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. . . . . . . . . . . . . . . . . . . . . . . .

Assist. Prof. Kerem Bülbül
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Abstract

Tactical crew planning problem at Turkish State Railways (TCDD) involves find-
ing the minimum crew capacity in a crew region required to operate a predetermined
set of train duties assigned to the region by the headquarters. The problem is to
be solved for each crew region by satisfying various rules and constraints associated
with the requirements of the company. One of the most important constraints is the
day-off requirement which makes the problem computationally intractable. In this
study, we use a space-time network flow representation to solve the tactical capacity
planning problem with day-off requirement. To solve the problem, we develop two
solution approaches: the sequential approach and the integrated approach. In the
sequential approach we mimic the current practice at TCDD and solve the problem
in two stages. In the first stage, we solve a minimum flow problem over a space-time
network by relaxing the day-off requirement. After obtaining the tentative sched-
ules of crew members, we solve an assignment problem to fill-in the days-off in the
tentative schedules by using additional substitute crew members. In the integrated
approach, we solve a minimum flow problem with side constraints using a layered
space-time network representation of the problem. We present the computational
study on a real-life data set acquired from TCDD. We, then, study a higher level
crew capacity planning problem. In this tactical-to-strategic level capacity planning
problem, we minimize the total crew capacity of all regions by simultaneously con-
sidering multiple regions. We do this by re-assigning duties to different regions or
allowing two neighboring crew regions share the train duties in different settings. For
tactical-to-strategic capacity planning problem, we present the mathematical formu-
lation of single-region and two-region models with various crew exchange policies.
Given the large scale of the search space, we choose to employ a neighborhood search
heuristic in order to solve the problem. The neighborhood search heuristic uses the
minimum flow problem in the sequential approach as a subprocedure. We present
the computational study again for the TCDD data set.
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DEMİRYOLLARINDA TAKTİK SEVİYEDE EKİP PLANLAMA
PROBLEMİ

Birol Yüceoğlu

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2009

Tez Danışmanı: Yard. Doç. Dr. Güvenç Şahin

Anahtar Kelimeler: ekip planlama, taktik seviyede planlama, demiryolu, çizge akış,
uzay-zaman çizgesi

Özet

Türkiye Cumhuriyeti Devlet Demiryolları’nda (TCDD) taktik seviyede ekip plan-
lama problemi, ekip bölgelerinin önceden genel merkez tarafından belirlenmiş çizel-
gelerindeki görevleri gerçekleştirecek enküçük ekip üyesi sayısının belirlenmesini kap-
sar. Problem, şirketin gereksinimleriyle ilgili kural ve kısıtları sağlayarak her bölge
için ayrı ayrı çözülür. Bu kısıtlardan en önemlilerinden biri de problemin çözümünü
zorlaştıran tatil günü kısıtıdır. Bu çalışmada, taktik seviyede kapasite planlama prob-
lemini tatil günü kısıtıyla çözmek için bir uzay-zaman çizgesi gösterimi kullanıyoruz.
Problemi çözmek için iki çözüm yaklaşımı geliştiriyoruz: ardışık yaklaşım ve tümleşik
yaklaşım. Ardışık yaklaşımda halihazırda TCDD’de kullanılan çözüm yaklaşımını
taklit ederek problemi iki aşamada çözeriz. İlk aşamada bir uzay-zaman çizgesi
üzerinde tatil günü kısıtını göz ardı ederek bir enküçük akış problemi çözeriz. İkinci
aşamada ise, bu problemin çözümünden elde edilen kesin olmayan ekip çizelgeleri
üzerine yedek ekip üyeleri kullanarak tatil günlerini doldurmak için bir atama prob-
lemi çözeriz. Tümleşik yaklaşımda ise katmanlı bir uzay-zaman çizgesinde yan kısıt-
ları olan enküçük akış problemi çözeriz. Bilgisayısal çalışmamızı TCDD’den alınan
gerçek veri kümeleri üzerinde sunuyoruz. Taktik seviyede ekip planlama proble-
minden sonra daha üst seviyede bir ekip kapasite planlama problemini ele alıyoruz.
Bu taktik-stratejik arası seviyedeki kapasite planlama probleminde birden çok bölgeyi
aynı anda düşünerek bölgelerde ihtiyaç duyulan toplam ekip üyesi sayısını enküçükle-
riz. Bunu gerçekleştirmek için, görevlerin farklı bölgelere atanmasını ve bölgeler arası
görev paylaşımı seçeneklerini değerlendiririz. Tek bölgeli ve iki bölgeli taktik-stratejik
arası seviyedeki kapasite planlama problemlerinin farklı görev paylaşım kurallarıyla
matematiksel modellerini sunuyoruz. Problemin büyük ölçekli olması sebebiyle aç-
gözlü bir yöre araması algoritmasıyla problemi çözeriz. Açgözlü yöre araması algo-
ritmasında ardışık çözümde geliştirdiğimiz enküçük akış problemini altyordam olarak
kullanırız. Bilgisayısal çalışmayı yine TCDD veri kümesi üzerinde sunuyoruz.
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İlker Birbil for showing me the way and for his support. I would also like to thank Dr.
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1 INTRODUCTION

Transportation services planning is one of the most prominent and important re-

search areas in operations research due to complexity of the problems arising in dif-

ferent modes of transportation such as airlines, railways and maritime. In the recent

years, a vast variety of optimization problems relating to many aspects of operations

of transportation companies are being studied extensively. For European railways,

deregulation process in the 1990s pushed the companies to seek efficiency in their

operations while the North American freight railway systems have started adapting

operations research techniques in a need for effective decision making through their

transition from tonnage-based services to scheduled services. The increasing level

of competition with trucking companies as well as promotion of intermodal services

have started elevating the level of such efforts.

Due to the complexity of the physical infrastructure and interrelated operations,

there are several problems arising in railways. These problems are concerned with net-

work configuration decisions (building new tracks, expanding line capacities, location

of yards as well as their closing and opening), capital investment decisions (acquir-

ing rolling stock, technological upgrades), allocation of resources, service scheduling,

demand and revenue management to name a few. We refer the interested reader to

Şahin [1] and Ahuja et al. [2] for an overview and a general framework of the railway

planning problems. In this study, we are interested in crew-related planning problems

at railways.

To understand the share of crew related costs in railways, it is sufficient to look

at a few examples. According to the Dutch Railways example in Abbink et al. [3],
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there are more than 3000 drivers covering more than 14,000 timetabled daily trips

put together in more than 1000 duties in 29 crew regions. A new planning system

put into use in Dutch Railways is predicted to bring 6 million euros reduction in crew

related costs, which corresponds to a 2% improvement. In Turkish State Railways

(TCDD), crew-related costs (including managerial crew, which accounts for a small

percentage of crew-related costs) constitute more than one third of general expen-

ditures of the company during the time period from 1999 to 2003 even surpassing

energy expenditures (Turkish State Railways [4]). Therefore, effective planning and

efficient use of crew resources may lead to important savings.

The crew planning problem can be studied at all three levels of decision making

processes in TCDD:

(i) The operational crew planning problem deals with managing the daily opera-

tions; the planning horizon is very short, usually a week. The final assignment

of crew members to duties is determined at this level. The operational crew

planning is concerned with different types of crew costs such as time-based

compensations due to train duties, station duties, deadheading (transfer of

crew members), and compensations due to disturbances (e.g. time spent away

from the home station, assignment of inconvenient duties, overtime working

hours, and rest periods exceeding a predetermined time). Assignment of duties

by balancing both the workload and payments among the crew members is also

considered at this level.

(ii) At the tactical level, the crew planning problem determines the number of crew

members required in a region to operate the train schedule that is under the re-

sponsibility of the region, i.e. the minimum capacity requirement of the region.

As the fixed crew salaries constitute a significant portion of crew-related costs

in railway companies, the number of crew members under long-term contracts
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is an important decision to make. Yet, individual wages (including both the

salaries and compensations) are usually ignored at this level according to the

current practice.

(iii) At the strategic level, crew capacity planning problem is concerned with the

system-wide capacity determination by integrating the regional problems with

each other. Several aspects and environmental parameters of the problem that

are considered as given at the regional level are questioned in order to see if any

modifications in these parameters yield any substantial system-wide changes.

These aspects include the number of regions, stations to be selected as regional

bases, allocation of train duties among the regions, and locations of crew ex-

change stations. In addition, the parameters of the capacity planning problem,

which are governed by the rules and policies of the railway company and by

the regulations imposed by the labor unions, may also be evaluated. These

parameters include restrictions on the duration of duty periods, overtime limits

and deadheading rules. By modifying such parameters of the problem, railways

may experience substantial reduction in crew-related costs.

In this study, we focus on the tactical and tactical-to-strategic level crew capacity

planning problems.

Currently, TCDD is in the process of expanding its operations with the construc-

tion and planning of several high speed train lines. As a result of this expansion,

the use of operations research techniques in crew planning becomes a necessity in the

company as well as in other planning problems. Previously being ignored by the com-

pany, effective crew resources management may bring substantial improvements at

all three levels of their decision making processes. In that respect, especially tactical

and strategical crew capacity planning come into prominence as fixed crew costs are

important cost measures in transportation systems. In addition, an optimal solution
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to the tactical level crew planning problem provides an input to the operational level

problem as the number of available crew members in a region.

Our main contributions in this work are summarized as follows:

• We develop a space-time network representation for the crew capacity planning

problem at TCDD.

• We develop two approaches to solve the crew capacity planning problem, par-

ticularly with the complicating day-off requirement constraint:

– In our sequential approach, we solve the problem in two stages. At the first

stage, we solve a minimum flow problem without considering the day-off

requirement. At the second stage, we satisfy the day-off requirement by

assigning some of the duties in the schedules obtained at the first stage to

additional substitute crew members.

– In our integrated approach, we formulate the problem on a layered version

of the space-time network. Solving the corresponding integer program-

ming formulation of the network flow problem, we obtain tentative crew

schedules that comply with the day-off requirement.

• We formulate tactical-to-strategic level planning problems that consider the

optimal allocation of train duties among the regions within a system-wide mul-

tiregional planning environment.

• We propose a solution method for the tactical-to-strategic crew capacity plan-

ning problem by using the minimum flow problem formulation of the tactical

level problem as a subprocedure of a heuristic algorithm.

In Chapter 2, we define the tactical level crew capacity planning problem in detail

and develop a space-time network representation of the problem along with the review
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of related studies in the literature. Chapter 3 follows by formulating the network flow

problems of two different solution approaches to the tactical level planning problems.

In Chapter 4, we present a computational study with real-life data in order to compare

different solution approaches. Chapter 5 is dedicated to some tactical-to-strategic

level planning problems; mathematical formulations of these problems as well as

an efficient heuristic algorithm to solve them are proposed with a proof-of-concept

computational study. Finally, Chapter 6 concludes with a summary of the thesis

and some remarks on future research particularly on the strategic level planning

problems.
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2 PROBLEM DEFINITION AND

NETWORK REPRESENTATION

Crew planning problems at railways have been studied several times for various envi-

ronments considering particular railway companies, and nation-wide or region-wide

systems. For instance Caprara et al. [5, 6, 7] focus on the Italian case whereas

Vaidyanathan et al. [8] focus on the North American railways. There are, indeed,

several commonalities among these problem environments due to universally accepted

rules, regulations and labor union laws in addition to similar infra-structural proper-

ties. Therefore, problem definitions in different studies are found to be very close to

each other. In the later sections, we mostly study the problem through the TCDD

case and generalize it to the best of our ability. With this approach, we facilitate

the further discussion in a clear and succinct way, but we also note that it is either

straightforward or fairly easy to generalize the techniques and outputs of this study

for other railway companies and nation-wide railways.

2.1 Problem Definition and Problem Environment

TCDD has eight crew-base regions. Each region has a central home station and is re-

sponsible for providing and managing the crew resources to operate a predetermined

set of trains. The home station both plans and executes the crew-related operations.

For each crew-base region, there is a predetermined set of stations called away sta-

tions. The away stations of a crew region can be either the home stations of other

(usually neighboring, but not necessarily) crew-base regions or intermediate stations

located between two home stations. In general at TCDD, a home station is connected
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with a railway line, also called as rail-corridors to home stations of neighboring re-

gions. The so-called intermediate stations are the stations along these corridors (they

can be considered to define shadow-borders of the regions.).

The predetermined list of trains for a crew-base region imply a set of train duties

either starting or ending at the home station:

(i) For train duties starting at the home station, the crew-base is responsible for

operating the train until it arrives at the away station. Yet, these trains may

continue traveling to other stations. In this case, the train duty starts at the

home station and ends at an away station.

(ii) For train duties ending at the home station, the crew-base is responsible for

operating the train after it departs from the corresponding away station. Sim-

ilarly, these trains may have started their journey at some station earlier than

the away station and may continue traveling to other stations. In this case, the

train duty starts at an away station and ends at the home station.

Therefore, at the away stations either the train journey starts (ends) or the crew

replaces (is replaced with) the crew of other regions. Figure 2.1 shows an example of

the region structure at TCDD with a home station H0 at the center and four other

home stations (H1, H2, H3, and H4) connected to H0 with corridors ρ1, ρ2, ρ3, and ρ4,

respectively. For some of these corridors, trains assigned to H0 operate to and from

an intermediate station, like in corridors ρ1 and ρ2 where intermediate stations I1

and I2 are used as crew exchange stations. The stations I1, I2, H3, and H4 constitute

the shadow-borders of region H0.

We focus on the planning problems related to a crew-base region with a single

home station and multiple away stations. There are indeed multiple crew types such

as the machinist, the conductor and the train attendant. Yet, the problem can be
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defined and solved for each crew type independently with respect to different rules

and policies that applies to the particular type of crew.

H1
H2

H3

H4

H0

I1 I2
ρ1

ρ2

ρ3

ρ4

Figure 2.1: Region structure at TCDD.

The tactical level crew capacity planning problem of a particular crew type for

a crew-base region determines the minimum number of crew members of that type

required to operate the predetermined list of trains of the crew-base region. We

consider a finite-length planning horizon that repeats itself periodically with respect

to the schedules of trains. We assume that all crew members are at their home

station at the beginning of the planning horizon, and each crew member has to end

its duties at the home station at the end of the planning horizon. Accordingly, we

assume that crew members also undertake duties for a repetitive periodic schedule

although this assumption can be easily ignored at the operational level. Currently,

TCDD uses a weekly schedule in which there are multiple copies (duplicates) of a

train duty on different days of the week that are not necessarily every day of the

week. Therefore for the TCDD case, the weekly train schedule is used in order to

determine the minimum sufficient crew capacity at a base.

In addition to weekly train duties, there is another type of duty called station

duty. A station duty is an 8-hour shift covered by a single crew member at the home

station (in order to handle contingencies such as sickness of a crew member or a no

8



Parameter Value at TCDD (hours)
On-duty time 1
Off-duty time 1/2
Double manning time 8
Excess duty time 12
Minimum home rest time 16
Maximum home rest time 48
Minimum away rest time 8
Maximum away rest time 24
Minimum deadhead start time 4
Maximum deadhead start time 24

Table 2.1: The environmental parameters of the problem at TCDD.

show-up). There are three shifts of station duty on a day: from 00:00 to 07:59, from

08:00 to 15:59, and from 16:00 to 23:59. In the subsequent parts of this thesis, we

use the term duty to refer to both train duties and station duties unless we explicitly

state one of them.

While solving the crew-related planning problems, there are several rules, reg-

ulations and policies we need to account for. Table 2.1 shows a list of parameters

governed by the rules and policies of the company and the labor unions. According

to the policies of TCDD, a crew member must report for a train duty an hour earlier

than the departure of the train and can only finish his duty 30 minutes later than

the arrival of the train. These time windows, respectively called on-duty and off-duty

times, are used for filling paperwork and debriefs on the trip. If a train duty takes

more than 8 hours, then there must be at least two crew members operating that

train which is imposed by the double manning time. A crew member reaching the

home station after completing a duty must take a rest of at least 16 hours and at

most 48 hours. After 48 hours, the crew member must be assigned to another duty.

A crew member reaching an away station by covering a duty has three options:

(i) The crew member can take an away rest. The away rest time must be at least
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8 hours and must not exceed 24 hours.

(ii) If the crew member departing from the home station can return back to home

in 12 hours by covering a second train duty, this is called an excess duty ; the

rules of away rest does not apply.

(iii) The crew member at an away station can be transfered to the home station

without covering a duty. Transferring crew members to another location on

trains covered by other crew members is called deadheading.

Usually in transportation companies, deadheading can be executed by other

modes of transportation such as taxi, bus, or even airplane. In TCDD, the dead-

heading policy is slightly different; crew members are only allowed to deadhead by

train. There are two types of deadheads:

(i) The first type of deadhead is from away to home. A crew member reaching an

away station can take a short rest of 4 to 24 hours and ride on a train destined

to his home station for deadheading. When there are multiple trains destined

for the home station of the crew member, the crew member must take the one

that will bring him back to his home station as early as possible after spending

at least 4 and at most 24 hours at the away station.

(ii) The second type of deadhead is from home to away. In this case, the company

sends multiple crew members from home station to an away station on a train

in order to cover train duties from away to home that would be impossible to

cover otherwise. For example, if there is a single train going from home to

a particular away station and there are several trains from that away station

to home after this train in the same period, the only option for covering such

trains is by transferring more crew from home to away on the earlier trains.

10



The crew members deadheading from home to away do not necessarily have to

be working through that duty, but they are subject to the same constraints as

covering a duty when we evaluate their rest, direct connection, and deadhead

options. In practice, this can be considered as a deadhead.

Deadheading of crew members has two benefits for the company. It avoids infea-

sibilities by sending multiple crews to away stations when coverage of multiple trains

from that away station to the home station is not possible. Furthermore, by sending

crew back to home station with the earliest opportunity, deadheading also minimizes

the inefficient use of the workforce and helps the company deploy crew resources more

efficiently.

In addition to the operational policies mentioned above, TCDD has another policy

that makes the crew planning problem harder to solve. According to the company

rules, each crew member has to take one day-off assuming a weekly planning horizon.

This day-off should be spent at the home station and must be a whole day (from

00:00 to 23:59) and not any 24-hour period. This requirement is one of the major

challenges that motivate our study and will be discussed later in detail.

2.2 Network Representation

In order to formulate the tactical crew scheduling problem for TCDD, we adapt the

network representation in Vaidyanathan et al. [8] but modify it substantially in order

to impose different policies and practical considerations applied in TCDD.

A space-time network should be defined with a set of nodes and a set of arcs. The

nodes represent events in the space-time network and have two attributes: space and

time, respectively representing the place (i.e. the station) and the time of the event.

The beginning of a duty or the end of a duty are two examples for events that define

a node. Arcs in the space-time network are directed arcs and connect subsequent
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events; arcs are used to represent activities whose beginning or end correspond to

these subsequent events. For example, a duty arc emanates from the node corre-

sponding to the beginning of a duty and enters the node corresponding to the end of

that duty. Crew is the entity that flows on the arcs over the space-time network.

2.2.1 Elements of the Space-time Network

We first define the four types of essential nodes we use in the space-time network

representation of the crew capacity planning problem:

• The source node represents the source of the crew resources; its space attribute

is the home station and its time attribute is the beginning of the planning

horizon. We suppose that all crew members are located at the source node, or

at the home station, at the beginning of the planning horizon.

• The sink node represents the end of the duties during the planning horizon for

a crew member. Its space attribute is the home station and its time attribute

is the end of the planning horizon. We suppose that the crew members return

to the home station at the end of the planning horizon.

• An on-duty node marks the beginning of a duty. For an on-duty node of a

train-duty, the length of the time period between the time attribute of the on-

duty node and the departure time of the train should be equal to the on-duty

time. For an on-duty node of a station duty, the time attribute corresponds to

the beginning of the station shifts (00:00, 08:00, and 16:00).

• Each on-duty node has a corresponding tie-up node which marks the end of the

duty. For a tie-up node of a train-duty, the length of the time period between

the time attribute of the tie-up node and the arrival time of the train should
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be equal to the off-duty time. For a tie-up node of a station duty, the time

attribute corresponds to the end of the station shifts (07:59, 15:59, and 23:59).

The arcs in the space-time network represent the flow of crew as the crew is

engaged with the activity represented by the arc. According to the type of events

represented by the nodes and the corresponding activities, we use the following types

of arcs:

• We create source arcs from the source node to every on-duty node at the home

station (home on-duty node). These arcs represent the start of the first duty of

the planning horizon for a crew. A crew leaving the source node over a source

arc cannot cover a duty earlier than the time attribute of the head node of this

source arc, which is an on-duty node.

• We create sink arcs from every tie-up node at the home station (home tie-up

node) to the sink node. The flow of crew over a sink arc represent the end of

the weekly duties for the crew. Time attribute of the tail node of a sink arc

that has a flow on it marks the end of the weekly duties of a crew. A crew

reaching the sink node over a sink arc cannot cover a duty that starts later

than the time attribute of the tail node of this sink arc, which is a tie-up node.

• There exists a duty arc from an on-duty node to its corresponding tie-up node.

Train duties and station duties are both represented by the same type of duty

arcs. In general, a duty arc must have at least one unit of flow on it representing

the fact that there is at least one crew member engaged with the activity

(i.e. the duty) represented by the arc. If a duty takes more than double

manning time then there must be at least two crew members covering the duty,

corresponding to two units of flow on the arc.
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• Rest arcs are created from a tie-up node to an on-duty node. The space at-

tributes of these nodes must be the same. When these nodes are at the home

station, the arc is a home rest arc; otherwise, it is an away rest arc. According

to the rules at TCDD, a crew that ends a duty at the home station (including

station duties) must take a rest regardless of his previous duty time. The dura-

tion of this rest must be greater than or equal to the minimum home rest time

and less than or equal to the maximum home rest time. Therefore, we create

rest arcs from a home tie-up node to home on-duty nodes whose time attributes

are larger than that of the tie-up node by at least the minimum home rest time

and at most the maximum home rest time. Similar rules apply for the away

rest arcs considering the minimum away rest time and the maximum away rest

time parameters.

• Deadhead arcs, used to represent away-to-home deadheads only, are created

from an away tie-up node to the home tie-up node of the train that is used

by the deadheaded crew member. According to the rules in TCDD, a crew

that ends a duty at an away station must first take a rest before deadheading.

The duration of this rest is at least the minimum deadhead start time and at

most the maximum deadhead start time and we call this time period feasible

deadhead start window. Therefore, creating deadhead arcs, we only consider

trains departing from the same away station during the feasible deadhead start

window. Furthermore, we only consider the train that brings the crew member

to home in the earliest occasion and we create only one deadhead arc for every

tie-up node that has a feasible deadhead opportunity. After deadheading, crews

are subject to the same rest constraints. Home-to-away deadhead is represented

by the duty arcs and we do not have to consider anything else for home-to-away

deadhead. Figure 2.2 illustrates the away-to-home deadhead policy. Note that
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the train we choose for deadheading is not necessarily the one whose on-duty

node has the smallest time attribute, as the speed of trains and their trip

patterns can be different. We create a single deadhead arc, emanating from the

away tie-up node and entering to the home tie-up node of the train duty used

for deadheading.

• In order to represent the coverage of an excess duty by a crew member, we use

direct connection arcs to represent this situation in the space-time network. A

direct connection arc is created from an away tie-up node to an away on-duty

node at the same away station. The direct connection arc is created if the

difference between the time attributes of the on-duty node of the first duty

and of the tie-up node of the second duty is smaller than the excess duty time.

The excess duty of the crew member consists of the first duty, the waiting time

between the two duties, and the second duty. As this description implies, the

time attribute of the on-duty node of the second duty must be greater than or

equal to the time attribute of the tie-up node of the first duty. In Figure 2.2 an

example for the creation of direct connection arcs is given. To create a direct

connection arc, the time between the time attribute of the home on-duty node

of the first duty and the time attribute of the home tie-up node of the second

duty should be less than or equal to the excess duty time. Furthermore, the

time attribute of the tie-up node of the first duty should be smaller than or

equal to the time attribute of the on-duty node of the second duty, allowing

the crew member to feasibly cover the two duties.

Figure 2.3 is an illustration of the space-time network with different types of nodes

and arcs. Note that the illustration only shows a small subset of the whole network.
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Figure 2.2: An illustration of direct connection and deadhead policies.
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Figure 2.3: An illustration of the space-time network.
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2.2.2 Handling Difficulties at the Beginning and the End of

the Planning Horizon

We assume that each crew starts a week at the home station and has to return to

the home station at the end of the week. However, this assumption cannot be easily

represented in the space-time network due to the existence of following types of duties

in the schedule:

(i) There may exist a train duty ending at an away station, where the crew member

covering this train duty is unable to perform one of three options we discussed,

namely away rest, deadhead, and direct connection. This occurs when the duty

is close to the end of the planning horizon and the crew member has limited

options of trains after reaching an away station.

If a certain crew member cannot return to home station with one of the three

options we discussed, we choose to connect the away tie-up node of this duty to

the sink node as it is possible to send the crew back home through a deadhead

or a duty from the beginning of the next week. This situation corresponds to

creating an away tie-up node with only a sink arc emanating from the node.

(ii) There may exist a train duty starting at an away station close to the beginning

of the planning horizon, and it is impossible to cover this train duty with crew

members reaching the same away station and by satisfying their away rest

requirement.

If covering a duty from an away station to the home station is not possible

because of a lack of crew members that can feasibly cover this duty, we move

the on-duty node of the train to the end of the week by specifying its time

attribute as the length of the planning horizon plus the original time attribute

of the on-duty node (corresponding to pushing this duty to the beginning of
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the following week in a repetitive schedule). We call this type of node an away

early on-duty node. We connect away early on-duty nodes to the sink node, and

we do not create a tie-up node corresponding to an away early on-duty node.

This is an admissible move as the tie-up node of an away early on-duty node is

at the home station and can only be connected to the sink node. Away early

on-duty nodes are subject to similar constraints as the regular on-duty nodes

except that they are connected to the sink node. The arc connecting an away

early on-duty node to the sink node represents a duty; therefore, it must have

the necessary flow corresponding to the number of crew members required to

execute the duty in a feasible solution of the problem.

2.2.3 The Network Flow Problem

Representing the problem with a space-time network, we intend to formulate the

crew capacity planning problem as a network flow problem. The capacity planning

problem aims at minimizing the number of crew members required to operate the

predetermined list of trains in the schedule by covering the duties and honoring

company policies and union regulations. The network flow problem on our space-

time network corresponds to a minimum flow problem. The amount of flow emanating

from the source node corresponds to the number of crew members required to operate

the schedule. Hence, the out-flow from the source node is to be minimized. A path

flow of one unit on the network represents the movements of a crew member and the

activities she is engaged with. For each crew member, weekly duties start with a

source arc, which is connected to an on-duty node. After covering some duties and

potentially using different types of connections between them (rest, deadhead, and

direct connection), the crew member reaches the sink node. The last tie-up node

before reaching the sink node via a sink arc marks the end of his weekly duties.
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We note that the operational crew scheduling problem involves costs associated

with different types of activities and aims at finding a minimum cost assignment of

crew members to duties. From the solution of the minimum flow problem, we may

obtain a tentative schedule of duties. But, this feasible schedule does not consider any

cost-related issues as they are usually associated with the operational level planning

problem. The operational level planning problem, which assigns the duties to crew

members by considering the costs of assignment, corresponds to a minimum cost flow

problem. The solution of the minimum flow problem for capacity planning at the

tactical level is feasible for the minimum cost flow problem at the operational level,

but not necessarily optimal. Information on both types of problems and algorithms

for solving them can be found in Ahuja et al. [9].

Solving the minimum flow problem to minimize the number of crew members

corresponds to minimizing the fixed crew salaries, an important cost measure of the

company. The minimum flow problem also provides an input to the minimum cost

flow problem as the number of crew members required to operate the duties assigned

to a region. The minimum cost flow problem minimizes the payments made to crew

members with respect to their activities. However, the problem cannot be described

without knowing available number of crew members since the minimum cost flow

problem requires the amount of available demand and supply as input. In addition,

the operational level problem is also concerned with the assignment of different types

of duties in a balanced manner among the workforce. This last issue is indeed very

critical in most crew planning problems in other transportation modes, too.

2.2.4 Day-off Requirement in TCDD

The network flow problem we describe in Section 2.2.3 can be used to solve the crew

capacity planning problem with the given policies in TCDD. However, there is an
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important policy we did not mention up to this point, called the day-off requirement.

According to the day-off requirement, every crew member must take a day-off each

week. The day-off should be spent at the home station of the crew member, and it

should include a complete day (from 00:00 to 23:59) and not any 24 hours.

The network representation of the problem and corresponding network flow prob-

lem do not consider the day-off requirement. Schedules of crew members obtained by

the minimum flow problem are called pseudo-feasible schedules as they do not satisfy

the day-off requirement. An additional effort is required to determine the number

of additional crew members to fill-in for the duties on the day-off. We propose two

solution approaches for the crew capacity planning problem with day-off requirement

in Chapter 3.

In Mellouli [10] and Guo et al. [11], crew scheduling problem with day-off require-

ment is studied with a state-expanded aggregated space-time network approach. In

this problem, consecutive duty days are defined as the accumulated state of the flow

in the network, and crew members who work for five consecutive days (or who reach

this state) take two days-off before being assigned to another duty. In our problem,

the day-off requirement is not to be handled in this manner. In general, there is a

certain number of days-off to be taken in a finite length planning horizon, and there

is no consecutiveness restriction on the days-off and working days. Furthermore, we

are studying a tactical level problem, and we are not interested in the previous state

of the crew members, which bears more importance in an operational level problem.

2.3 Literature Review

The crew scheduling problem has been extensively studied in the operations research

literature due its practical importance in different transportation industries such as

airlines and railways. While the airline crew scheduling problem is one the most
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prominent research topics in operations research, the research on the crew scheduling

problem on railways has been more modest. Airlines have adopted operations research

techniques into their planning processes much earlier than the railways. In addition,

railways have started using these techniques to solve their problems which are asso-

ciated with larger capital investment such as network configuration, infrastructural

planning, and rolling stock. For more information on scheduling and rostering prob-

lems in different industries, including crew scheduling at transportation services, we

refer the interested reader to Ernst et al. [12] and references therein. In Möller [13],

a review of different algorithms and models, as well as possible solution approaches

for solving railway crew scheduling and crew rostering problems can be found.

The crew scheduling and associated problems are generally studied with two main-

stream approaches: network flow formulations and set covering/partitioning type

formulations. The network flow problem formulations usually depend on a space-

time network representation of the problem, and require developing solution meth-

ods based on some relaxations of the problem, such as relaxation of a priority related

constraint in Vaidyanathan et al. [8]. Set covering type formulations of the problem

lead to developing decomposition-based methods and column generation.

In Vance et al. [14], an airline crew scheduling problem is studied. This study

uses a similar approach to the conventional set partitioning and column generation

approach. However, they present a duty-period based formulation, which unites

flights under duties and duties under pairings, resulting in two similar subproblems

for duty-period and pairing generation. The new formulation gives a better linear

programming relaxation than the traditional set covering problem but it is more

difficult to solve. In Anbil et al. [15], the airline crew pairing problem is solved using

a column generation method and the Volume algorithm, which consists of finding

near optimal solutions to the primal problem by generating feasible solutions to the
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dual problem.

Stojković et al. [16] and Medard and Sawhney [17] focus on operational airline

crew scheduling problems. In the operational problem, the priority is finding a feasible

schedule from the previously applied solution that is now disrupted because of a crew

no-show or changes to flight schedules. The short term nature of the problem and the

need to solve it frequently puts emphasis on the computation time. In their approach,

Stojković et al. [16] first choose a smaller planning horizon and some crew members

to reschedule. Then by using the same subprocedure they use for pairing generation

(column generation and set partitioning), they obtain a solution for the new problem.

Similarly, Medard and Sawhney [17], study integrating the crew pairing and rostering

problems and develop an efficient method to solve the operational crew scheduling

problem.

In our work, we follow the network flow approach and develop a space-time net-

work representation of the capacity planning problem similar to the one developed

by Vaidyanathan et al. [8]. In their work, Vaidyanathan et al. [8] study the crew

scheduling problem at the operational level for North American railroads by using

a multicommodity network flow approach to represent the assignment of crews with

different qualifications to train duties. Their problem is computationally intractable

due to a first-in-first-out (FIFO) requirement that is currently applied by Federal

Railway Administration. According to this rule, crew members must be assigned

to duties in the same order as they become available for covering a new duty. To

solve the problem, they formulate an exact integer programming formulation of the

problem based on a space-time network. As the FIFO constraint makes the problem

much harder to solve, they also formulate a relaxed problem that is solved efficiently

without the FIFO requirement. After obtaining the solution to the relaxed integer

programming problem, they sequentially generate constraints that are violated in the
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previous solution, until all constraints are satisfied. This approach, however, leads

to impractical computation times, especially for a scheduling problem on the opera-

tional level. To avoid this, they make use of the cost structures to perturb the costs

of arcs in order to obtain near optimal solutions that comply with FIFO requirement.

They also mention that the tools they develop can be used for problems on different

levels.

Even though research on crew scheduling problem on a network flow formulation

is limited, set partitioning and set covering formulations are more frequently used.

Crew scheduling problem for Italian State Railways (Ferrovie dello Stato SpA) is

studied by Caprara et al. [5, 6, 7]. In Caprara et al. [5], both the crew scheduling

problem, where individual trips are united to form duties, and the crew rostering

problem, where individual duties are united to form pairings are studied. For both

crew scheduling and crew pairing problem, the authors propose a Lagrangian relax-

ation method and heuristic approaches based on Lagrangian costs, which yields good

quality solutions even for large problem instances. In Caprara et al. [6], the crew

scheduling problem is studied with three subproblems: pairing generation, pairing

optimization, and rostering optimization. In the pairing generation phase, feasible

pairings are generated using company policies. In the pairing optimization phase, a

minimum cost subset of these pairings are selected by balancing different aspects like

the number of pairings selected for each base. In the rostering optimization phase,

pairings are put together to form larger blocks. In both pairing optimization and

rostering optimization phases, Caprara et al. [6] use the Lagrangian relaxation and

information obtained by Lagrangian costs to direct the optimization procedure, in

a similar fashion to Caprara et al. [5]. Furthermore, Caprara et al. [7] develop

a feedback mechanism between pairing optimization and rostering optimization to

improve the quality of the solution. By updating pairing costs with respect to the
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solution of the linear programming relaxation of the rostering optimization problem,

they improve on the current system used in Ferrovie dello Stato SpA.

Morgado and Martins [18] present a system that is used in Dutch Railways, called

CREWS NS, that significantly reduces the time required to generate the schedule of

crews and the number of staff required to generate the schedules at the operational

level. They mention that crew scheduling is done manually 6 to 12 months in advance

relying on the expertise of schedulers in Dutch Railways. However, this approach

causes problems as the train schedules may be altered in the meantime. To solve

this problem, they present a white-box system, where it is possible for the scheduler

to interact with the software. The software uses heuristics to improve the solution

quality and makes use of constraint satisfaction techniques to reduce the search space

for generating duties. The new system is put into use and predict a 4 million dollars

decrease in crew related cost, which will be spent in placing crews to new duties.

However, Kroon and Fischetti [19] claim that the CREWS NS system has some

disadvantages due to the greedy heuristic and limited backtracking possibilities to

correct this problem. They present a new system that replaces CREWS NS, called

TURNI, relying on mathematical programming techniques. The system solves a

set covering problem, where a new constraint for avoiding certain combinations of

duties are added to the model. Moreover, they also add some suggested trips to the

model without forcing crew members to cover them. To solve the model, authors

use column generation, Lagrangian relaxation and heuristics, used for fixing some

promising duties based on the information obtained from Lagrangian relaxation and

the efficiency of the duties. The crew scheduling problem for Dutch Railways is also

studied in Abbink et al. [3]. According to this study, there are more than 3,000 drivers

in Dutch railways operating more than 14,000 timetabled daily trips, that constitute

more than 1,000 duties in 29 regions. Considering that the problem is solved for
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a weekly schedule, the problem dimension is huge. They address the weakness of

the TURNI system, which can be observed by rescheduling smaller partitions of

schedules. They try to improve the current system by using different partitioning

schemes to solve smaller problems simultaneously to reach more effective solutions.

These partitionings are done with respect to the home station locations (solving

3 to 7 region problems together), with respect to train lines, and with respect to

compatibilities and frequencies of being together for independent tasks. They claim

to have reduced the crew-related costs at Dutch Railways by 2%, which corresponds

to 6 million euros annually.

Freling et al. [20] present a heuristic branch-and-price algorithm to solve a large

scale crew scheduling problem. The algorithm fixes a number of columns at each

iteration to decrease the problem size and solves a smaller problem using the same

procedure after generating new columns. Together with other improvements in the

pricing problem, the algorithm is faster than the conventional approach but produces

slightly worse results in terms of the objective function value. This is also used in

Kroon and Fischetti [19], but the fixing procedure is relaxed when the solution is not

improved.

Yunes et al. [21] present a hybrid branch-and-price method on a data set belong-

ing to an urban mass transit company. In this approach, pricing stage is done with

the help of constraint programming, whereas it is usually done by solving a problem

(depending on the structure of constraints) on a network. By using constraint pro-

gramming in the pricing stage it is possible to search the whole space of the feasible

solutions efficiently, which makes solving the problems to optimality possible.

In addition to the current practices in the transportation systems, integrated

approaches are gaining more and more importance. In Mellouli [10] and Guo et

al. [11], partially integrated approaches to crew scheduling problem is studied. In
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Mellouli [10], a state-expanded aggregated space-time network is defined and it is used

for both aircraft/train maintenance routing problem and crew scheduling problem. In

this approach, consecutive duty days are defined as the accumulated state of the flow

in the network, where duties are set of feasible trips. For example, a vehicle on state 1

is in the first day of its operation after undergoing a maintenance. A vehicle operating

for a certain time (three to four days in the example presented), or reaching that state,

must receive maintenance, which resets its state to the initial value 1 after the required

service (or day-off) time. Days-off for crew members are modeled similarly by using

an aggregated space-time network. By aggregating vehicles or crew members that

are at a certain location and decomposing the flows by disaggregating those parts

further flexibility is obtained. By extending the network to contain maintenance and

days-off, an integrated approach is developed. Maintenance and days-off are modeled

as dummy duties carried on at maintenance bases and base respectively. The problem

is solved for multiple home bases. Guo et al. [11] study only the crew scheduling

problem by using the ideas mentioned by Mellouli [10].

In this section, we have discussed only a subset of relevant studies in crew and

personnel scheduling. Yet, studies on crew scheduling in railways have all been cov-

ered to the best of our knowledge. The studies that are more relevant to ours are

Vaidyanathan et al. [8] due to space-time network representation and Mellouli [10]

and Guo et al. [11] due to the layered network idea. We believe that our study fills a

gap in the literature by studying a tactical level capacity planning problem first time

in railway-crew related literature. Since most of the literature focuses on operational

level planning problems, the network flow problems are either multi-commodity prob-

lems or have hard-to-express constraints in a network flow problem. On the contrary,

our major problem is a single-commodity problem and the challenging day-off re-

quirement constraint is integrated in a fairly easy but sophisticated manner with the

27



existing formulation characteristics. Adding to this, we also develop a framework

for the higher level capacity planning problems based on the tactical level planning

problems.
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3 MATHEMATICAL

FORMULATION AND SOLUTION

APPROACHES

Currently at TCDD, the crew-related planning problems are solved with a two-stage

manual approach. In particular for the capacity planning problem, they intend to find

the minimum number of crew members without considering the day-off requirement at

the first stage. Determining the capacity requirement and obtaining pseudo-feasible

schedules for (original) crew members, substitute crew members are added in order

to fill-in for the day(s)-off of the original crew member schedules. At the second

stage, some of the duties of original crew members are assigned to substitute crew

members. Then, the new assignments are checked for violations of regulations, and

further changes are made to the schedules if necessary. Historically, the planning

process has been executed with expert knowledge of the administrators at the crew

regions and the headquarters.

We develop two approaches to solve the capacity planning problem with the day-

off requirement:

1. In our first approach, called the sequential approach, mimicking the current

two-stage approach at TCDD, we develop analytical models in order to make

decisions at both stages as follows:

• We formulate a minimum flow problem on the space-time network dis-

cussed in Section 2.2, in order to find the minimum capacity level without

the day-off requirement.
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• We formulate a selective assignment problem in order to find the mini-

mum number of substitute crew members required to satisfy the day-off

requirement of both original and substitute crew members.

2. In our second approach, called the integrated approach, we formulate a mini-

mum flow problem on a layered network that integrates the day-off requirement

into the space-time network. This approach gives the optimal solution to the

capacity planning problem with the day-off requirement.

The solution methods used to solve the capacity planning problem with day-off re-

quirement with respect to different approaches is summarized in Figure 3.1.

Figure 3.1: General framework for the capacity planning problem with day-off
constraint.

3.1 Sequential Approach

In our sequential approach, capacity planning problem with day-off constraint is

solved in two stages by mimicking the current practice at TCDD:

• Regular capacity determination, where the crew capacity of the region is deter-

mined without the day-off constraint
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N set of nodes in the network
s source node of the network
t sink node of the network
A set of all arcs in the network
Ad set of duty arcs in the network
As set of crew source arcs
At set of crew sink arcs
An+ set of outgoing arcs at node n
An− set of incoming arcs at node n
ca number of crews that must be used to cover the duty represented by arc a

Table 3.1: Notation for the space-time network and minimum flow problem.

• Capacity determination with the day-off requirement, where we satisfy the day-

off constraint by assigning some duties to additional substitute crew members

by solving an assignment problem

In the first stage, pseudo-feasible schedules for (original) crew members are obtained

by tracing the flow of the crew members in the optimal solution of a minimum flow

problem. Then, some duties of the original crew member schedules are assigned

to substitute crew members by solving an assignment problem to find the optimal

solution according to the sequential approach.

3.1.1 Regular Capacity Determination: Minimum Flow Net-

work Problem

Based on the network representation approach described in Section 2.2, we first depict

the space-time network mathematically. Then, we present the mathematical model

of the minimum flow problem we solve at the first stage of the sequential approach.

In Table 3.1, we present the notation for the space-time network and mathematical

formulation of the minimum flow problem. We define the decision variable

xa: the amount of flow on arc a.
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The integer programming formulation of the minimum flow problem is as follows:

Minimize
∑

a∈As

xa (3.1)

subject to
∑

a∈As

xa =
∑

d∈At

xd, (3.2)

∑

a∈A
n+

xa =
∑

a∈A
n−

xa, ∀n ∈ N \ {s, t}, (3.3)

xa ≥ ca, ∀a ∈ Ad, (3.4)

xa ∈ Z+, ∀a ∈ A. (3.5)

The objective function (3.1) minimizes the flow emanating from the source node

which corresponds to the number of necessary crew members for operating the weekly

schedule. The problem we solve corresponds to a minimum flow problem as explained

by Ahuja et al. [9]. Constraint (3.2) is the flow balance constraint between the source

and the sink nodes, which ensures that the flow emanating from the source node is

equal to the flow entering the sink node. We have the flow balance constraint of

other nodes in (3.3). Constraint (3.4) is duty coverage constraint, which ensures

for a duty arc the flow amount is at least as much as the number of required crew

members, ca. The integrality constraints on the variables are given in (3.5). The

linear programming relaxation of an integer minimum flow problem yields an integer

solution. Therefore, we can relax (3.5) as xa ∈ R+,∀a ∈ A.

An important property of the minimum flow formulation is unimodularity of the

constraint matrix. The linear programming relaxation of an integer programming

formulation with a unimodular constraint matrix yields an integer optimal solution.

The constraint matrix of the maximum flow problem is unimodular [9]. It is possible

to transform a maximum flow problem to a minimum flow problem by modifying

the objective function and the right hand side of the constraint matrix (considering
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we replace variables having positive lower bounds). These changes do not affect the

unimodularity of the constraint matrix and as a result, the optimal solution of a

minimum flow problem is still integer. In addition to that, Ahuja et al. [9] show that

the minimum flow problem can be solved in three steps, each requiring polynomial

computation time. In the first step, we construct a feasible flow on the network by

solving a maximum flow problem with lower bounds. After obtaining a feasible flow,

we update the residual capacities of the arcs by considering the lower bounds on the

flow values. Updating the network, we convert the feasible flow to a minimum flow by

solving another maximum flow problem. This is achieved by pushing the maximum

amount of flow from the sink node to the source node on the updated network. All

of these steps are done in polynomial time, resulting in a polynomial time algorithm

for the minimum flow problem.

3.1.2 Capacity Determination with Day-off Requirement

Considering the planning horizon as one week, a crew member at TCDD has to take

one day-off in each week; this day-off starts at 00:00 and ends at 23:59, and it must

be spent at the home station. TCDD uses a manual expertise-based approach for

integrating the day-off requirement to find the additional number of crew members

to fill-in for the day-off duties of the original crew. Inspecting the pseudo-feasible

schedules from the first stage, for each original crew member that does not have a

day-off, they manually assign some of its duties to additional crew members, which we

call substitute crew. Substitute crews are subject to the same operational constraints

and they also have to take a day-off each week. In order to avoid the current manual

approach for integrating days-off, we redescribe the problem and formulate it as

an assignment problem. As we are dealing with a capacity planning problem, our

objective is (again) to minimize the number of substitute crews we have to add to
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the region for a solution that is feasible for both substitute and original crew.

To formulate the assignment problem, we use the pseudo-feasible schedules of

original crews obtained by solving (3.1)-(3.5). As an input to this problem, we first

determine for each pseudo-feasible schedule, the possible day-off time windows hon-

oring the 00:00 to 23:59 rule. Given the possible day-off windows, the assignment

problem assigns a substitute crew to only one day-off window in each pseudo-feasible

crew schedule. We assume that a substitute crew covering duties for an original crew

has to start and end its own duty at the home station. Due to this restriction, the

assignment problem also considers avoiding the assignment of a set of incompatible

(with respect to regulations) duties to crew members.

For a problem with a single day-off requirement, we determine the possible day-off

windows as follows. Inspecting the pseudo-feasible schedules in an optimal solution

to (3.1)-(3.5), we first find the number of days-off each crew schedule has. If a

crew schedule does not have any days-off, we need to determine the possible day-off

windows in this schedule. Next, we identify the duty-periods in each schedule; a

duty-period corresponds to a period that starts with the beginning of a duty at the

home station and ends with the arrival of the crew member to the home station (by

covering another duty or with a deadhead). We start from the first duty-period and

remove it to see whether removing it creates a day-off in the schedule. If removing

this duty-period creates a day-off, we store this duty-period as a possible day-off

window for the original crew and continue to look for other day-off windows starting

from the next duty-period. If removing the first duty-period does not create a day-

off in the schedule, we continue to remove subsequent duty-periods until we obtain a

day-off window. As soon as we obtain a schedule satisfying the day-off requirement,

we proceed by searching the next duty-period and repeat these steps.

Table 3.2 shows the notation we use in our algorithm to determine the day-off
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Cc the schedule of the crew member c

gc number of days-off the crew schedule Cc has
g number of days-off each crew needs to have
Ic set of day-off windows that allow crew member c to have more than gc days-off
i.start the start time of the day-off window i representing a day-off window
i.end the end time of the day-off window i representing a day-off window
i.crew the original crew schedule of the day-off window i representing a day-off window
i.days the number of days-off that is obtained by removing duty i from the schedule

Table 3.2: List of parameters and attributes used in determining day-off windows.

Algorithm 1: Algorithm for finding day-off windows for a single crew member.

Input: Cc, gc, g1:

Ic = {}2:

forall i ∈ Cc do3:

Ctemp = Cc4:

W = {} /Set of removed duty-periods.5:

forall j ∈ Ctemp : j.start ≥ i.start do6:

Ctemp.remove(j) /Removes duty-period j.7:

W = W ∪ {j}8:

if offdays(Ctemp) ≥ g then9:

Ic = Ic ∪ {W}10:

break /Day-off requirement is satisfied.11:

else if offdays(Ctemp) > gc then12:

Ic = Ic ∪ {W} /Day-off requirement is not satisfied but the crew has13:

more days-off.

Output: Ic14:
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Original Crew Duties Substitute Crew Duties
Duty-Period Start Duty-Period End Duty-Period Start Duty-Period End Day-off
Time (Day) Time (Day) Time (Day) Time (Day) (Day)
12:00 (M) 02:00 (T) 12:00 (M) 02:00 (T) Monday
21:00 (T) 05:00 (W) 21:00 (T) 04:00 (R) Wednesday
22:00 (W) 04:00 (R) 22:00 (W) 07:00 (F) Thursday
23:00 (R) 07:00 (F) 23:00 (R) 07:00 (F) Friday
03:30 (Sa) 09:00 (Su) 03:30 (Sa) 09:00 (Su) Saturday

Table 3.3: An illustration of duty start and end times for an original and substitute
crew.

windows for a single crew schedule. A day-off window consists of one or several duty-

periods that are sequential in the original crew schedule. The day-off windows for

substitute crew schedules has four attributes: day-off window start time (i.start),

day-off end time (i.end), the original crew schedule that these duties in the period

belong to (i.crew), and the number of days-off the original crew schedule has by not

covering these duties (i.days). A generalized version, for g days-off, of the algorithm

we use to determine the day-off windows is presented in Algorithm 1. The only

difference in the generalized version is that we store day-off windows that let the

crew member have more days-off than her current schedule, gc, even if that does not

satisfy the g day-off requirement. However, we keep removing duties until we reach

g days-off. For each duty-period of the crew schedule (line 3), we begin removing

duty-periods (line 7) until we reach at least g days-off for the schedule (lines 9-11).

If we cannot reach g days-off by removing a set of duty-periods but create additional

days-off for the crew schedule, we still keep the solution, but we do not terminate

the search (lines 12-13). The computational complexity of the algorithm (for a single

crew member) is O(|Cc|
2).

An example is illustrated in Table 3.3 for g = 1. In this example, removing

the first duty-period provides a day-off on Monday and is an acceptable window.

However, removing only the second duty-period does not create a feasible day-off.

Note that the crew schedule contains duties on both Tuesday and Wednesday; we
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C set of original pseudo-feasible schedules
Cr set of original feasible schedules belonging to crew members with at least g days-off
Cp set of original pseudo-feasible schedules belonging to crew members without g days-off
Ip set of possible day-off windows belonging to schedules for c ∈ Cp

Id set of dummy day-off windows representing day-off for every day in the planning horizon
I set of all day-off windows, I = Ip ∪ Id

T set of days in the planning horizon
K set of substitute crew members

Table 3.4: List of sets used in the assignment problem.

have to remove the next duty-period, too. By removing both duty-periods, we obtain

a day-off on Wednesday. The crew member substituting for the original crew member

has to cover both duties from 21:00 (T) to 05:00 (W) and from 22:00 (W) to 04:00 (R),

allowing the original crew schedule having Wednesday as a day-off. After completion

of the search, we end up with the possible day-off windows for a substitute crew in

Table 3.3 on the right-hand side columns.

In the assignment problem formulation, we also have to consider the feasibility of

the schedules of substitute crews. It means that any two consecutive duties assigned

to a substitute crew schedule must have sufficient rest time between them (minimum

home rest time). This approach provides a pseudo-feasible schedule for substitute

crew members but does not guarantee that they take g days-off. In order to let

the substitute crews take days-off, we create day-off windows, starting at 00:00 and

ending at 23:59 for each day of the planning horizon with no crew attribute. We

force the substitute crews to cover at least g of these duties. To avoid infeasible

schedules for substitute crews, we need to represent the compatibilities among the

day-off windows we obtain. We create a matrix B = [bij], which is an |I|× |I| matrix

where

bij =

{

1, if same substitute crew can cover both duty i and duty j;
0, otherwise.

If i and j are both day-off windows for a pseudo-feasible schedule, then the substitute
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crew has to be able to take a home rest between these duties. If, without loss of

generality, i is a day-off then the duty j must not intersect with the time interval of

i. Otherwise, we set bij = 0 and duties i and j are not compatible.

For the substitute crew assignment problem formulation, we define the following

decision variables:

yk =

{

1, if substitute crew k is used;
0, otherwise.

wik =

{

1, if substitute crew k is assigned to duty i;
0, otherwise.

The integer programming formulation of the substitute crew assignment problem is

as follows:

Minimize
∑

k∈K

yk (3.6)

subject to
∑

i∈Ic

∑

k∈K

wik(i.days − gc) ≥ g − gc, ∀c ∈ Cp, (3.7)

∑

i∈Id

wik ≥ gyk, ∀k ∈ K, (3.8)

yk ≥ wik, ∀i ∈ I,∀k ∈ K, (3.9)

∑

∀j∈I:bij=0

wjk ≤ M(1 − wik), ∀i ∈ I,∀k ∈ K, (3.10)

wik, yk ∈ {0, 1}, ∀i ∈ I,∀k ∈ K. (3.11)

The objective function (3.6) minimizes the number of substitute crews to be added

to the capacity. Constraint (3.7) guarantees that each pseudo-feasible crew schedule

is given at least g days-off. Constraint (3.8) leaves g days-off in a week for each

substitute crew schedule. We, then, ensure in (3.9) that a substitute crew can be

assigned to a duty only when the substitute crew is included in the schedule. Con-

straint (3.10) ensures that if a certain duty-period assignment is made to a substitute
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crew only compatible duty-period assignments are allowed for the same substitute

crew. Constraint (3.11) indicates that the variables must be binary.

The substitute crew assignment problem, with a large number of binary variables

and compatibility constraints, is computationally intractable. This observation was

empirically confirmed in our experiments. Therefore, next, we present a heuristic

algorithm to solve this problem.

Greedy Heuristic

In Algorithm 2, we present the greedy heuristic we developed for the assignment

problem. In the algorithm, Cs denotes the set of schedules of substitute crew members

and k denotes the size of the set K. In this algorithm, we only consider duties that

let the crew schedules have at least g days-off, and we do not consider cases where

having g days-off is possible by removing nonsequential duty-periods from the pseudo-

feasible crew schedules. We, then, sort the possible day-off periods with respect to

their duration, i.e. the time between the beginning of the first duty and the end of

the last duty (or the end of the deadhead for deadheading crew members). Sorting

the duty-periods in nondecreasing order of their duration, we repeat the following

steps until all crew schedules have g days-off. We add a new substitute crew with

an empty schedule (lines 9 and 10). Then, starting from the shortest duty-period,

we check whether adding this duty causes infeasibility (a violation of the minimum

home rest time, or of the day-off requirement of the substitute crew). If there is

infeasibility, we skip this duty-period (line 12). If the new schedule is feasible, we

add this duty-period to the schedule of the substitute crew (line 13). We modify

the sets Cp and Cr accordingly, and delete duties with the same crew attribute from

the set I (lines 14 and 15). After each pass over the duty-periods in the set I, we

assign days-off to substitute crew members (line 16) and we fix the substitute crew

schedule (line 17). At the end of the algorithm, we obtain the number of substitute
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crew members required to obtain feasible schedules for both substitute and original

crew. The computational complexity of Algorithm 2 is O(|Cp| |Ip|).

Algorithm 2: Algorithm for finding an upper bound on the assignment prob-
lem.

Input: Cp, Ip1:

k = 0 /Number of used substitute crews.2:

Cs = {} /Set of substitute crew schedules.3:

forall i ∈ Ip do4:

if i.days < g then5:

Ip.remove(i)6:

Ip =sort(Ip) /Sort the remaining duties in nondecreasing order of their7:

duration.
while Cp! = {} do8:

k = k + 19:

ck = {} /Initialize the substitute crew schedule.10:

forall i ∈ Ip do11:

if isFeasible(ck ∪ {i}) then12:

ck = ck ∪ {i}13:

Ip = Ip \ {j ∈ Ip : j.crew = i.crew}14:

Cp = Cp \ {i.crew}15:

assigndayoff(ck)16:

Cs = Cs ∪ {ck}17:

Output: k, Cs18:

To conclude our discussion, in the sequential approach, we solve the tactical crew

planning problem in two stages:

• In the first stage, we solve the regular capacity planning problem without con-

sidering the day-off requirement by formulating a minimum flow problem over

a space-time network.

• In the second stage, we assign days-off to the crew schedules obtained in the

first stage by using substitute crew members. In the second stage of the sequen-
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tial approach, it is possible to use either an optimal solution of the assignment

problem or a feasible, but not necessarily optimal, solution of the greedy heuris-

tic.

3.2 Integrated Approach

In our integrated approach, we solve the capacity planning problem with the day-

off requirement by extending the space-time network representation we discussed in

Section 2.2. Contrary to the sequential approach, which yields a suboptimal solution,

we obtain an optimal solution for the capacity planning problem with the day-off

requirement. Furthermore, we do so by solving a single minimum flow problem on a

layered network.

3.2.1 Layered Network Representation

In order to solve the problem with the day-off requirement, we enhance our network

representation. The previous formulation must be modified to satisfy the day-off

requirement; this leads to a different problem where there is no guarantee for the

integrality of the solution. In this new formulation, we use the layer idea explored

as state-expanded network representation by Guo et al. [11] and Mellouli [10]. For a

generalized problem with g days-off, the network consists of g +1 layers from Layer0

to Layerg, with identical nodes, where the layer number marks the number of days-

off a crew schedule includes in the partial schedule corresponding to the partial path

from the source node on Layer0 to the corresponding layer. Duty, deadhead, rest, and

direct connection arcs are also identical for all layers. However, we have to slightly

modify source and sink arcs:

• Layer0 contains the source node of the network and the flow on this layer

represents the movement of crews that have not yet taken any days-off.
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• Layerg of the network contains the sink node of the network and the flow on

this layer represents the movements of crews that have at least g days-off.

In essence, a unit flow emanating from the source node on Layer0 has to reach,

eventually, the sink node on Layerg after passing through g+1 layers of the network.

The source arcs and sink arcs in the network can be used to create days-off for crew

members by using the following properties. As we already know that the head node

of a source arc represents the beginning of the weekly duties for a crew member, we

can conclude that Monday is a day-off for a crew member starting her weekly duties

on Tuesday. Similarly, if a crew member ends her weekly duties on Saturday, we can

consider Sunday as her day-off. To include this property to the network, we alter the

creation of source and sink arcs as follows:

• For a home on-duty node on day γ we add a source arc emanating from the

source node to the Layerγ−1 version of the on-duty node by considering first

γ − 1 days as day-off. For example, for a home on-duty node on the second

day of the planning horizon, the source arc uses Layer1 version of the on-duty

node. As the supply arcs indicate the beginning of the weekly duties of a crew,

we can consider the first day of these crews as a day-off. For the other copies

of these nodes, we do not have to create additional supply arcs.

• For a home tie-up node on day g − γ, if the crew member can take the last γ

days as day-off, then we can connect the node on Layerg−γ to the sink node

with a sink arc. For example, a crew member reaching the home station on

day g − 1 with a home tie-up node on Layerg−1 can be connected to the sink

node with a sink arc denoting the last day of the planning horizon as a day-off.

However, in this case, we do not omit the sink arcs emanating from the higher

layer copies of these nodes and create sink arc for copies g− γ, g− γ +1, · · · , g.
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In order to emulate day-off situation and provide a connection between the layers

of the network, we create additional home rest arcs by considering days-off, called

day-off arcs. A day-off arc emanating from a home tie-up node enters a home on-duty

node on the subsequent layers. Day-off arcs may contain up to g days-off. As a result

of this, the crew members can take their days-off sequentially or non-sequentially. If

the number of days-off is γ, we must guarantee that there are γ days (from 00:00 to

23:59) between the time attribute of the home tie-up node and the time attribute of

home on-duty node. For crew members in Layer0 of the network, we create day-off

arcs between the home tie-up nodes in Layer0 and home on-duty nodes in Layerγ of

the network, to create γ sequential days-off for crew members. For a single day-off, if

a crew terminates its duty with a home tie-up node at Layer0 with a time attribute

21:00 of Tuesday, then its next duty can only begin at the beginning of Thursday on

Layer1. Considering the crew member has two days-off, her subsequent duty may

start at the beginning of Friday on the Layer2, and so on. In our approach, we did not

have any constraints in the exercise of days-off. Crew members can take sequential

or non-sequential days-off. In case there is a sequential day-off requirement, we can

construct only two layers, independent of the g value, with day-off arcs containing

at least g days-off. Furthermore, it is trivial to add different kinds of constraints on

day-off arcs, like balancing the number of crew members having day-off on different

days of the planning horizon, which adds to the value of the integrated approach. An

illustration of the source, sink, and day-off arcs on a layered network is presented in

Figure 3.2

3.2.2 Mathematical Formulation

After creating the layered network discussed in Section 3.2.1, we define the mathe-

matical programming formulation associated with the layered space-time network. L
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Figure 3.2: An illustration of source, sink, and day-off arcs on a layered space-time
network.
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represents the set of layers in the network. We define the decision variable xa as the

amount of flow on arc a ∈ A and xl
a as the amount of flow on copy of duty arc a ∈ Ad

on layer l ∈ L.

The integer programming formulation of the network flow problem is as follows:

Minimize
∑

a∈As

xa (3.12)

subject to
∑

a∈As

xa =
∑

a∈At

xa, (3.13)

∑

a∈A
n+

xa =
∑

a∈A
n−

xa, ∀n ∈ N \ {s, t}, (3.14)

∑

l∈L

xl
a ≥ ca, ∀a ∈ Ad, (3.15)

xa ∈ Z+, ∀a ∈ A. (3.16)

The objective function (3.12) again minimizes the amount of flow leaving the

source node, which corresponds to minimizing the number of crew members required

to operate the given schedule. Constraints (3.13) and (3.14) are flow-balance con-

straints for the source, the sink, and other nodes. The coverage constraint (3.15)

guarantees that the total amount of flow on all copies of a duty arc is at least as

much as the required amount, ca, to ensure that duties are covered by the required

number of crew members. The final constraint (3.16) is the integrality constraint on

the decision variables.

Unlike the formulation (3.1)-(3.5), this is not a standard minimum flow formula-

tion and cannot be solved in polynomial time. Constraint (3.15) puts a lower bound

on the total amount of flow on a set of arcs, representing the versions of a duty on

different layers. The lower bound is not on individual arcs, eradicating the unimod-

ularity of the constraint matrix. Therefore, linear programming relaxation of the

45



problem does not yield an integer solution, and there is not any known polynomial

time algorithm to solve the problem. We observe that linear programming relaxation

produces bounds that are close to optimal. However, the solution has fractional

flow values, and converting a fractional solution to an integer feasible solution to the

problem may not be easy.
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4 COMPUTATIONAL RESULTS

In this section, we present the results of our computational study on a set of real-life

data sets from TCDD. We have collected data on three crew regions: Haydarpaşa,

Ankara, and Eskişehir. Among these districts, Eskişehir lies between the other two

and is usually, but not necessarily, used as a crew exchange station for trains operating

between Haydarpaşa and Ankara. For each crew district, we test four scenarios by

modifying the length of the planning horizon and the day-off requirement. We solve

the problem for one week and two weeks. For each planning horizon length, we create

two problems with day-off requirements of one and two days. Crews belonging to

Ankara district operates 35 train duties, while Haydarpaşa and Eskişehir operate 44

train duties each.

The results are given in Table 4.1. The first three columns show the crew district

and the attributes of each scenario for the districts. OFV stands for the objective

function value which corresponds to the number of crew members. For the sequen-

tial approach, MFP refers to the results of the minimum flow problem at the first

stage, whereas GH-AP and OPT-AP refer to the greedy heuristic and optimal inte-

ger programming formulation results of the assignment problem at the second stage,

respectively. For the integrated approach, L-MFP refers to the optimal integer pro-

gramming formulation results of the layered network flow problem and R-L-MFP

refers to the linear programming relaxation results of the layered network flow prob-

lem. The computational experiments are performed on a Intel Core 2 Duo 2.2 T7500

PC with 2 GB RAM; we use CPLEX 11.0 on OPL Studio 5.5 to solve the optimization

problems.
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Scenario Attributes Sequential Approach Integrated Approach
Planning OFV Time (ms) OFV Time (ms)

District Horizon Days-off MFP GH-AP OPT-AP Total MFP GH-AP OPT-AP Total L-MFP R-L-MFP L-MFP Total

Ankara

1 1 52 9 7 59 187 31 7312 7953 57 56.2 813 1281
1 2 52 22 19 71 171 266 864891 865734 67 66.8 1234 1921
2 1 52 4 4 56 469 125 5000 6203 54 53.2 5390 6328
2 2 52 9 8 60 500 1906 995343 998374 58 57.5 92766 94484

Haydarpaşa

1 1 46 7 6 52 312 47 20281 21093 46 46.0 2531 3171
1 2 46 17 14 60 328 172 498984 499953 53 52.4 4484 5515
2 1 46 2 2 48 844 0 172 1796 46 46.0 11235 12672
2 2 46 5 4 50 844 172 205797 207546 46 46.0 76797 79593

Eskişehir

1 1 76 16 16 92 281 296 937797 938843 79 78.6 1391 1968
1 2 76 35 30 106 266 1593 (69.47%) – 94 94.0 2282 3265
2 1 76 7 5 81 735 437 326500 328546 76 76.0 11079 12453
2 2 76 13 11 87 750 6250 (70.73%) – 81 80.4 100406 102968

Table 4.1: Results for different approaches for solving the crew scheduling problem.
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In all of the instances, integrated approach produces better results than the se-

quential approach in terms of the objective function value as expected. For instance,

in Ankara district, with one week planning horizon and with a day-off requirement of

one day, the sequential approach finds 59 crew members to operate the weekly sched-

ule. In the first stage of the problem, the minimum flow problem, 52 crew members

are used to cover the weekly schedule. In the second stage, 7 substitute crew members

are added to fill-in the days-off for the original crew members. The optimal solution

of the assignment problem improves on the solution found by the greedy heuristic,

which requires 9 crew members. Yet, the integrated approach requires 57 crew mem-

bers instead of the sub-optimal 59 of the sequential approach. To exemplify with

Haydarpaşa district, for a planning horizon of one week and a requirement of two

days-off, the sequential approach requires 60 crew members (46 at the first stage and

14 at the second stage). However, with the integrated approach, 53 crew members

are sufficient to operate the given schedule while satisfying the day-off requirement.

In some instances, such as Haydarpaşa with one week planning horizon and with a

requirement of one day-off, the objective function value of the integrated approach is

equal to the objective function value of the minimum flow problem at the first stage

of the sequential approach. This clearly implies that it is possible to operate the

given schedule with day-off requirement by using the same number of crews found at

the first stage of the sequential approach. We can easily conclude that the integrated

approach is not only technically sophisticated, but it also helps the company save

significantly in allocation of resources.

We can also see that greedy heuristic produces reasonably good initial solutions

for the assignment problem. An observation we made was that providing an upper

bound to the size of the set K helped us solve the problem in less computation time

as the number of binary decision variables decreases sharply by decreasing the size
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of the set K. To help us reduce the computation time, we use the greedy heuristic to

provide both an upper bound on the value of the size of the set K (and hopefully an

elaborated one in comparison to possible trivial approaches) and an initial feasible

solution. Even with the help of the greedy heuristic, there were two instances where

the assignment problem failed to reach an optimal solution in 1000 seconds: Eskişehir

district with a day-off requirement of two days (for both planning horizon choices).

This is shown with “–” under the “Time” header. For these two instances, we show

the gap between the best bound and the best feasible solution. Considering that the

gaps are quite large, we can safely assume that solving these problems to optimality

even with a significant increase in time limit does not seem possible.

In addition to providing better solutions, the integrated approach also required

less computation time than the sequential approach in all but two instances: Ankara

with a two weeks planning horizon and a requirement of one day-off and Haydarpaşa

with two weeks planning horizon and a requirement of one day-off. We make this

comparison by looking at the columns “Total” under the “Time” header for both

sequential and integrated approaches. The column “Total” shows the time required

for the construction of the space-time network and the time required by the corre-

sponding solution approaches. This result shows that, in these instances, most crew

schedules obtained at the first stage of the sequential approach honor the day-off re-

quirement so that the assignment problem is easier to solve. The worst computation

time for the integrated problem is slightly more than 100 seconds, still showing that

the capacity planning problem of a region can be solved efficiently in practice.

From a managerial point of view, we make the following observations:

• With a given planning horizon length, the necessary number of crew members

for operating the train schedule increases when we increase the number of days

in the day-off requirement. For example, in Eskişehir region with one week
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planning horizon, number of crew members in the optimal solution increases

from 79 to 94 when we increase the number of days in the day-off requirement

from one to two.

• For a fixed number of days in the day-off requirement, decreasing the length of

the planning horizon deteriorates the quality of the solutions. For example, in

Eskişehir district with one day in the day-off requirement, the number of crew

members in the crew regions decreases from 79 to 76 when the length of the

planning horizon decreases from two weeks to one week.

In both cases the objective function value becomes worse when we increase the num-

ber of days in the day-off requirement.

From a computational point of view, changes in the length of the planning horizon

and number of days in the day-off requirement reflect on the computational times of

the sequential approach:

• For a fixed planning horizon, increasing the number of days in the day-off

requirement makes the substitute crew assignment problem harder to solve,

such as in Eskişehir region, when we reach the time limit by increasing the

days in the day-off requirement to two.

• For a given number of days in the day-off requirement, decreasing the length

of the planning horizon makes the problem harder to solve. For instance, in

Ankara district with a planning horizon of two weeks, the computation time

decreases from 998 seconds to 6 seconds, when we decrease the number of days

in the day-off requirement from two to one.

In both cases the objective function value of the substitute crew assignment problem

becomes worse when we increase the number of days in the day-off requirement. As
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a consequence, the number of substitute crew members in the assignment problem is

expected to be larger. This, indeed, increases the number of decision variables and

constraints in the assignment problem.

For the integrated approach increasing the length of the planning horizon or

the number of days in the day-off requirement makes the problem harder to solve.

However increasing the length of the planning horizon affects the computation time

more than increasing the number of days in the day-off requirement.
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5 SYSTEM-WIDE

TACTICAL-TO-STRATEGIC

PLANNING ON CREW REGIONS

Determining the minimum sufficient crew capacity levels for different crew-base re-

gions is an important problem for TCDD, especially considering that they are be-

ginning to use operations research tools for their operations, as it was stated by

Havelsan in our personal communications [22]. Even though tactical capacity plan-

ning is important for the company, it does not provide any flexibility in terms of the

allocation of train duties to other regions or sharing of duties among crew members

located at different regions. The predetermined list of trains for each crew region

and the crew exchange stations for the train duties have been used for years unless

there was a substantial change in the train schedules. Studying the capacity plan-

ning problem with a more system-wide approach can bring substantial improvements

in crew-related costs. A more system-wide approach could consider re-allocation of

train duties among neighboring regions and evaluation of train duty sharing policies

with respect to locations of exchange stations. In order to reduce the number of

crew members working in all of the crew districts in TCDD, we formulate tactical-

to-strategic level planning problems. In this setting, the borders of crew districts

are assumed to be flexible (to different degrees for different problem formulations) as

there are several candidate stations along the corridors between regions to execute

crew exchanges.

Let us suppose that there are two neighboring crew districts, H0 and H1, and an

intermediate crew exchange station between them at I1. We consider two trains in
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Figure 5.1: An illustration of the original network structure for a fixed crew ex-
change station.

the opposite direction one from H0 to H1 and another one from H1 to H0. Both trains

use I1 as their crew exchange station. The situation is illustrated in Figure 5.1. In

this example, let us suppose that the time between nodes 1 and 6 is greater than the

excess duty time and the time between nodes 2 and 5 is less than the excess duty

time. We need four crew members to cover the train duties represented by the duty

arcs (1, 3), (2, 4), (3, 5), and (4, 6).

7 8
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Figure 5.2: An illustration of the effects of flexible station change on single region.

A potential benefit of changing crew district borders (i.e. exchange stations) is

exemplified in Figure 5.2. In this example, we consider the same trains; but, we

consider the station I′1 as the new exchange station. If crew exchange is executed
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at I′1, considering that the time between nodes 2 and 5 is smaller than the excess

duty time, the crew covering arc (2, 7) can also cover the duty on arc (8, 5) via a

direct connection arc (7, 8). This modification on exchange stations decreases the

number of crew members required at region H0 from two to one. For region H1, the

number of crews required for covering these two duties is still two. These two longer

duties does not worsen the crew requirement of region H1 when we change the crew

exchange station. As seen, in this small example, considering re-allocation of train

duties even among two regions by changing the exchange station may bring easily

observable savings to the company.

To exemplify further, we can also allow crew members belonging to one region

cover the train duty for the entire trip, such as the crew members belonging to region

H0 or H1 covering duties (1, 5) and/or (2, 6). This option can also decrease the overall

number of crew members working in the two regions. In addition to that, it is possible

to avoid double manning by dividing train duties between crew members operating

in different regions. If a train duty taking more than 8 hours is divided in two parts,

which results in two smaller train duties, there exists an opportunity to reduce the

number of crew members over the two regions.

In the rest of this chapter, we discuss the mathematical models in two main

categories: single region and two-region models. The new models help us determine

the crew exchange stations optimally and re-allocate the train duties accordingly

instead of the current approach where they are considered as given. Single region

models are used only to illustrate the ideas on the tactical-to-strategic level capacity

planning problem; their practical purposes are limited as we do not consider in these

models the simultaneous effects of the new allocations and the new crew exchange

stations on the other regions. In other words, the mathematical formulation would

lead to results where the coverage of duties are minimum, by choosing the crew
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exchange stations as close to the home station as possible. Later on, we present

two-region models, that take into account the effects of re-allocation on the two

regions that share some train duties. However, even studying two region models is

not sufficient as the schedules in TCDD are designed by considering firm decisions

on the crew exchange stations. With multiple trains using the same station as the

crew exchange station, we have limited room for improvement by only considering

re-allocation of duties according to new crew exchange stations. For this purpose, we

develop new deadhead policies that involve train duties shared between two regions

in order to provide managerial insight to the planners about changes in the current

deadhead policies.

5.1 Single-region Problem with Flexible Exchange

Stations

In this part, we define different types of single-region problems. In single-region

models, we study the effects of optimally determining crew exchange stations on the

capacity of a single region, which brings the crew capacity planning problem to a more

tactical-to-strategic level. In our previous definition of a crew region, we consider the

away stations as defining the border of the crew region. In this higher-level planning

problem, we consider the borders to be more flexible by formulating different types

of problems.

In TCDD, a train service may be repeated on several days of the week at the

same time of the day. As a result, there are copies of the same train duty on different

days; in the schedule these trains are attributed with the same train ID. By allowing

different levels of flexibilities in the crew exchange stations, we formulate three policies

that are represented by three types of problems, described as follows:

1. In the flexible crew exchange policy, we allow train duties with the same ID use
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different crew exchange stations on different days of the planning horizon.

2. In the semi-fixed crew exchange policy, trains with the same ID must use the

same crew exchange station on each day of the planning horizon. However,

trains with different IDs may use different crew exchange stations.

3. In the fixed crew exchange policy, all trains operating between the same two

regions (i.e. along the same rail-corridor) must use the same crew exchange

station.

If these flexibilities are integrated into the crew capacity planning problem under

the current settings, existing crew exchange stations or away stations will be favored

because of the number of trains using these stations. Furthermore, it is possible that

crew members become stuck at an away station due to lack of appropriate train duties

or a train duty is not covered due to lack of crew members at the station. As a result

of this, when we are dealing with the tactical-to-strategic capacity planning problem

by considering different possibilities for exchange stations, we must consider new

types of deadheads. When we are working with a single train ID in a single region,

altering the crew exchange station can cause the crews to become stuck at the new

crew exchange station, where there is no other train to transfer them back home.

Similarly, it is possible for a new crew exchange station not to have any incoming

trains that provide crew members for train duties originating from this station. By

exploring detailed schedules of crews and developing new rules for deadheading, we

can avoid these situations. In order to further facilitate the discussion on the network

representation, we first explain how the new deadhead policies are represented.
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5.1.1 Integrating New Deadhead Policies into the Network

Representation

In developing new deadhead rules, we consider two cases as deadheading from away-

to-home and deadheading from away-to-away as follows:

1. To deadhead crew members from away-to-home, we create deadhead arcs from

an away tie-up node to the earliest home tie-up node a crew can reach. In order

to return home following an away tie-up, a crew must take a train after waiting

for the minimum deadhead time. In addition, we have to make sure that the

crew reaches home as soon as possible. This deadhead policy is the same as

the deadhead policy discussed in Section 2.2.1. However, in this new approach,

we consider the detailed schedules of trains; we also use trains operated by

other regions to deadhead crew members to the home station. Considering

that a crew member is located at an away station I0 at time τ , we must find

the fastest way to reach the home station from station I0 by riding on a single

train and by respecting the minimum deadhead start time and the maximum

deadhead start time requirements. Specifically, we have to find the fastest way

to reach the home station by considering the trains that are passing through

the station I0 no earlier than τ plus the minimum deadhead start time and no

later than τ plus the maximum deadhead start time as required by the company

policies.

2. We consider away-to-away deadheads in two ways by using either a direct con-

nection or an away rest.

(i) In the first case, where we consider the deadhead opportunity with a di-

rect connection, we make use of the excess duty opportunity, discussed in

Section 2.1. Therefore, we consider two train duties: the first one from
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home to away and the second one from away to home starting at a later

time than the end of the first duty. The direct connection arc is created

from the away tie-up node of the first duty and the away on-duty node of

the second duty starting at a different away station. For creating the arc,

we check two conditions:

• First, we have to guarantee that the time between the on-duty node

of the first duty and the tie-up node of the second duty is less than

the maximum duty time from home to home.

• Secondly, we have to find a feasible deadheading opportunity (from

the end of the first duty to the beginning of the second one) between

the two trips. A feasible deadhead must occur between the space

attribute of the tie-up node of the first duty and the space attribute

of the on-duty node of the second duty. Furthermore, the deadhead

trip must start and end between the tie-up time of the first duty and

on-duty time of the second duty.

(ii) The second way of modeling an away-to-away deadhead is considering the

possibility of an away rest accompanied with a deadhead. In this case, a

deadhead arc includes both an away rest and a deadhead trip in two ways:

• A crew reaching an away station, say I0, at time τ first takes an away

rest at least as long as the minimum away rest time, then travels

deadheading to another station in order to start a new duty from that

station to home. For constructing deadhead arcs considering an away

rest, we have to find out how we can reach other stations from station

I0 by using trains that are passing through I0 no earlier than τ plus

the minimum away rest time allowed by the company.

• A crew reaching an away station, say I0, at time τ first travels dead-

59



heading to another away station, then takes a rest at that station in

order to cover another train duty to home station. In this case, we

find out the earliest arrival time to other away stations from station

I0 no earlier than τ , and we let the crew member take an away rest

after reaching the new station.

In both cases, the deadhead arc we create spans through a deadhead period

and an away rest that is not shorter than the minimum away rest time

and not longer than the maximum away rest time.

For the new deadhead policies, we consider that crew members ride only a single

train for deadheading. Even though a more intricate approach is possible by allowing

crew members use multiple trains for a faster transfer, it brings additional computa-

tional burden for possibly a small gain. Furthermore, using multiple trains may be

disturbing for transfered crew members and is prone to more disruptions as the delay

on one train can have effects on deadheading the crew member. For home-to-away

and away-to-away with direct connection policies, we create every possible arc in the

network. However, for away-to-away deadhead policies with an away rest, we only

create the deadhead arc for the first duty that a crew member can cover after being

transferred to another station. Furthermore, we only create deadhead arcs with an

away rest for the duties shared by two regions.

5.1.2 Mathematical Formulation

We next formulate the crew capacity planning problem by considering different poli-

cies (flexible, semi-fixed, and fixed) to determine the crew exchange stations. As we

noted earlier, the single-region problem formulation is depicted for only illustrative

purposes in order to simplify the discussion on problem formulations for two regions

and multiple regions. An optimal decision on crew exchange stations for the single
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Figure 5.3: Corridors and crew exchange stations of a home station H0.

region would favor closest stations to the home station. Therefore, the problem re-

duces to crew capacity planning problem discussed in Section 3.1.1. The new decision

problem integrates a higher-level decision by determining the crew exchange stations

into the original crew capacity planning problem. A similar approach to integrate

a higher-level decision into a known problem formulation in the context of railway

planning has been used by Liu et al. [23] for the yard location problem. The yard lo-

cation problem determines the location of yards in a railroad network, which are used

for grouping the cars into blocks by considering their routes. Liu et al. [23] solve the

yard location problem by using a simplified version of the blocking problem, which

can be solved efficiently, as a subprocedure.

Figure 5.3 illustrates the corridors between the home stations of neighboring crew-

base regions. The home stations of the crew-base regions are denoted with H, H0

denoting the region of interest. Corridors between two crew-base regions, denoted by

ρ, are depicted using solid lines corresponding to a rail line between two home stations.

Small circles on these lines show the possible crew exchange stations; the arrows

represent train duties. The trains on corridor ρ2 use station I2 as crew exchange

station, leaving the rest of the duty to be covered by crew members operating at

crew-base region H2. However, station I′2 is another option for a crew exchange
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P set of corridors shared with neighboring regions, indexed by p
Vp set of stations belonging to corridor p, indexed by v
H set of train duty IDs
G set of days in the planning horizon
ρa corridor attribute of arc a
µa station attribute of arc a
φa duty ID attribute of arc a
ωa duty day attribute of arc a
Ād set of selected train duties for change in exchange stations, Ād ⊆ Ad

¯̄Ad expanded set of train duties, ¯̄Ad ⊆ Ād, such that:

∀ā ∈ Ād, ∃a ∈ ¯̄Ad: µa = v, ∀v ∈ Vpa
, φa = φā, ωa = ωā

Table 5.1: Notation for integer programming formulation.

station along the same corridor; selecting I′2 as a crew exchange station instead of I2

can result in some savings with respect to the total number of crew members required

in regions H0 and H2. Considering different policies and the possible changes in all

corridors, the number of decisions we can make is substantial.

We formulate three problems based on the original crew capacity planning prob-

lem formulation. Additional notation for the integer programming formulation is

given in Table 5.1. We define Ād as the set of selected train duties for change in the

crew exchange stations. We, then expand the set Ād by creating a duty arc for each

candidate crew exchange station. The new set is called ¯̄Ad. Duties in the set ¯̄Ad

share the same duty attributes except for the time attributes which are set according

to the arrival time of trains to different crew exchange stations. In other words, for

a single train duty in the set Ād, we create a set of arcs (as much as the number

of possible crew exchange stations) with the same train ID, duty day and corridor

attributes. However, each arc has a different station attribute and different time

windows associated with the time of arrival (departure) of the train to (from) the

crew exchange station denoted by the arc. We define the common decision variable

xa as the amount of flow on arc a.
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Case 1: Multiple Train IDs and Flexible Crew Exchange Stations

In this case, we consider multiple trains covered by a region in order to determine their

crew exchange stations; we do not have any constraints on the crew change stations

of trains with the same ID. In other words, the same train can exchange crews at

one station on Monday and at another station on Tuesday. For the formulation, we

define:

yv
phg =







1, if v is used as crew exchange station for train ID h, duty day g
and corridor p;

0, otherwise.

The integer programming formulation is written as follows:

Minimize
∑

a∈As

xa (5.1)

subject to
∑

a∈As

xa =
∑

a∈At

xa, (5.2)

∑

a∈A
n+

xa =
∑

a∈A
n−

xa, ∀n ∈ N \ {s, t}, (5.3)

xa ≥ ca, ∀a ∈ A \ Ād, (5.4)

xa ≥ cay
µa

ρaφaωa
, ∀a ∈ ¯̄Ad, (5.5)

∑

v∈Vρa

yv
ρaφaωa

= 1, ∀a ∈ Ād, (5.6)

xa ∈ Z+, ∀a ∈ A, (5.7)

yv
ρaφaωa

∈ {0, 1}, ∀ρa ∈ P,∀φa ∈ H,∀ωa ∈ G,∀v ∈ Vρa
. (5.8)

Compared with the minimum flow formulation in (3.1)-(3.5), the coverage con-

straint for duties in the set ¯̄Ad (5.5) is now conditioned on the selection of crew

exchange stations. Constraint (5.6) selects only one crew exchange station for a train

duty. Therefore, constraints (5.5) and (5.6) together guarantee that at least one
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arc belonging to each duty must be covered by the required number of crew mem-

bers for that duty. Note that the formulation (5.1)-(5.8) does not imply an upper

bound on the amount of flow on the other arcs representing a duty and home-to-away

deadheading is still possible.

Case 2: Multiple Train IDs and Semi-Fixed Crew Exchange Stations

In this case, we consider a model, where train duties with the same IDs must use the

same crew exchange stations. Yet, train duties with different IDs can use different

crew exchange stations as long as the replicates of these trains on different days use

the same station. As a result of this, we drop the day index g from the binary variable

yv
phg, and define:

yv
ph =







1, if train with train ID h and corridor p uses station v as crew exchange
station for each day of the week;

0, otherwise.

The integer programming formulation is as follows:

Minimize
∑

a∈As

xa (5.9)

subject to(5.2) − (5.4), (5.7), (5.10)

xa ≥ cay
µa

ρaφa
, ∀a ∈ ¯̄Ad, (5.11)

∑

v∈Vρa

yv
ρaφa

= 1, ∀a ∈ Ād, (5.12)

yv
ρaφa

∈ {0, 1}, ∀ρa ∈ P,∀φa ∈ H,∀v ∈ Vρa
. (5.13)

Compared to the previous formulation, (5.1)-(5.8), the only change in the formu-

lation is the lack of day index in the binary variable yv
ph. This change implies that the

crew exchange stations are chosen common for the daily replicates of a train duty.
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Case 3: Multiple Train IDs and Fixed Crew Exchange Stations

In this case, trains operating over a corridor between two regions must all change

crews at the same station. As a result of this, we also drop the index h from the

decision variable and define:

yv
p =

{

1, if all trains in corridor p use station v as crew exchange station;
0, otherwise.

The integer programming formulation is written as follows:

Minimize
∑

a∈As

xa (5.14)

subject to(5.2) − (5.4), (5.7), (5.15)

xa ≥ cay
µa

ρa
, ∀a ∈ ¯̄Ad, (5.16)

∑

v∈Vρa

yv
ρa

= 1, ∀a ∈ Ād, (5.17)

yv
ρa

∈ {0, 1}, ∀ρa ∈ P,∀v ∈ Vρa
. (5.18)

Compared to the formulation (5.1)-(5.8), the only change in the formulation is

the lack of day and train ID index in the binary variable yv
p . This change implies

that only a single crew exchange station is chosen for all daily replicates of all trains

operating on corridor p.

Even though constructing these models help us understand the potential short-

comings of the tactical-to-strategic capacity planning problem, such as the infeasi-

bility problems that may arise, studying the capacity planning problem on a single

region does not have practical benefits. As we are trying to minimize the crew capac-

ity of a region, the objective can be achieved by selecting the stations on a corridor

that are close to the home station, without considering the burdens it may bring to

the neighboring regions. For this purpose, we develop two-region problems, which

deal with that problem.
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5.2 Two-region Problem with Allocation of Trains

In this section, we study models that consider two neighboring regions simultaneously.

Contrary to the single region models, by studying two-region models we consider the

system-wide effects of the modifications carried out in the train schedules. As the

train duties are divided between two regions, we have to make sure that crews be-

longing to different regions cover the entire train duty. For example, if crew exchange

is executed at I1 for a train duty from H0 to H1, then the first part of the duty (from

H0 to I1) and the second part of the duty (from I1 to H1) must be covered by the

crew members from H0 and H1, respectively.

5.2.1 Mathematical Formulation

For the two-region problem, we consider two policies for crew exchange stations:

flexible and fixed policies. Similarly to the policies discussed in Section 5.1.2, in

the flexible case, each daily replicate of a train can use any potential crew exchange

stations whereas in the fixed case, all trains operating on the corridor must use the

same crew exchange station. For illustrative purposes, we consider only a single

train that runs from one home station to the other of two neighboring regions. Yet,

extending the formulations to consider multiple trains is straightforward.

Table 5.2 shows the notation for the two-region models. Duties e and f have

following properties for their attributes: ρe = ρf = p and φe = φf = h and ωe =

ωf = g. The only difference in the two train duties is their origins and destinations

and the time attributes associated with them.

Case 1: Single Train ID and Flexible Crew Exchange Station

In this case, we consider a single train whose duty can be shared by the two neigh-

boring regions. If crew members from one region cover the trip from the origin to
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E,F two neighboring regions
p the corridor between regions E and F

e, f duties belonging to the sets
¯̄

AE
d and

¯̄
AF

d of regions E and F respectively

Table 5.2: Additional notation for integer programming formulation.

the crew exchange station I1 (train duty e in Table 5.2), then crew members from

the other region should cover the train duty from the crew exchange station I1 to the

destination (train duty f in Table 5.2). To formulate this problem, we have to create

two networks belonging to two regions. In these two networks, there is a set of arcs

whose coverage is dependent on each other in a pairwise fashion. Using the same

example as above, the duty arc corresponding to the train duty e should be covered

or not covered simultaneously with the arc corresponding to the train duty f . The

two duty arcs are to be covered only when the crew exchange station is selected as I1.

They are both not necessarily covered when I1 is not selected as the crew exchange

station. Solving the two-region problem means solving two single-region problems si-

multaneously with a set of common decision variables selecting the exchange stations.

The integer programming formulation is given as:

Minimize
∑

h∈{E,F}

∑

a∈Ah
s

xa (5.19)

subject to
∑

a∈Ah
s

xa =
∑

a∈Ah
t

xa, ∀h ∈ {E,F}, (5.20)

∑

a∈Ah

n+

xa =
∑

a∈Ah

n−

xa, ∀n ∈ Nh \ {s, t},∀h ∈ {E,F}, (5.21)

xa ≥ ca, ∀a ∈ ∪h∈{E,F}(A
h \ Āh

d), (5.22)

xe ≥ cey
µe

ρeφeωe
, ∀e ∈ ¯̄Ad,∀g ∈ G, (5.23)

xf ≥ cfy
µf

ρf φf ωf
, ∀f ∈ ¯̄Ad,∀g ∈ G, (5.24)

67



∑

v∈Vp

yv
phg = 1, ∀g ∈ G, (5.25)

xa ∈ Z+, ∀a ∈ (AE ∪ AF ), (5.26)

yv
ρa

∈ {0, 1}, ∀ρa ∈ P,∀v ∈ Vρa
. (5.27)

Constraint (5.23) guarantees the coverage of duty e by crew members from crew

region E from the origin of duty until station v. Constraint (5.24) is the coverage

constraint of duty f by crew members from region F from the crew exchange station

v until the destination of duty. Constraint (5.25) is used to choose a crew exchange

station for the duty. As we are dealing with a flexible crew change station policy, the

constraints (5.23)-(5.25) must be honored for each replicate of the train during the

week; together, they ensure that the train duty is covered as required for the entire

length of the trip.

Case 2: Single Train ID and Fixed Crew Exchange Station

In this case, we again have to cover the whole trip for the train operating between two

regions. Duties e and f have following properties for their attributes: ρe = ρf = p.

However, the space and time attributes of the two train duties are different as it was

the case in the previous models. We can write the following integer programming

formulation by using the notation in Table 5.2:

Minimize
∑

h∈{E,F}

∑

a∈Ah
s

xa (5.28)

subject to(5.20) − (5.22), (5.26), (5.29)

xe ≥ cey
µe

ρe
, ∀e ∈ ¯̄Ad, (5.30)

xf ≥ cfy
µf
ρf , ∀f ∈ ¯̄Ad, (5.31)

∑

v∈Vp

yv
p = 1, (5.32)
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yv
ρa

∈ {0, 1}, ∀ρa ∈ P,∀v ∈ Vρa
. (5.33)

When compared to constraints (5.23)-(5.25), the only difference in constraints

(5.30)-(5.32) is the lack of day and train ID index on decision variable yv
p .

5.2.2 Solution Method for Two-Region Problem: A Neigh-

borhood Search Algorithm

Solving the problems for two-region case requires adding many binary decision vari-

ables and simultaneously solving the capacity planning problem of two regions. Hence,

it is exponentially more difficult to solve when compared to a single-region problem.

We develop a solution method to efficiently solve these problems. We know that the

capacity planning problem, when the crew exchange stations are given, can be solved

with the minimum flow problem formulation described in Section 3.1.1. It is easy

to observe that when the crew exchange stations are given, the two-region problems

reduce to two separate capacity planning problems. Based on this observation, we

devise a solution procedure for the two-region problems that contains the solution

of the minimum flow problem formulation of the capacity planning problem. Let us

assume that we are considering the re-allocation of a train duty between two regions,

H0 and H1. Let us further assume that this train is assigned to region H0 according

to the current assignments. There are indeed several options for re-allocating the

corresponding train duty. We can either assign the train duty fully to region H1 or

share the train duty between the two regions by selecting one of the stations along the

corridor from H0 to H1 as the crew exchange station. To understand if re-allocation

of this train would bring any savings in the total number of crew members required

in the two regions, we first consider the extreme opposite solution to the current

state: full assignment of the train duty to region H1. Assigning the train duty to H1

instead of H0, we may observe the following changes in the number of crew members
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Case H1 H2 Overall
Case 1 Same Same Same
Case 2 Same Increase Increase
Case 3 Decrease Increase Same
Case 4 Decrease Increase Increase
Case 5 Decrease Increase Decrease
Case 6 Decrease Same Decrease

Table 5.3: Changes in the number of crew members required when a train duty is
currently assigned to H0 is assigned to H1.

required:

• Case 1: The number of crew members in H0 and H1 stay the same, resulting in

the same minimum crew capacity for the company.

• Case 2: The number of crew members in H0 stays the same, whereas it increases

in H1, resulting in an increase in the minimum crew capacity.

• Case 3: The number of crew members in H0 decreases, whereas it increases in

H1, resulting in the same minimum crew capacity.

• Case 4: The number of crew members in H0 decreases, whereas it increases in

H1, resulting in an increase in the minimum crew capacity.

• Case 5: The number of crew members in H0 decreases, whereas it increases in

H1, resulting in a decrease in the minimum crew capacity.

• Case 6: The number of crew members in H0 decreases, whereas it stays the

same in H1, resulting in a decrease in the minimum crew capacity.

Therefore, six different cases may be observed. The changes according to these cases

are also summarized in Table 5.3.

In Case 2 and Case 4, the total number of crew members required in the two

region increases when the train duty is shifted from H0 to H1. This means that the
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current assignment of the train duty (to H0) is better than the new allocation. In

Case 1 and Case 3 , the number of crew members required in two regions stays the

same when we shift the duty to H1. In Case 5 and Case 6, the number of crew

members required in two regions decreases, meaning that the new allocation of the

train duty (to H1) is a better option than the current assignment.

The algorithm we propose is based on a neighborhood search idea. We note

that re-allocating a train duty to another region or splitting a train duty between

two regions is a neighboring solution to the current solution. The neighborhood

search algorithm is described in Algorithm 3. In the algorithm, TS denotes a feasible

allocation of train duties among the regions of interest. TC denotes the train tuples

whose allocations we consider modifying. The tuples may be of any size. Starting

from an initial solution, which is an input to the algorithm, we initialize a greedy

search procedure. At each iteration of the search procedure, by re-assigning a tuple

of trains to the other region (i.e. to the region the duty is not assigned in the initial

TS), we find the tuples that bring the most improvement in the number of required

crew number members (lines 9-18). If there is a tie among the tuples we store all

of them as candidates for re-allocating the corresponding duties (lines 17-18). If we

fail to improve the current solution, we include tuples that does not deteriorate the

solution as a candidate solution for re-allocation. For every tuple in the candidate set,

we determine the common stations for the train duties in the tuple we are studying

(line 20). We start dividing the train duties by beginning from the closest station

to the best allocation, which is the closest station to H1 in this specific example.

After searching for all possible stations, we select the best crew exchange station (or

the home station of H1 if there is no improvement by splitting the train duties) and

update the assignment of duties accordingly (lines 21-27). In re-allocation of a duty,

even if there is a tie among different tuples or stations, we only store one solution
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(line 23). The next iteration will continue from this new solution. We repeat this

procedure until we cannot improve the current incumbent solution by re-allocating or

splitting duties. At the end of each iteration, we fix the train duties we altered (line

28) and we do not consider them in the subsequent iterations as candidates (line 9).

5.2.3 Computational Study

For the capacity planning problem where we consider the allocation of trains and

new exchange stations, we perform a computational study with the same data set

that we use for the tactical capacity planning problem in Chapter 4. Before pre-

senting the results, explaining the characteristics of the physical infrastructure and

trains operated by different regions can be insightful. The three crew-base regions of

interest, namely Ankara, Eskişehir, and Haydarpaşa, lie on a single corridor between

Ankara and Haydarpaşa, with Eskişehir situated between the other two regions. The

train line between Ankara and Haydarpaşa is the most important part of TCDD net-

work with several big cities located around the train line. Therefore, optimizing the

crew operations of these three regions is very crucial for the business model of the

company. There are several trains in the weekly schedule running between Ankara

and Haydarpaşa. With respect to the train duties, some of them are completely

assigned to Ankara and some of them are assigned to Eskişehir region with the duty

already divided in two parts, between Ankara and Eskişehir, between Eskişehir and

Haydarpaşa.

In the data set we used, Ankara region is responsible for operating 35 train duties,

whereas Haydarpaşa and Eskişehir regions operate 44 train duties each. Most of these

trains operate between the home stations of these regions. However, most of the train

duties assigned to Haydarpaşa region are relatively short duties between Haydarpaşa

and important cities close by. Among these three regions Eskişehir carries the largest
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Algorithm 3: Algorithm for the neighborhood search.

Input: TS, TC1:

best = OFV(TS)2:

continue = true3:

forall tr ∈ TC do4:

tabu[tr] = false5:

while continue do6:

continue = false7:

TCbest = {} Re-initialize the set of candidate tuples8:

forall tr ∈ TC : tabu[tr] = false do9:

TStemp = reassign(tr) /Re-assign the train duties in tr to another10:

region.

if OFV(TStemp) < best then11:

TCbest = {tr} /Store the most promising train tuple.12:

best = OFV(TStemp)13:

TS = TStemp14:

trbest = tr15:

continue = true16:

else if OFV(TStemp) = best then17:

TCbest = TCbest ∪ {tr} /Store the most promising train tuples.18:

forall tr ∈ TCbest do19:

ST = commonstations(tr) /Find the common stations for train duties20:

in tr.
forall st ∈ ST do21:

TStemp = share(tr, st)/Split the duty using the crew exchange22:

station st.
if OFV(TStemp) < best then23:

best = OFV(TStemp)/Store the improvement obtained by duty24:

sharing.

TS = TStemp25:

trbest = tr26:

continue = true27:

tabu[trbest] = true/Fix the train duty and remove it from further28:

consideration.

Output: TS, best29:
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workload with several trains operating to both Haydarpaşa and Ankara. Most of

the trains assigned to Ankara region belong to the same corridor, with Eskişehir and

Haydarpaşa frequently appearing as away stations. Ankara region also operates some

duties to other cities lying on a different corridor.

In our study, we only consider trains operating between any two of the three

crew-base regions as potential candidates for re-allocation and modifications in crew

exchange stations. In other words, duties belonging to different corridors or operating

between the home station (of one of the three regions) and an intermediate station

(along the corridor) are considered as fixed in the train duty assignments of the three

regions. In our experiments, we observed that considering reallocation of a single train

usually leads to infeasible solutions when we try to split the train duty between two

regions. For this purpose, we create train couples by observing the train schedules of

regions. These couples have the same end points but the trains in the couple operate

in opposite directions. However, this is not a restriction for our algorithm and it is

possible to perform the search with a single train ID or with more than two train

IDs. The problem we solve corresponds to a two-region problem with multiple train

IDs. We employ a semi-fixed policy, which is more convenient to the crew members.

Table 5.4 shows the results. The first row of the table shows the number of crew

members required with the current assignment of duties. We show a single iteration

in two consecutive rows and consecutive iterations are separated by a horizontal line.

If the train duties of the corresponding iteration are not to be shared by the two

regions, this iteration is shown with “N/A” under the “Exchange Station” column.

To exemplify, in the first iteration, we re-assign a train duty couple from Eskişehir

to Haydarpaşa and reduce the number of required crew members by two, from 173

to 171 in total. This can be seen in column “Total” under the “Crews” header. We,

then, try to split the duties by considering potential crew exchange stations, but we
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cannot improve the solution by splitting. In the second iteration, we assign another

train duty couple from Eskişehir to Haydarpaşa and decrease the total number of crew

members from 171 to 170. In this iteration, selecting Karaköy as a crew exchange

station, we are able to reduce the total number of crew members to 167 (see columns

under the “Splitting” header). We continue to search until no improvement is made

at an iteration. In iterations 7 and 11, the re-allocation step fails to improve the

current solution. However, after splitting duties the total number of crew members

decreases and we are able to continue to search.
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Re-allocation Splitting
Iteration Current Duty New Crews Exchange Duty Duration Crews
Number Region Duration Region Esk. Hay. Ank. Total Station Part I Part II Esk. Hay. Ank. Total

0
76 46 51 173

1
Esk. 642 Hay. 70 50 51 171 N/A

558

2
Esk. 584 Hay. 66 53 51 170 Karaköy 155 429 66 50 51 167

582 125 457

3
Esk. 481 Ank. 62 50 54 166 Yalınlı 181 300 63 50 51 164

570 178 392

4
Esk. 511 Ank. 59 50 54 163 Alpu 109 402 60 50 52 162

520 108 412

5
Esk. 629 Ank. 57 50 55 162 Alpu 87 542 57 50 54 161

586 113 473

6
Esk. 457 Ank. 55 50 55 160 N/A

477

7
Esk. 1052 Hay. 51 54 55 160 Bozüyük 148 904 50 54 55 159

973 152 821

8
Esk. 688 Hay. 45 58 55 158 Arifiye 249 439 47 55 55 157

603 261 342

9
Hay. 432 Esk. 49 52 55 156 N/A

406

10
Esk. 397 Hay. 47 53 55 155 N/A

378

11
Esk. 446 Ank. 44 53 58 155 Polatlı 194 252 45 53 56 154

487 192 295

Table 5.4: Results of tactical-to-strategic capacity planning problem.
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The results in Table 5.4 lead to an important observation. In seven of 11 iterations,

13 train duties constituting seven train couples last more then the double-manning

time, 480 minutes. By splitting these duties, we obtain 16 duties and 13 of them can

be covered by a single crew member. As we predict, avoiding duties longer than the

double-manning time accounts for a significant part of the overall improvement.

With this example, we show that it is possible to reduce the total number of crew

members in the three regions from 173 to 154 by assigning duties to other regions or

splitting them considering different crew exchange stations. This result corresponds

to a 11% decrease in the total number of crew members and can bring substantial

benefits to the company.

Note that the result showed here is different from the one in Table 4.1 as Ankara

region requires one less crew member. This change is due to the new away-to-home

deadhead and away-to-away deadhead with direct connection policies we discussed

in Section 5.1.1. This shows that the new deadhead policies are an improvement over

the current policy and it should be considered by managers of the company. Note

that in the initial assignment away-to-away deadhead policies with an away rest are

not active as we only use them for train duties shared by two regions.

In order to see the effect of the new deadhead policies, we also perform our

computational study by using the network representation discussed in Section 2.2,

without considering new deadhead policies. The results are presented in Table 5.5.

Without the new deadhead policies, we are able to execute seven iterations only in

contrast to the 11 iterations in the previous case. There are only two train couples

that was split with a new crew exchange station, whereas new deadhead policies have

allowed seven train couples to be split in different crew exchange stations. However,

even in this case, we succeed to reduce the number of required crew members from

174 to 165, resulting in a 5% improvement.
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As a managerial insight, we can say that considering new deadhead policies can

bring substantial improvements to the crew-related costs in the company. Not only

the new deadhead policies produced better results in terms of the objective function

value, they also served their purpose of avoiding infeasibilities as we were able to find

a feasible solution in nearly all instances we solved. However, when we omit the new

deadhead policies from the space-time network, there were several instances, where

a candidate crew exchange station failed to produce a feasible solution. This obser-

vation can also be supported by the number of duty sharings between two methods

(seven to two).
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Re-allocation Splitting
Iteration Current Duty New Crews Exchange Duty Duration Crews
Number Region Duration Region Esk. Hay. Ank. Total Station Part I Part II Esk. Hay. Ank. Total

0
76 46 52 174

1
Ank. 304 Esk. 77 46 49 172 N/A

292

2
Esk. 642 Hay. 71 50 49 170 N/A

558

3
Hay. 403 Esk. 72 48 49 169 N/A

396

4
Hay. 432 Esk. 74 45 49 168 N/A

406

5
Esk. 511 Ank. 70 45 52 167 N/A

520

6
Esk. 481 Ank. 67 45 55 167 Çardakbaşı 148 333 68 45 53 166

570 136 434

7
Esk. 688 Hay. 63 50 53 166 Arifiye 249 439 65 47 53 165

603 261 342

Table 5.5: Results of tactical-to-strategic capacity planning problem without extended deadhead policies.
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6 CONCLUSION

In our work, we study the tactical crew capacity planning problem with day-off

requirement at TCDD. The capacity planning problem is used to determine the

necessary number of crew members in a region to operate the predetermined list

of train duties assigned to the region by complying business rules and labor union

policies.

In our study, we follow a network flow approach to solve the crew capacity plan-

ning problem represented by a space-time network constructed with respect to the

rules and policies at TCDD. In order to represent the capacity planning problem with

day-off requirement, we develop two solution approaches: the sequential approach

and the integrated approach. In the sequential approach, we solve the problem in

two stages, by solving a regular capacity planning problem without considering the

day-off requirement in the first stage and filling-in day-off windows of the crew sched-

ules obtained in the regular capacity planning problem in the second stage. In the

integrated approach, we use a layered version of the space-time network in order to

integrate the day-off requirement into the space-time network representation. We

conclude from our computational study that the integrated approach is superior to

the sequential approach in both solution quality and computation times.

After studying the tactical level problem, we formulate some tactical-to-strategic

level planning problems focusing on system-wide improvements (or savings) in crew

capacity by optimally re-allocating duties to different regions or allowing two re-

gions optimally share a train duty by changing crew members at new crew exchange

stations. We propose a greedy neighborhood search algorithm for the tactical-to-
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strategic crew capacity planning problem by using the minimum flow problem for-

mulation of the tactical level problem as a subprocedure. The experiments we conduct

result in substantial improvements in the system-wide crew capacity of the company

highlighting the future research potential of strategic level problems in order to reduce

crew-related costs at TCDD.

With respect to the state of current railroad planning and crew planning literature,

this study is the first to focus on tactical and tactical-to-strategic level crew planning

problems. In railroad crew planning literature, several variants of the operational

level problem have been studied. Yet, we believe that our study is late enough

for the fact that operational level problems require several inputs to be optimally

determined at higher levels of the planning hierarchy starting with the number of

crew members in each region. Therefore, this study opens a new research area in

railroad planning that will also lead to other studies along the same path.

As future work, we intend to study other solution approaches for the tactical

capacity planning problem, such as using set covering or set partitioning formula-

tions combined with column generation. Using the integrated approach to solve

the tactical-to-strategic capacity planning problem is another future research topic.

However, considering the efficiency of the minimum flow problem in the sequential ap-

proach, the integrated approach would probably require additional work to decrease

the computation time for the integrated approach before replacing the minimum flow

problem formulation as a subprocedure. Devising a heuristic to provide an initial fea-

sible solution to the model or exploring different solutions methods can be an option

to solve the problem more efficiently. Improving the greedy neighborhood search in

the tactical-to-strategic level problem by employing a more thorough search proce-

dure can lead to better numerical results for this problem. It might also be interesting

to focus on the exact integer programming formulations of the tactical-to-strategic
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capacity planning problem.
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