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my gratitude to Assoc. Prof. Dr. Ş. İlker Birbil for his enthusiastic supervision,

patience and kindness besides including me in this project, believing in me, inspir-

ing me and providing encouragement and advices throughout this thesis. Those

he taught me cannot be expressed in words. I must acknowledge the invaluable

contributions of Assist. Prof. Dr. Kerem Bülbül, his helpfulness, endless patience
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Thesis Co-supervisor : Assist. Prof. Dr. Kerem Bülbül
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Abstract

The crew pairing problem is to find the least costly set of pairings so that each
flight given in the flight schedule is covered. In this study, the robust crew pair-
ing problem is considered. That is, the selected pairings cover the regular flights
and also provide solutions to cover some extra flights which may be introduced into
the flight schedule during the operation at a later point in time. The crew pairing
problem is usually solved by column generation in which the pricing subproblem be-
comes a multi-label shortest path problem. For the robust crew pairing problem the
multi-label shortest path problem requires some modifications to solve two column
generation approaches proposed by Çoban [10]. These modifications of the pricing
problem with associated labels and the domination rules are presented.

The complexity of the multi-label shortest path problem grows exponentially
as the number of flights (nodes) in the flight schedule increases. This curse of
dimensionality is solved by using approximate and exact pruning rules. Also, a buffer
column pool is formed as an intermediate step in order to find a negative reduced
cost pairing without solving the multi-label shortest path problem at every iteration
of the column generation algorithm. In the multi-label shortest path problem, the
approximate rules based on the score-calculation are used for early pruning of the
paths on the processed nodes. The optimal solution may be missed because of
the coarse structure of the approximate rules. When a pairing that improves the
objective function cannot be found by applying the approximate rules, we switch
to the exact pruning. Another method is using a hybrid approach that applies
both approximate and exact rules in the same iteration to find the optimal solution.
The performance of our solution approach is demonstrated through a computational
study by using actual data from a local airline.
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Duygu Taş
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Özet

Ekip eşleme problemi uçuş çizelgesindeki her bir uçuşun kapsanmasını sağlayacak
şekilde en az maliyetli eşleme kümesinin bulunması problemidir. Bu çalışmada,
dayanıklı ekip eşleme problemi ele alınmıştır. Bu problemde, seçilen eşlemeler olağan
uçuşları kapsamakta ve operasyon sırasında tanıtılabilecek bazı ekstra uçuşların
kapsanmasını da sağlamaktadır. Ekip eşleme problemi genellikle kolon türetme
yöntemiyle çözülmektedir ve bu yöntemin alt problemi çok takılı en kısa yol problemi
olmaktadır. Dayanıklı ekip eşleme problemi için Çoban [10] tarafından önerilmiş
olan iki model bulunmaktadır ve çok takılı en kısa yol probleminde bu model-
lerin çözümü için bazı değişiklikler gerekmektedir. Ücretlendirme problemindeki bu
değişiklikler, ilişkilendirilmiş takılar ve baskı yöntemleriyle beraber aktarılmıştır.

Çok takılı en kısa yol probleminin karmaşıklığı, çizelgedeki uçuş (düğüm) sayısı
arttıkça üssel bir şekilde artmaktadır. Bu durum iki yaklaşık ve bir pekin kural
kullanılarak çözülmektedir. Ayrıca, çok takılı en kısa yol problemini çözmeden uy-
gun bir eşleme bulabilmek için ara kolon havuzu oluşturulmuştur. Çok takılı en
kısa yol problemini çözerken, işlenen düğüm üzerindeki yolları ilk olarak temizle-
mek için puan hesaplamaya dayalı olan yaklaşık kurallar kullanılmaktadır. En iyi
çözüm yaklaşık kuralların kaba yapısından dolayı kaçırılabilir. Eğer yaklaşık kural-
lar kullanılarak amaç fonksiyonunu geliştirecek bir eşleme bulunamazsa, uygulanan
kural pekin kural olarak değiştirilmektedir. Diğer bir yaklaşım, hem pekin hem de
yaklaşık kuralların aynı iterasyonda kullanıldığı melez yöntemdir. Bu yöntemde
de eniyi sonuç bulunabilmektedir. Yerel bir havayolu şirketinden alınan veriler
doğrultusunda bu çözüm yaklaşımlarının sayısal sonuçları sunulmuştur.
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CHAPTER 1

INTRODUCTION

Crew scheduling is one of the planning phases that is put into practice by airline

companies. This phase is more challenging in the airline industry than in other

transportation sectors, because the rules that are applied at the operational level are

much more complex and the cost paid to the crew is very high in the airline industry.

The input of the crew scheduling problem is the set of flights. Flights are taken into

consideration as two separate segments: domestic flights and international flights.

Also, the crew is branched off into two parts as cockpit crew and cabin crew. This

separation is compulsory because each crew personnel can serve for certain types of

fleet. The crew scheduling problem consists of crew pairing and crew assignment

problems. The crew pairing problem is to find the least cost set of feasible pairings

that start and end at the same crew base and cover all flights given in the flight

schedule. The solution of the crew pairing problem is used by the crew assignment

problem. In this problem, the schedules of each crew members are constructed by

assigning the crew members to the pairings that are generated in the crew pairing

problem.

In this study, we deal with the crew pairing problem. The objective function of

this problem is the minimization of total cost. The crew pairing problem can be

modeled as a set partitioning or a set covering problem. The set covering problem

is given by

min
∑

j∈P cjxj

s.t.
∑

j∈P aijxj ≥ 1, i ∈ F ,

xj ∈ {0, 1},

(1.1)

where P is the set of all feasible pairings, F is the set of all flights, cj is the cost of
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the pairing j, aij=1 if flight i is covered by pairing j and 0, otherwise. If pairing j

is selected by the solution, its corresponding variable xj=1 and 0, otherwise. The

crew pairing problem can also be modeled as a set partitioning model where the first

constraint is changed as
∑

j∈P aijxj = 1. Flights are covered exactly once by the

set partitioning problem, whereas they are allowed to be covered more than once

by the set covering problem. This second situation is referred to as deadheading.

In a deadhead flight, one crew is charged to cover this flight and other crews fly

as passengers to reach the arrival destination of that flight and to continue their

pairings without any disruption. In the LP relaxation of these models, the last

constraint xj ∈ {0, 1} is changed to xj ≥ 0. Our study focuses on the LP relaxation

of the set covering model of the crew pairing problem.

Generating all feasible pairings in the crew pairing problem can be costly even if

the number of flights is small because the number of pairings (variables) of the prob-

lem (1.1) is very large. Therefore, a column generation method is usually applied

to the crew pairing problem as a solution approach. In this method, a restricted

master problem is solved at each iteration. In the restricted master problem, we

only include a subset of all possible pairings in problem (1.1). At each iteration

pricing is applied and a pairing with a negative reduced cost is searched. If such

a pairing is found, it is added to the restricted master problem and the problem is

reoptimized. If a pairing that improves the objective function cannot be found, the

optimal solution is reached. The pricing subproblem corresponds to a multi-label

shortest path problem in the crew pairing problem. Several labels are tracked to

apply both feasibility and domination rules and to calculate the cost of the pairing.

1.1 Contributions of This Study

Airline companies sometimes need to add extra flights into the regular flight sched-

ule. This requirement may appear because of seasonal changes. For example, the

number of passengers that go to certain vacation places increases during summer.

Also, there may be special demand to specific destinations by sportsmen, business-

men, companies and so forth. The exact information of the extra flights are not

known at the planning phase. Airline companies can anticipate them from their

past experiences. It can be said that the possible extra flights are known during the

2



planning phase. The certainty of the extra flight becomes clear at the operational

level of the flight schedule. Therefore, the anticipated (possible) extra flights are

not inserted into the flight schedule and not considered as regular flights for the

crew scheduling problem. When an extra flight is needed, airline companies try to

cover this flight even by canceling their regular flights or hiring extra crew with high

cost. In this thesis, the robust crew pairing problem and two previously proposed

models are considered [10]. In the robust crew pairing problem, the pairings that

are selected by the solution of the crew pairing problem cover all regular flights in

the flight schedule and also possible extra flights can be covered by these selected

pairings. The coverage of possible of extra flights is explained in Section 3.4 in de-

tail. We try to maximize the number of pairings that can cover extra flights while

the total cost is minimized. There is a possibility that these extra flights may not

be added to the schedule at the operational level. Therefore, pairings should be

feasible for both the flight schedule with regular flights solely and the flight schedule

with regular and extra flights. Also, the changes of the pricing subproblem, which

is altered for each proposed robust crew pairing model, are explained in this thesis.

In this study, the flight network is generated in order to solve the crew pairing

problem. The properties of this network are explained in Chapter 3. The pricing

subproblem of the crew pairing phase is a multi-label shortest path problem. There

are several labels (total flying time, total elapsed time, cost and so forth) that

are being tracked throughout the pairing. The labels are kept at every node to

check the feasibility of each connection of that node. Also the cost of the pairing,

which depends on labels such as flying time and elapsed time, is calculated by using

these labels. Multi-label shortest path problem keeps several labels, so there might

be several paths on every node. The complexity of the multi-label shortest path

problem is exponential in the number of fligths in the flight network. Therefore, a

proper pairing is searched by checking the pairings in the buffer column pool initially.

The properties of the buffer pool is explained in Section 3.2. If all pairings in the

buffer column pool have nonnegative reduced costs, the multi-label shortest path

algorithm is started. To solve the multi-label shortest path problem in a reasonable

execution time, we propose the following rules in this thesis to prune some paths on

processed nodes:

3



• While a pairing with negative reduced cost is searched, initially approximate

rules are applied to each node. There are two approximate rules which are

explained in Sections 3.3.1 and 3.3.2. At first, approximate rule 1 is applied

to the paths of the processed node. If the number of remaining paths is still

large, then the approximate rule 2 is applied to that node.

• If a pairing with negative reduced cost cannot be found with approximate

rules, the rule is switched to the exact rule. Exact rule uses upper and lower

bounds on dual and cost values in order to prune paths which result in pairings

with nonnegative reduced cost. The number of paths fathomed by the exact

rule is smaller than the number of paths fathomed by the approximate rules,

but the optimal path is never missed.

• Another way of finding a pairing with negative reduced cost is the hybrid

approach of exact and approximate rules. In this method, both exact and

approximate rules are used in same iteration.

1.2 Outline

The outline of this thesis is as follows. Chapter 2 gives the literature review of the

crew pairing problem, most commonly used methodologies and approaches. Chapter

3 gives our problem definition, rules that are applied before domination checks

and the modifications required for the models proposed for the robust crew pairing

problem. The numerical study and computational results are given in Chapter 4.

Finally, we present our conclusions and point future research directions in Chapter

5.
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CHAPTER 2

LITERATURE REVIEW

The airline scheduling problem consists of four main problems. These problems, as

shown in Figure 2.1, are considered separately because of their complicated struc-

tures. Klabjan [19] provides the models for the planning processes of the airline

companies. The schedule planning, fleet assignment and the aircraft routing mod-

els are thoroughly explained by Klabjan. Desaulniers et al. [11] consider the daily

aircraft routing and scheduling problem. The objective of the daily aircraft rout-

ing and scheduling problem is to maximize the expected revenue while constructing

daily schedules for the aircraft fleets. These fleets may be heterogeneous because

they may have different types of aircraft. All flight legs given in the aircraft schedule

with their durations must be covered by these fleets. In addition to the duration, the

departure/arrival times and the stations of the flight legs are known. For the daily

aircraft routing and scheduling problem, two models are provided by Desaulniers et

al. which are the set partitioning and time constrained multicommodity network

models.

The output of each step in Figure 2.1 is the input to the next step. The planning

processes start with the flight scheduling problem in which the timetable of the

flights are constructed. The solution of this problem is the flights flown by the

airline company for the given time period. The fleet assignment problem is the

allocation of aircraft to the flights according to the predicted demand and the size

of the aircraft. The aim of the maintenance routing problem is to provide time for

the compulsory checks of the aircraft.

The fourth step of the planning processes is the crew scheduling problem. In the

crew scheduling problem there are differences in the types of the flights or in the

qualifications of the crew members. The flights given in the schedule are divided

5



Fleet AssignmentFlight Scheduling Crew SchedulingMaintenance Routing

Figure 2.1: Planning processes of the airline companies.

into two categories, domestic and international flights. The main differences between

these two categories are the following:

• The number of domestic flights is usually larger than the number of the inter-

national flights.

• Deadhead crews are mostly used by international flights because these flights

are infrequent in the flight schedule. We refer the reader to Barnhart et al. [4]

for the deadheading problems of the international flights.

• Domestic flights can be operated on the daily schedule whereas international

flights are usually operated on the weekly schedule.

Besides the above differences, there is another categorization of the crew schedul-

ing problem. The crew scheduling problem of the cockpit crew differs from the cabin

crew. The cockpit crews are qualified to fly specific fleets, whereas the cabin crew

can serve on different fleets. In this thesis, we study only the crew pairing problem

for cockpit crews. Therefore, this problem is decomposed into fleets. That is the

solution is provided for each fleet given in the schedule.

2.1 Definitions and Structures

Within this section, we heavily make use of the studies of Vance et al. [28] and

Barnhart et al. [6] to give the definitions of the standard terms used in airline

problems.

A nonstop flight is called as flight leg or segment. A flight leg can be connected

to another flight leg, if the arrival station of the first flight leg is the same as

the departure station of the following leg and the time between these two flights is

adequate to satisfy the rules. In that way a sequence of flights, called as duty period,

is constructed as illustrated in Figure 2.2. The flights in a duty period are flown by

6



the single crew, and mostly the crew members do not change through a duty period.

In a duty period, the time between two flight legs is called as sit time.

sit time

sit time

flight leg 1

flight leg 2
flight leg 3

Beginning of duty period Ending of duty period

(crew base)

AYT

IST

ADB

Figure 2.2: The sequence of flights in a duty period.

The sequence of several duty periods is called as pairing, if the sequence starts

and ends at the same crew base, which is the city of the crews’ domicile. The

departure airport of each duty period must be the same as the arrival airport of the

previous duty period. In a pairing, the duty periods are separated by rest time, or

layover. These definitions are shown in Figure 2.3. A schedule is the sequence of

pairings that is constructed for each individual crew member. The time between

two pairings in the schedule is called as time off.

ADB

IST

(crew base)

AYT

First Day Second Day

Elapsed Time of 

First Duty Period Second Duty Period

Elapsed Time of

Rest Time (Layover)

Total Elapsed Time of Pairing

(Time Away From Base − TAFB)

Figure 2.3: Some definitions related to a pairing.

Another widely used term is the deadhead flight. The deadhead flights are used

for relocation of the crew members. In a deadhead flight, the considered crew

7



members fly as passengers. Consider the illustration in Figure 2.4. The flight

network has five flights. To cover all flights two pairings are formed:

• The first pairing covers flight 1, 3 and 4.

• The second pairing covers flight 2, 3 and 5.

In this scenario, flight 3 is flown by one crew and the other crew flies as passengers.

The deadhead flight is required to reposition the crew to continue its pairing. Notice

that the deadhead flights may be necessary to cover all flights given in a flight

schedule.

AYT

ADB

IST

flight 1 flight 2

flight 4
flight 5

flight 3

deadhead

Figure 2.4: A deadhead flight.

To construct the feasible duty periods and pairings, there are several feasibility

rules such as the governmental regulations and the collective agreements. The main

rules associated with a duty period are as follows:

• The time between two flights in a duty period is restricted by the minimum

sit time and the maximum sit time. This idle time should be greater than

or equal to the minimum sit time and less than or equal to the maximum sit

time.

• The total elapsed time of a duty period should be less than or equal to the

maximum elapsed time defined for the duty.

• Similarly, the total flying time of a duty period is restricted by the maximum

flying time.

The main rules associated with a pairing are as follows:

• The starting and ending station of a pairing should be the same and this

station should be the crew base.

8



• The number of duty periods in a pairing is limited by the maximum number

of duty periods defined for the pairing.

• The time between two duty periods is restricted by the minimum rest time

and the maximum rest time in a pairing.

• The total elapsed time of a pairing should be less than or equal to the maximum

time away from base.

• There is also a rather complicated rule known as the 8-in-24 rule. This rule

indicates that extra rest time should be given to a crew, if the pairing flown

by this crew consists of more than 8 hour flying time in a 24 hour period.

The cost for a duty period is expressed in minutes and it is obtained by

cd = max{fd ∗ elapse, f lying, minGuar}, (2.1)

where fd is the fraction of the duty period, elapse is the total elapsed time of the

duty period, flying is the total flying time in the duty period, and minGuar is the

minimum guaranteed number of hours of the duty period which is the payment to

the crew by the company. While the cost is calculated, minGuar is expressed in

minutes.

The cost of a pairing is also expressed in minutes and it is given by

cp = max{fp ∗ TAFB,
∑

d∈p cd, ndp ∗ minGuar}, (2.2)

where the cost of a pairing is the maximum of three quantities:

• The first quantity is the fraction of the total time-away-from-base (TAFB)

of the pairing which is calculated by multiplying the total TAFB with the

fraction fp defined for the pairing.

• The second quantity is the sum of the costs of the completed duty periods in

the pairing.

• The third quantity is the minimum guaranteed number of minutes of the pair-

ing, where ndp represents the number of duty periods in the pairing.
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2.2 Crew Scheduling

It is common in crew scheduling to decompose the complex overall problem into

manageable subproblems. Figure 2.5 shows a typical decomposition for the crew

scheduling problem into two subproblems: the crew pairing problem and the crew

assignment problem.

Crew AssignmentCrew Pairing

Figure 2.5: The division of the crew scheduling problem.

The crew pairing problem is to find the set of the pairings that has the minimum

total cost and covers all flights given in the flight schedule. Solving the crew pairing

problem is difficult because there are several feasibility rules and the cost of the

pairing is nonlinear. Therefore, this problem is considered by solving three different

problems: daily, weekly and transition problems. In the daily problem, it is assumed

that each flight is flown every day. The flights which are repeated at least four days

in a week are treated as though they are repeated every day. However, the flights,

which are not flown on particular days of a week, may lead to infeasibilities in the

pairing (broken pairings). At this point, the weekly problem is solved to restore

the feasibility in the daily problem. The weekly problem usually requires deadhead

flights to generate feasible pairings. The assumption in this problem is that the

flights are repeated every week. But, there may be holidays or other changes in the

schedule, such as adding extra flights, which cause the differences between weeks.

Therefore, the transition problem is solved to correct the infeasibility in the weekly

problem. In Andersson et al. [3], the details about the three stages of the crew

pairing problem can be found.

As shown in Figure 2.5, the solution of the crew pairing problem is sent to the

crew assignment problem. This problem assigns individual crew members to the

pairings generated by the crew pairing problem. In the crew assignment problem,

a set of schedules is constructed to cover all pairings. This is similar to the crew

pairing problem, in which the set of the pairings is constructed to cover all of the

flight legs given in the flight schedule. The crew assignment problem is usually

10



solved in two stages. In the first stage, the specific activities such as annual leave

or rest times are assigned to each crew member. Then in the second stage, the

schedules are formed by assigning the crew members to pairings and determining

the time-off periods of each member. The aim of the crew assignment problem is to

minimize the assignment of the supplementary crew members to the pairings. If a

pairing cannot be covered by the regular crew members, then supplementary crew

members are assigned to that pairing and this causes an increase in the payment.

We refer the reader to Gamache et al. [17] for the crew assignment problem, its

mathematical formulation and a solution method.

The main differences between the crew pairing and the crew assignment problems

are as follows:

• In the crew pairing problem, a pairing is generated for a single crew. This

implies a single assignment. However, in the crew assignment problem, each

crew member is assigned individually to the generated pairings.

• The objective function of the crew pairing problem is to minimize the total

cost while ensuring that all flights are covered. The aim of the crew assignment

problem, on the other hand, is to meet the needs of the crew members and

to maximize the number of pairings that are covered by the regular crew

members.

2.3 Solving LP Relaxation

We focus on the crew pairing problem by solving the LP relaxation of the set covering

problem (1.1). In the literature, there are different studies for the LP relaxation

of the crew pairing problem. Anbil et al. [1] propose a global approach called

SPRINT. This approach is applied to the crew pairing problem, along with another

approach referred to as TRIP. TRIP is based on subproblem optimization but it is

not capable of improving the solutions. Therefore, only suboptimal solutions are

provided. However, SPRINT can find the optimal solution of the LP relaxation of

the crew pairing problem. This approach starts by constructing a subproblem with a

subset of the columns and solving this subproblem to get optimal dual values, which

are used to calculate the reduced costs of the columns. Then a new subproblem is
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constructed by taking the set of basic columns of the optimal solution and selecting

some good columns according to their reduced costs. The large problems can then

be solved optimally by solving a small number of subproblems. For example, the

solution of a problem with 5.5 million columns is found by solving 25 subproblems.

Bixby et al. [7] suggest another approach, in which both the interior point and

the simplex methods are used. The main process operated in this study is called

sifting. This method is similar to the column generation approach and it is firstly

proposed by Forrest [16]. To find the optimal solution, a combination of the interior

point and the simplex methods are applied to the LP relaxation of the resulting set

partitioning problem.

A well-known method to solve the LP relaxation of the crew pairing problem

is the column generation. In the column generation method, if the crew pairing

problem (1.1) contains all feasible pairings, then it is called the master problem.

The restricted master problem denotes the problem with a subset of all feasible

pairings. The main steps of the column generation method are as follows:

• The problem starts with the subset of the columns to form the restricted

master problem. Then, the restricted master problem is solved to find the

optimal solution.

• The columns that may improve the solution of the restricted master problem

are generated by solving the pricing problem. If there are no such columns,

then the optimal solution of the LP relaxation is found and the algorithm is

stopped.

• The generated columns are added to the restricted master problem and then

the restricted master problem is reoptimized.

Crainic and Rousseau [9] use the column generation method to solve the crew

pairing problem. As mentioned in Chapter 1, the crew pairing problem can be for-

mulated as a set partitioning or as a set covering model. The difference between

these models is that the deadhead flights are not allowed in the set partitioning

model, whereas the set covering formulation can generate pairings with deadheads.

Crainic and Rousseau focus on the set covering formulation of the crew pairing prob-

lem, where the number of variables may be large even for a small number of flights.
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Therefore, the column generation method is used and an algorithm is proposed. The

main procedure of the algorithm is to generate the pairings consecutively with an

increasing number of duty periods.

Another study, in which the column generation method is applied to the crew

pairing problem, is Anbil et al. [2]. They propose an algorithm, which is based on

both column generation and SPRINT. Moreover, Desaulniers et al. [12] apply the

column generation method to crew scheduling problems. The column generation

method is also applied to the crew rostering problems. Gamache et al. [17] model

the crew rostering problem as a set partitioning problem and solve this problem by

column generation.

The problems with large number of variables can be solved by the branch-and-

price algorithm. The branch-and-price is a kind of branch-and-bound method, which

permits column generation algorithm to be applied at each node of the tree. Savels-

bergh and Sol [22] solve the set partitioning problem by applying the branch-and-

price method. As mentioned above, the column generation method is performed

throughout the search tree. In the column generation method, the pricing prob-

lem is solved to find the columns that may improve the objective function. If such

columns are found, they are added to the linear program and then the linear program

is reoptimized. If such columns cannot be found and the solution of the problem is

fractional, then the branching part of the method is started.

For the airline crew pairing problem, Vance et al. [28] apply the branch-and-

price method. They provide near optimal solutions because the pricing problem of

the column generation algorithm is solved approximately. In the literature, there

are several studies which focus on the algorithms defined for the branch-and-price

method. Barnhart et al. [5] give general models by merging these studies. They also

present two examples, which are the general assignment and the crew scheduling

problems, in order to explain the basic procedures of the branch-and-price method.

2.4 The Pricing Problem

When the column generation method is applied to the LP relaxation of the crew

pairing problem, the pricing problem corresponds to the multi-label or constrained

shortest path problem (more on this in Chapter 3). The constrained shortest path
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problem is solved at each iteration to generate pairings that are added to the re-

stricted master problem to improve the solution. There are several studies which

focus on the constrained shortest path problem especially for the vehicle routing

problems. Desrochers and Soumis [13] propose a dynamic programming algorithm

for the shortest path problem with time windows (SPPTW). This problem is to find

the path with minimum cost from source node to sink node by satisfying the time

windows defined for each node on the graph. Desrochers and Soumis construct their

algorithm by adjusting the Ford-Bellman-Moore dynamic programming algorithm,

which is appropriate for the regular shortest path problem. Desrochers et al. [14]

focus on vehicle routing problems with time windows (VRPTW). This problem is

a type of vehicle routing problem in which the time windows, denoting the allowed

service times of the customers, are also considered. Desrochers et al. propose a new

algorithm, which formulates the VRPTW as a set partitioning model and apply the

column generation method to the LP relaxation of this model. In this algorithm, the

columns that are added to the restricted master problem are generated by solving

the shortest path problem with time windows and capacity constraints.

Nagih and Soumis [21] propose an approach for the shortest path problem with

resource constraints. The objective in this problem is to find the path with least cost

between the source and the sink nodes by satisfying the constraints defined for each

resource. The dynamic programming algorithm can be applied to this problem but

as the number of resources increases, the time required to solve the problem also

increases. Therefore, Nagih and Soumis propose a heuristic method for dynamic

algorithm, which reduces the size of the space constructed by the resources. This

reduction is based on concatenation of the resources into a vector and is used to

decrease the time consumed at the part where domination rules are applied to the

paths. The projected space should be calibrated by using Lagrangian and surrogate

relaxation methods to find near optimal solutions.

Desrosiers et al. [15] present dynamic programming algorithms for time and

resource constrained shortest path problems, which are the subproblems of many

scheduling problems. The objective function of the shortest path problem with time

windows is to minimize the traveling cost. Moreover, the time variables that are

determined by the solution of the model should satisfy the time intervals specified on
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each node. Each path that goes through a node is denoted by two labels, time and

cost. The label correcting algorithm, which is the first algorithm in [15], depends on

the node treating method. All paths of a treated node are carried to its successors

through the arcs that connect these nodes. Whenever a predecessor of a node is

treated, new paths are added to the set of paths on that node by applying this

carrying operation. In the label setting algorithm, label treating is applied instead

of the node treating method. This algorithm works even if the cost parameters

on the arcs or cycles in the graph are negative. In this algorithm, the path that

has the minimum time is selected and then it is carried to the successor nodes.

In the shortest path problem with resource constraints, each path on the nodes

are represented with n + 1 labels, where n is the number of resources and one

label is reserved for the cost of that path. The calculation of cost is based on

the consumption of resources. Desrosiers et al. propose the dynamic programming

algorithm of pulling type which depends on determining the nondominated paths

on every node. The definition and application of dominancy is explained thoroughly

in Chapter 3.

In the literature there are several studies that focus on the label correcting al-

gorithm. Skriver and Andersen [25] propose a label correcting algorithm to solve

the bicriterion shortest path problem that appears as the subproblem in the trans-

portation and the scheduling problems. The classical shortest path problem has a

single objective which is the minimization of the total cost or the total traveling

time. The bicriterion shortest path problem considers two objectives at the same

time, such as the minimization of the total cost and the total traveling time. There-

fore, solving the bicriterion shortest path problem is more difficult than solving the

shortest path problem with a single objective. The label correcting algorithm sug-

gested by Brumbaugh-Smith et al. [8] is improved by Skriver and Andersen. In the

algorithm that is proposed by Brumbaugh-Smith et al. multiple labels are used

for the bicriterion shortest path problem. Guerriero and Musmanno [18] focus on

the multicriteria shortest path problem, in which more than two objectives are con-

sidered. They examine several label correcting methods to find the nondominated

paths from source node to all other nodes. These methods are based on either the

node-selection or the label-selection algorithms. Random networks are generated to
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test these algorithms. Their results show that for the networks with high density,

the performance of the label-selection methods is better than the performance of the

node-selection methods. They also suggest parallel computing to create productive

algorithms.

In the crew pairing problem, pairings that are generated by the pricing problem

are selected according to their reduced costs. Usually the pairing with the most

negative reduced cost is sent to the restricted master problem. There are some

alternative rules for selecting the pairings like the study of Bixby et al. [7]. They

propose the lambda pricing rule, which is based on:

λp = cp/
∑

i∈p yi,

where i denotes the flight leg, cp is the cost of the pairing p and yi is the dual

value corresponding to the coverage constraint of flight i. Suppose that there are k

columns that can be sent to the restricted master problem. λp values for all pairings

that have negative reduced costs are calculated. Then, k columns with the k lowest

λp value are sent to the restricted master problem instead of the columns with the

most negative reduced costs. The number of iterations is reduced by applying this

selection rule.

Makri and Klabjan [20] propose a number of pruning rules for the airline crew

pairing problem. These pruning rules are applied in the pricing problem of the

column generation method to fathom enumeration of columns. These rules can

be classified into two groups as approximate and exact rules. Makri and Klabjan

propose a new network, which is mixed segment/duty timeline network. In this

network, the flights are represented by two nodes; one node is for the departure

and the other one is for the arrival of the flight. There are also two types of arcs,

duty and connection arcs. The departure node of the first flight in a duty period

is connected to the arrival node of the last flight in that duty by a duty arc. The

connection arcs, on the other hand, are used to connect two duty periods. If the

arrival node of one duty is at the same airport as the departure node of another duty

and the time between them is feasible with respect to the rest time, these duties

are connected by a connection arc. The mixed segment/duty timeline network is

an acyclic network which may have parallel duty arcs. Depth-first search is applied

on this network to identify a negative reduced cost pairing and pruning rules are
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used to fathom unpromising partial pairings. Partial pairings contain duty periods

within feasibility rules but do not have to end at the starting crew base. Makri

and Klabjan use the score calculation proposed by Bixby et al. [7]. A score value

of each partial pairing sp = cp/
∑

i∈P yi is calculated, where cp is the cost of the

partial pairing p and yi is the dual value of flight i that is covered by partial pairing

p. The score of a pairing is less than one, if and only if the pairing has a negative

reduced cost. The approximate rules fathom partial pairings that will likely result in

a pairing with a score, sp ≥ 1. The optimal solution may not be found just by using

approximate rules because these rules might prune the pairings that will improve

the objective function. Therefore, if a pairing with a negative reduced cost cannot

be found by approximate rules, then they switch to the exact rules in the pricing

problem. The exact rules only fathom those partial pairings, which are guaranteed

to yield a nonnegative reduced cost.

2.5 Robust Airline Crew Pairing Problem

The airline crew pairing problem is usually solved under the assumption that there

is no disruption at the operational level. Therefore, in most of the cases the optimal

solutions found at the planning level cannot be performed exactly. In this section,

we give some of the studies in which the robust models for the crew pairing problem

are taken into consideration.

Schaefer et al. [23] propose two methods, which are used to estimate the cost of

the crew schedules when disruptions occur at the operational level. Both methods

are based on simulation. They assume that the disruptions are solved by delaying

the regular flights. They also give a lower bound on the cost of the crew schedules by

using the proposed method. Shebalov and Klabjan [24] provide a model to construct

robust crew schedules at the planning phase. The problem introduced by them is

a bicriterion optimization problem, in which both the total crew cost is minimized

and the number of the move-up crews is maximized. Move-up crews are the crews

that can be swapped in order to handle the disruption at the operational level. The

proposed model is solved by Lagrangian relaxation and delayed column generation.

Tekiner et al. [26, 27] also focus on the robust crew pairing problem. The type of

the disruption taken into consideration by Tekiner et al. is adding the extra flights
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into the flight schedule during the operation. Two types of solutions are proposed to

cover the extra flights in robust crew pairing problem, which are Type A and Type

B solutions. In Type A solution, two crews are swapped to cover the extra flight.

On the other hand, the extra flight is inserted into the sequence of flights of one

pairing in Type B solution. Tekiner et al. solved only small-scale problems, where

column generation is not applied. In this thesis we shall focus on the problem set

forth by Tekiner et al. [26, 27] and analyze the pricing subproblem in case column

generation is applied to solve medium-to-large problems.
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CHAPTER 3

PRICING IN COLUMN GENERATION FOR A ROBUST AIRLINE

CREW PAIRING PROBLEM

In our study, the subproblem of the column generation algorithm corresponds to

the multi-label shortest path problem on a network. The network can be either the

flight network or the duty-period network as mentioned in Vance et al. [28]. In this

thesis, the flight network is used to denote the flights and the possible connections.

A small flight network which contains flights on a given day is shown in Figure 3.1.

Sink

ADB

Source
ESB

IST

11:00

12:00

13:00 15:00

1 hour

1 hour 

1 hour 40 min.

1 hour

2 hours

16:4010:00

Figure 3.1: A flight network for the crew base IST.

Each flight is represented by an arc which connects two nodes, the node at the

tail of the arc denotes the departure and the node at the head of the arc denotes

the arrival of the flight. Such an arc is called a flight arc. The other type of arc

in the flight network is the connection arc. Connection arcs are used to denote the

possible connections between flights. In addition to departure and arrival nodes

of the flights, the network has two more nodes, a dummy source and a dummy

sink node. These nodes are used to mark the paths from the dummy source to the

dummy sink. These paths correspond to the pairings in our problem. Recall that

a feasible pairing starts and ends at the same crew base. If the departure airport

of the flight is at the crew base, then its corresponding departure node is connected
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to the dummy source. There is a similar relationship between the arrival nodes and

the dummy sink node. All incoming arcs to the sink emanate from the arrival nodes

that are at the crew base.

Two flights can be connected if the arrival of the first flight and the departure

of the second flight are at the same airport and the time between these flights is

smaller than or equal to the maximum sit time. Also, this time should be greater

than or equal to the minimum sit time. All flights that meet these conditions

are connected in the flight network before the multi-label shortest path problem is

solved. Moreover, the nodes in the flight network are topologically sorted before the

multi-label shortest path problem begins. The node-treating algorithm explained in

Section 3.1.2 is based on this topological order. The restrictions on the sit time are

checked while constructing the flight network, and only those arcs corresponding to

legal connections are inserted. As flights are treated in the multi-label shortest path

problem, we shall also apply several other feasibility rules (see Section 3.1). These

feasibility rules define both the feasible duty periods and the feasible pairings. The

rest time between two duty periods changes dynamically depending on the elapsed

time of the current duty period. Table 3.1 illustrates the rest time between duty

periods that we use in our numerical examples.

Elapsed Time of Rest Time Between
Previous Duty Period (DP) Two Duty Periods (DP)

4 hours or less 8 hours
4-11 hours 10 hours
11-12 hours 12 hours
12-14 hours 14 hours
18 hours or more 20 hours
Long-range flights Elapsed time of previous DP

Table 3.1: Rest time between two duty periods.

3.1 Multi-Label Shortest Path Algorithm

We use a column generation approach in this thesis because the number of the

feasible pairings is very large. Instead of generating all feasible pairings, we start

with a subset of them. The problem with the subset of all possible pairings is called

the restricted master problem. At each iteration, the restricted master problem is
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optimized to get the dual variables corresponding to each flight. The dual of the LP

relaxation of the primal problem (1.1) is as follows.

max
∑

i∈F ui

s.t.
∑

i∈F aijui ≤ cj , ∀j ∈ P,

ui ≥ 0, ∀i ∈ F ,

(3.1)

where ui is the dual variable corresponding to the ith constraint (flight) in the

problem (1.1). After optimizing the restricted master problem, we obtain ui values.

The pricing problem becomes a multi-label shortest path problem (MLSP) when

the column generation method is applied to the crew pairing problem. The aim of

the multi-label shortest path problem is to find a pairing with a negative reduced

cost. The reduced cost of pairing j is calculated by

c̄j = cj −
∑

i∈F aijui. (3.2)

If a pairing that improves the objective function is found, it is added to the

restricted master problem and it is reoptimized. Then, the multi-label shortest path

is resolved according to new dual values taken from the restricted master problem.

If the minimum reduced cost at the end of the multi-label shortest path algorithm

is nonnegative, then the optimal solution is found and the algorithm is terminated.

3.1.1 Applying Domination Rules and Determining Nondominated Paths

In the multi-label shortest path problem each path from the source node to any

intermediate node (partial pairing) is denoted by a set of labels which give the state

of the path. On each path the following labels are kept to calculate the cost of the

pairing and to check the feasibility rules associated with the pairing:

• The total elapsed time (time-away-from-base, TAFB).

• The number of completed duty periods.

• Sum of the costs of the completed duty periods.

• Sum of the dual values of the flights covered by the path.
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• Total number of flights covered by the path.

To calculate the cost of the duty period and to check the feasibility rules associated

with the duty period, the following labels are kept through the duty period:

• Total elapsed time.

• Total flying time.

• Total number of flights covered.

• The cost of the current duty period.

At each node the predecessor node and the predecessor path of each path are also

stored. In addition to these labels, the extra flights or the required deadheads that

may be covered by the path are also kept by a label. The rules and the types

of coverage of extra flights are explained in the Section 3.4. When a duty period

is finished, all label values kept for the current duty period are reset for the next

duty period. As it can be seen in Figure 3.2, there may be more than one path

emanating from the source node to any intermediate node. In this network there

are two connections from the source, which means that there are two paths at the

beginning. Both paths go through the departure node of the right-most flight in the

figure. Therefore, there are two paths, hence two set of labels, on the departure and

the arrival nodes of this flight.

Source

ADB

ESB

IST

path 1

path 1

path 2

path 2

path 1 path 2

path 1 path 2

Figure 3.2: Multi-path on the flight network.

As a general representation, each path i from the source node to node j is denoted

by a state (RiL
j , Ci

j) where L is the set of labels kept by path i, RiL
j corresponds to

the set of values on each label (Ri1
j , Ri2

j , ..., R
i|L|
j ) of path i and Ci

j is the cost of the
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path i. To optimize the objective function of problem (1.1), we want to keep the

nondominated paths on each node.

Definition 3.1.1 Suppose that there are two paths emanating from the source node

to node j. The corresponding states of these paths are (R1L
j , C1

j ) and (R2L
j , C2

j ),

respectively. The first path dominates the second path if and only if C1
j ≤ C2

j

and R1l
j ≤ R2l

j , ∀l ∈ L. In such a case, the first and second paths are called as

nondominated and dominated paths, respectively.

An illustrative example is given in Figure 3.3. For simplicity, only two labels

associated with the duty period (total elapsed time and total flying time) are con-

sidered. The value on each flight arc stores the flying time. The value on each

Source

[0,0]

ESB

ADB

IST
[0,0][0,0]

60 min.

120 min.

60 min.
60 min.

[60,60] [60,60]

[120,60]

[180,60]

Figure 3.3: Domination of paths.

connection arc is the elapsed time for that connection. At the departure node of the

third flight, there are two paths and because of that there are two states: [180,60]

and [120,60]. Before carrying these paths to the arrival node of the third flight,

domination rules are applied. Total elapsed time in the first path is greater than

the total elapsed time in the second path. The flying time takes the same value on

both paths. It can be said that first path is dominated by the second one. So, only

second path will be carried through the third flight arc to the arrival node of that

flight.

3.1.2 Node-Treating Algorithm

Recall that the nodes in the flight network are topologically sorted before the pricing

problem is solved. This topological sorting ensures that each node in the network

is treated exactly once. While a node is being treated, it is given that all its prede-
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cessors are already treated. The algorithm applied in this thesis is derived from the

algorithms explained in Desrosiers et al. [15].

Let S(j) be the set of successor nodes of node j. Suppose that the number of

nondominated paths on node j is m. The set of these paths is denoted by Pj =

∪m
k=1(R

kL
j , Ck

j ). In the node-treating algorithm each nondominated path on node j

is carried to its each successor node by the arc that connects node j and its successor.

There is also a list in this algorithm that keeps the nodes that will be treated. When

a node is treated, its successors are added to that list according to their topological

order. The node with the smallest order is treated first.

Algorithm 1 Node-Treating Algorithm in MLSP

1. Assigning labels at source node

(a) Rl
source = 0, ∀l ∈ L

(b) Csource = 0

(c) Add successors of source node to the treating list, T

(d) Sort T according to increasing topological order

2. Node-Treating

(a) Take the first node j ∈ T

(b) Apply domination rules to paths on node j and get Pj

(c) For all k ∈ S(j)

i. Carry each path of Pj to node k through the arc (j, k)

ii. Add new paths to the set of paths on node k

iii. Add node k to the list, T (if it is not in the list)

3. Removing nodes

(a) Remove node j from T

(b) Sort T according to increasing topological order

(c) If list T is empty, then stop; otherwise, go to second step

3.2 Buffer Column Pool

In column generation approach, there are some column selection criteria of that will

be sent to the restricted master problem. Savelsbergh and Sol [22] propose different

methods for the selection of the columns. One idea is to add any random column
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with negative reduced cost to the restricted master problem. Another idea is to

send a number of columns that have negative reduced costs. The pros and cons of

both criteria are explained in Savelsbergh and Sol [22]. They also suggest a column

pool for column generation approach in the same study. After the pricing problem

is solved, more than one column with negative reduced cost may be found. All these

columns except the ones sent to the restricted master problem are kept in a column

pool.

In this thesis, a buffer column pool is used like the column pool explained in

Savelsbergh and Sol [22]. After the multi-label shortest path problem is solved, the

paths on the sink node correspond to the feasible pairings that are generated by the

node-treating algorithm described in Section 3.1.2. As it can be seen in Figure 3.4,

the columns with negative reduced costs are stored in a list. One pairing, which has

the minimum reduced cost, is sent to the restricted master problem from that list.

Other ones are added to the buffer column pool.

Restricted Master Problem
Multi−Label Shortest

Path Problem Buffer Column Pool

The pairing with Remaining pairings

Generated pairings that have

min. neg. red. cost

negative reduced costs

Figure 3.4: The buffer column pool.

Initially the buffer column pool is checked after the restricted master problem is

optimized. If a pairing with a negative reduced cost is found, it is sent directly

to the restricted master problem and removed from the buffer pool. If such a

pairing cannot be found, which means all pairings in the buffer column pool have

nonnegative reduced costs, some of the pairings are removed from the buffer column

pool. This is based on calculating the maximum reduced cost (c̄max) of the pairings
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in the buffer column pool. Then the pairings that have reduced costs greater than

or equal to a fraction of c̄max are discarded from the pool. This is followed by solving

the multi-label shortest path problem to find a pairing that improves the objective

function. The algorithm for the buffer column pool can be seen in the following

part:

Algorithm 2 Buffer Column Pool Algorithm

1. Solve the restricted master problem for initial feasible solution

2. Solve pricing problem (MLSP)

3. Add columns with negative reduced costs into the list. If all columns have
nonnegative reduced costs, then stop (optimal solution)

4. Send the column with the minimum reduced cost to the restricted master
problem. Add all the remaining ones to the buffer column pool

5. Solve the restricted master problem

6. If buffer column pool contains a column with negative reduced cost, then re-
move it from the buffer column pool and send to the restricted master problem.
Then go to 5

7. If all columns in the buffer column pool have nonnegative reduced cost, remove
the ones that have a reduced cost greater than or equal to a fraction of c̄max.
Then, go to 2

From the computational point of view, the most costly part of the crew pairing

problem is the pricing problem. On the other hand taking the columns from the

buffer column pool saves a significant amount of time. The buffer column pool pro-

vides pairings with negative reduced costs without solving the multi-label shortest

path problem. We only need to check the reduced costs of the pairings that are

in the buffer column pool. When the restricted master problem is optimized, the

dual values of the flight coverage constraints change. Therefore, at each iteration

the sum of dual values of the flights and hence the reduced costs of the pairings in

the buffer column pool may alter. Therefore, we need to update the reduced costs

of all pairings in the buffer column pool at each iteration.
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3.3 Pruning Methods

In this thesis, three rules are developed and applied to partial pairings. When

domination rules are applied to the paths (partial pairings) on a processed node,

each partial pairing is compared to every other partial pairings. This comparison

part is very time consuming even if the number of paths is not large. Therefore, we

use approximate and exact rules to fathom some partial pairings before domination

rules are applied. In this way, the time spent on the application of the domination

rules is reduced. These rules have some similarities with the rules mentioned in

Makri and Klabjan [20]. One important difference is that we apply the pruning

rules on the flight network. The rules defined by Makri and Klabjan are applied to

the partial pairings on the mixed segment/duty timeline network. In this network,

the partial pairings are composed of the completed duty periods. Moreover, they

model the crew pairing problem as a set partitioning problem whereas we solve the

LP relaxation of the set covering problem. The properties of the rules developed

and applied in this thesis are explained in the following subsections.

3.3.1 Approximate Rule 1

In the multi-label shortest path problem, we keep several labels which means there

may be several paths on each node of the network. An example is shown in Figure

3.5. In this figure there are four paths from the source node to the arrival node of

the sixth flight (Node 12). A closer view to these paths is given in Figure 3.6.

IST

ESB

AYT

Node 1

Node 2 Node 3

Node 4

Node 5

Node 6 Node 7

Node 8

Node 9

Node 10

Node 11

Node 12

Figure 3.5: Flight network for crew base IST.

The first approximate rule calculates a score value of the paths on the processed

node by using the values of the labels on the paths. We have the following values
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Node 12

[1−2−3−4−9−10−11]

path 2

[1−2−3−4−7−8−11]

path 1

[1−2−5−6−7−8−11]

path 3

[1−2−5−6−9−10−11]

path 4

Figure 3.6: The paths on Node 12 in Figure 3.5

on each path:

• Sum of the costs of the completed duty periods of path j (cj,total).

• Sum of the dual values of the flights covered by path j (uj,total).

• The cost of the current duty period of path j (cj,duty).

A score value of each path on the processed node i is calculated by

sj =
(cj,total+cj,duty)

uj,total
, j ∈ Pi, (3.3)

where Pi is the set of all paths on node i. This score does not provide the definite

information about the reduced cost of the completed pairing. The reduced cost of

the completed pairing is estimated according to the current values of the partial

pairing. If a path (partial pairing) of the processed node has a score value which is

smaller than 1, then we can just say that the completed pairing of that path is likely

to have a negative reduced cost. Similarly, if the score of the path is greater than

or equal to 1, then the completed pairing is likely to have a nonnegative reduced

cost. Nonetheless, it is still possible that this partial pairing may have a negative

reduced cost when it is completed. Therefore, we keep partial paths with both

negative and nonnegative reduced costs within the limits determined according to

the total number of paths on the processed node i. The limit associated with the

paths with sj < 1 is n and the limit associated with the paths with sj ≥ 1 is m.

The calculations of these numbers (n and m) are explained in Chapter 4.

After the proposed approximate rule is applied, the number of paths on the

processed node is reduced. For example, there are four paths on Node 12 as shown

in Figure 3.6. Suppose that we set n=2 and m=1. That is, after the approximate
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Algorithm 3 Approximate Rule 1

1. Set n and m (n ≥ m)

2. Set n0 = 0 and m0 = 0

3. For all j ∈ Pi

(a) Calculate the score value, sj

(b) If sj < 1 and n0 < n (or sj ≥ 1 and m0 < m):

i. Keep path j

ii. n0++ (or m0++)

(c) Otherwise:

i. Fathom path j

rule is applied, there should be at most two paths with sp < 1 and at most one path

with sp ≥ 1. Suppose that the first three paths in Figure 3.6 have a score value less

than 1. Then path 3 is erased by the approximate rule 1.

3.3.2 Approximate Rule 2

This second approximate rule is applied to the processed node after the first ap-

proximate rule fathoms some paths on the node. The average values of the pairings

that are generated so far are used in this rule. Our aim is to anticipate the score

of the completed pairing according to the values of current partial pairing and the

values from already generated pairings. The average cost of all generated pairings

over the flights covered by these pairings is given by

āc =
∑

j cj
∑

j

∑

i aij
, j ∈ P̄ , i ∈ F, (3.4)

where P̄ is the set of pairings generated until this iteration. The average dual value

of the flights covered by these pairings is obtained by

ū =
∑

j

∑

i aijui
∑

j

∑

i aij
, j ∈ P̄ , i ∈ F. (3.5)

To apply this rule we need to find the maximum number of flights (L) that can be

covered by only one pairing that is generated so far. This implies that we search all

generated pairings. To calculate the value of L, both the pairings in the pool of the
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restricted master problem and the pairings in the buffer column pool are considered.

When approximate rule 2 is applied, we have the following values on each path:

• Sum of the costs of the completed duty periods of path j (cj,total).

• Sum of the dual values of the flights covered by path j (uj,total).

• The cost of the current duty period of path j (cj,duty).

• The number of flights that are covered by path j (lj).

Then, the score value of each path on processed node i is calculated by

s̄j =
(cj,total+cj,duty)+(L−lj)āc

uj,total+(L−lj)ū
, j ∈ Pi. (3.6)

The score of each path on the processed node is calculated. And then some

paths with a score s̄j ≥ 1 are pruned (see Chapter 4). The score value calculated

by the approximate rule 2 is more definite than the score value calculated by the

approximate rule 1. We assume that the completed pairing of a partial pairing, which

has a score value smaller than 1, will have a negative reduced cost. Therefore, all

the paths with s̄j < 1 are kept. Consider again Node 12 given in Figure 3.6 after

applying the approximate rule 1. Suppose that the score values of the remaining

three paths are s1 = 0.8, s2 = 1.1 and s4 = 0.7 (recall that path 3 is removed by

approximate rule 1). The second approximate rule can further erase the second

path.

3.3.3 Exact Rule

The multi-label shortest path problem searches a pairing with a negative reduced

cost to improve the objective function. Approximate rules fathom several paths and

provide fast column generation. However, pairings that have a negative reduced

cost may also be pruned by these rules. Thus, we cannot say that the solution is

optimal if only approximate rules are used. We next develop an exact rule to apply

when the approximate rules cannot find a pairing with negative reduced cost.

When applying the exact rule, a score value of each path on the processed node

i is calculated by

ej =
(cj,total+cj,duty+spi)

(uj,total+lpi)
, j ∈ Pi, (3.7)
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where spi and lpi are the distances from node i to the sink node found by solving the

shortest path and longest path problems on the flight network, respectively. The arc

costs are flying times in the shortest path problem and dual values in the longest

path problem. We know that the total flying time of a pairing is a lower bound

on the cost of that pairing. We minimize the cost of the completed pairing while

maximizing its sum of dual values. Therefore, if the score of the partial pairing is

found as ep ≥ 1 by the exact rule, then the completed pairing of that path can

never have a negative reduced cost (see Proposition 3.3.1 below). The number of

paths that are pruned by the exact rule is not large, but the optimal solution is

guaranteed.

To calculate the score of the partial pairing with the exact rule, a shortest path

problem and a longest path problem are solved on the reverse flight graph; i.e., the

distances are found from the sink node to the source node. In the shortest path

problem each flight arc has its own flying time as its cost and each connection arc

has zero cost. This problem is solved only once because the cost figures (flight

time) are the same in all iterations. The longest path problem is solved according

to the dual values. Each flight arc has its corresponding dual value as its cost and

each connection arc has zero cost. The longest path problem is solved at every

iteration that applies the exact rule, because the dual values may be different from

one iteration to another. Under these circumstances, we have the longest distance

in dual values and the shortest distance in flying times from any node to the sink

node.

Proposition 3.3.1 If the score value of partial pairing j on node i is calculated by

the exact rule and

ej =
(cj,total+cj,duty+spi)

(uj,total+lpi)
≥ 1,

then any pairing that results from this partial pairing j will has a nonnegative reduced

cost.

Proof : Suppose that the partial pairing j has m flights and it is completed to a

pairing p by adding the flights m + 1, m + 2, ..., k. The flying times of these flights

are denoted by fm+1, fm+2, ..., fk. Then, using (2.1) and (2.2), we have the total

flying time as a lower bound on the cost of the pairing. Therefore,
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cp ≥ cj,total + cj,duty +
∑k

t=m+1 ft ≥ cj,total + cj,duty + spi,

since spi is the shortest path distance over flying times from node i to the sink node.

We also have,

∑k

t=1 ut = uj,total +
∑k

t=m+1 ut ≤ uj,total + lpi,

since lpi is the longest path distance over dual values from node i to the sink node.

Hence, we obtain a lower bound on the ratio of the cost of the pairing p to the sum

of the dual values of the flights covered by that pairing:

cp
∑k

t=1 ut
≥

cj,total+cj,duty+
∑k

t=m+1
ft

∑k
t=1 ut

≥
cj,total+cj,duty+spi

uj,total+lpi
.

Therefore, if a partial pairing j has a score value ej ≥ 1, then its completed pairing

has a nonnegative reduced cost since cp
∑k

t=1
ut

≥ 1 implies cp −
∑k

t=1 ut ≥ 0.

2

3.3.4 Exact and Hybrid Approaches

We generate two methods for the application of the exact rule in the multi-label

shortest path problem. In the first approach, if the approximate rules do not find a

pairing with a negative reduced cost, then we switch to the exact rule. The exact

approach applies the exact rule to all nodes of the flight network throughout the

pricing problem. The paths on each node are fathomed by using solely the exact

rule in this approach.

The other approach, which we call as hybrid approach, is to apply both the

approximate and the exact rules in the pricing problem. We explain this approach

in Figure 3.7. The numbers on each node are given according to the topological

order. The exact rule is applied to the node with the smallest order (Node 1)

and then the approximate rules are applied to all other nodes. If a pairing with a

negative reduced cost cannot be found at the sink, we go back to Node 2 to apply the

exact rule. The paths on the remaining nodes are pruned by the approximate rules.

Suppose that a pairing with negative reduced cost is found at the sink node. At this

point the hybrid algorithm is stopped and the pairing with negative reduced cost is

added to the restricted master problem. If a pairing with the negative reduced cost

cannot be found, the hybrid approach continues that is the exact rule is applied to
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the next node (node 3) and the approximate rules are applied to the subsequent

nodes.

IST

AYTSource

Node 1

Node 2

Node 3

Node 4

Node 6

Node 5
Sink

Figure 3.7: Hybrid approach on the flight network.

3.4 Managing Extra Flights

The crew pairing problem is solved after the timetable of the flights is constructed

and the assignment of the fleets is completed. Therefore, it is assumed that the

flight scheduling and fleet assignment problems are solved before we start to solve

the crew pairing problem. After the solution of the crew pairing problem is found,

it is sent to the crew assignment problem to complete the planning process in the

airlines.

The airline companies need to add extra flights into the flight schedule at the

operational level [26, 27]. This may occur because of seasonal changes or specific

customer requests. In this thesis, we analyze the robust crew pairing problem in

which the extra flights are taken into consideration at the planning phase. The exact

information of the extra flights are not known during the crew scheduling process

but they can be predicted with the help of the extra flights flown in previous seasons.

These possible extra flights may or may not be inserted into the flight schedule during

the operation. Therefore, the pairings that can cover any extra flights should also

be feasible in case the extra flights are not flown.

Each extra flight brings about at least one deadhead to reposition the crew at

the required station. The deadhead associated with the extra flight is different from

the regular deadhead definition. A flight without any passengers can also be called

as deadhead in the robust crew pairing problem. Tekiner et al. [26, 27] suggest

nine possible conditions for covering the extra flights and their required deadhead

flights. These conditions are developed for the case that all feasible pairings are
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generated. We apply the column generation method instead of generating all feasible

pairings. Therefore, two Type B and one Type A solutions which are composed of

one extra flight and one deadhead flight are considered primarily in this thesis (see

Sections 3.4.1 and 3.4.2). The proposed solution method applied in this study can

be extended for other Type A and B solutions. As previously mentioned, airline

companies can predict the extra flights. This is based on anticipating the departure

time interval of the extra flights as shown in Figure 3.8. In addition to the time

interval, the departure and arrival stations and the duration of the extra flights are

also known.

late extra flight

late departure timeearly departure time
Departure 
Station

Arrival
Station

early extra flight

Figure 3.8: Time window for the departure time of the extra flight.

In [10] two approaches are proposed to solve the robust crew pairing problem.

The first one is called the dynamic approach. This approach requires pricing and

hence it is directly related to the multi-label shortest path problem. The multi-label

shortest path problem is altered to find the Type B solutions and the pairings that

may potentially form Type A solutions. In the second approach, which is referred

to as static approach, all pairings that form feasible Type A solutions are generated

before the column generation method is started. We refer the reader to [10] for the

details of the static approach of the robust crew pairing problem. In the following

subsections, we describe the changes required in the pricing problem for applying

the dynamic approach to the robust crew pairing problem.

3.4.1 Type A Solution

Tekiner et al. [26, 27] propose six Type A solutions. In [26] and [27] all possible

pairings are generated. However, we apply column generation to the crew pairing

problem. Therefore, we do not have all feasible pairings and we consider the Type

A solution which consists of one extra flight and one deadhead flight (Type A.1).
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Figure 3.9 shows that two pairings can construct the first Type A solution only

if they are still feasible after swapping to cover the extra flight and its associated

deadhead. In this figure the first pairing (p1) covers flights 1 and 2, whereas the

second pairing (p2) covers flights 3 and 4. After swapping, the first pairing covers

flight 1, the extra flight and flight 4. The sequence composed of flight 3, deadhead

associated with the extra flight and flight 2 is covered by the second pairing.

flight 4flight 3

flight 2flight 1

AYT

IST

ESB

deadhead
extra flight

Figure 3.9: Type A solution.

The solution above is most suitable when all feasible pairings are generated offline

before solving the crew pairing problem. However, recall that when we use column

generation method in the crew pairing problem, we do not have all feasible pairings.

While a pairing is being generated in one iteration, the pairing that may take part in

a Type A solution with that pairing, possibly has not been generated yet. Hence, the

extra flight and its associated deadhead flight are considered separately to specify

the candidate partial pairings that may provide a Type A solution. Figure 3.10 and

Figure 3.11 demonstrate the required conditions for an extra flight and its associated

deadhead, respectively.

A partial pairing (path from source node to any node) is a candidate pairing for

Type A solution, if it meets the following feasibility rules. We illustrate these rules

in Figure 3.10:

• The time between the arrival node of flight 1 (Node 1) and the departure time

of flight 2 (Node 4) should include the time window defined for the departure

time of the extra flight.
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Figure 3.10: Extra flight condition for Type A.1 solution.

• The time between Node 1 and the early departure node of the extra flight

(Node 2) should be greater than or equal to the minimum sit time defined for

the regular flights. When the minimum sit time is checked, the early departure

time is considered.

• The time between the arrival node of late extra flight and Node 5 should

be considered. This check cannot be controlled during the pricing problem,

because while Node 1 is being processed there is no connection between Node

1 and Node 5. Therefore, this check should be completed during column

management (see [10] for details).
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flight 2

flight 3 flight 4

Node 1

Node 2

Node 3

Node 4

Node 5

deadhead

Figure 3.11: Deadhead condition for Type A.1 solution.

The feasibility checks for the associated deadhead flight are slightly different
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from the checks for the extra flight. Using now Figure 3.11, we list these rules:

• The time between the arrival node of flight 3 (Node 1) and the departure time

of flight 4 (Node 5) should include the time window defined for the departure

time of the extra flight.

• The time between Node 1 and the early departure node of the deadhead flight

(Node 2) should be greater than or equal to the minimum sit time defined for

the deadhead flights.

• The time between the arrival of deadhead flight and Node 4 should be con-

sidered. This check cannot be controlled during the pricing problem, because

while Node 1 is being processed there is no connection between Node 1 and

Node 4. Therefore, this check should be completed during column manage-

ment (see [10] for details).

In the node-treating algorithm, all connections emanating from the processed

node are examined for the extra flight. Suppose that the processed node is Node 1

in Figure 3.11. If the connection between Node 1 and Node 4 satisfies the feasibility

rules defined for the deadhead flight, then the partial path from source node to Node

4 is tagged as a candidate pairing for Type A solution by using an additional label.

The candidate pairings are then divided into two categories, candidates that can

cover the extra flight, and the candidates that can cover the associated deadhead

flight.

3.4.2 Type B Solution

The mathematical model of the robust crew pairing problem is different from the

model of the classical crew pairing problem. The robust crew pairing model associ-

ated with both Type A and Type B solutions is given by
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min
∑

j∈P cjxj +
∑

k∈K dkzk +
∑

k∈K dk(
∑

j∈P −xj ākj +
∑

j,m∈P −yk
(j,m)ājmk)

s.t.
∑

j∈P aijxj ≥ 1, ∀i ∈ F ,

∑

j∈P ākjxj +
∑

j,m∈P ājmky
k
(j,m) + zk ≥ 1, ∀k ∈ K,

2ājmky
k
(j,m) ≤ xj + xm, ∀(j, m) ∈ P, ∀k ∈ K,

xj ∈ {0, 1}, ∀j ∈ P,

zk ∈ {0, 1}, ∀k ∈ K,

(3.8)

where K is the set of all possible extra flights, dk represents the cost that is incurred

when extra flight k is not covered by any selected pairing; ākj is equal to 1, if extra

flight k is covered by pairing j in Type B solution and it is equal to 0, otherwise.

The variable zk becomes 1, if extra flight k is not covered by any selected pairing

and becomes 0, otherwise. ājmk is equal to 1, if extra flight k is covered by (j, m)

pairing tuple in Type A solution and becomes 0, otherwise.

The robust crew pairing model associated with the Type B solutions is given by

min
∑

j∈P cjxj +
∑

k∈K dkzk +
∑

k∈K dk(
∑

j∈P −xj ākj)

s.t.
∑

j∈P aijxj ≥ 1, ∀i ∈ F ,

∑

j∈P ākjxj + zk ≥ 1, ∀k ∈ K,

xj ∈ {0, 1}, ∀j ∈ P,

zk ∈ {0, 1}, ∀k ∈ K.

(3.9)

The third component,
∑

k∈K dk(
∑

j∈P −xj ākj), is added to the objective function,

because if an extra flight can be covered by any pairing in Type B solution, then

we encourage this pairing to enter the solution. While Type B solutions are being

searched, the dual values of each extra flight can be taken from the second constraint.

The reduced cost of pairing j is calculated by

c̄j = (cj −
∑

k∈K dkākj) −
∑

i∈F aijui −
∑

k∈K ākjvk, (3.10)

where vk is the dual variable corresponding to the coverage constraint of kth extra
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flight. Moreover, the feasibility rules for both the departure node of the extra flight

and the arrival node of the deadhead can be checked because we try to insert them

into one pairing. Therefore, the pairings, which are Type B solutions, are provided

at the end of the multi-label shortest path problem. This is different from the

pairings that can form Type A pairings. Type A solutions cannot be provided by

the pricing problem, we only label the candidate ones (see [10] for managing Type

A solutions during column management).

In this thesis, two Type B solutions can be provided. The first solution involves

the deadhead flight after the extra flight as shown in Figure 3.12. The feasibility

rules for this solution are explained through the flights given in Figure 3.12.

• The connection between Node 2 and Node 3 should be feasible and the time

window defined for the departure of the extra flight should fit into this con-

nection time.

• Time between Node 2 and the early departure node of the extra flight (e1)

should be greater than or equal to the minimum sit or rest time. The rest

time is checked if flight 1 is the last flight in a duty period.

• Time between the arrival node of deadhead (d2) and Node 3 should be greater

than or equal to the minimum sit time.

AYT

flight 1 flight 2

Node 2 Node 31

IST
e2 d

deadhead

Node 1 4 1 Node 4

e d2

early extra flight

late extra flight

e3

e

Figure 3.12: First Type B solution.

As it can be seen, there is no time window for the deadhead of the extra flight.

However, there is a feasibility rule to check the deadhead flight. The time between

the arrival node of the late extra flight (e4) and the departure node of the regular

flight (Node 3) should be at least as long as the sum of the following components:

• The duration of the deadhead flight.
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• The minimum sit time between the arrival of the late extra flight and the

departure of the deadhead flight.

• The minimum sit time between the arrival of the deadhead flight and the

departure of the regular flight.

The second Type B solution involves the deadhead flight before the extra flight.

The feasibility rules checked for this solution are explained by using Figure 3.13.

• The connection between Node 2 and Node 3 should be feasible and the time

window defined for the departure of the extra flight should be involved by this

connection time.

• Time between the arrival node of the late extra flight (e4) and Node 3 should

be greater than or equal to the minimum sit time.

• Time between Node 2 and the departure node of the deadhead flight (d1)

should be greater than or equal to the minimum sit (or rest) time. The rest

time is controlled if flight 1 is the last flight in a duty period.

flight 1

IST

AYT

Node 1

Node 2

flight 2deadhead

2

e

e

4 Node 3

Node 4

d1

d 3

late extra flightearly extra flight

e1

e2

Figure 3.13: Second Type B solution.

In this solution again there is no time window for the deadhead flight. However,

there is a feasibility rule to check the deadhead flight. The time between the arrival

node of the regular flight (Node 2) and the departure node of the early extra flight

(e1) should be at least as long as the sum of the following components:

• The duration of the deadhead flight.

• The minimum sit time between the arrival of the regular flight and the depar-

ture of the deadhead flight.

• The minimum sit time between the arrival of the deadhead flight and the

departure of the early extra flight.
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In the node-treating algorithm the above feasibility rules are checked for all

connections of the processed node. The extra flight and its deadhead flight are

inserted into the path (partial pairing), if any connection between two regular flights

of that path is feasible for them. This insertion is represented by another path which

means one path is branched into two paths if it can cover any extra flight as a Type

B solution. This is illustrated in Figure 3.14.

flight 1 deadheadextra flight

IST

AYT
d

Node 1
path 1

e1

e2 d1

path 1

2Node 2 Node 3

path 1
path 2

Node 4

Node 5

Node 6

flight 2 flight 3

path 1

Figure 3.14: Node-treating algorithm for Type B solution.

There are two connections emanating from Node 2 to Node 3 and Node 5. More-

over, there is one path from source node to Node 2. The connection between Node 2

and Node 3 is feasible. Therefore, the path on Node 2 is carried to Node 3 through

the connection that connects them. This connection cannot cover the extra flight as

a Type B solution because the deadhead of the extra flight cannot be inserted within

the connection between Node 2 and Node 3. However, the connection between Node

2 and Node 5 can include the extra flight and its deadhead. This connection is also

feasible. The path on Node 2 is carried through the connection arc to Node 5 and

it is branched into two paths. One path (path 1) is the actual connection in crew

pairing problem and the second one (path 2) is for the case that the extra flight is

flown. The differences between these two paths are as follows:

• The flying time of path 2 involves the extra flight whereas path 1 does not.

• The dual value of the extra flight is added to the sum of the dual values on

path 2.

The path that can cover the extra flight is considered as a different path from path

1. Even if the extra flight is not inserted to the flight schedule during the operation,
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path 2 remains feasible.

As mentioned before, we use two approaches to cover the extra flights in the

crew pairing problem. The dynamic approach is related to the pricing problem

of the column generation technique. In this method the multi-label shortest path

problem is altered to find the Type B solutions and the pairings that are labeled

as the candidate pairings for Type A solutions. In addition to the buffer column

pool, the dynamic approach involves another pool, which is called as fixed pool, to

keep the candidate pairings to form Type A solutions. As we explained before, after

the pricing problem is solved, one pairing with the most negative reduced cost is

sent to the restricted master problem. Now, in addition to that column, we send all

candidate pairings that can form Type A solutions regardless of the negativity of

their reduced costs, to the fixed pool. The remaining pairings with negative reduced

costs are kept in the buffer column pool. The optimal solution is found for problem

(3.9) and then feasibility checks for the swapping the candidate Type A pairings are

completed.

3.5 Finding A Lower Bound

The optimal solution of the restricted master problem is an upper bound for the

problem (1.1) with all possible pairings. At each iteration that we apply the exact

rule, we can also calculate a lower bound for the master problem. By this way, we

can stop the algorithm if the upper bound is close to the lower bound.

To find a lower bound, we consider the nodes that are not processed yet. A γi
j

value is calculated for each path j on the unprocessed node i:

γi
j = (cj,total + cj,duty + spi)/(uj,total + lpi), i ∈ N, j ∈ Pi, (3.11)

where N is the set of unprocessed nodes whose predecessors have been processed

and (uj,total + lpi) > 0. Then, we evaluate

γ̄ = min(γi
j), ∀i ∈ N, ∀j ∈ Pi. (3.12)

When node i is treated, γi
j values of its partial pairings are removed from the cal-

culation of γ̄. Then, the lower bound is found by multiplying γ̄ with the optimal
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solution of the restricted master problem.

Proposition 3.5.1 Let x̄ be the optimal solution of a restricted master problem of

(1.1) and ū be the corresponding dual optimal solution.Then,

γ̄
∑

p∈P cpx̄p = γ̄
∑

t∈F ut

is a lower bound on the optimal objective function of the LP relaxation of the problem

(1.1).

Proof : Suppose that the partial pairing j is completed into a pairing p which has

m flights. We know from the proof of Proposition 3.3.1 that

cp
∑m

t=1
ut

≥
cj,total+cj,duty+spi

uj,total+lpi
, ∀j ∈ Pi.

Therefore,

min
p∈P

{
cp

∑m

t=1 ut

}

︸ ︷︷ ︸

γ

≥ min
i∈N,j∈Pi

{
cj,total + cj,duty + spi

uj,total + lpi

}

︸ ︷︷ ︸

γ̄

.

If γ̄ū is a feasible solution to problem (3.1), then γ̄
∑

t∈F ūt is a lower bound on the

objective function of problem (1.1). Since γ̄ ≤ γ, then we can show the feasibility

of γ̄ū by using γū. First of all, the constraint γ
∑

t∈p ūt ≤ cp, ∀p ∈ P should be

satisfied. If
∑

t∈p ūt = 0, then 0 ≤ cp which is given. If
∑

t∈p ūt > 0, then γ ≤ cp
∑

t∈p ūt

which is met by the definition of γ. Since ū ≥ 0 and γ > 0, then ūγ ≥ 0. This

satisfies the second constraint.

2

3.6 Flow Chart

The following figure gives the flow chart of all algorithms described in this chapter

for the crew pairing problem. We start to solve this problem by finding an initial

feasible solution. The pairings of the initial feasible solution are sent to the restricted

master problem (RMP). At the first step, after the RMP is optimized, the multi-

label shortest path problem is solved. The pairing that has the minimum negative

reduced cost is sent to the RMP and remaining ones are sent to the buffer column

pool. The RMP is again optimized. However, this time the buffer column pool is

checked to find a pairing with a negative reduced cost before the multi-label shortest
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path problem is solved. If such a pairing is found, it is sent to the RMP. If all pairings

in the buffer column pool have nonnegative reduced costs, then some of them are

removed and the multi-label shortest path problem is solved. The optimal solution

of problem (1.1) is found, if there is not a pairing with negative reduced cost at the

end of the multi-label shortest path problem.
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CHAPTER 4

COMPUTATIONAL RESULTS

In this thesis, we solve three problem instances (see Appendices A, B and C). Two

problems are daily and one problem is weekly. The number of all feasible pairings

is very large especially for the weekly problem. Hence, we apply column generation

to these three problems instead of generating all possible pairings. We wrote a code

in Visual C++ to get the solution of the LP relaxation of the problem (1.1). The

pricing problem of the column generation algorithm is solved on the flight network.

For these three problems, the feasible pairings are generated for one crew base. The

restricted master problem of the LP relaxation of problem (1.1) is optimized by

ILOG CPLEX 11.0 [29].

Possible extra flights are taken as input in addition to the regular flight schedule.

However, extra flights differ from regular flights. They may or may not be added

to the flight schedule at the operational level. For each daily problem, we consider

one possible extra flight. We assume that two possible extra flights are taken into

consideration for the weekly problem. We know that each extra flight requires at

least one deadhead flight to reposition the crew members. Type B solution is the

pairing that can cover the extra flight and its required deadhead flight between

its two regular flights. For these three problems we can find Type B solutions in

multi-label shortest path problem.

We apply three pruning rules in the multi-label shortest path problem. Approx-

imate rule 1 keeps both the partial pairings (paths) that have score values smaller

than 1 and the partial pairings that have score values greater than or equal to 1

within the limits. These limits are calculated according to the number of paths on

the processed node. First of all, we want to keep more paths whose completed pair-

ings are likely to have negative reduced costs. Therefore, the limit (n) determined
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for the paths with sj < 1 is greater than the limit (m) determined for the paths

with sj ≥ 1. The limits n and m are calculated by multiplying the number of paths

with certain parameters. The parameter used for computing the limit n is called

fneg. This parameter takes values 0.2, 0.4 and 0.8. The calculation of the limit m

is based on another parameter that is called fpos. It takes values 0.1 and 0.2. If the

number of the paths on the processed node is large, the limits n and m are also large.

Then, the time required by the approximate rule 1 to prune the paths is increased.

Therefore, we need another parameter that is called fraction which depends on the

number of paths on the processed node. The calculation of the parameter fraction

is given by

fraction = exp(−α)∗nop, (4.1)

where nop is the number of paths on the processed node. We determine α values in

such a way that the value of the fraction does not decrease suddenly as the number

of paths increases. Therefore, we choose the values 10−3 and 8 × 10−4 values for

α. Figure 4.1 and Figure 4.2 illustrate the fraction for these two α values on the

following page. The calculations of the limits n and m are given by

n = fneg ∗ nop ∗ fraction, (4.2)

m = fpos ∗ nop ∗ fraction. (4.3)

where fneg and fpos are determined percentages, nop is the number of the paths

and fraction is the parameter that depends on nop.

Approximate rule 2 keeps all paths that have score values smaller than 1. If

there are several paths that have score values greater than or equal to 1, it keeps

some of them; otherwise, it prunes all of them. We know that the completed pairing

may have a negative reduced cost even if its partial pairing has a score value s̄j ≥ 1

that is calculated by approximate rule 2. Moreover, we do not want to prune too

many partial pairings. Therefore, we keep some paths that have score values greater

than or equal 1. To do this, we need a parameter which is called flim. There are

two situations for pruning paths by applying approximate rule 2:

1. If the number of paths, which have score values s̄j ≥ 1, is smaller than or

47



0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of paths

fr
ac

tio
n

Figure 4.1: fraction versus number of paths for α = 10−3.
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Figure 4.2: fraction versus number of paths for α = 8 × 10−4.
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equal to (flim*nop), then all of these paths are fathomed.

2. If the number of paths, which have score values s̄j ≥ 1, is greater than

(flim*nop), then the number of paths that will be pruned is equal to the

value of (flim*nop).

Another parameter (N) is needed when the domination rules are applied to the

partial pairings of the processed node. Recall that, in the multi-label shortest path

problem, the candidate partial pairings that may construct Type A solutions are

labeled (see Section 3.4.1). The objective of the robust crew pairing problem (3.9)

is to maximize the number of pairings that can cover extra flights and their required

deadhead flights. However, we recognize that there are several partial pairings

labeled as candidate Type A pairings. If we prevent all of these candidate Type A

partial pairings from being pruned during domination, we cannot find the solution in

a reasonable computation time. On the other hand, domination rules may prune too

many candidate type A pairings. Therefore, we use the parameter N that specifies

how many additional paths will be kept as candidate Type A pairings on the node

currently processed.

The values of the parameters that are used by three test instances are given by

Parameter Values Problem

N 0, 25, 750, ∞ 1
N 0, 50, 1000,∞ 2
N 0, 25, 50, 75 3
fneg 0.2, 0.4, 0.8 1, 2 and 3
fpos 0.1, 0.2 1, 2 and 3
α 10−3, 8 × 10−4 1, 2 and 3
flim 0.3, 0.6 1, 2 and 3
problem 1 : Problem with 42 flights

problem 2 : Problem with 96 flights

problem 3 : Problem with 135 flights

Table 4.1: Values of the parameters.

We solved three problems with 42, 96 and 135 flights which are referred to as

problem 1, 2 and 3, respectively. We have 96 sets of parameters for each problem

and a set of parameters corresponds to a experiment in our study. Each experiment

is applied with the exact approach and it is repeated with the hybrid approach. The
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experiments and the associated average CPU times for an iteration of the multi-label

shortest path problem with the exact and hybrid approaches are given in Appendices

A, B and C for problems 1, 2 and 3, respectively. The changes in parameters do not

affect the computational time in problem 1 and problem 2 because these problems

are daily and smaller than the weekly problems. This is valid in case the experiment

is applied both with the exact approach and with the hybrid approach.

Problem 3 is a weekly problem and the number of candidate Type A partial

pairings is large. Therefore, the average duration increases as the parameter N is

increased. If experiments are applied with the hybrid approach, parameter fneg is

very effective on the average durations. fneg is the parameter which is related to the

partial pairings that have negative reduced costs. As fneg increases, the number of

paths that are kept by approximate rule 1 and whose completed pairings are likely

to have negative reduced costs is increased. A pairing with a negative reduced cost

can be found by the approximate rules without applying the exact rule and hence

the hybrid approach. Therefore, the computational time decreases as fneg increases

in problem 3 when the hybrid approach is applied.

Also, when the problems are solved by the hybrid approach, the topological

order of the last node to which the exact rule is applied is usually large which

means this node is close to the sink node. Therefore, the average durations in the

hybrid approach are larger than the average durations in the exact approach for all

experiments of all problems. Moreover, the effectiveness of the approximate rules

and the exact rule is compared. At one iteration approximate rules can prune 68 %

of all generated paths on the average whereas the exact rule can prune approximately

10 % of all generated paths.

The schedule and the detailed solutions for the problem with 42 flights are given

in Appendix A. The main results are summarized below:

• The value of the initial feasible solution is 7858.

• Optimal solution of the problem is found (4822.25).

• There is one Type B pairing in the solution.

The schedule and the detailed solutions for the problem with 96 flights are given in

Appendix B. The main results are summarized below:
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• The value of the initial feasible solution is 18024.

• Optimal solution of the problem is found (13922.3).

• There is one Type B pairing in the solution.

The schedule and the detailed solutions for the problem with 135 flights are given

in Appendix C. The main results are summarized below:

• The value of the initial feasible solution is 48565.

• Optimal solution of the problem is found (46730.3).

• There are two Type B pairings in the solution.

51



CHAPTER 5

CONCLUSION AND FUTURE RESEARCH

In this study, we focus on the pricing subproblem of the crew pairing and robust

crew pairing problems when a column generation method is applied. We consider

the extra flights at the planning level. We can find Type B solutions that can

cover the extra flights and their required deadhead flights. We apply three pruning

rules to reduce the computational time of the problem. Moreover, we use a buffer

column pool that provides pairings with negative reduced costs without solving the

multi-label shortest path problem.

We solved medium-to-large problem instances in very short times. However,

there is a possibility that the large problems may not be solved by our pruning rules

and buffer column pool method. Therefore, we develop a method to find a lower

bound for large problems. Also, the robust crew pairing problem can be solved by

applying the row-and-column generation algorithm. As a future research, we intend

to study this algorithm to solve the robust crew pairing problem.
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Appendix A

Solution of the problem with 42 Flights

ID Dep-Arr Dep.Time-Arr.Time ID Dep-Arr Dep.Time-Arr.Time

1 IST-ESB 07:00-08:00 22 ADB-IST 19:20-20:20
2 IST-ADB 06:00-07:00 23 IST-ESB 17:00-18:00
3 ADB-ESB 10:05-11:20 24 ADB-IST 22:00-23:00
4 IST-ADA 08:25-09:40 25 IST-ADB 20:00-21:00
5 ADB-ESB 19:20-20:40 26 IST-ESB 19:00-20:00
6 ADB-IST 09:00-10:00 27 IST-ESB 22:00-23:00
7 ADA-IST 11:00-12:00 28 IST-ESB 22:00-23:00
8 IST-ADA 14:25-15:50 29 ESB-ADB 07:45-09:05
9 IST-ADB 09:00-10:00 30 ESB-ADB 17:00-18:20
10 IST-ADB 11:00-12:00 31 ESB-IST 08:00-09:00
11 ADA-IST 16:50-18:05 32 ESB-IST 11:00-12:00
12 ADB-IST 11:00-12:00 33 ESB-IST 14:00-15:00
13 IST-ESB 11:00-12:00 34 ESB-IST 17:00-18:00
14 IST-ADA 19:00-20:00 35 ESB-IST 13:00-14:00
15 IST-ADB 13:00-14:00 36 ESB-IST 21:00-22:00
16 ADB-IST 13:00-14:00 37 ESB-IST 20:00-21:00
17 IST-ESB 13:00-14:00 38 ESB-IST 22:00-23:00
18 ADA-IST 21:15-22:30 39 IST-ESB 05:00-06:00
19 ADB-IST 15:00-16:00 40 IST-ESB 05:30-06:30
20 IST-ESB 15:00-16:00 41 ESB-IST 23:05-00:05
21 IST-ADB 17:00-18:00 42 ESB-IST 00:00-00:55

Table A.1: Flight data with 42 flights.
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Ex. fneg fpos fraction flim N Ex. fneg fpos fraction flim N

1 0.2 0.1 8 × 10−4 0.3 0 25 0.2 0.2 10−3 0.3 0
2 0.2 0.1 8 × 10−4 0.3 25 26 0.2 0.2 10−3 0.3 25
3 0.2 0.1 8 × 10−4 0.3 750 27 0.2 0.2 10−3 0.3 750
4 0.2 0.1 8 × 10−4 0.3 ∞ 28 0.2 0.2 10−3 0.3 ∞
5 0.2 0.1 8 × 10−4 0.6 0 29 0.2 0.2 10−3 0.6 0
6 0.2 0.1 8 × 10−4 0.6 25 30 0.2 0.2 10−3 0.6 25
7 0.2 0.1 8 × 10−4 0.6 750 31 0.2 0.2 10−3 0.6 750
8 0.2 0.1 8 × 10−4 0.6 ∞ 32 0.2 0.2 10−3 0.6 ∞
9 0.2 0.1 10−3 0.3 0 33 0.4 0.1 8 × 10−4 0.3 0
10 0.2 0.1 10−3 0.3 25 34 0.4 0.1 8 × 10−4 0.3 25
11 0.2 0.1 10−3 0.3 750 35 0.4 0.1 8 × 10−4 0.3 750
12 0.2 0.1 10−3 0.3 ∞ 36 0.4 0.1 8 × 10−4 0.3 ∞
13 0.2 0.1 10−3 0.6 0 37 0.4 0.1 8 × 10−4 0.6 0
14 0.2 0.1 10−3 0.6 25 38 0.4 0.1 8 × 10−4 0.6 25
15 0.2 0.1 10−3 0.6 750 39 0.4 0.1 8 × 10−4 0.6 750
16 0.2 0.1 10−3 0.6 ∞ 40 0.4 0.1 8 × 10−4 0.6 ∞
17 0.2 0.2 8 × 10−4 0.3 0 41 0.4 0.1 10−3 0.3 0
18 0.2 0.2 8 × 10−4 0.3 25 42 0.4 0.1 10−3 0.3 25
19 0.2 0.2 8 × 10−4 0.3 750 43 0.4 0.1 10−3 0.3 750
20 0.2 0.2 8 × 10−4 0.3 ∞ 44 0.4 0.1 10−3 0.3 ∞
21 0.2 0.2 8 × 10−4 0.6 0 45 0.4 0.1 10−3 0.6 0
22 0.2 0.2 8 × 10−4 0.6 25 46 0.4 0.1 10−3 0.6 25
23 0.2 0.2 8 × 10−4 0.6 750 47 0.4 0.1 10−3 0.6 750
24 0.2 0.2 8 × 10−4 0.6 ∞ 48 0.4 0.1 10−3 0.6 ∞

Table A.2: Parameters of the first 48 experiments of the problem with 42 flights.
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Ex. fneg fpos fraction flim N Ex. fneg fpos fraction flim N

49 0.4 0.2 8 × 10−4 0.3 0 73 0.8 0.1 10−3 0.3 0
50 0.4 0.2 8 × 10−4 0.3 25 74 0.8 0.1 10−3 0.3 25
51 0.4 0.2 8 × 10−4 0.3 750 75 0.8 0.1 10−3 0.3 750
52 0.4 0.2 8 × 10−4 0.3 ∞ 76 0.8 0.1 10−3 0.3 ∞
53 0.4 0.2 8 × 10−4 0.6 0 77 0.8 0.1 10−3 0.6 0
54 0.4 0.2 8 × 10−4 0.6 25 78 0.8 0.1 10−3 0.6 25
55 0.4 0.2 8 × 10−4 0.6 750 79 0.8 0.1 10−3 0.6 750
56 0.4 0.2 8 × 10−4 0.6 ∞ 80 0.8 0.1 10−3 0.6 ∞
57 0.4 0.2 10−3 0.3 0 81 0.8 0.2 8 × 10−4 0.3 0
58 0.4 0.2 10−3 0.3 25 82 0.8 0.2 8 × 10−4 0.3 25
59 0.4 0.2 10−3 0.3 750 83 0.8 0.2 8 × 10−4 0.3 750
60 0.4 0.2 10−3 0.3 ∞ 84 0.8 0.2 8 × 10−4 0.3 ∞
61 0.4 0.2 10−3 0.6 0 85 0.8 0.2 8 × 10−4 0.6 0
62 0.4 0.2 10−3 0.6 25 86 0.8 0.2 8 × 10−4 0.6 25
63 0.4 0.2 10−3 0.6 750 87 0.8 0.2 8 × 10−4 0.6 750
64 0.4 0.2 10−3 0.6 ∞ 88 0.8 0.2 8 × 10−4 0.6 ∞
65 0.8 0.1 8 × 10−4 0.3 0 89 0.8 0.2 10−3 0.3 0
66 0.8 0.1 8 × 10−4 0.3 25 90 0.8 0.2 10−3 0.3 25
67 0.8 0.1 8 × 10−4 0.3 750 91 0.8 0.2 10−3 0.3 750
68 0.8 0.1 8 × 10−4 0.3 ∞ 92 0.8 0.2 10−3 0.3 ∞
69 0.8 0.1 8 × 10−4 0.6 0 93 0.8 0.2 10−3 0.6 0
70 0.8 0.1 8 × 10−4 0.6 25 94 0.8 0.2 10−3 0.6 25
71 0.8 0.1 8 × 10−4 0.6 750 95 0.8 0.2 10−3 0.6 750
72 0.8 0.1 8 × 10−4 0.6 ∞ 96 0.8 0.2 10−3 0.6 ∞

Table A.3: Parameters of the last 48 experiments of the problem with 42 flights.
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Expr. Dur.(sec.) Expr. Dur.(sec.) Expr. Dur.(sec.)

1 0.0157 33 0.016 65 0.0160
2 0.0158 34 0.0160 66 0.0160
3 0.0157 35 0.0160 67 0.0154
4 0.0158 36 0.0158 68 0.0160
5 0.0160 37 0.0160 69 0.0158
6 0.0157 38 0.0160 70 0.0158
7 0.0157 39 0.0156 71 0.0158
8 0.0158 40 0.0158 72 0.0156
9 0.0158 41 0.0158 73 0.0160
10 0.0157 42 0.0156 74 0.0156
11 0.0157 43 0.0156 75 0.0156
12 0.0157 44 0.0156 76 0.0158
13 0.0160 45 0.0160 77 0.0157
14 0.0158 46 0.0156 78 0.0156
15 0.0157 47 0.0158 79 0.0158
16 0.0160 48 0.0156 80 0.0158
17 0.0158 49 0.0158 81 0.0160
18 0.0158 50 0.0158 82 0.0158
19 0.0160 51 0.0160 83 0.0156
20 0.0157 52 0.0160 84 0.0156
21 0.0157 53 0.0160 85 0.0160
22 0.0158 54 0.0160 86 0.0156
23 0.0157 55 0.0156 87 0.0158
24 0.0155 56 0.0158 88 0.0158
25 0.0158 57 0.0158 89 0.0160
26 0.0158 58 0.0154 90 0.0158
27 0.0158 59 0.0158 91 0.0158
28 0.0160 60 0.0154 92 0.0160
29 0.0158 61 0.0160 93 0.0158
30 0.0157 62 0.0158 94 0.0158
31 0.0160 63 0.0158 95 0.0154
32 0.0158 64 0.0160 96 0.0158

Table A.4: Average CPU times for an iteration of the MLSP of the problem with
42 flights with exact approach.
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Expr. Dur.(sec.) Expr. Dur.(sec.) Expr. Dur.(sec.)

1 0.0418 33 0.0418 65 0.0417
2 0.0417 34 0.0530 66 0.0560
3 0.0442 35 0.0592 67 0.0658
4 0.0522 36 0.0594 68 0.0626
5 0.0420 37 0.0418 69 0.0368
6 0.0418 38 0.0530 70 0.0500
7 0.0522 39 0.0596 71 0.0660
8 0.0468 40 0.0532 72 0.0624
9 0.0338 41 0.0365 73 0.0367
10 0.0418 42 0.0532 74 0.0504
11 0.0445 43 0.0532 75 0.0624
12 0.0442 44 0.0594 76 0.0628
13 0.0395 45 0.0420 77 0.0418
14 0.0443 46 0.0498 78 0.0564
15 0.0468 47 0.0532 79 0.0658
16 0.0390 48 0.0562 80 0.0594
17 0.0368 49 0.0420 81 0.0420
18 0.0417 50 0.0436 82 0.0566
19 0.0520 51 0.0562 83 0.0598
20 0.0445 52 0.0498 84 0.0596
21 0.0392 53 0.0420 85 0.0417
22 0.0445 54 0.0406 86 0.0566
23 0.0498 55 0.0532 87 0.0628
24 0.0470 56 0.0502 88 0.0624
25 0.0420 57 0.0390 89 0.0392
26 0.0417 58 0.0438 90 0.0596
27 0.0467 59 0.0562 91 0.0594
28 0.0492 60 0.0658 92 0.0656
29 0.0418 61 0.0415 93 0.0418
30 0.0443 62 0.0500 94 0.0566
31 0.0495 63 0.0532 95 0.0628
32 0.0522 64 0.0562 96 0.0658

Table A.5: Average CPU times for an iteration of the MLSP of the problem with
42 flights with hybrid approach.
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Iteration Dur. (sec.) Method

1 0.016 Approximate
2-27 - Buffer
28 0.016 Approximate
29-42 - Buffer
43 0.016 Approximate
44-50 - Buffer
51 0.016 Approximate
52 - Buffer
53 0.031 Approximate + Exact

Table A.6: The duration of each iteration of the problem with 42 flights in Experi-
ment 26 (exact method).

Iteration Dur. (sec.) Method Last Node *

1 0.016 Approximate -
2-27 - Buffer -
28 0.015 Approximate -
29-42 - Buffer -
43 0.015 Approximate -
44-50 - Buffer -
51 0.016 Approximate -
52 - Buffer -
53 0.188 Approximate + Hybrid 86 (sink)
* : The topological order of the last node to which the exact rule is applied.

Table A.7: The duration of each iteration of the problem with 42 flights in Experi-
ment 26 (hybrid method).
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Figure A.1: Results associated with Table A.6.
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Figure A.2: Results associated with Table A.7.
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Figure A.3: Results associated with Experiment 46 (exact method).
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Figure A.4: Results associated with Experiment 46 (hybrid method).

63



Appendix B

Solution of the problem with 96 Flights

ID Dep-Arr Dep.Time-Arr.Time ID Dep-Arr Dep.Time-Arr.Time

1 IST-ESB 04:00-05:05 25 IST-ESB 16:15-17:20
2 IST-ESB 05:10-06:15 26 ESB-IST 17:00-18:05
3 ESB-IST 04:15-05:20 27 IST-ESB 17:00-18:05
4 ESB-IST 05:30-06:35 28 IST-ESB 18:00-19:05
5 IST-ESB 06:40-07:45 29 IST-ESB 19:00-20:05
6 ESB-IST 06:00-07:05 30 ESB-IST 19:00-20:05
7 ESB-IST 07:00-08:05 31 ESB-IST 20:00-21:05
8 ESB-IST 07:30-08:35 32 IST-ESB 20:00-21:05
9 IST-ESB 07:00-08:05 33 IST-ADB 05:00-06:05
10 ESB-IST 08:00-09:05 34 ADB-IST 07:05-08:10
11 IST-ESB 09:00-10:05 35 IST-ADB 06:00-07:05
12 IST-ESB 10:00-11:05 36 ADB-IST 08:05-09:10
13 ESB-IST 09:00-10:05 37 IST-ADB 06:40-07:45
14 IST-ESB 11:00-12:05 38 ADB-IST 08:45-09:50
15 ESB-IST 11:00-12:05 39 IST-ADB 07:00-08:05
16 IST-ESB 13:00-14:05 40 ADB-IST 09:05-10:10
17 ESB-IST 12:00-13:05 41 IST-ADB 09:00-10:05
18 IST-ESB 14:00-15:05 42 ADB-IST 11:05-12:10
19 ESB-IST 13:00-14:05 43 IST-ADB 11:00-12:05
20 ESB-IST 14:00-15:05 44 ADB-IST 13:10-14:15
21 ESB-IST 15:00-16:05 45 IST-ADB 13:00-14:05
22 IST-ESB 15:00-16:05 46 ADB-IST 15:05-16:10
23 ESB-IST 16:00-17:05 47 IST-ADB 14:00-15:05
24 IST-ESB 16:00-17:05 48 ADB-IST 16:10-17:15

Table B.1: Flight data with 96 flights (first 48 flights).
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ID Dep-Arr Dep.Time-Arr.Time ID Dep-Arr Dep.Time-Arr.Time

49 IST-ADB 16:00-17:05 73 IST-AYT 17:00-18:15
50 ADB-IST 18:05-19:10 74 AYT-IST 19:15-20:30
51 IST-ADB 17:00-18:05 75 IST-AYT 18:30-19:45
52 ADB-IST 19:05-20:10 76 AYT-IST 20:45-22:00
53 IST-ADB 21:45-22:50 77 IST-AYT 21:55-23:10
54 ADB-IST 23:50-00:55 78 AYT-IST 00:15-01:30
55 ESB-ADB 05:45-07:00 79 IST-ADA 06:20-07:50
56 ADB-ESB 08:00-09:15 80 ADA-IST 08:50-10:20
57 ESB-ADB 15:00-16:15 81 IST-ADA 15:00-16:30
58 ADB-ESB 17:15-18:30 82 ADA-IST 17:30-19:00
59 ESB-ADB 20:50-22:05 83 IST-ADA 17:20-18:50
60 ADB-ESB 23:10-00:25 84 ADA-IST 19:55-21:35
61 ESB-AYT 04:15-05:15 85 IST-ADA 12:15-13:45
62 AYT-ESB 06:15-07:15 86 ADA-IST 14:45-16:25
63 ESB-AYT 19:00-20:00 87 IST-ADA 14:00-15:30
64 AYT-ESB 21:00-22:00 88 ADA-IST 16:30-18:00
65 IST-AYT 06:25-07:40 89 IST-ADA 19:30-21:00
66 AYT-IST 08:40-09:55 90 ADA-IST 22:00-23:30
67 IST-AYT 09:30-10:45 91 IST-ADA 09:15-10:45
68 AYT-IST 11:45-13:00 92 ADA-IST 11:45-13:15
69 IST-AYT 12:45-14:00 93 IST-ADA 21:35-23:05
70 AYT-IST 15:00-16:15 94 ADA-IST 01:30-03:00
71 IST-AYT 15:30-16:45 95 ESB-ADA 17:30-18:30
72 AYT-IST 17:55-19:10 96 ADA-ESB 19:30-20:30

Table B.2: Flight data with 96 flights (last 48 flights).
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Ex. fneg fpos fraction flim N Ex. fneg fpos fraction flim N

1 0.2 0.1 8 × 10−4 0.3 0 25 0.2 0.2 10−3 0.3 0
2 0.2 0.1 8 × 10−4 0.3 50 26 0.2 0.2 10−3 0.3 50
3 0.2 0.1 8 × 10−4 0.3 1000 27 0.2 0.2 10−3 0.3 1000
4 0.2 0.1 8 × 10−4 0.3 ∞ 28 0.2 0.2 10−3 0.3 ∞
5 0.2 0.1 8 × 10−4 0.6 0 29 0.2 0.2 10−3 0.6 0
6 0.2 0.1 8 × 10−4 0.6 50 30 0.2 0.2 10−3 0.6 50
7 0.2 0.1 8 × 10−4 0.6 1000 31 0.2 0.2 10−3 0.6 1000
8 0.2 0.1 8 × 10−4 0.6 ∞ 32 0.2 0.2 10−3 0.6 ∞
9 0.2 0.1 10−3 0.3 0 33 0.4 0.1 8 × 10−4 0.3 0
10 0.2 0.1 10−3 0.3 50 34 0.4 0.1 8 × 10−4 0.3 50
11 0.2 0.1 10−3 0.3 1000 35 0.4 0.1 8 × 10−4 0.3 1000
12 0.2 0.1 10−3 0.3 ∞ 36 0.4 0.1 8 × 10−4 0.3 ∞
13 0.2 0.1 10−3 0.6 0 37 0.4 0.1 8 × 10−4 0.6 0
14 0.2 0.1 10−3 0.6 50 38 0.4 0.1 8 × 10−4 0.6 50
15 0.2 0.1 10−3 0.6 1000 39 0.4 0.1 8 × 10−4 0.6 1000
16 0.2 0.1 10−3 0.6 ∞ 40 0.4 0.1 8 × 10−4 0.6 ∞
17 0.2 0.2 8 × 10−4 0.3 0 41 0.4 0.1 10−3 0.3 0
18 0.2 0.2 8 × 10−4 0.3 50 42 0.4 0.1 10−3 0.3 50
19 0.2 0.2 8 × 10−4 0.3 1000 43 0.4 0.1 10−3 0.3 1000
20 0.2 0.2 8 × 10−4 0.3 ∞ 44 0.4 0.1 10−3 0.3 ∞
21 0.2 0.2 8 × 10−4 0.6 0 45 0.4 0.1 10−3 0.6 0
22 0.2 0.2 8 × 10−4 0.6 50 46 0.4 0.1 10−3 0.6 50
23 0.2 0.2 8 × 10−4 0.6 1000 47 0.4 0.1 10−3 0.6 1000
24 0.2 0.2 8 × 10−4 0.6 ∞ 48 0.4 0.1 10−3 0.6 ∞

Table B.3: Parameters of the first 48 experiments of the problem with 96 flights.
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Ex. fneg fpos fraction flim N Ex. fneg fpos fraction flim N

49 0.4 0.2 8 × 10−4 0.3 0 73 0.8 0.1 10−3 0.3 0
50 0.4 0.2 8 × 10−4 0.3 50 74 0.8 0.1 10−3 0.3 50
51 0.4 0.2 8 × 10−4 0.3 1000 75 0.8 0.1 10−3 0.3 1000
52 0.4 0.2 8 × 10−4 0.3 ∞ 76 0.8 0.1 10−3 0.3 ∞
53 0.4 0.2 8 × 10−4 0.6 0 77 0.8 0.1 10−3 0.6 0
54 0.4 0.2 8 × 10−4 0.6 50 78 0.8 0.1 10−3 0.6 50
55 0.4 0.2 8 × 10−4 0.6 1000 79 0.8 0.1 10−3 0.6 1000
56 0.4 0.2 8 × 10−4 0.6 ∞ 80 0.8 0.1 10−3 0.6 ∞
57 0.4 0.2 10−3 0.3 0 81 0.8 0.2 8 × 10−4 0.3 0
58 0.4 0.2 10−3 0.3 50 82 0.8 0.2 8 × 10−4 0.3 50
59 0.4 0.2 10−3 0.3 1000 83 0.8 0.2 8 × 10−4 0.3 1000
60 0.4 0.2 10−3 0.3 ∞ 84 0.8 0.2 8 × 10−4 0.3 ∞
61 0.4 0.2 10−3 0.6 0 85 0.8 0.2 8 × 10−4 0.6 0
62 0.4 0.2 10−3 0.6 50 86 0.8 0.2 8 × 10−4 0.6 50
63 0.4 0.2 10−3 0.6 1000 87 0.8 0.2 8 × 10−4 0.6 1000
64 0.4 0.2 10−3 0.6 ∞ 88 0.8 0.2 8 × 10−4 0.6 ∞
65 0.8 0.1 8 × 10−4 0.3 0 89 0.8 0.2 10−3 0.3 0
66 0.8 0.1 8 × 10−4 0.3 50 90 0.8 0.2 10−3 0.3 50
67 0.8 0.1 8 × 10−4 0.3 1000 91 0.8 0.2 10−3 0.3 1000
68 0.8 0.1 8 × 10−4 0.3 ∞ 92 0.8 0.2 10−3 0.3 ∞
69 0.8 0.1 8 × 10−4 0.6 0 93 0.8 0.2 10−3 0.6 0
70 0.8 0.1 8 × 10−4 0.6 50 94 0.8 0.2 10−3 0.6 50
71 0.8 0.1 8 × 10−4 0.6 1000 95 0.8 0.2 10−3 0.6 1000
72 0.8 0.1 8 × 10−4 0.6 ∞ 96 0.8 0.2 10−3 0.6 ∞

Table B.4: Parameters of the last 48 experiments of the problem with 96 flights.
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Expr. Dur.(sec.) Expr. Dur.(sec.) Expr. Dur.(sec.)

1 0.0180 33 0.0179 65 0.0183
2 0.0195 34 0.0178 66 0.0178
3 0.0196 35 0.0176 67 0.0196
4 0.0178 36 0.0198 68 0.0176
5 0.0180 37 0.018 69 0.0183
6 0.0178 38 0.0176 70 0.0175
7 0.0196 39 0.0178 71 0.0196
8 0.0198 40 0.0196 72 0.0178
9 0.0180 41 0.0183 73 0.0181
10 0.0176 42 0.0178 74 0.0176
11 0.0176 43 0.0178 75 0.0215
12 0.0176 44 0.0216 76 0.0176
13 0.0180 45 0.0181 77 0.0181
14 0.0178 46 0.0196 78 0.0176
15 0.0174 47 0.0195 79 0.0198
16 0.0179 48 0.0176 80 0.0194
17 0.0181 49 0.0181 81 0.0177
18 0.0178 50 0.0194 82 0.0215
19 0.0196 51 0.0176 83 0.0196
20 0.0178 52 0.0176 84 0.0175
21 0.0181 53 0.0180 85 0.0179
22 0.0178 54 0.0179 86 0.0179
23 0.0198 55 0.0214 87 0.0196
24 0.0195 56 0.0178 88 0.0178
25 0.0181 57 0.0177 89 0.0179
26 0.0178 58 0.0198 90 0.0178
27 0.0216 59 0.0178 91 0.0199
28 0.0178 60 0.0195 92 0.0176
29 0.0180 61 0.0180 93 0.0180
30 0.0195 62 0.0195 94 0.0179
31 0.0176 63 0.0178 95 0.0196
32 0.0196 64 0.0179 96 0.0196

Table B.5: Average CPU times for an iteration of the MLSP of the problem with
96 flights with exact approach.
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Expr. Dur.(sec.) Expr. Dur.(sec.) Expr. Dur.(sec.)

1 0.1633 33 0.1517 65 0.1537
2 0.1409 34 0.1366 66 0.1760
3 0.1405 35 0.1389 67 0.1408
4 0.1426 36 0.1388 68 0.1366
5 0.1589 37 0.1544 69 0.1540
6 0.1366 38 0.1370 70 0.1405
7 0.1389 39 0.1408 71 0.1426
8 0.1386 40 0.1408 72 0.1699
9 0.1541 41 0.1540 73 0.1519
10 0.1386 42 0.1388 74 0.1406
11 0.1406 43 0.1366 75 0.1366
12 0.1386 44 0.1368 76 0.1368
13 0.1564 45 0.1564 77 0.1519
14 0.1369 46 0.1368 78 0.1856
15 0.1388 47 0.1368 79 0.1683
16 0.1408 48 0.1409 80 0.1406
17 0.1543 49 0.1521 81 0.1987
18 0.1369 50 0.1368 82 0.1366
19 0.1406 51 0.1388 83 0.1660
20 0.1406 52 0.1370 84 0.1700
21 0.1541 53 0.1517 85 0.1583
22 0.1369 54 0.1369 86 0.1388
23 0.1349 55 0.1368 87 0.1425
24 0.1388 56 0.1406 88 0.1426
25 0.1541 57 0.1541 89 0.1609
26 0.1349 58 0.1368 90 0.1505
27 0.1386 59 0.1386 91 0.1524
28 0.1389 60 0.1388 92 0.1506
29 0.1541 61 0.1654 93 0.1653
30 0.1386 62 0.1428 94 0.1583
31 0.1349 63 0.1485 95 0.1525
32 0.1426 64 0.1428 96 0.1484

Table B.6: Average CPU times for an iteration of the MLSP of the problem with
96 flights with hybrid approach.
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Iteration Dur. (sec.) Method

1 0.032 Approximate
2-45 - Buffer
46 0.016 Approximate
47-60 - Buffer
61 0.015 Approximate
62-73 - Buffer
74 0.015 Approximate
75-76 - Buffer
77 0.031 Approximate
78-79 - Buffer
80 0.031 Approximate
81-83 - Buffer
84 0.031 Approximate + Exact

Table B.7: The duration of each iteration of the problem with 96 flights in Experi-
ment 2 (exact method).

Iteration Dur. (sec.) Method Last Node *

1 0.031 Approximate -
2-45 - Buffer -
46 0.016 Approximate -
47-60 - Buffer -
61 0.016 Approximate -
62-73 - Buffer -
74 0.016 Approximate -
75-76 - Buffer -
77 0.016 Approximate -
78-79 - Buffer -
80 0.016 Approximate -
81-83 - Buffer -
84 1.015 Approximate + Hybrid 194 (sink node)
* : The topological order of the last node to which the exact rule is applied.

Table B.8: The duration of each iteration of the problem with 96 flights in Experi-
ment 2 (hybrid method).
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Figure B.1: Results associated with Table B.7.
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Figure B.2: Results associated with Table B.8.
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Figure B.3: Results associated with Experiment 25 (exact method).
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Figure B.4: Results associated with Experiment 25 (hybrid method).
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Appendix C

Solution of the problem with 135 Flights

ID Dep-Arr DT-AT DD-AD ID Dep-Arr DT-AT DD-AD

1 IST-ADA 08:15-09:50 Day 1-Day 1 32 FRA-IST 21:00-23:55 Day 2-Day 2
2 ADA-IST 10:45-12:20 Day 1-Day 1 33 IST-ESB 16:00-17:00 Day 3-Day 3
3 IST-DEL 15:10-21:00 Day 1-Day 1 34 ESB-IST 18:00-19:00 Day 3-Day 3
4 DEL-IST 22:30-05:45 Day 1-Day 2 35 IST-ADB 06:00-07:00 Day 3-Day 3
5 IST-ALG 07:40-11:25 Day 1-Day 1 36 ADB-IST 08:00-09:00 Day 3-Day 3
6 ALG-IST 12:25-15:55 Day 1-Day 1 37 IST-ADB 10:00-11:00 Day 3-Day 3
7 IST-DXB 17:00-21:10 Day 1-Day 1 38 ADB-IST 12:00-13:00 Day 3-Day 3
8 DXB-IST 22:50-03:40 Day 1-Day 2 39 IST-DEL 15:10-21:00 Day 3-Day 3
9 ALA-IST 00:20-06:30 Day 1-Day 1 40 DEL-IST 22:30-05:45 Day 3-Day 4
10 IST-ALA 13:55-19:00 Day 1-Day 1 41 IST-ALG 07:40-11:25 Day 3-Day 3
11 ALA-IST 20:45-02:55 Day 1-Day 2 42 ALG-IST 12:25-15:55 Day 3-Day 3
12 IST-ORY 04:50-08:25 Day 1-Day 1 43 IST-ALA 17:25-22:35 Day 3-Day 3
13 ORY-IST 09:30-12:55 Day 1-Day 1 44 ALA-IST 00:20-06:30 Day 3-Day 3
14 IST-MST 12:40-15:55 Day 1-Day 1 45 IST-GVA 07:35-10:45 Day 3-Day 3
15 MST-IST 16:50-19:50 Day 1-Day 1 46 GVA-IST 11:45-14:45 Day 3-Day 3
16 IST-LGW 01:20-05:20 Day 1-Day 1 47 IST-MST 01:45-05:00 Day 3-Day 3
17 LGW-IST 06:50-10:35 Day 1-Day 1 48 MST-IST 06:00-09:00 Day 3-Day 3
18 IST-ESB 06:00-07:00 Day 2-Day 2 49 IST-FRA 16:45-19:45 Day 3-Day 3
19 IST-ESB 08:00-09:00 Day 2-Day 2 50 FRA-IST 20:45-23:45 Day 3-Day 3
20 ESB-IST 08:00-09:00 Day 2-Day 2 51 IST-ESB 08:00-09:00 Day 4-Day 4
21 IST-ESB 10:00-11:00 Day 2-Day 2 52 ESB-IST 10:00-11:00 Day 4-Day 4
22 ESB-IST 10:00-11:00 Day 2-Day 2 53 IST-ADA 20:35-22:10 Day 4-Day 4
23 ESB-IST 12:00-13:00 Day 2-Day 2 54 IST-DEL 15:10-21:00 Day 4-Day 4
24 IST-BOM 15:45-21:45 Day 2-Day 2 55 DEL-IST 22:30-05:45 Day 4-Day 5
25 BOM-IST 23:25-05:45 Day 2-Day 3 56 IST-LOS 12:00-18:40 Day 4-Day 4
26 IST-LOS 12:00-18:40 Day 2-Day 2 57 LOS-IST 20:40-02:40 Day 4-Day 5
27 LOS-IST 20:40-02:40 Day 2-Day 3 58 IST-ALG 07:40-11:25 Day 4-Day 4
28 IST-ALG 07:40-11:25 Day 2-Day 2 59 ALG-IST 12:25-15:55 Day 4-Day 4
29 ALG-IST 12:25-15:55 Day 2-Day 2 60 IST-ALA 17:25-22:35 Day 4-Day 4
30 IST-ALA 17:25-22:35 Day 2-Day 2 61 ALA-IST 00:20-06:30 Day 4-Day 4
31 IST-FRA 17:00-20:05 Day 2-Day 2 62 IST-FRA 12:05-15:05 Day 4-Day 4

Table C.1: Flight data with 135 flights (first 62 flights).
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ID Dep-Arr DT-AT DD-AD ID Dep-Arr DT-AT DD-AD

63 FRA-IST 16:00-18:55 Day 4-Day 4 100 LOS-IST 20:40-02:40 Day 6-Day 7
64 IST-MUC 04:50-07:30 Day 4-Day 4 101 IST-ALA 13:55-19:00 Day 6-Day 6
65 MUC-IST 08:30-11:05 Day 4-Day 4 102 ALA-IST 20:45-02:55 Day 6-Day 7
66 IST-MST 01:15-04:30 Day 4-Day 4 103 IST-DUS 05:05-08:25 Day 6-Day 6
67 MST-IST 05:30-08:30 Day 4-Day 4 104 DUS-IST 09:25-12:35 Day 6-Day 6
68 IST-TLV 09:55-12:00 Day 4-Day 4 105 IST-FRA 05:30-08:35 Day 6-Day 6
69 TLV-IST 13:15-15:20 Day 4-Day 4 106 FRA-IST 09:45-12:40 Day 6-Day 6
70 IST-FRA 17:00-20:00 Day 4-Day 4 107 IST-ORY 04:50-08:25 Day 6-Day 6
71 FRA-IST 21:00-23:55 Day 4-Day 4 108 ORY-IST 09:30-12:55 Day 6-Day 6
72 IST-ESB 06:00-07:00 Day 5-Day 5 109 IST-MST 15:30-18:45 Day 6-Day 6
73 ESB-IST 08:00-09:00 Day 5-Day 5 110 MST-IST 19:45-22:45 Day 6-Day 6
74 IST-ESB 14:00-15:00 Day 5-Day 5 111 IST-TLV 06:30-08:30 Day 6-Day 6
75 ESB-IST 16:00-17:00 Day 5-Day 5 112 TLV-IST 09:45-11:55 Day 6-Day 6
76 IST-ESB 18:00-19:00 Day 5-Day 5 113 IST-ESB 16:00-17:00 Day 7-Day 7
77 ESB-IST 20:00-21:05 Day 5-Day 5 114 ESB-IST 18:00-19:00 Day 7-Day 7
78 ADA-IST 02:00-03:30 Day 5-Day 5 115 IST-ADB 05:30-06:30 Day 7-Day 7
79 IST-ADA 08:15-09:50 Day 5-Day 5 116 ADB-IST 07:30-08:30 Day 7-Day 7
80 ADA-IST 10:45-12:20 Day 5-Day 5 117 IST-AYT 11:25-12:40 Day 7-Day 7
81 IST-BOM 15:45-21:45 Day 5-Day 5 118 AYT-IST 13:45-15:00 Day 7-Day 7
82 BOM-IST 23:25-05:45 Day 5-Day 6 119 IST-GZT 14:20-16:05 Day 7-Day 7
83 ALA-IST 00:20-06:30 Day 5-Day 5 120 GZT-IST 17:00-18:50 Day 7-Day 7
84 IST-ALA 13:55-19:00 Day 5-Day 5 121 IST-BOM 15:45-21:45 Day 7-Day 7
85 ALA-IST 20:45-02:55 Day 5-Day 6 122 BOM-IST 23:25-05:45 Day 7-Day 8
86 IST-FRA 05:30-08:35 Day 5-Day 5 123 IST-TLV 04:50-06:45 Day 7-Day 7
87 FRA-IST 09:45-12:40 Day 5-Day 5 124 TLV-IST 07:40-09:45 Day 7-Day 7
88 IST-GVA 07:35-10:45 Day 5-Day 5 125 IST-TLV 11:15-13:20 Day 7-Day 7
89 GVA-IST 11:45-14:45 Day 5-Day 5 126 TLV-IST 14:20-16:25 Day 7-Day 7
90 IST-ORY 10:50-14:25 Day 5-Day 5 127 IST-ALA 17:25-22:35 Day 7-Day 7
91 ORY-IST 15:35-19:00 Day 5-Day 5 128 IST-GVA 07:35-10:45 Day 7-Day 7
92 ALA-DEL 12:15-16:15 Day 5-Day 5 129 GVA-IST 11:45-14:45 Day 7-Day 7
93 IST-ALA 06:10-11:15 Day 5-Day 5 130 IST-ORY 04:50-08:25 Day 7-Day 7
94 DEL-IST 17:15-00:15 Day 5-Day 6 131 ORY-IST 09:30-12:55 Day 7-Day 7
95 IST-GZT 14:20-16:05 Day 6-Day 6 132 IST-MST 13:30-16:45 Day 7-Day 7
96 GZT-IST 17:00-18:50 Day 6-Day 6 133 MST-IST 18:10-21:10 Day 7-Day 7
97 IST-DEL 15:10-21:00 Day 6-Day 6 134 IST-FRA 00:50-03:50 Day 7-Day 7
98 DEL-IST 22:30-05:45 Day 6-Day 7 135 FRA-IST 05:35-08:35 Day 7-Day 7
99 IST-LOS 12:00-18:40 Day 6-Day 6 - - - -

Table C.2: Flight data with 135 flights (last 73 flights).
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Ex. fneg fpos fraction flim N Ex. fneg fpos fraction flim N

1 0.2 0.1 8 × 10−4 0.3 0 25 0.2 0.2 10−3 0.3 0
2 0.2 0.1 8 × 10−4 0.3 25 26 0.2 0.2 10−3 0.3 25
3 0.2 0.1 8 × 10−4 0.3 50 27 0.2 0.2 10−3 0.3 50
4 0.2 0.1 8 × 10−4 0.3 75 28 0.2 0.2 10−3 0.3 75
5 0.2 0.1 8 × 10−4 0.6 0 29 0.2 0.2 10−3 0.6 0
6 0.2 0.1 8 × 10−4 0.6 25 30 0.2 0.2 10−3 0.6 25
7 0.2 0.1 8 × 10−4 0.6 50 31 0.2 0.2 10−3 0.6 50
8 0.2 0.1 8 × 10−4 0.6 75 32 0.2 0.2 10−3 0.6 75
9 0.2 0.1 10−3 0.3 0 33 0.4 0.1 8 × 10−4 0.3 0
10 0.2 0.1 10−3 0.3 25 34 0.4 0.1 8 × 10−4 0.3 25
11 0.2 0.1 10−3 0.3 50 35 0.4 0.1 8 × 10−4 0.3 50
12 0.2 0.1 10−3 0.3 75 36 0.4 0.1 8 × 10−4 0.3 75
13 0.2 0.1 10−3 0.6 0 37 0.4 0.1 8 × 10−4 0.6 0
14 0.2 0.1 10−3 0.6 25 38 0.4 0.1 8 × 10−4 0.6 25
15 0.2 0.1 10−3 0.6 50 39 0.4 0.1 8 × 10−4 0.6 50
16 0.2 0.1 10−3 0.6 75 40 0.4 0.1 8 × 10−4 0.6 75
17 0.2 0.2 8 × 10−4 0.3 0 41 0.4 0.1 10−3 0.3 0
18 0.2 0.2 8 × 10−4 0.3 25 42 0.4 0.1 10−3 0.3 25
19 0.2 0.2 8 × 10−4 0.3 50 43 0.4 0.1 10−3 0.3 50
20 0.2 0.2 8 × 10−4 0.3 75 44 0.4 0.1 10−3 0.3 75
21 0.2 0.2 8 × 10−4 0.6 0 45 0.4 0.1 10−3 0.6 0
22 0.2 0.2 8 × 10−4 0.6 25 46 0.4 0.1 10−3 0.6 25
23 0.2 0.2 8 × 10−4 0.6 50 47 0.4 0.1 10−3 0.6 50
24 0.2 0.2 8 × 10−4 0.6 75 48 0.4 0.1 10−3 0.6 75

Table C.3: Parameters of the first 48 experiments of the problem with 135 flights.
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Ex. fneg fpos fraction flim N Ex. fneg fpos fraction flim N

49 0.4 0.2 8 × 10−4 0.3 0 73 0.8 0.1 10−3 0.3 0
50 0.4 0.2 8 × 10−4 0.3 25 74 0.8 0.1 10−3 0.3 25
51 0.4 0.2 8 × 10−4 0.3 50 75 0.8 0.1 10−3 0.3 50
52 0.4 0.2 8 × 10−4 0.3 75 76 0.8 0.1 10−3 0.3 75
53 0.4 0.2 8 × 10−4 0.6 0 77 0.8 0.1 10−3 0.6 0
54 0.4 0.2 8 × 10−4 0.6 25 78 0.8 0.1 10−3 0.6 25
55 0.4 0.2 8 × 10−4 0.6 50 79 0.8 0.1 10−3 0.6 50
56 0.4 0.2 8 × 10−4 0.6 75 80 0.8 0.1 10−3 0.6 75
57 0.4 0.2 10−3 0.3 0 81 0.8 0.2 8 × 10−4 0.3 0
58 0.4 0.2 10−3 0.3 25 82 0.8 0.2 8 × 10−4 0.3 25
59 0.4 0.2 10−3 0.3 50 83 0.8 0.2 8 × 10−4 0.3 50
60 0.4 0.2 10−3 0.3 75 84 0.8 0.2 8 × 10−4 0.3 75
61 0.4 0.2 10−3 0.6 0 85 0.8 0.2 8 × 10−4 0.6 0
62 0.4 0.2 10−3 0.6 25 86 0.8 0.2 8 × 10−4 0.6 25
63 0.4 0.2 10−3 0.6 50 87 0.8 0.2 8 × 10−4 0.6 50
64 0.4 0.2 10−3 0.6 75 88 0.8 0.2 8 × 10−4 0.6 75
65 0.8 0.1 8 × 10−4 0.3 0 89 0.8 0.2 10−3 0.3 0
66 0.8 0.1 8 × 10−4 0.3 25 90 0.8 0.2 10−3 0.3 25
67 0.8 0.1 8 × 10−4 0.3 50 91 0.8 0.2 10−3 0.3 50
68 0.8 0.1 8 × 10−4 0.3 75 92 0.8 0.2 10−3 0.3 75
69 0.8 0.1 8 × 10−4 0.6 0 93 0.8 0.2 10−3 0.6 0
70 0.8 0.1 8 × 10−4 0.6 25 94 0.8 0.2 10−3 0.6 25
71 0.8 0.1 8 × 10−4 0.6 50 95 0.8 0.2 10−3 0.6 50
72 0.8 0.1 8 × 10−4 0.6 75 96 0.8 0.2 10−3 0.6 75

Table C.4: Parameters of the last 48 experiments of the problem with 135 flights.
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Expr. Dur.(sec.) Expr. Dur.(sec.) Expr. Dur.(sec.)

1 2.8111 33 2.7246 65 3.9029
2 14.2766 34 10.0923 66 13.5635
3 35.1082 35 22.0995 67 25.5668
4 57.5636 36 38.3283 68 50.4395
5 2.1835 37 2.8766 69 3.8639
6 14.2343 38 10.0681 70 14.4574
7 34.9832 39 22.2245 71 24.5376
8 57.7464 40 38.3365 72 50.4094
9 2.7859 41 2.8705 73 3.8226
10 14.2779 42 9.9959 74 14.2411
11 34.9496 43 22.1065 75 22.1805
12 57.6683 44 38.5269 76 38.5072
13 1.9340 45 2.8312 77 3.798
14 14.2321 46 10.0752 78 15.2572
15 35.0768 47 22.2045 79 22.1462
16 57.5987 48 38.2768 80 38.3806
17 2.6264 49 2.9267 81 3.9698
18 9.9816 50 10.1334 82 15.7151
19 32.3951 51 22.1987 83 21.7783
20 56.3074 52 38.4473 84 49.6063
21 2.0086 53 2.9201 85 3.6396
22 9.1953 54 10.9576 86 14.3437
23 32.4097 55 24.1782 87 21.8142
24 56.3160 56 41.8470 88 46.8633
25 2.5982 57 2.9546 89 3.8873
26 10.0796 58 10.0725 90 13.3905
27 30.4427 59 22.2389 91 28.6989
28 56.1995 60 42.4156 92 37.5725
29 2.0139 61 2.8656 93 3.8348
30 9.1941 62 10.9188 94 14.3181
31 30.3084 63 24.1562 95 21.6719
32 56.2212 64 38.3295 96 37.5524

Table C.5: Average CPU times for an iteration of the MLSP of the problem with
135 flights with exact approach.
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Expr. Dur.(sec.) Expr. Dur.(sec.) Expr. Dur.(sec.)

1 18.8067 33 14.8608 65 7.8868
2 23.5595 34 20.8847 66 7.4228
3 80.8032 35 53.9962 67 31.7985
4 103.1261 36 107.4165 68 57.2300
5 18.9888 37 16.1177 69 9.2281
6 26.1673 38 21.8188 70 7.7960
7 75.6085 39 43.2035 71 33.2951
8 106.0957 40 83.6464 72 59.3855
9 19.8812 41 16.8170 73 10.5955
10 39.0526 42 25.3543 74 11.1179
11 75.4415 43 49.3395 75 33.9240
12 103.5241 44 100.1905 76 53.4708
13 19.4990 45 16.8145 77 9.9758
14 25.5440 46 19.3994 78 9.8241
15 74.3716 47 47.1341 79 32.6268
16 106.0361 48 97.7682 80 52.5419
17 17.5215 49 14.2593 81 7.9605
18 32.2207 50 18.8840 82 7.8956
19 61.5537 51 39.1106 83 24.5742
20 111.0655 52 88.3243 84 64.5102
21 19.3048 53 14.0829 85 8.7389
22 26.1609 54 20.7240 86 8.8754
23 57.0818 55 37.2836 87 28.5209
24 110.8236 56 80.7565 88 56.8104
25 19.4797 57 15.0449 89 9.1821
26 19.2593 58 23.3089 90 9.3550
27 65.1964 59 41.6612 91 28.2162
28 120.7756 60 88.1923 92 51.6704
29 20.2400 61 15.5369 93 9.7226
30 26.6437 62 22.1568 94 12.3865
31 63.0516 63 38.5867 95 28.7575
32 117.4522 64 73.6799 96 48.4023

Table C.6: Average CPU times for an iteration of the MLSP of the problem with
135 flights with hybrid approach.
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Iteration Dur. (sec.) Method

1 0.282 Approximate
2-8 - Buffer
9 0.235 Approximate
10-11 - Buffer
12 0.406 Approximate
13 5.344 App + Exact
14-26 - Buffer
27 0.375 Approximate
28 - Buffer
29 10.416 App + Exact
30 10.437 App + Exact

Table C.7: The duration of each iteration of the problem with 135 flights in Exper-
iment 1 (exact method).

Iteration Comp. Time (sec.) Method Last Node *

1 0.25 Approximate -
2-8 - Buffer -
9 0.266 Approximate -
10-11 - Buffer -
12 0.375 Approximate -
13 0.907 App + Hybrid 8
14 1.219 App + Hybrid 17
15 8.265 App + Hybrid 167
16 11.234 App + Hybrid 167
17 - Buffer -
18 1.094 App + Hybrid 15
19 11.297 App + Hybrid 186
20 0.406 Approximate -
21-22 - Buffer -
23 12.124 App + Hybrid 191
24-25 - Buffer -
26 49.094 App + Hybrid 226
27 - Buffer -
28 49.656 App + Hybrid 226
29 49.156 App + Hybrid 227
30 50.125 App + Hybrid 227
31 50.454 App + Hybrid 227
32 141.797 App + Hybrid 264
33 164.094 App + Hybrid 271 (sink)
* : The topological order of the last node to which the exact rule is applied.

Table C.8: The duration of each iteration of the problem with 135 flights in Exper-
iment 1 (hybrid method).
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Figure C.1: Results associated with Table C.7.
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Figure C.2: Results associated with Table C.8.
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Figure C.3: Results associated with Experiment 89 (exact method).

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

Iterations

co
m

p.
tim

e(
se

co
nd

s)

 

 

Approximate
Approximate + Hybrid

Figure C.4: Results associated with Experiment 89 (hybrid method).
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