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Abstract—Patch-based face recognition is a recent method
which uses the idea of analyzing face images locally, in order
to reduce the effects of illumination changes and partial
occlusions. Feature fusion and decision fusion are two distinct
ways to make use of the extracted local features. Apart from
the well-known decision fusion methods, a novel approach for
calculating weights for the weighted sum rule is proposed
in this paper. Improvements in recognition accuracies are
shown and superiority of decision fusion over feature fusion
is advocated. In the challenging AR database, we obtain
significantly better results using decision fusion as compared
to conventional methods and feature fusion methods by using
validation accuracy weighting scheme and nearest-neighbor
discriminant analysis dimension reduction method.

Keywords-face recognition, patch-based face recognition, de-
cision fusion, linear combiner training.

I. INTRODUCTION

Face recognition is one of the most addressed pattern
recognition problems in recent studies due to its importance
in security application and human computer interfaces. De-
spite the intense research efforts on face recognition, it is still
a difficult problem in real-world applications. Recognition
of face images acquired in an outdoor environment with
changes in illumination, partial occlusion and pose remains a
largely unsolved problem [1]. To overcome these problems,
patch-based face recognition was introduced [2].

In patch-based approaches, each image is divided into
overlapping or non-overlapping regions called patches and
local features are extracted from each region. One approach
in patch-based face recognition is to concatenate features
extracted from different patches in order to create the
visual feature vector of a face image. In addition, features
extracted from each patch can be classified separately and
the recognition results are combined by decision fusion.

Patch-based face recognition and decision fusion in face
recognition is a relatively new research topic. There are some
previously proposed methods for patch-based face recogni-
tion. In study of [3], feature fusion (feature concatenation)
and block selection with similarity measures are proposed.
In [4], classification results of patches are weighted in
which the weights are calculated from correct classification
rates on probe set samples. In [5], similarity between any
two faces are calculated over patches and final similarity
is calculated by averaging the results of separate patches,

Figure 1. 16x16 blocks on a detected face from the AR database

which can also be replaced by a weighted average. Subspace
methods are also employed on patch-based face recognition
and as in [6], the classification results of patches and random
subspaces are combined by majority voting. In [7], classifiers
trained from separate patches are combined by a weighted
summation as a first layer decision maker. In the second
layer, decision of local ensemble classifiers is combined with
global classifier trained from the whole face. However, the
selection or calculation of the weights are not clear.

In this study, we propose novel weighting schemes for
combining classification results of classifiers which are
trained over separate patches on face images. We name these
three methods as Fisher weighting, support vector machine
(SVM) weighting and validation accuracy weighting.

II. PATCH-BASED FACE RECOGNITION

Let a grayscale face image be a real-valued function x :
Ω→ R defined on Ω = {(i, j) : i ∈ [Ni], j ∈ [Nj ]}, where
[N ] = {1, . . . , N}. We consider a collection S of subsets of
Ω given by

S = {Sk ⊂ Ω : k ∈ [Np]}. (1)

We define each Sk as a patch domain and take the face
function restricted to kth patch domain as the face patch xk :
Sk → R. Usually the patches would be non-overlapping and
S would be a covering for Ω, but this is not a requirement
and we may use overlapping or non-covering patches. Using
non-overlapping rectangular regions (blocks) as patches is a
common practice. We have conducted experiments on both
overlapping and non-overlapping blocks and we have seen
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that non-overlapping blocks provided higher recognition
rates. Selection of block size is important because blocks
should be big enough to provide sufficient information about
the region it represents and should be small enough to
provide stationarity and to prevent complexity in feature
extraction. An example of blocks with block size of 16×16
is illustrated in Figure 1. We have conducted our experiments
on both 8 × 8 and 16 × 16 block sizes and concluded that
16× 16 block size is suitable for our approach.

A. Dimensionality Reduction and Normalization Methods

Decreasing the number of features of a multidimensional
data under some constraints is desired in many applications.
For dimension reduction, multidimensional data is projected
or mapped into a space with less number of dimensions.
Therefore, by applying a dimension reduction method, a
d-dimensional data is mapped or transformed into a p-
dimensional data, where p < d. In this study, we have used
some well-known dimension reduction methods, discrete
cosine transform (DCT) [8], principal component analysis
(PCA) [9], and a recently proposed method nearest neighbor
discriminant analysis (NNDA) [10].

When we use blocks in patch-based face recognition, ev-
ery image is processed over non-overlapping square blocks.
We define an image in a vector form as xT = [xT

1 ...xT
B ]

where B is the number of blocks and xb denotes the
vectorized bth block of the image. For dimension reduction,
we try to find a linear transform matrix for each block, W b,
such that f b = W bxb. Then for each image, the feature
vector is formed as fT = [fT

1 ...fT
B ]. On features extracted

from separate blocks, we have applied some normalization
methods that are described in [11].

B. Classification Method: Nearest Neighbor Classifier

In our face recognition experiments, we use nearest neigh-
bor classification with one nearest neighbor. The choice of
nearest neighbor classifier instead of other type of classifiers
is due to the nature of the face recognition problem. Data
obtained from face images are sparse therefore for other type
of classifiers, extracting a statistical pattern that represents
the nature of training data, is a difficult task.

In our experiments we have used nearest neighbor clas-
sifier with L2-norm as the distance metric. Decision fusion
requires extraction of class posterior probabilities p(Ci|x)
for the classifiers used. For nearest neighbor classifier, it is
not immediately clear how to assign posterior probabilities.
Following [12], we calculated the class posterior probabili-
ties depending on the distance of x to the nearest training
sample from each class. If we denote this distance vector
as D = [D(1), D(2), ...,D(N)], posterior probabilities
associated with class i is calculated as:

p(Ci|x) = norm(sigm(log(
∑
j 6=i

D(j)/D(i)))), (2)

where sigm(x) = (1 + e−x)−1. Class posterior probabilities
are normalized to sum up to 1.

III. DECISION FUSION

Decision fusion or classifier combination can be inter-
preted as making a decision by combining the outputs of
different classifiers for a test image. In our case, instead
of different type of classifiers, we combined outputs of
nearest neighbor classifiers trained by different blocks that
correspond to different regions on a face image.

For 16x16 blocks, we have 16 different block positions
and a separate nearest neighbor classifier is trained by
using the features extracted over the training data for that
block. From a given test image, 16 feature vectors each
corresponding to a different block are extracted. For each
test image, local feature vector is given as an input to the
corresponding classifier and the outputs of the classifiers are
then combined to make an ultimate decision for the test
image.

Unlike fixed combination methods, trainable combiners
use the outputs of the classifier, class posterior probabilities,
as a feature set. From the class posterior probabilities of
several classifiers each corresponding to a block, a new
classifier is trained to provide an ultimate decision by
combining the posteriors To train a combiner, training
dataset is divided into two parts as train and validation data.
Individual classifiers are trained using the training data part.
Then, the class posterior probabilities for each block are
calculated on the validation data. For each image, these
posterior probabilities are concatenated into a long vec-
tor ( [p(C1|x1), p(C2|x1), ..., p(CN−1|xB), p(CN |xB)]T )
which is then used to train the combiner. However, the length
of input feature vectors of the combiner, makes it difficult
to train a classifier for multi-class classification problems.
Therefore, we did not prefer to build a conventional trainable
combiner for decision fusion.

In sum rule, the posterior probabilities for one class from
each classifier are summed. Similar to the sum rule, one can
also perform weighted summation of posterior probabilities.
Intuitively, we would like to weight successful classifiers
more. It is not immediately clear how to learn those weights.
So, we developed methods to determine those weights in a
weighted sum rule.

If we denote the contribution or weight of each block
with wb and for a given sample x posterior probability of
ith class for the bth block as p(Ci|xb), weighted sum of
posterior probabilities for class i is given by:

p(Ci|x) =
B∑

b=1

wbp(Ci|xb). (3)

Note that weighted sum rule can also be considered under
the umbrella of trainable combiners since the weights can
be learned from data as we show in the following.



We consider three different methods for learning the
weights. We compare these methods with equal weights
(EW) which corresponds to the sum rule when we use a
fixed weight of wb = 1/B. For the other methods that
are described in the following parts, training dataset is
partitioned into two as train and validation. Using train part,
classifiers are trained and by using validation part as input,
class posterior probabilities from first level classifiers are
obtained to calculate block weights.

A. Fisher Weighting (FW)

The first weighting scheme, which we name as Fisher
weighting, depends on the posterior probability distribution
of true and false labels. In this method, for a single sample
in the validation dataset, class posterior probabilities are
calculated and posterior probability of the true class (let’s
say true class is i) at each block, (p(Ci|xb)), (16x1 vector)
is labeled as positive score. For a sample x in the validation
data, positive score vector is shown as:

PS =
[

p(Ci|x1) p(Ci|x2) ... p(Ci|xB)
]
.

Remaining posterior probabilities of false classes, where
j = 1 : N and j 6= i, [p(Cj |x1), p(Cj |x2), ..., p(Cj |xB)]
are labeled as negative score vectors. For each sample, this
procedure is repeated and positive score and negative score
matrices are combined in order to create two datasets which
consist of class posterior probabilities of blocks.

Our aim is to find a weight for each block so that
successful blocks are weighted more. Fisher’s discriminant
(or linear discriminant analysis (LDA)) finds the linear
combination of vectors, such that these vectors are most
separated in the projected space. If we successfully project
our positive score and negative score vectors to 1-dimension
where they can be separated, we can use the coefficients used
for this mapping as our weights for each block.

By combining these two datasets, we get a 16-dimensional
two-class dataset. Then the dimension of this dataset is
reduced to one from 16 by using LDA and elements of the
resulting dimension reduction vector of LDA are used as
block weights. Distribution of positive scores and negative
scores, after projecting to 1-dimension is presented in Figure
2. Note that, this procedure may yield negative weights for
some blocks which may be counter-intuitive. In practice, we
observed some small negative weights in the weight vector,
but this did not cause any problems.

B. SVM Weighting (SVM-W)

This weighting scheme has the same motivation as Fisher
weighting, however, instead of employing LDA on score
vectors, a linear support vector machine (SVM) is used for
classifying positive and negative scores. This also yields a
set of weights that can be used as weights in the weighted
sum rule.

Figure 2. Distribution of positive and negative scores.

C. Validation Accuracy Weighting (VAW)

Another weighting scheme, which we name as validation
accuracy, depends on individual recognition rates of each
block on validation data. Using training data, a single
classifier is trained for each block and each block of a
sample in the validation data is classified using the classifier
that corresponds to the block of interest. Individual block
recognition rates for all samples in the validation data are
acquired separately and weights are assigned proportional
to the recognition accuracy of each block. If acc(k) denotes
the recognition accuracy for the kth block, weight of the bth

block is given as:

wb =
acc(b)∑B

k=1 acc(k)
. (4)

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In order to evaluate the performance of the proposed
weighting schemes, we have conducted several tests on the
AR face database [13]. The AR database consists of face
images, which are acquired in two different sessions, of
120 subjects. In each session each subject has 13 images
(1 neutral, 3 expression change, 3 illumination change, 3
sunglasses and 3 scarf). Therefore, each subject has 26
images. For our tests, we have used the first seven images of
the first session for training and the first seven images of the
second session for validation. The rest images (12 for each
subject) being used for testing, we have conducted decision
fusion tests with different weighting schemes. We did not
include all the recognition results for brevity, however they
can be found in [11]. Apart from the AR database, we have
also evaluated our method on the M2VTS database [14].
The recognition results on the M2VTS database followed a
similar pattern to the AR database and they can be found in
[11].

Table I
RECOGNITION ACCURACIES FOR EW, FW, SVM-W, VAW WEIGHTING

SCHEMES ON THE AR DATABASE

EW FW SVM-W VAW
DCT 75.90% 77.50% 75.62% 75.83%
PCA 78.82% 79.58% 78.82% 79.24%

NNDA 83.75% 84.31% 84.10% 85.69%



Table II
RECOGNITION ACCURACIES FOR FEATURE CONCATENATION

DCT PCA NNDA
46.15% 45.71% 48.08%

Table III
ACCURACIES OF CSU FACE IDENTIFICATION EVALUATION SYSTEM

PCA Euclidean 22.15%
PCA Mahalinobis 42.56%

LDA 21.94%
Bayesian ML 23.95%

Bayesian MAP 27.84%

The results presented in Table I shows improvements
in the recognition accuracies when a weighting scheme is
employed instead of equally weighting the contribution of
each block. In all cases, weighting schemes provide slightly
higher recognition results.

In addition, following the work of Ekenel and Stiefelhagen
[3], we concatenated features extracted from patches and
created visual feature vector for face images which are used
in recognition (Table II). Applying decision fusion on patch-
based face recognition provided higher recognition rates than
feature fusion.

We have also compared our recognition accuracy values
with the set of algorithms that is provided by the CSU
Face Identification Evaluation system [15]. It is a package
that contains a standard PCA algorithm, a combination
of PCA and LDA algorithms and a Bayesian Intraper-
sonal/Extrapersonal Image Difference Classifier. The recog-
nition rates of these algorithms are in Table III.

V. CONCLUSION

In this study, we proposed three novel weighting schemes
for assigning weights in the weighted sum rule over class-
posterior probabilities of patches. With all of these methods,
we obtained recognition results slightly higher than using
equal weights. Also, combining the outputs of classifiers
trained over separate patches is shown to be superior over
combining the feature vectors extracted from each patch.
Feature fusion and DCT were used for patch-based face
recognition in [3]. Decision fusion with equal weights and
PCA were proposed in [5]. By using VAW weighting scheme
and NNDA method, we obtain the highest recognition accu-
racy of 85.69% which is significanly higher than those two
previous methods.
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