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Abstract. Advances in the medical imaging technology has lead to an
exponential growth in the number of digital images that need to be
acquired, analyzed, classified, stored and retrieved in medical centers.
As a result, medical image classification and retrieval has recently gained
high interest in the scientific community. Despite several attempts, the
proposed solutions are still far from being sufficiently accurate for real-
life implementations.

In a previous work, performance of different feature types were inves-
tigated in a SVM-based learning framework for classification of X-Ray
images into classes corresponding to body parts and local binary pat-
terns were observed to outperform others. In this paper, we extend that
work by exploring the effect of attribute selection on the classification
performance. Our experiments show that principal component analysis
based attribute selection manifests prediction values that are compara-
ble to the baseline (all-features case) with considerably smaller subsets
of original features, inducing lower processing times and reduced storage
space.

1 Introduction

Storing, archiving and sharing patient information among medical centers has
become a crucial task for the medical field. Companies as well as governments are
now in anticipation of building Patient Centric IT systems such as that targeted
by the Ratu e-health project of Northern Finland3 that focus on building a large
national electronic patient records archive.

Digital medical images, such as standard radiographs (X-Ray) and computed
tomography (CT) images, represent a huge part of the data that need to be stored
in medical centers. Manual labeling of this data is not only time consuming, but
also error-prone due to inter/intra-observer variations. In order to realize an
accurate classification one needs to develop tools that allow high performance
automatic image annotation, i.e. labeling of a given image with some text or
code without any user interaction.

3 http://pre20090115.stm.fi/pr1105954774022/passthru.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/11741315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Several attempts in the field of medical images have been performed in the
past. For example, the WebMRIS system [1] aims at retrieving cervical spinal
X-Ray images, whereas the ASSERT system [2] focuses on retrieving CT images
of the lungs. While these efforts consider retrieving a specific body part only,
other initiatives have been taken in order to retrieve multiple body parts.

The ImageCLEF Medical Image Annotation task, run as part of the Cross-
Language Evaluation Forum (CLEF) campaign, is a yearly held medical im-
age annotation challenge for automatic classification of an X-Ray image archive
containing more than 10,000 images randomly taken from the medical routine.
The ImageCLEF Medical Annotation dataset contains images of different body
parts of people from different ages, of different genders, under varying viewing
angles and with or without pathologies. Depending on the year of the challenge,
participants are asked to automatically annotate these images according to clas-
sification labels that vary from 58 to 196.

A potent classification system requires the image data to be translated into a
more compact and more manageable representation containing only the relevant
features. Several feature representations have been investigated in the past for
such a classification task. Among others, image features, such as average value
over the complete image or its sub-regions [3] and color histograms [4], have
been investigated. Recently in [5], texture features such as local binary patterns
(LBP) [6] have been shown to outperform other types of low-level image features
in classification of X-Ray images. One drawback of the mentioned work is the
large number of features extracted, which may be problematic for the classifi-
cation step. Retaining only the relevant features by applying attribute selection
on local binary patterns, may lead to comparable classification accuracies with
smaller feature sets.

Motivated by the considerations above, in this paper we explore the effect of
principal component analysis based feature selection on the performance of local
binary patterns applied to the ImageCLEF-2009 Medical Annotation dataset.

The paper is organized as follows. Section 2 presents our feature extraction,
feature selection and classification steps in detail. Section 3, introduces the image
database and the experimental evaluation process performed. Next, in Section 4,
corresponding results are presented. Finally, Section 5 outlines our conclusion.

2 Method

In this work we utilize the image data from the ImageCLEF-2009 Medical Anno-
tation task for training and testing. 12677 fully classified and unbalanced X-Ray
images are available to train a classification system, which needs to be evaluated
using 2000 unlabeled images according to four different label sets including 58
to 196 distinct classes. Please note that, the data is unbalanced meaning some
classes have significantly larger share among data than others.



2.1 Feature Extraction

We extract spatially enhanced local binary patterns as features from each image
in the database. LBP [6] is a gray-scale invariant local texture descriptor with low
computational complexity. The LBP operator labels image pixels by thresholding
a neighborhood of each pixel with the center value and considering the results
as a binary number. The neighborhood is formed by a symmetric neighbor set of
P pixels on a circle of radius R. Formally, given a pixel at (xc,yc), the resulting
LBP code can be expressed in the decimal form as follows :

LBPP,R(xc, yc) =
P−1∑
n=0

s(in − ic)2n (1)

where n runs over the P neighbors of the central pixel, ic and in are the gray-
level values of the central pixel and the neighbor pixel, and s(x) is 1 if x ≥ 0 and
0 otherwise.

After labeling an image with a LBP operator, a histogram of the labeled
image fl(x, y) can be defined as

Hi =
∑
x,y

I(fl(x, y) = i), i = 0, . . . , L− 1 (2)

where L is the number of different labels produced by the LBP operator, and
I(A) is 1 if A is true and 0 otherwise.

The derived LBP histogram contains information about the distribution of
local micro-patterns, such as edges, spots and flat areas, over the image. Follow-
ing [6], not all LBP codes are informative, therefore we use the uniform version
of LBP and reduce the number of informative codes from 256 to 59 (58 informa-
tive bins + one bin for noisy patterns). Following [7], we divide the images into
4x4 non-overlapping sub-regions and concatenate the LBP histograms extracted
from each region into a single, spatially enhanced feature histogram (Figure 1).
This step aims at obtaining a more local description of the image.

Finally, we obtain a total of 944 features per image, which is a large number
for the classification step. Therefore, we apply principal component analysis
based feature selection.

2.2 Feature Selection: Principal Component Analysis

Principal component analysis (PCA, or Karhunen-Loev́e transform) [8] is a vec-
tor space transformation often used to reduce multidimensional datasets to lower
dimensions for analysis.

Given data X consisting of N samples, in PCA we first perform data normal-
ization by subtracting the mean vector m from the data. Then the covariance
matrix Σ of the normalized data (X −m) is computed.

m =
1
N

N∑

i=1

Xi (3)

Σ = (X −m)(X −m)T (4)



Fig. 1. The image is divided into 4x4 non-overlapping sub-regions from which LBP
histograms are extracted and concatenated into a single, spatially enhanced histogram.

Afterwards, the basis functions are obtained by solving the algebraic eigenvalue
problem

Λ = ΦT ΣΦ (5)

where Φ is the eigenvector matrix of Σ, and Λ is the corresponding diagonal
matrix of eigenvalues. Feature selection is then performed by keeping q (q < N)
orthonormal eigenvectors corresponding to the first q largest eigenvalues of the
covariance matrix. Here, q is empirically set such that total variance measured
from these eigenvalues correspond to a user-defined percentage.

2.3 Classification: Support Vector Machines

SVM [9] is a popular machine learning algorithm that provide good results for
general classification tasks in the computer vision and medical domains: e.g.
nine of the ten best models in ImageCLEFmed 2006 competition were based on
SVM [10]. In a nutshell, SVM maps data to a higher-dimensional space using
kernel functions and performs linear discrimination in that space by simultane-
ously minimizing the classification error and maximizing the geometric margin
between the classes.

Among all available kernel functions for data mapping in SVM, Gaussian
radial basis function (RBF) is the most popular choice, and therefore it is used
here.

RBF : K(xi,xj) = exp(−γ ‖ xi − xj ‖2), γ > 0 (6)

where γ is a parameter defined by the user. Besides γ, there exists an error
cost C that controls the trade-off between allowing training errors and forcing
rigid margins. An optimum C value creates a soft margin while permitting some
misclassifications. In this work we used LibSVM library (version 2.89) [11] for
SVM and empirically found its optimum parameters (γ and C) on the dataset.



Fig. 2. Distribution of the data labeled in 2005 (left) and 2008.

3 Experimental Setup

3.1 Image Data

The training database released for the ImageCLEF-2009 Medical Annotation
task includes 12677 fully classified (2D) radiographs that are categorized into 57
classes in 2005 and 196 classes in 2008. Their distribution with respect to these
classes is displayed in Figure 2.

3.2 Evaluation

In order to avoid domination of attributes with greater numeric ranges over small
ones, we linearly scale each feature to [-1,+1] range before presenting them to
the SVM.

We evaluate our SVM-based learning using 5-fold cross validation, where
the database is partitioned into five subsets. Each subset is used once for testing
while the rest are used for training, and the final result is assigned as the average
of the five validations. Note that for each validation all classes were equally
divided among the folds. We measure the overall classification performance using
accuracy, which is the number of correct predictions divided by the total number
of images.

4 Results

We compare our classification results of SVM with PCA-based feature selection
(referred to as SVMrbf+PCA in the Figures 3-4) with two reference approaches:
1)baseline (No PCA) that refers to the SVM classification with all available
features (PCA is not applied), and 2)random guess meaning the classifier puts
all the data to the class with the highest frequency.



Fig. 3. Effect of PCA on classification accuracy with LBP features and 2005 labels
used (57 classes).

Figure 3 shows the effect of PCA-based feature selection on the classifica-
tion accuracy of SVM for the data with 2005 labels (57 classes). Notice that
when all the LBP feature set is input to the SVM (baseline case), the overall
accuracy is measured as 88%, while random guess is at the level of 28%. On the
other hand, with attribute selection we reach accuracy levels (87,5%) compara-
ble to the baseline case with only about 150-200 features out of possible 944.
This leads to considerable reduction in prediction time as well as storage space.
This observation shows that although the used LBPu2 operator inherently dis-
cards non-informative patterns from the feature set, we can further refine these
attributes using PCA without degrading classification accuracy.

Figure 4 shows the effect of PCA-based feature selection on the classification
accuracy of SVM for the data with 2008 labels (196 classes). For this case,
baseline accuracy is measured as 83,4%, while random guess is at the level of
18%. Similar to the previous observations, performing feature selection with PCA
results in accuracy values (83%) comparable to the baseline with approximately
150-200 features.

In terms of computational expense (on a PC with 2.13GHz processor and
2GB RAM), the baseline approach exhibits 25.5min processing time with 151MB
storage space required for the cross-validation task. On the other hand, for the
proposed PCA-based approach these values are measured as 4.4min and 23MB,
respectively. In consequence, the proposed PCA-based approach provides an over
5-fold improvement in processing time and storage space requirements.



Fig. 4. Effect of PCA on classification accuracy with LBP features and 2008 labels
used (196 classes).

5 Conclusion

In this paper we have introduced a classification work with the aim of auto-
matically annotating X-Ray images. We have explored the effect of PCA-based
feature selection on the efficacy of recently popular and highly discriminative
local binary patterns within a SVM-based learning framework. Our experiments
on the ImageCLEF-2009 Medical Annotation database revealed that applying
attribute selection on local binary patterns provide comparable classification
accuracies with considerably smaller number of features, leading to reduced pro-
cessing time and storage space requirements.
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