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Abstract

This paper presents an alternative characterization of internal Cournot
equilibrium based on the first-order conditions corresponding to profit
maximization over prices. This characterization is particularly useful
when the market is described in terms of demand functions (rather than
inverse-demand functions). A significant computational advantage is gained
in homogeneous good cases as demand functions need not be inverted
and simple first order conditions are obtained. In addition, this approach
mimics price setting behavior and thus suggests a price competition in-
terpretation of the Cournot game.
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1 Introduction

The usual approach to computing the Cournot equilibrium consists of determin-
ing inverse demand functions and expressing the profit functions of the firms
as a function of quantity choices. When a certain situation is modeled start-
ing with consumer choices, it is typical that the market is described with a
demand function, which needs to be inverted to find the Cournot equilibrium.
There are, however, cases of interest for which inverse demand functions cannot
be determined in an analytical form, and consequently, direct computation of
the Cournot equilibrium is not feasible. The sole purpose of this paper is to
point out that Cournot equilibrium can also be determined by using prices as
instruments to maximize profit functions. This approach obviates the need for
inverting demand functions while yielding a simpler system of equations com-
pared to the direct approach; thus, the proposed method is appealing whenever
the market is described in terms of demand functions.

In the case of purely differentiated goods, the equivalence of using quantities
or prices as maximizing instruments is clear, as can be seen in Vives (1985).
What is less appreciated is that, the equivalence also holds for the homogeneous
goods case, provided that there are no corner solutions in the maximization
problems. I will start with a simple example in order to demonstrate equivalence
of using prices as instruments.

Example 1. Consider the standard one-good, two-firm model with linear de-
mand, Q = 1− p, and constant marginal costs c1 and c2 for firms 1 and 2, both
less than 1. Let firm 1 maximize its profit function, π1 = (p − c1)q1, over p.
The first-order condition dπ1

dp = 0 yields,

q1 + (p− c1)
dq1

dp
= 0 (1)

Note that q1 = Q − q2. In the Cournot-Nash paradigm where quantities are
strategic variables, (1) defines best response function of Firm 1, given Firm 2’s
choice of quantity. Hence, q2 must be taken as fixed within (1), or dq2

dp = 0.1

Thus,dq1

dp = dQ
dp = −1. Together with the same for Firm 2, we have the following

two first order conditions,

q1 = p− c1 (2)
q2 = p− c2. (3)

Adding the two conditions above gives the standard Cournot equilibrium with
p = (1 + c1 + c2)/3.

1Admittedly, this is an abuse of notation, which is adopted to simplify exposition. To be
precise, p should be replaced with p1, a dummy variable referring to price set by Firm 1.
Then, any equilibrium requires that equality of both prices.
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The example above demonstrates computation of Cournot equilibrium thor-
ough maximization over prices. The following example shows why this approach
may be crucial for analysis.

Example 2. Consider a market with two firms and three homogeneous goods
with the following demand functions:

Q1 = (1− p1) (−p1 + p3)
Q2 = (1− p2) (−p2 + p3)
Q3 = 1 + p1 + p2 − 2 p3 + p3

2−p1
2−p2

2

2 ,

(4)

These demand functions cannot be inverted analytically, hence direct calculation
of the Cournot equilibrium is quite difficult. However, through maximization
over prices, immediate analytical solutions can be obtained.

Let me note that the demand functions in Example 2 arises where Good 3 is
a bundle of Good 1 and Good 2, and consumer valuations in unbundled goods
are are i.i.d. with uniform distribution over [0, 1]. This setup appears in a num-
ber of papers regarding strategic bundling behavior, such as Nalebuff (1999),
which assumes that one firm is a monopoly in both goods, but faces Bertrand
competition with a potential entrant in only one good. Indeed, Cournot equilib-
rium is markedly absent in this literature; models usually adopt markets with
differentiated products and consider Bertrand equilibrium, or assume absence
of strategic behavior in one of the goods.2

I will proceed by an informal proof of the proposed method, which is es-
sentially an alternative characterization of the Cournot equilibrium. Taking
example 2, suppose that there is a Cournot euilibrium where both firms pro-
duce all 3 goods. In equilibrium, neither firm has an incentive to deviate from
the equilibrium by changing the quantity of a single good. The direct method
proceeds by specifying these deviations one good at a time. However, it is
equally true that neither firm has an incentive to deviate by changing its out-
put of several goods at once. For example, increasing production of good 1 by
x and decreasing production of good 2 by 2x cannot be profitable if changing
the production of each good alone is not profitable. This observation relies on
the simple fact that all directional derivatives are zero at the optimum, and a
deviation involving multiple goods is a movement in an arbitrary direction.

Consequently, another set of first-order conditions may be written where
each equation considers a deviation with multiple goods and sets 3 directional
derivatives to zero. This is equivalent to the first-order conditions obtained
from the direct method, provided that the 3 directions are independent. In
particular, these directions may be chosen in such a manner that, as a firm

2For example, Carbajo, Meza & Seidmann (1990), Whinston (1990) and Martin (1999)
consider models where one firm is a monopolist in one of the goods. In Chen (1997), one of
the goods have a perfectly competitive market. Matutes & Regibeau (1992) and Anderson
& Leruth (1993) are among the few that consider duopolistic competition in two products.
Both of the latter employ Bertrand competition and assume that the goods are perfect com-
plements.The detailed analysis of the Cournot equilibria of this model is taken up in Orbay
& Orbay (2006).
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changes its output along each direction, only one market-clearing price changes
and all other prices remain constant. The original problem is thus converted
into one where market prices appear to be the strategic choice variables. That is,
each first-order condition is equivalent to requiring that a firm has no incentive
to change the market price of one good. The Cournot paradigm is preserved
since a firm can only change a price by changing its outputs, and the other firms’
quantities are taken to be fixed. The new set of first order conditions require
differentiation of the demand functions w.r.t. to prices only.

As can be deduced from the discussion above, maximization over prices
method can only be used if all directional derivatives are zero at the optimum.
A sufficient (but not necessary) condition to satisfy this requirement is that
profit functions are continuously differentiable and all firms produce strictly
positive amounts of each good.

Computational simplification suggested in the above discussion is achieved
only if every firm produces all the goods in equilibrium. For this reason, main
exposition is restricted to internal equilibria of the homogenous-good case in sec-
tion 2. Section 3 elaborates on the relationship between Bertrand and Cournot
equilibria in a differentiated good setting.

2 Cournot Equilibrium in Homogeneous Goods

2.1 Definitions and Notation

Consider a market where n firms produce m goods. Let Q ∈<m
+ be the total

quantities of m goods, and p ∈<m
+ denote the market prices for those goods.

The demand for the goods are given with the demand function

Q = f(p) (5)

where f : <m
+ → <m

+ is continuous and twice differentiable. The function
f is interpreted as the collection of demand functions for individual goods,
Qj = fj(p1, . . . , pm), where the subscripts refer to a particular good. The
firms compete in this market by choosing quantities supplied for each good. Let
Qi∈<m

+ denote the production choice (strategy) of firm i. Firm i maximizes its
profit function,

Πi(Qi,p) = pT ·Qi − ci(Qi). (6)

where ci(Qi : <m
+ → < represents total cost production and is continuously

differentiable. Assume that Πi, for all i, has appropriate concavity conditions
such that the first-order conditions are sufficient to determine the unique optima
of the n profit functions. Sufficient conditions are that pT ·f(p) is quasi-concave
and ci are convex, differentiable functions.3

Definition 1 The collection of outputs and market prices,
〈
Q1∗, . . . ,Qn∗,p∗

〉
is a Cournot equilibrium of the market if each firm’s output maximizes its profit

3For details regarding the existence and uniqueness of Cournot equilibrium see, for example,
Tirole (1988, p. 224) and the references therein.
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function given the outputs of the other firms and market clears, i.e.,

m∑

i=1

Qi = f(p)

This general definition of the Cournot equilibrium does not exclude the cases
where the profit is maximized at a boundary (such as, zero output of a good by
a firm) where a first-order condition is violated. For our purposes, we will adopt
the following definition in order to ensure the validity of the characterization by
first-order conditions.

Definition 2 A Cournot equilibrium is called an internal equilibrium if |Df(p∗)| 6=
0 and the first-order conditions for profit maximization is satisfied for all firms,
i.e.,

DQiΠi(Qi∗, f−1(
n∑

k=1

Qk∗)) = 0 i = 1, . . . , n (7)

where f−1 is the inverse-demand function.4

Note that, a necessary condition for the existence of the Cournot equilibrium
is that there must exist market clearing prices for the equilibrium quantities
supplied. From the implicit function theorem, such prices exist if and only if the
Jacobian determinant of the demand function f is non-zero at the equilibrium,
|Df(p∗)| 6= 0, which ensures that f−1(Q∗) exists.

2.2 Characterizing Internal Cournot Equilibrium via Prices

The following theorem shows that internal Cournot equilibrium can be charac-
terized through first-order conditions derived from maximization over prices.

Theorem 1
〈
Q1∗, . . . ,Qn∗,p∗

〉
is an internal Cournot equilibrium if and only

if |Df(p∗)| 6= 0 and satisfies,

DpΠi(Qi(p∗),p∗) = 0 i = 1, . . . , n (8)

where DQi(p∗) := Df(p∗).5

Proof. In an internal equilibrium the first-order conditions (7) must hold, which
can be written as

DQiΠi(Qi∗,p∗) + DpΠi(Qi∗,p∗)DQif−1(Q∗) = 0 i = 1, . . . , n.

4Throughout the paper, D is used as the differentiation operator. Hence, if g : <k → <l,
Dg(x) is the l×k Jacobian matrix of g at x. Furthermore, if y ∈<j , Dyg denotes the partial
differentiation matrix of g w.r.t. y, which has dimensions l× j.

5The assignment operator := should be read as ‘is defined to be’.
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Note that since DQiQ = Im (identity matrix), DQif−1(Q∗) = DQf−1(Q∗).
Furthermore, DQf−1(Q∗) = (Df(p∗))−1 from the implicit function theorem,
given that |Df(p∗)| 6= 0. Thus, post-multiplying above equalities with Df(p∗)
yields

DQiΠi(Qi∗,p∗)Df(p∗) + DpΠi(Qi∗,p∗) = 0 i = 1, . . . , n,

which is equivalent to (8) given that DpQi(p∗) is set to be Df(p∗).
The proof essentially shows the equivalence of the two maximization prob-

lems, maxqi
1,...,qi

m
Πi and maxp1,...,pm

Πi, when the demand functions are invert-
ible and the first-order conditions are satisfied at the optimum. The message of
this characterization is that an internal Cournot equilibrium can be computed
by letting the firms use market prices as if they are the strategic variables.

Cournot paradigm is preserved through the statement DpQi(p∗) := Df(p∗).
Given that f(p) =

∑n
k=1 Qk, this statement is equivalent to holding quantities

of all other firms constant. This does not apply to the Bertrand equilibrium;
indeed DpQi(p∗) is either zero or unbounded under price competition.

Corollary 2 Any solution to the following system of n×m equations,

(Qi)T = (pT −Dci(Qi))Df(p) i = 1, . . . , n (9)

is a Cournot equilibrium of the market provided that |Df(p)| 6= 0 at the solution.

Proof. From (6), DQiΠi(Qi,p) = pT −Dci(Qi) and DpΠi(Qi,p) = (Qi)T =
QTsi. Thus, the corollary follows from Theorem 1.

Using (9), the Cournot equilibrium of the market can be determined without
any need for inverting the demand functions, and may yield significant compu-
tational advantage as demonstrated below. For firm i and good j, (9) can be
written as,

qi
j = −

m∑

k=1

(
pk −Dqk

c(Qi)
)
Dpj fk(p), (10)

which is no more than equating marginal revenue and marginal loss of the market
prices.

The following well-known property, which follows immediately from Corol-
lary 2, demonstrates the simplicity of the first-order conditions in (9).

Corollary 3 In any internal Cournot equilibrium, Qi = Qj iff Dci(Qi) =
Dcj(Qj). Moreover, Dci(Qi) > Dcj(Qj) ⇒ Qi < Qj.

Example 2 revisited. I would like to demonstrate the computational simplic-
ity afforded by the proposed method through the mixed-bundling problem intro-
duced in Example 2 above. The demand functions are given in (4), but it should
be noted that these are subject to the constraints p1, p2 ∈ [0, 1], p1, p2 ≤ pb and
pb ≤ p1 + p2, as good 3 is a bundle of goods 1 and 2. In addition, assume that
both firms have zero marginal costs for simplicity.
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Let us start with the supposition that there is an internal Cournot equi-
librium. By Corollary 3, both firms have equal quantities of all goods, thus
Q1 = Q2 = Q/2. With zero marginal costs, (9) reduces to,

Qj/2 = −
3∑

k=1

pk
∂Qk

∂pj
j = 1, 2, 3 (11)

Computing (11) and simplifying yields the following equations:

(−3 + 5 p1) (p1 − p3) = 0 (12)
(−3 + 5 p2) (p2 − p3) = 0

2 + 6 p1 − 5 p1
2 + 6 p2 − 5 p2

2 − 12 p3 + 5 p3
2 = 0

The first two equations give p1 = p2 = 0.6. Solving the remaining equation
with these values yield p3 = (6− 2

√
2)/5. As these prices are feasible, this is a

Cournot equilibrium.6

The first-order conditions w.r.t. prices can be written for a firm only if that
firm is able to vary each price alone. In general, this requires that the firm
should be able to change its output of all the goods in the market; that is why
the restriction to internal equilibria is required. In a Cournot equilibrium that is
not internal, (9) would not be applicable as at least a firm will be constrained in
some manner. As an example, consider a model with two firms and two goods,
where firm 2 produces only good 2 as an a priori restriction. In this case, our
method is not applicable to firm 2, as this firm is not able to vary individual
prices by changing the output of one good only. However, for firm 1, first-order
conditions can still be derived from maximization over prices as in (10).

Remark 1. We have assumed that the profit functions have unique optima
in the results above. This, however, is not necessary for the characterization;
all we need is that the global maximum of the profit function corresponds to a
first-order condition. In practice, one needs to check the second-order conditions
to ensure that each first-order condition corresponds to a local maximum, as
well as checking for multiple local maxima.

3 Differentiated Goods: Bertrand vs. Cournot

As discussed above, Cournot paradigm is preserved by a specific setting of
DpQi(p∗) while maximization is carried over prices. In this section, the pur-
pose is to clarify the relationship between the Cournot and Bertrand equilibria.
However, differentiated goods setting is necessary for well-behaved Bertrand
equilibrium.

Suppose that there are m goods, with the demand function given in (5), and
m firms where firm i sells only good i. For simplicity of exposition, assume that

6There are three other feasible solutions to (12), however, the second-order conditions are
violated at these solutions.

6



the marginal costs for all goods are constant, denoted by ci for good i. Thus,
the profit function of firm i is given by,

Πi = (pi − ci)Qi. (13)

If the profit is maximized with respect to price, the first-order conditions are of
the form

Qi + (pi − ci)DpiQ
i = 0 (14)

where Qi = fi(p) due to the market-clearing condition.
We need the following notation in the statement of the following result: For

x ∈<m, let x−i∈<m−1 denote the vector obtained by deleting the ith row from
x. Thus, for firm i, p−i and f−i(p) denote the prices and quantities of other
firms’ goods.

Proposition 4 Suppose that both Bertrand and Cournot equilibria exist where
every firm produces a positive amount. Then, the solution to the following sys-
tem of first-order conditions,

Qi + (pi − ci)DpiQ
i = 0, i = 1, . . . , m,

yields, (i) the Bertrand equilibrium if

DpiQ
i := Dpifi(p),

and (ii) the Cournot equilibrium if

DpiQ
i := Dpifi(p)−Dp−ifi(p)

(
Dp−if−i(p)

)−1
Dpif−i(p).

Proof. The Bertrand case is true by definition. For the Cournot case, the
first-order conditions of the maximization problem w.r.t. quantities are

(pi − ci) + QiDQi pi = 0. (15)

Let J = Dpf(p); the existence of a Cournot equilibrium ensures that J−1

exists in the neighborhood of the equilibrium prices. From the implicit function
theorem, DQi pi is equal to J−1

ii , i.e., the ith element of the diagonal of the
matrix J−1. Let J−i be the matrix obtained by deleting ith row and ith column
of J . Furthermore, let Ai and Bi be the ith row and column, respectively, of J ,
with ith element removed. From matrix algebra, the elements on the diagonal
of the inverse of J can be written as,

J−1
ii =

(
Jii −AiJ

−1
−i Bi

)−1
.

Note that J−i = Dp−if−i(p), Ai = Dp−ifi(p) and Bi = Dpif−i(p). Hence,
post-multiplying (15) with

(
Jii −AiJ

−1
−i Bi

)
for each firm yields the first-order

conditions in the proposition.
This is a trivial proposition as the strategic variables in the Cournot game

are simply replaced with prices through a change of variables. The interesting
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part of this result is that it affords a price competition interpretation for the
Cournot game, reminiscent of Kreps & Scheinkman (1983). Note that, the total
derivative of the quantity with respect to the price can be written as,

Dpi
Qi = Dpi

fi(p) + Dp−i
fi(p)Dpi

p−i. (16)

In the Bertrand competition framework, one makes the usual Nash equilibrium
assumption that each firm sets its price assuming that its price does not effect the
other firms’ prices, i.e., Dpi

p−i = 0. Thus, one interpretation of the Cournot
case is that the firms drop this assumption and foresee that the other firms’
prices will be effected through the market clearing conditions when they set
their own price.

Quoting from Mas-Colell, Whinston & Green (1995),

After all, most firms seem to choose their prices, not their quan-
tities. For this reason, many economists have thought that the
Cournot model gives the right answer for the wrong reason. (p.
394)

Price competition interpretation of the Cournot game suggests that the reason
is, perhaps, not that wrong.

Remark 2. While the price approach to the Cournot equilibrium results in
significant computational advantage in the homogenous-good case, no advantage
is gained in the differentiated-goods case. From the proof, it is clear that the
computation required is equivalent to computing DQi pi for all firms.

Remark 3. It is straightforward to generalize Corollary 2 to cases interme-
diate to homogeneous and differentiated settings, where each firm produces a
subset of the goods. The general result is the same as part (ii) of proposition 4,
except that (i) the vectors p−i and f−i include only the goods that firm i does
not produce, and, (ii) pi and fi are replaced with price and quantity vectors
corresponding to the goods that firm i does produce.
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