other

parentheses non-preemptively (i.e. (1), (2) and (3)). Then it schedules job i in the

position with minimum cost (i.e. (2)).

. . .

. . .

. . .

j k j i. . . li

j k j l i

j k li

j k j li

j k

j

j i l

(2)

(1)

(3)

Figure 3.5: An iteration of NPH.

The heuristic’s outer loop performs at most n+α iterations where α is the number
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of preempted parentheses in the schedule. The total number of placement operations

on those α iterations cannot exceed n + α; more precisely it is less than or equal to

α
⌊
n
α
+ 1

⌋
.

3.5 Common Due Date

The single-machine common due date total weighted tardiness problem (CDD) is a

special case of TWT, where the due dates are identical for each job. Therefore, the

same notation and formulation may be used for the common due date case.

Our solution approach relies on the fact that, with our cost coefficients, TR ap-

proximation of CDD admits an easy solution. This solution can be obtained by

inspection and since it is non-preemptive, it is feasible for the original common due

date problem.

To this end, we first restate TR as a Linear Sum Assignment problem (LSAP)

which is a special case of TR. Then, we show that, with our cost coefficients, the cost

matrix C of LSAP fulfills the Monge property which is defined as:

cij + ckl ≤ cil + ckj (3.8)

for all 1 ≤ i < k ≤ P and 1 ≤ j < l ≤ P in [12, Definition 5.5], where P =
∑

j pj is the

size of the matrix. Thus, the optimal solution of LSAP is the identical permutation

(i.e. xij = 1 for only i = j) [12, Proposition 5.7].

Now, we restate TR as LSAP by treating each unit-job as a separate job. Assume

that, jobs are ordered and relabeled in non-increasing order of their wi

pi
values. By

introducing binary variables xijt such that

xijt =

 1 if jth task of job i assigned to time period t,

0 otherwise,

and a P × P cost matrix C such that

c( i−1∑
n=1

pn+j t

) =

 0 t ≤ d,

wi

pi
[t− di] t > d,

(3.9)
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where j ≤ pi and c( i−1∑
n=1

pn+j t

) represents the cost coefficient associated with jth task

of ith job in time period t. And the objective is to minimize the total assignment

cost over the planning horizon H = 1 . . . P .

(LSAP) min

n∑
i=1

pi∑
j=1

∑
t∈H

c( i−1∑
n=1

pn+j t

) xijt (3.10)

∑
t∈H

xijt = 1 ∀i, j (3.11)

n∑
i=1

pi∑
j=1

xijt = 1 ∀t ∈ H (3.12)

xijt ∈ {0, 1} ∀i, j, t ∈ H. (3.13)

Lemma 3.13 The solution to the LSAP with the cost coefficients in (3.9), is the

identical permutation (i.e. xijt = 1 for only
i−1∑
n=1

pn + j = t).

Proof. To prove this lemma, it is enough to show that the cost matrix C of LSAP

with the cost coefficients in (3.9), is a Monge matrix, since it is already shown that

the solution to the LSAP whose cost matrix is a Monge matrix, is the identical

permutation by Burkard et al. [12, Proposition 5.7].

To show that C is a Monge matrix, we show that C is a so-called ordered product

matrix which forms a subclass of Monge matrices. A matrix D is said to be ordered

product matrix if D = (dij) = uivj where u1 ≥ u2 . . . ≥ un ≥ 0 and 0 ≤ v1 ≤ v2 . . . ≤

vn hold [13, p. 499].

When we take u1 ≥ u2 . . . ≥ uP ≥ 0 and 0 ≤ v1 ≤ v2 . . . ≤ vP as below:

vj = max{0, j − d} for j = 1, . . . , P

u( i−1∑
n=1

pn+j

) =
wi

pi
for i = 1, . . . , n and j = 1, . . . , pi,

then the cost coefficients cij = uivj and the cost matrix created with these cost coef-

ficients is a Monge matrix. Thereby, solution to the linear sum assignment problem

with these cost coefficients is the order of the jobs with respect to the ratio wi

pi
.
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Since LSAP relaxation is non-preemptive, it is feasible for the original single-

machine common due date weighted tardiness problem.

It turns out that, the solution procedure we described in this section for the single-

machine common due date weighted tardiness problem boils down to a well-known

heuristic rule, weighted shortest processing time (WSPT) first described by Smith

[56] in 1956. McNaughton further showed the cases in which WSPT gives the optimal

schedule for the original scheduling problem TWT.
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CHAPTER 4

Computational Results

In order to evaluate the performance of the proposed solution approach, we solved

the standard benchmark instances in the OR-Library1 and the instances that are

generated by Tanaka et al. [61] in a similar way to the OR-Library instances2. The

main objectives of our computational experiments are to show that the proposed

algorithms find excellent feasible solutions in short computational times. To generate

a feasible schedule for TWT, we obtain an optimal schedule of TR and convert this

schedule into a nested one with the Nester Algorithm and then use the heuristics

described in Section 3.4 to obtain a feasible solution of TWT. In general, the optimal

solution of TR is a preemptive schedule and the factors that affect preemption are

due dates, processing times, and the number of jobs. In particular, among these

factors, we are interested in the behavior of our algorithms with respect to the due

date factors and the number of jobs. In Section 4.3.4, we also investigate whether the

nested structure may help us to decompose TWT time-wise into smaller subproblems.

4.1 Data of TWT

The data set consists of seven sets of instances with problem sizes n = 40, 50, 100,

150, 200, 250 and 300. Each instance is generated by assigning a processing time pj

and a tardiness weight wj for each job j from a discrete uniform distribution U [1, 100]

and U [1, 10], respectively.

The due dates are generated from the interval [(1− TF −RDD/2)P, (1− TF +

1http://people.brunel.ac.uk/∼mastjjb/jeb/info.html
2http://turbine.kuee.kyoto-u.ac.jp/ tanaka/SiPS/SiPS.html
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n pj TF RDD wj

40, 50, 100, 150,

200, 250, 300

U [1, 100] {0.2, 0.4, 0.6, 0.8, 1} {0.2, 0.4, 0.6, 0.8, 1} U [1, 10]

Table 4.1: Data parameters

RDD/2)P ], where P =
∑

j pj, and RDD and TF are two parameters. TF is referred

to as tardiness factor since it determines the tightness of the average due date. RDD

controls the variability in the due dates. There are 25 combinations of TF and RDD,

and for each combination of TF and RDD, five instances are generated. Therefore,

there are 125 instances for each problem size. The optimal solutions of all instances

are found by Tanaka et al. [61] in 2009.

4.2 Other Cost Coefficients for TR

In order to evaluate the performance of the cost coefficients in (3.5), we modify the

cost coefficients of Bülbül et al. [11] and Sourd and Kedad-Sidhoum [57] originally

proposed for the single-machine total weighted earliness tardiness problem. We obtain

the following cost coefficients, by setting the earliness cost to zero:

cBUL
jk =

 0 k ≤ dj
wj

pj

[
(k − 1

2
)− (dj − pj

2
)
]

k > dj,
(4.1)

cSOU
jk =

 0 k ≤ dj⌈
(k−dj)

pj

⌉
wj k ≥ dj + 1.

(4.2)

Along with the cost coefficients in (3.5), TR is solved with these cost coefficients

as well. After the preemptive schedules are obtained, only simple heuristics (SH) are

applied to the schedules which are obtained with the cost coefficients in (4.1) and

(4.2), because the TR problem does not necessarily have a nested optimal solution

with these cost coefficients as we demonstrate in Section 3.1.2.
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4.3 Summary of Results

The solution procedure for the transportation problem and all proposed algorithms

are implemented in C++ using CPLEX 12.1 Concert Technology. All computational

results are obtained on a Windows PC with a 2.33 GHz Intel Core2 Quad CPU and

3.46 GB RAM.

The structure of this section is as follows. We present the effects of the Nester

Algorithm and the number of jobs in the next section and then the effects of the

tardiness and range of due date factors are presented. In Section 4.3.3, statistics

related to the parentheses in the nested schedules are given and after that, the results

obtained by solving the parentheses with an IP to optimality are presented.

4.3.1 Effect of the Nester Algorithm and Number of Jobs

Tables 4.2 and 4.3 show the performance changes of the heuristics and lower bounds

in terms of gaps and CPU times, with respect to the number of jobs. The effect

of the Nester Algorithm is reported in columns 8 and 11-13. In these columns,

the numbers in the parentheses indicate the values that are obtained from a nested

schedule. Column 2 indicates the cost coefficients used in TR. For each cost coefficient

cij, the first row indicates the average and the second row indicates the worst case

performance measures. In columns 3-6, performance measures related to CPU times

are reported. The computation time for obtaining the optimal solution of TR is

reported in column TR. The total time required to compute the best solution (after

obtaining a nested optimal schedule to TR) from three simple heuristics is given in

column BSH (“Best of Simple Heuristic”). The computation time required to obtain

a nested optimal schedule from the optimal solution of TR and a feasible schedule for

TWT from the nested schedule by our proposed algorithm are reported in columns

NA (“Nester Algorithm”) and NPH (“Non-Preemptive Heuristic”), respectively. The

number of times TR solution, the best simple non-preemptive heuristic solution, and

the non-preemptive heuristic solution from NPH match the optimal solution of TWT

are represented under # of Optimal Solutions in columns 7-9, respectively. In column

BSH, the numbers in parentheses refer to the number of optimal solutions when the

heuristics are applied to a nested optimal solution of TR.
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The gaps for the lower bound and heuristics are reported in columns 10-15, where

the percentage gap for a cost C is computed as C−COPT

COPT
. The column TR indicates

the gap of the lower bound obtained from the transportation problem. The remaining

columns report the optimality gaps of the heuristics.

The results indicate that NPH is always the best with respect to both the number

of optimal solutions and optimality gaps, and is followed by the last completion time,

median completion time, and average completion time heuristics. The optimality

gaps and the number of optimal solutions of the heuristics clearly show that the

Nester Algorithm improves the results. Observe that, the optimality gaps of the

LCT heuristic are not affected by NA. One intuitive explanation is that, the reason

for a job to be preempted and scheduled after its due date is, the priority of this

job is smaller than those of that made the preemption. Since NA operates with the

relative priorities and the preempted tardy jobs are scheduled in that order because

of their relative priorities, the algorithm cannot change the last completion time of

the jobs which are scheduled after their due dates.

Note that the performance of the heuristics with our cost coefficients improves

as the number of jobs increases. This result cannot be seen with the other cost

coefficients and observe that there is a great difference between the optimality gaps

obtained with cost coefficients (4.1) and (4.2), and the optimality gaps obtained with

our cost coefficients, given in (3.5). However our cost coefficients yield worse lower

bounds than those yielded by the others. The reason for this result is explained

in Section 3.1.2. As a matter of fact, although the set of cost coefficients in (4.2)

satisfies
∑Cj

k=Cj−pj+1 cjk = wjTj for all possible completion times Cj, the set of cost

coefficients in (4.1) gives better lower bounds and optimality gaps, recall that these

cost coefficients satisfy the equality only for completion times Cj ≥ dj + pj.

Observe that, the CPU times of Nester Algorithm and Non-Preemptive Heuristic

grow more rapidly compared to those of the Simple Heuristics. On the other hand,

these CPU times are negligible compared to those of TR.

In Figure 4.1, we present the distribution of the optimality gaps for all problem

sizes. This figure clearly indicates the excellent performance of the Non-Preemptive

Heuristic.
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Note that, with probability 0.700, the optimality gaps of 300 and 250-job instances

are smaller than 0.09%, those of 200, 150, 100 and 40-job instances are smaller

than 0.14%, and that of 50-job instances is smaller than 0.30%. Observe that, the

cumulative probability of optimality gaps being smaller than 1.20% is higher than

0.975 for 100, 150, 200, and 250-job instances, and higher than 0.965, 0.940, and

0.900 for 300, 50, and 40-job instances, respectively.

Table 4.4 shows the performance changes of the Non-Preemptive Heuristic in

terms of average and worst case optimality gaps, and the last three columns show the

number of instances with optimality gaps larger than 1%, 5% and 10%, respectively.

The performance improvement as the number of jobs increases is much clearer when

the instances with gaps larger than 5% are excluded from the table. Only 24 instances

of 875 instances have gaps larger than 5% and 12 of those are higher than 10%.

When these 24 instances excluded, the average of optimality gaps improve to between

0.28− 0.11% from between 1.20− 0.21% for NPH.

n Percentage Gap (%) # Instances w. Gap

ave. max >1% > 5% >10%

40 0.22 3.08 14 7 5
50 0.28 3.45 9 2 1
100 0.15 2.47 4 1 0
150 0.14 2.70 4 1 1
200 0.13 4.40 4 2 1
250 0.11 3.19 4 1 1
300 0.12 3.07 5 3 3

Table 4.4: Effect of n: average and worst case gaps of NPH for instances with gap
smaller than or equals to 5%.

4.3.2 Effects of Tardiness and Range of Due Date Factors

In Tables 4.5-4.11, we explore the effect of tardiness (TF ) and range of due date

(RDD) factors on the percentage gaps of the transportation problem and best heuris-

tics (BH) for all problem sizes, and in Table 4.12 and 4.13, we explore the same effect

on the CPU times required to solve TR for problem size n = 100 and 300, respec-

tively. In each cell of these tables, results for 5 problem instances are reported. The

values in the parenthesis are the worst case performance measures.
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For each value of TF , the first row indicates the measures that are obtained with

our cost coefficients, and the second and third rows indicate those obtained with cost

coefficients in (4.1) and (4.2), respectively.

Tables 4.5-4.11 indicate that for all cost coefficients, for a given value of RDD,

the quality of both average and worst case of percentage gaps for TR improves as

TF increases, except for the cells with TF = 0.2 and RDD = {0.6, 0.8, 1}. In a

similar manner, for a given value of TF , the quality of those improves as RDD

decreases, except for the cells with TF = 0.4 and RDD = 0.8, and TF = 0.2 and

RDD = {0.6, 0.8, 1}. On the other hand, such general statements cannot be made

for the gaps of BH.

In Table 4.12 and 4.13, the CPU times required to solve TR for n = 100 and 300

appear. Observe that, the instances with TF = 0.2 and RD = {0.6, 0.8, 1} are the

easiest instances in terms of the gaps and the CPU times. Optimal objective values

of these instances are 0, and the maximum and average CPU times of these instances

are the shortest ones.

TF RDD

0.2 0.4 0.6 0.8 1

0.2 2.24(2.44) 2.20(2.91) 1.62(1.72) 1.61(1.75) 1.65(1.78)
2.22(2.50) 2.23(2.92) 1.61(1.69) 1.61(1.77) 1.64(1.78)
2.00(2.19) 2.17(2.72) 1.61(1.70) 1.61(1.75) 1.64(1.77)

0.4 2.51(2.74) 2.48(2.72) 2.91(3.81) 2.99(4.00) 2.62(3.97)
2.48(2.58) 2.49(2.75) 2.91(3.59) 3.03(4.36) 2.64(3.80)
2.30(2.47) 2.32(2.55) 2.59(3.16) 2.82(3.81) 2.51(3.25)

0.6 3.39(3.86) 3.11(3.59) 3.81(4.30) 4.74(5.42) 5.53(6.28)
3.30(3.95) 3.06(3.75) 3.60(4.36) 4.49(5.11) 5.22(5.73)
2.73(2.98) 2.65(3.20) 3.17(3.42) 3.63(4.03) 3.78(4.03)

0.8 3.61(4.24) 4.06(4.28) 3.70(4.00) 4.27(5.02) 4.24(5.03)
3.50(4.17) 3.79(4.17) 3.59(4.13) 3.98(4.52) 4.05(4.69)
2.88(3.33) 3.15(3.39) 2.88(3.16) 3.14(3.50) 3.25(4.08)

1 2.23(2.78) 2.48(2.78) 2.60(2.99) 3.57(4.23) 3.90(4.72)
2.15(2.70) 2.44(2.92) 2.59(2.91) 3.39(4.00) 3.65(4.56)
2.26(2.84) 2.46(2.98) 2.52(2.88) 3.23(3.91) 3.10(3.63)

Table 4.12: Effect of TF and RDD: average and (maximum) of the CPU times
required to solve TR, n = 100
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TF RDD

0.2 0.4 0.6 0.8 1

0.2 38.4(43.2) 24.8(27.6) 16.9(17.8) 16.4(16.7) 16.8(17.4)
40.0(46.6) 24.4(26.8) 16.8(17.9) 16.4(16.8) 16.7(17.3)
26.3(29.5) 24.5(28.4) 17.0(18.0) 16.5(16.9) 17.5(19.6)

0.4 69.7(83.9) 57.4(62.7) 51.6(64.3) 45.1(56.5) 23.5(27.9)
69.7(81.7) 55.9(57.0) 50.5(64.4) 44.3(51.2) 23.9(26.9)
34.0(37.0) 34.2(35.9) 37.6(48.9) 43.7(53.3) 23.7(26.0)

0.6 90.3(107) 81.8(94.8) 88.4(102) 77.8(90.9) 82.3(105)
85.1(92.3) 77.7(93.6) 82.7(92.0) 74.4(87.8) 78.0(95.2)
35.7(41.0) 37.1(39.4) 46.1(51.9) 51.1(64.2) 60.1(71.5)

0.8 127(143) 115(128) 97.7(105) 95.8(106) 90.8(113)
129(157) 112(129) 103(111) 82.5(90.1) 82.8(111)
45.6(53.9) 43.8(49.3) 44.5(50.2) 45.8(48.1) 49.1(55.6)

1 140(153) 131(138) 131(154) 113(124) 116(135)
140(148) 133(144) 131(161) 108(129) 106(125)
48.5(51.8) 48.3(52.1) 49.3(57.2) 44.8(47.8) 48.1(55.5)

Table 4.13: Effect of TF and RDD: average and (maximum) of the CPU times
required to solve TR, n = 300

4.3.3 Statistics on Parentheses

In this section, we investigate whether the number of jobs, the tardiness and range

of due date factors effect the parenthesis structure of the instances. We use three

informations based on parenthesis statistics to explore the effects of the factors. These

are AVJP, MAJP, and MIJP (i.e. the average, maximum, and minimum number of

jobs in the parentheses of an instance). Also, we present the empirical distribution

of the sizes of parentheses.

Effect of the Factors

In Table 4.14, we explore the effect of number of jobs. In column 2 and 3, the number

of instances that have at least one parenthesis, and the average and maximum number

of jobs in those parenthesis are reported. The last two columns are the average of

AVJP and MAJP. Although all the parameters grow almost linearly with n, the

correlation of the maximum number of jobs in the parentheses and n is much more

significant than the others.

In Figure 4.2, we investigate the relation between the factors, and the average of
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n Average of

# Ins. # Par. AVJP MAJP

40 103.00 2.82(7) 8.5 11.1
50 103.00 2.89(9) 12.9 16.4
100 100.00 5.95(18) 19.2 25.3

Table 4.14: Effect of n: number of instances that have parenthesis, average and
(maximum) number of parenthesis per instance, and average number of AVJP and
MAJP

AVJP and number of parentheses. The result clearly indicates the relation that for

a given problem size n, while TF and RDD are decreasing, the average numbers of

parentheses and AVJP are generally increasing and decreasing, respectively.

Figure 4.2: Effect of the factors: average of AVJP and number of parentheses

Empirical Distribution of Sizes of the Parentheses

In Figures 4.3-4.5, we present the distributions of the sizes of the parentheses for the

problem size n equal to 40, 50, and 100-jobs, respectively. In these figures, the Min,

Max, and Ave. refer to the distribution of MIJP, MAJP, and AVJP, respectively. We

note that the probability of an instance having a parenthesis with n
4
or less jobs is
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between 60− 80% and with probability 0.18, NA yields a non-preemptive schedule.

Figure 4.3: Distribution of sizes of the parentheses, n = 40

Figure 4.4: Distribution of sizes of the parentheses, n = 50
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Figure 4.5: Distribution of sizes of the parentheses, n = 100

4.3.4 Time Decomposition of TWT

As we mention at the beginning of this chapter, after obtaining the nested schedule,

we solve an IP to obtain the optimal schedules of the parentheses, in order to inves-

tigate whether our solution approach may be used as a decomposition method. The

IP is stated as:

(IP1) min

n∑
j=1

Tmax−pj+1∑
t=rj

wj (t+ pj − 1− dj)
+ xjt (4.3)

Tmax−pj+1∑
t=rj

xjt = 1 ∀j (4.4)

n∑
j=1

t∑
s=

max(0,t−pj+1)

xjs ≤ 1 ∀t ∈ H (4.5)

xjt ∈ {0, 1} ∀j, t ∈ H, (4.6)

where (x)+ = max (0, x), xjt is a decision variable equal to 1 if a job j starts processing

in period t, and equal to 0 otherwise. The planning horizon is defined as H =
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[minj rj, Tmax], where Tmax = P + maxj rj and P is the sum of all processing times.

The objective is to minimize the total weighted tardiness. The constraints (4.4) ensure

that all jobs are scheduled. The constraints (4.5) and (4.6) together ensure that at

most one job is processed at any point in time and that processing is non-preemptive.

The gaps that are obtained by solving parentheses to optimality are in Table 4.15.

In columns 2 and 4, we report the number of instances with 25 or less jobs in the

largest parenthesis (i.e. MAJP) and the number of instances whose optimal schedule

is found among those, respectively.

n # Ave. #

Ins.1 Opt. Gaps Opt.

40 120 0.891% 74
50 97 0.121% 55
100 87 0.089% 33

1
Instances with 25 or less jobs in the

parentheses are solved.

Table 4.15: Solving Parentheses with IP

Although the average optimality gaps are less than 1% and 0.1% for 40 and 100-

job instances, respectively, we cannot find all optimal schedules with this approach,

the reason for that is, as we discussed in Section 3.3, TR is vulnerable to the Property

3.12 which is not necessarily valid for the TWT problem. Thus, even though we find

the optimal schedule for the preemptive jobs in a nested schedule in order to make it

non-preemptive, this resulting schedule is not necessarily optimal for TWT because

the non-preemptive parts of the nested schedule are obtained from TR.

Figure 4.6 shows the minimum, average, and maximum CPU times for solving IP1

with respect to the number of jobs in the maximal parenthesis. Obviously solving an

IP model becomes computationally expensive with respect to the average CPU times

when the size of the problem exceeds 20 jobs.

4.4 Common Due Date

In order to evaluate the performance of the proposed heuristic, we create and solve

125 instances for each problem size n = {40, 50, 100}. The data set is generated with
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Figure 4.6: CPU times for solving the IP model

the same manner of the OR-Library, except a common due date is assigned to all jobs

in an instance, and the data parameters in Table 4.1 are used. The optimal solutions

of the CDD problem are obtained by using the DP algorithm3 proposed by Lawler

and Moore [39].

4.4.1 Summary of Results

For the common due date problem, we investigate the effect of the number of jobs,

and tardiness and due date range factors on the number of optimal solutions, and on

the average and worst case optimality gaps.

Effects of Number of Jobs

In Table 4.16, we present the effect of number of jobs. The number of times in which

the solution of the proposed heuristic matches the optimal solution is indicated under

# Opt. (“Number of Optimal”) in column 2. In column 3 and 4, the average and

worst case optimality gaps are presented, respectively. The average optimality gap

for all 375 instances is less than half a percent. Although maximum gaps are between

3This algorithm is implemented in MATLAB.
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2.5 and 5%; only 28 instances have gaps larger than 1% and 7 of those are higher

than 2%.

Percentage
n # Opt. gap (%)

40 31 0.43 (4.85)
50 32 0.29 (2.57)
100 23 0.16 (3.01)

Table 4.16: Effect of n: number of optimal solution, and average and (maximum)
gaps of the heuristic

Note that the optimality gaps decrease as the number of jobs increases. Even

though the worst case gap of 100-job instances is larger than that of 50-job instances,

there are only 3 100-job instances with the worst case optimality gap larger than 1%

but for 50-job instances this number is 8. When the number of jobs insreases, the

number of optimal solutions found by the heuristic decreases, which is common in

the heuristics domain. The distribution of # Opt. may be seen in Table 4.18.

Effects of Tardiness and Range of Due Date Factors

The worst cases of the optimality gaps come from the instance with TF = 0.2 and

RDD = {0.2, 0.6}, this may be seen in the Table 4.17. The reason for this effect is

that, as the TF decreases, less jobs be tardy, and the objective function values of

these instances are relatively smaller than the others, so that even one misplaced job

may cause relatively big optimality gap increase.

Observe that the gaps for TF = 1 are relatively smaller than those for the other

values of TF , the same effect also may be seen in Table 4.18. The due dates of these

instances are relatively small, recall that due dates are generated from the interval

[(1 − TF − RDD/2)P, (1 − TF + RDD/2)P ]. Since in the heuristic, we basically

order the jobs non-increasingly with respect to their
wj

pj
ratios, when the due date is

small, the heuristic schedules more number of jobs in its optimal place. In the next

table, each cell corresponds to 15 instances and represents the number of instances

whose optimal solution is obtained by the heuristic. Also, these results are consistent

with the reasoning above.
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n TF RDD

0.2 0.4 0.6 0.8 1

40 0.2 2.14(4.85) 0.59(2.26) 0.76(2.79) 0.37(1.43) 0.35(1.15)
0.4 0.50(1.02) 0.24(0.83) 0.17(0.65) 0.70(1.79) 0.51(1.53)
0.6 0.55(0.88) 0.65(1.20) 0.58(1.82) 0.49(1.60) 0.46(1.14)
0.8 0.15(0.31) 0.20(0.51) 0.40(0.84) 0.23(0.56) 0.42(1.53)
1 0.01(0.05) 0.05(0.12) 0.16(0.25) 0.03(0.10) 0.10(0.18)

50 0.2 0.70(2.16) 0.44(0.49) 0.85(2.57) 0.11(0.36) 0.08(0.24)
0.4 0.53(0.94) 0.41(0.71) 0.41(0.96) 0.43(0.65) 0.39(1.38)
0.6 0.23(0.52) 0.23(0.38) 0.32(0.69) 0.45(1.25) 0.26(0.49)
0.8 0.13(0.27) 0.26(0.34) 0.12(0.32) 0.34(0.98) 0.31(1.14)
1 0.01(0.03) 0(0) 0.03(0.15) 0.02(0.09) 0.17(0.45)

100 0.2 0.58(1.03) 0.20(0.57) 0.85(3.01) 0.09(0.22) 0.11(0.35)
0.4 0.23(0.36) 0.24(0.35) 0.14(0.17) 0.22(0.48) 0.36(0.67)
0.6 0.07(0.09) 0.07(0.11) 0.10(0.19) 0.08(0.26) 0.41(1.61)
0.8 0.03(0.05) 0.02(0.03) 0.07(0.16) 0.05(0.17) 0.04(0.10)
1 0.01(0.02) 0.01(0.03) 0.02(0.04) 0.02(0.10) 0.04(0.15)

Table 4.17: Effect of TF and RDD: average and (maximum) percentage gaps (%)
of the heuristic.

TF RDD

0.2 0.4 0.6 0.8 1

0.2 2 3 6 7 8
0.4 2 1 2 1 1
0.6 1 - - - -
0.8 1 1 - 3 5
1 10 10 5 10 7

Table 4.18: Effect of TF and RDD: number of optimal solutions.
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CHAPTER 5

Conclusion and Future Work

In this thesis, we proposed a simple, fast, and effective heuristic method to solve the

strongly NP-hard single-machine total weighted tardiness problem. Even though the

transportation problem has been used for lower bounding before, as Bülbül et al. [11]

said in 2007, “we investigated a relatively unexplored path” by studying the structure

of the preemptions in the schedule obtained by the relaxation. We constructed a set of

cost coefficients and proved that with these cost coefficients, the preemptive relaxation

of the total weighted tardiness problem has a nested optimal schedule according to

the Definition 3.3. Also, we showed that with this set of cost coefficients, the cost

matrix of the relaxation of the common due date problem is a Monge matrix.

We demonstrated that the proposed solution approach yields excellent results in

the computational experiments both in terms of the optimality gaps and CPU times.

We also note that with our cost coefficients the cost matrix of the transportation

problem has a special structure. We hope to explore this structure in depth to find

some desirable properties that may be used to develop a specialized algorithm for

solving the transportation problem faster. A possible extension of our research could

be to develop an algorithm algorithm that exploits the nested structure. Also, the

proposed solution approach may used in meta-heuristics for generating the solution

pool by modifying the behavior of the non-preemptive heuristic.
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