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Abstract

L. Carlitz observed in 1953 that for any a ∈ F∗q, the transposition (0 a) can be

represented by the polynomial

pa(x) = −a2(((x− a)q−2 + a−1)q−2 − a)q−2

which shows that the group of permutation polynomials over Fq is generated by the

linear polynomials ax+ b, a, b ∈ Fq, a 6= 0, and xq−2.

Therefore any permutation polynomial over Fq can be represented as

Pn = (. . . ((a0x+ a1)q−2 + a2)q−2 . . .+ an)q−2 + an+1, for some n ≥ 0.

In this thesis we study the cycle structure of permutation polynomials Pn, and we

count the permutations Pn, n ≤ 3, with a full cycle. We present some constructions of

permutations of the form Pn with a full cycle for arbitrary n. These constructions are

based on the so called binary symplectic matrices.

The use of generalized Fibonacci sequences over Fq enables us to investigate a

particular subgroup of Sq, the group of permutations on Fq. In the last chapter we

present results on this special group of permutations.
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Tez Danışmanı: Prof. Dr. Alev Topuzoǧlu
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olmayan sözde rastgele sayı üreteçleri.

Özet

L. Carlitz (0 a) devriniminin

pa(x) = −a2(((x− a)q−2 + a−1)q−2 − a)q−2

polinomu tarafından temsil edilebileceğini, dolayısıyla Fq üzerindeki permütasyon poli-

nomlarının oluşturduğu grubun doğrusal polinomlar ax + b, a, b ∈ Fq, a 6= 0 ve xq−2

tarafından gerildiğini göstermiştir. O halde Fq üzerindeki herhangi bir permütasyon

polinomu en az bir n için

Pn(x) = (. . . ((a0x+ a1)q−2 + a2)q−2 . . .+ an)q−2 + an+1,

şeklinde yazılabilir.

Bu tezde, n ≤ 3 için Pn şeklindeki permütasyon polinomlarının çevrim yapısı ince-

lenmiş ve tam çevrime sahip olanların sayısıyla ilgili sonuçlar elde edilmiştir.

Herhangi bir n tek sayısı için, tam çevrime sahip Pn polinomlarının inşası için ikili

simetrik matrisleri kullanan metodlar geliştirilmiştir.

Fq üzerinde tanımlı genelleştirilmiş Fibonacci dizilerinin kullanımı permütasyon

polinomları grubunun belirli bir altgrubunu incelenmesine olanak sağlamıstır. Tezin

son bölümünde bu özel altgrupla ilgili sonuçlar verilmiştir.
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CHAPTER 1

INTRODUCTION

Throughout this thesis, Fq denotes the finite field with q = pr elements where p is

a prime, r ≥ 1 is an integer. A polynomial f(x) ∈ Fq[x] is called a permutation

polynomial if the polynomial function f : c 7→ f(c) from Fq into Fq is a bijection.

Permutation polynomial will be abbreviated as PP. We are concerned with the set of

all PPs over Fq, which is a group under composition and subsequent reduction modulo

xq−x. The group of PPs over Fq is isomorphic to Sq, the symmetric group on q letters.

PPs over finite fields have applications in many areas including cryptography, pseu-

dorandom number generation and combinatorics. Despite the recent progress on this

topic, there are still many open questions, see, for instance [23, 24, 34]. The following

problems have attracted particular attention:

• Finding new classes of PPs.

• Determining the cycle structure of classes of PPs.

• Enumeration of special classes of PPs.

This thesis addresses the last two questions.

1.1. Some Classes of Permutation Polynomials

In this section we will review some of the known classes of PPs over Fq.

Given an arbitrary polynomial f(x) ∈ Fq[x], it is a difficult task to determine

whether f(x) is a PP of Fq. A useful criterion for a polynomial being a PP was
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given in 1863 by Hermite [19] for prime fields, which was then generalized in 1897 by

Dickson [14] to arbitrary finite fields Fq.

Theorem 1.1.1 (Hermite’s Criterion)

A polynomial f(x) ∈ Fq[x] is a PP of Fq if and only if the following two conditions are

satisfied:

(i) f has exactly one root in Fq.

(ii) For each integer t with 1 ≤ t ≤ q − 2 and t 6≡ 0 mod p, the reduction of f(x)t

mod (xq − x) has degree ≤ q − 2.

See [26, Chapter 7] for the proof.

As a corollary of Hermite’s criterion, f(x) is not a PP if the degree of f(x) divides

q−1, which also implies that the maximal degree of a permutation polynomial modulo

xq − x is q − 2.

Let G be a finite abelian group. A character χ of G is a homomorphism from G

into the multiplicative group U of complex numbers with absolute value 1, i.e. it is a

mapping from G into U which satisfies χ(g1g2) = χ(g1)χ(g2) for all g1, g2 ∈ G.

For any finite field Fq, there are two classes of characters, additive characters which

are the characters of the additive group Fq of q elements and multiplicative characters

which are the characters of the multiplicative group F∗q of q− 1 elements. By using the

nontrivial additive characters, another criterion for identifying PPs can be given:

Theorem 1.1.2 The polynomial f(x) ∈ Fq[x] is a PP of Fq if and only if∑
c∈Fq

χ(f(c)) = 0

for every nontrivial additive character χ of Fq.

For a proof of the theorem see [26, Chapter 7].

Only a few good algorithms are known for testing whether a given polynomial is

a PP. In general, it is not easy to find new classes of PPs. We start by listing some

well-known classes of PPs:

(1) Linear Polynomials: Every linear polynomial ax + b ∈ Fq[x] , a 6= 0, is a PP

of Fq.
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(2) Monomials: The monomial xn permutes Fq if and only if gcd(n, q − 1) = 1.

(3) Dickson polynomials of the 1st kind: For a ∈ Fq, Dickson polynomials of

the 1st kind are defined by the formula

Dn(x, a) =

bn
2 c∑
j=0

n

n− j

(
n− j
j

)
(−a)jxn−2j. (1.1)

Obviously, deg(Dn(x, a)) = n and Dn(x, 0) is just the monomial xn. The Dickson

polynomial of the 1st kind Dn(x, a) with a ∈ F∗q is a PP of Fq if and only if

gcd(n, q2 − 1) = 1, see [25, Chapter 3] for a proof.

(4) Dickson polynomials of the 2nd kind: Dickson polynomials of the 2nd kind

En(x, a) with parameter a ∈ Fq are defined as

En(x, a) =

bn
2 c∑
j=0

(
n− j
j

)
(−a)jxn−2j. (1.2)

From (1.2), it is easy to see that deg(En(x, a)) = n and En(x, 0) = xn. It

was shown by Matthews [30] that the conditions n + 1 ≡ ±2 mod m for each

of the values m = p, (q − 1)/2, (q + 1)/2 are sufficient for En(x, 1) ∈ Fq[x] to

induce a permutation of Fq. Later, Cohen [10] proved that when q is a prime

these conditions are also necessary to conclude that En(x, 1) is a PP. Further

results about Dickson polynomials of the 2nd kind that are PPs can be found in

Coulter [12], Henderson and Matthews [17] and Henderson [18].

(5) Linearized Polynomials: Let Fqk be the extension field of Fq of degree k. The

linearized polynomial L(x) defined as

L(x) =
k−1∑
i=0

aix
qi ∈ Fqk [x]

is a PP of Fqk if and only if x = 0 is the only root in Fqk of L(x), i.e. the Fq-linear

operator induced by L(x) on Fqk is nonsingular. See [26, Chapter 7].

Some other classes can be found in [26], Chapter 7. For some recent constructions we

refer to the articles [2, 37, 38]
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1.2. On the Cycle Structure of Permutations

Among the classes of PPs defined in the last section, the cycle structures of (1), (2)

and partly of (3), (5) are known. We give the related results below. In the following,

Nk(f) is used to denote the number of cycles of length k of the permutation corre-

sponding to f ∈ Fq[x].

(1) For a linear permutation ax + b ∈ Fq[x], the cycle structure is as follows: If

a = 1, b ∈ F∗q then f(x) has pr−1 cycles of length p. If a 6= 1 and s is the order

of a in Fq, then the permutation corresponding to the polynomial f(x) = ax+ b

has a fixed point and q−1
s

cycles of length s.

(2) A monomial g(x) = xn which permutes Fq has a cycle of length m if and only

if q − 1 has a divisor t such that the order of n modulo t is equal to m. Then

Nm(g) satisfies

mNm(g) = gcd(q − 1, nm − 1)−
∑
i|m
i<m

iNi(g).

See Ahmad [1] or Lidl and Mullen [22] for the proof.

(3) For Dickson polynomials of the 1st kind (1.1) which permute Fq, the results about

the cycle structure in the cases a = 1 and −1 are stated in the following theorems

from [22].

Theorem 1.2.3 Dn(x, 1) ∈ Fq[x] has a cycle of length m if and only if q − 1 or

q + 1 has a divisor t such that nm ≡ ±1 mod t. Then Nm(Dn(x, 1)) satisfies

mNm(Dn(x, 1)) = [gcd(q + 1, nm + 1) + gcd(q − 1, nm + 1)

+ gcd(q + 1, nm − 1) + gcd(q − 1, nm − 1)]/2

− ε1 −
∑
i|m
i<m

iNi(Dn(x, 1))

where

ε1 =

 1 if p = 2 or p is odd and n is even,

2 if p is odd and n is odd.
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Theorem 1.2.4 Let νp(m) denote the largest power of p dividing m for m 6= 0

and set ν(0) = ∞. If n and q are odd then Dn(x,−1) ∈ Fq[x] has a cycle of

length m if and only if q− 1 or q + 1 has a divisor t such that nm ≡ 1 mod t or

2(nm + 1) ≡ 0 mod t. Then Nm(Dn(x,−1)) is given by

mNm(Dn(x,−1)) = [a1gcd(nm + 1, 2(q + 1)) + a2gcd(nm + 1, q − 1)

+ a3gcd((nm − 1)/2, q + 1) + gcd(nm − 1, q − 1)]/2

− ε−1 −
∑

i|m,i<m

iNi(Dn(x,−1))

where

a1 =

 1 if ν2(nm + 1) = ν2(q + 1),

0 otherwise,
a2 =

 1 if ν2(nm + 1) < ν2(q + 1),

0 otherwise,

a3 =

 1 if ν2(nm + 1) > ν2(q + 1),

0 otherwise,

ε−1 =

 2 if nm ≡ 1 mod 4 and q ≡ 1 mod 4,

0 otherwise.

See [22] for the proofs of these results.

(5) For the cycle structure of linearized polynomials over Fqk , the reader is referred

to [32] since the results are too technical to state here.

Cycle structure of PPs is of theoretical interest but it is also needed for certain

applications like generation of pseudorandom sequences.

Let ψ(x) ∈ Fq[x] be a polynomial of degree d ≥ 2. The sequence (un) defined by the

recurrence relation

un+1 = ψ(un), n ≥ 0, (1.3)

with some initial value u0 ∈ Fq is called a nonlinear congruential pseudorandom number

generator.

In the following, we present some nonlinear pseudorandom number generators that

have been considered in the literature. Note that when ψ(x) is a PP of Fq, the length
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of the cycle containing s0 in the cycle decomposition of ψ(x) is the period length of

the sequence (un) in (1.3) with the initial value u0.

First, we describe a popular pseudorandom number generator which is especially

used in cryptography.

The power generator over Fp is defined as

pn+1 = ψ(pn), n = 1, 2, · · · (1.4)

for an initial value p0 ∈ F∗p, where ψ is the monomial ψ(x) = xe ∈ Fp[x].

Clearly, the power generator (pn) becomes eventually periodic and it is purely periodic

when xe ∈ Fp[x] is a PP. Recall that ψ(x) = xe ∈ Fp[x] is a PP when gcd(e, p− 1) = 1.

In [33], Shallit and Vasiga, in [9], Chou and Shparlinski proved some results about the

preperiod, cycle length and their average values for the power generator. For further

results on the properties of the power generator we refer to Shparlinski, [34, p.353].

Another example of nonlinear pseudorandom number generators is obtained by

using a Dickson polynomial of the 1st kind De(x, 1) in (1.1), namely ψ(x) = De(x, 1) ∈

Fp[x]. Results on the quality of this generator with respect to applications in cryptology

can be found in [4].

The inversive pseudorandom number generator is defined as

sn+1 = ψ(sn) (1.5)

where ψ(x) = axq−2 + b, n ≥ 1, and a, b, s0 ∈ Fq with a 6= 0. The problem of con-

structing sequences (sn) defined by (1.5) with the maximum possible period was first

considered by Eichenauer and Lehn over the prime field Fp and in [15] it was shown that

if f(x) = x2−ax−b ∈ Fp[x] is a primitive polynomial over Fp then (sn) is a sequence of

period p. In [16], Flahive and Niederreiter extended the result of Eichenauer and Lehn,

by showing that (sn) is a sequence of period p if and only if for the roots α, β ∈ Fp2 of

f(x), p + 1 is the smallest integer such that (α
β
)p+1 = 1, i.e. p + 1 is the order of α

β
.

In [7], Chou proved the same statement for the sequences (sn) over an arbitrary finite

field Fq and in [8] he presented all possible period lengths for the inversive generator,

i.e. the cycle structure of the permutation associated to ψ(x) = axq−2 + b ∈ Fq[x].

Theorem 1.2.5 Let a, b ∈ Fq with ab 6= 0 and f(x) be the polynomial f(x) = x2 −

bx− a ∈ Fq[x].

6



(1) If the polynomial f(x) has a double root i.e. f(x) = (x − α)2 for some α ∈ Fq
then

(i) ψ(α) = α,

(ii) if α−1s0 ∈ Fp \{1} then sn = 0 for some n ≥ 0 and the period length of (sn)

is p− 1,

(iii) if α−1s0 ∈ Fq \ Fp then sn 6= 0 for any n ≥ 0 and the period length of (sn)

is p.

(2) Suppose that the polynomial f(x) has distinct roots in Fq2 i.e. f(x) = (x −

α)(x − β) for some α, β ∈ Fq2 and o(mf ) denotes the order of the polynomial

mf (x) = x2 + (b2/a+ 2)x+ 1 ∈ Fq[x].

(i) If f(s0) = 0, then ψ(s0) = s0,

(ii) if p is odd and o(mf ) is even then the period length of the sequence (sn) with

s0 = b/2 is o(mf )− 1 and sn = 0 for some n ≥ 0,

(iii) if both p and o(mf ) is odd then the period length of the sequence (sn) with

s0 = b/2 is o(mf ) and sn 6= 0 for any n ≥ 0,

(iv) if f(s0) 6= 0 and s0 6= b/2 whenever p 6= 2 and the order o(Mf ) of the

polynomial Mf (x) = x2 −
(

2 + b2+4a
f(s0)

)
x + 1 divides o(mf ), then sn = 0 for

some n ≥ 0 and the period length of the sequence (sn) is o(mf )− 1,

(v) if f(s0) 6= 0 and s0 6= b/2 whenever p 6= 2 and o(Mf ) does not divide o(mf ),

then sn 6= 0 for any n ≥ 0 and the period length of (sn) is o(mf ).

The inversive generator is known to behave well according to most of the quality

measures for randomness. These generators will be mentioned again in Chapter 2,

since they can be considered as a special case of the PPs, that we study in this thesis.

For a comprehensive survey on pseudorandom sequences and results about the related

randomness measures, see [36].

In this thesis, we present results on the cycle structure of another large class of

PPs and also give methods of constructing PPs over Fq with the largest possible cycle

length.
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1.3. Enumeration of Permutation Polynomials

It was mentioned in Section 1.1 that the enumeration of PPs with certain features

is of interest. In particular finding the number of PPs of a fixed degree is a long

standing open problem. Das [13], Konyagin and Pappalardi [20, 21], Malvenuto and

Pappalardi [28] dealt with this problem and obtained the results which support the

common belief that the vast majority of PPs are of degree q − 2. Das showed the

following result for the number of PPs of degree p− 2 over the prime field in [13].

Theorem 1.3.6 Let Np(p−2) be the number of PPs f(x) ∈ Fp[x] with f(0) = 0 having

degree p− 2. Then∣∣∣∣Np(p− 2)−
(

1− 1

p

)
(p− 1)!

∣∣∣∣ ≤ (1− 1

p

)√
1 + (p− 2)pp−1

p− 1
.

Let Nq,d be the number of PPs over Fq of degree < q − d − 1. Trivially, Nq(1) =

q(q − 1) and Nq(d) = 0 for d|q − 1. In [20], Konyagin and Pappalardi showed the

following bound for Nq,1.

Theorem 1.3.7 The number Nq,1 of PPs of degree < q − 2 satisfies

|Nq,1 − (q − 1)!| ≤
√

2e

π
qq/2.

Using the bound in Theorem 1.3.7, it is also possible to derive a bound for Np(p−2),∣∣∣∣Np(p− 2)− (1− 1

p
)(p− 1)!

∣∣∣∣ ≤
√

2e

π
p(p−2)/2

which is asymptotically better for a factor proportional to p1/2 than the bound in [13].

However Das also gives an algorithm to calculate the number of PPs of degree p− 2.

As a continuation of their work, in [21] Konyagin and Pappalardi gave the following

result.

Theorem 1.3.8 Let Nq(k1, . . . , kd) be the number of PPs over Fq for which the coef-

ficient of xki is zero for all 1 ≤ i ≤ d where 0 < k1 < . . . < kd ≤ q − 2. Then∣∣∣∣Nq(k1, . . . , kd)−
q!

qd

∣∣∣∣ <
(

1 +

√
1

e

)q

((q − k1 − 1))q /2.

8



Note that Nq,d = Nq(q − d− 1, . . . , q − 2) and the result above can be used to obtain

a bound for Nq,d.

In [29], Malvenuto and Pappalardi gave upper and lower bounds on the number

Nq,[k] of PPs over Fq of degree q − k with a k-cycle where 3 ≤ k ≤ 6.

Theorem 1.3.9 Let φ be the Euler φ-function. If q ≡ 1 mod k then

Nq,[k] ≥
φ(k)

k
q(q − 1).

If the characteristic p of Fq satisfies p > e(k−3)/e then

Nq,[k] ≤
(k − 1)!

k
q(q − 1).

The authors also gave the complete formula for Nq,[k] for the cases k = 4, 5 and partial

formulas for k = 6.

In the next chapter of this thesis, we introduce a class of PPs, determine their cycle

structure and present enumeration results for those with full cycle.

1.4. Generators for the Group of Permutation Polynomials of Fq

L. Carlitz observed in 1953 that any transposition (0 a) for a ∈ F∗q can be repre-

sented by the polynomial

pa(x) = −a2(((x− a)q−2 + a−1)q−2 − a)q−2, (1.6)

and hence Sq is generated by the linear polynomials ax + b for a, b ∈ Fq, a 6= 0 and

xq−2, see [6]. The result of Carlitz is the starting point for the work presented in this

thesis.

The following results also stem from the work of Carlitz:

Theorem 1.4.10 Let q > 2, c be a fixed primitive element of Fq and Aq denote the

alternating group on q letters.

(i) Sq can be generated by cx, x+ 1 and xq−2,
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(ii) Aq can be generated by its subgroups {a2x+ b|a ∈ F∗q, b ∈ Fq} and

{(xq−2 + a)q−2|a ∈ Fq},

(iii) Aq can be generated by c2x, x+ 1 and (xq−2 + 1)q−2.

For proofs of the results above see Theorem 7.19, Theorem 7.21 in [26].

In [35], Stafford showed under which conditions on k, the group generated by the

linear polynomials ax+ b, a ∈ F∗q, b ∈ Fq and the monomial xk where gcd(k, q−1) = 1

is Sq.

Theorem 1.4.11 Let 1 < k < q − 2 be an integer with gcd(k, q − 1) = 1. Define

Gk =< ax+ b, xk| a ∈ F∗q, b ∈ Fq > which is a subgroup of Sq.

(i) If p is odd and k is not a power of p, then Gk = Sq.

(ii) If p = 2 and k is not a power of 2, then Gk ⊇ Aq. Moreover, Gk = Sq if and only

if xk is an odd permutation.

This result specializes to the result of Carlitz when k = q − 2.

Motivated by the result of Carlitz, a particular representation of PPs will be intro-

duced in the next section.

1.5. Polynomials Pn(x)

By Carlitz’s observation mentioned in Section 1.4, it is seen that any PP can be

written as a composition of the polynomials of the form pa(x) with a ∈ F∗q given by

(1.6). Based on this result we define a class of PPs over Fq in a recursive way as

Pn(x) = (Pn−1(x))q−2 + an+1, for n ≥ 1 (1.7)

by setting P0(x) = a0x+a1 ∈ Fq[x] with a0 6= 0. Note that it is also possible to express

Pn(x) as follows:

Pn(x) = (. . . ((a0x+ a1)q−2 + a2)q−2 . . .+ an)q−2 + an+1, n ≥ 1, (1.8)
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where ai 6= 0, for i = 0, 2, . . . , n. Due to the result of Carlitz, any PP over Fq can

be expressed as a Pn(x) for some n ≥ 0. We write Pn(x) = P̄n(x) if an+1 6= 0 and

Pn(x) = Pn(x) if an+1 = 0, since it is more convenient to treat the cases an+1 = 0 and

an+1 6= 0 separately. For the polynomial

P̄n(x) = (. . . ((a0x+ a1)q−2 + a2)q−2 . . .+ an)q−2 + an+1,

we consider

(. . . ((a0x+ a1)−1 + a2)−1 . . .+ an)−1 + an+1,

i.e.

an+1 + 1/(an + 1/(. . .+ a2 + 1/(a0x+ a1) . . .)),

for which we can put

R̄n(x) =
αn+1x+ βn+1

αnx+ βn
, (1.9)

where

αk = akαk−1 + αk−2 and βk = akβk−1 + βk−2, (1.10)

for k ≥ 2 and α0 = 0, α1 = a0, β0 = 1, β1 = a1. We remark here that αk and βk cannot

both be zero.

For the polynomial Pn(x), the fractional expansion and the related nth convergent

Rn(x) = αn−1x+βn−1

αnx+βn
are obtained similarly.

We define the string On of poles as

On = {xi : xi =
−βi
αi

, i = 1, . . . , n} ⊂ P1(Fq) = Fq ∪ {∞}. (1.11)

We note that any three consecutive elements of On are distinct. In fact, if xk = xk+1

for some 1 ≤ k < n then −βk

αk
= −βk+1

αk+1
. Therefore

0 = αk+1βk − αkβk+1

= (−1)k(α1β0 − β1α0)

= (−1)ka0

and this contradicts to the assumption that a0 6= 0.

If xk−1 = xk+1 for some 1 < k < n then −βk−1

αk−1
= −βk+1

αk+1
= −ak+1αk+αk−1

ak+1βk+βk−1
. Therefore

ak+1αkβk−1 + αk−1βk−1 = ak+1αk−1βk + αk−1βk−1
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and

ak+1(αkβk−1 − βkαk−1) = 0.

Since ak+1 6= 0, αkβk−1 − βkαk−1 = 0 gives a contradiction by using the previous

paragraph.

For x ∈ Fq\On , Rn(x) = Pn(x) and R̄n(x) = P̄n(x) .

Related to the nth convergent R̄n(x), the function F̄n(x) is defined by

F̄n(x) =

 R̄n(x) for x 6= xn

αn+1/αn when x = xn ∈ Fq.

After defining the function Fn(x) in a similar way, we put Fn(x) = F̄n(x) if an+1 6= 0,

and Fn(x) = Fn(x) if an+1 = 0. SinceRn(x) never takes the value αn+1/αn, Fn becomes

a permutation of Fq. The next lemma describes the relation between the values of Pn
and Fn when the poles are distinct and are elements of Fq.

Lemma 1.5.12 If the poles x1, x2, . . . , xn are distinct and in Fq, then

Pn(xi) =

 Fn(xi−1) for 2 ≤ i ≤ n

Fn(xn) for i = 1

for all n ≥ 2. Therefore the permutation Pn = Pn(x) can be expressed as a product of

the n-cycle (Fn(xn−1) · · · Fn(x1) Fn(xn)) with the permutation Fn(x), i.e.

Pn(x) = (Fn(xn−1) · · · Fn(x1) Fn(xn))Fn(x), (1.12)

(multiplying in right-to-left order).

Proof : The lemma can easily be proved by induction. Note that

F2(x) =
a0(a2a3 + 1)x+ a1a2a3 + a1 + a3

a0a2x+ a1a2 + 1
.

Substituting x = x1, we have

F2(x1) = a3 and by definition, F2(x2) =
α3

α2

.

Recall that P1(x) = (a0x+ a1)q−2 + a2 and F1(x) = a0a2x+a1a2+1
a0x+a1

. P2(x) satisfies

P2(x1) = (P1(x1))q−2 + a3 = (F1(x1))q−2 + a3 =

(
α2

α1

)q−2

+ a3 =
α3

α2

= F2(x2)

12



and

P2(x2) = (P1(x2))q−2 + a3 = (F1(x2))q−2 + a3.

We have F1(x2) = 0 and hence the desired equality is obtained.

For the rest of the proof the values of Pn will be considered, the case of P̄n can be dealt

with similarly. Suppose we have Pn−1(xi) = Fn−1(xi−1) for 2 ≤ i ≤ n − 1. Then we

obtain

Pn(xi) = (Pn−1(xi) + an)q−2 = (Fn−1(xi−1) + an)q−2

=

(
αnxi−1 + βn

αn−1xi−1 + βn−1

)q−2

= Fn(xi−1)

for 2 ≤ i ≤ n− 1. We have Pn−1(xn) = Fn−1(xn) since all the poles in On are distinct,

the pole xn is not in On−1. For x = xn, we obtain

Pn(xn) = (Pn−1(xn) + an)q−2 = (Fn−1(xn) + an)q−2 = 0

=
αn−1xn−1 + βn−1

αnxn−1 + βn
= Fn(xn−1).

Finally, with the assumption that Pn−1(x1) = Fn−1(xn−1),

Pn(x1) = (Pn−1(x1) + an)q−2 = (Fn−1(xn−1) + an)q−2 =

(
αn−2

αn−1

+ an

)q−2

=
αn−1

αn
.

The equation (1.12) is immediate now, since Pn and Fn differ only at the poles. 2

We will use Lemma 1.5.12 and results on the cycle decomposition of Fn to obtain

the cycle decomposition of Pn. The cycle decomposition of Fn can be obtained from

the result of Chou on the inversive generator given in Theorem 1.2.5. Recall that

the inversive generator (sn) was defined in a recursive way by the polynomial ψ(x) =

axq−2 + b with an initial element s0 ∈ Fq. Note that, ψ(x) is P1(x) with a1 = 0.

Representation of PPs by polynomials of the form Pn(x) in (1.8) enables us to

introduce a new approach to the enumeration of PPs. In Chapter 2, we present some

enumeration results for the number of PPs of Fq of the form P1(x) with a given cycle

decomposition and also for the permutations P2(x) and P3(x) with full cycle.
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CHAPTER 2

CYCLE DECOMPOSITIONS OF P2(x) AND P3(x)

In this chapter, we give all the results about the cycle structure and the enumeration

of the permutations P2(x) and P3(x) with full cycle.

Recall that Pn(x) was introduced in (1.8) as

Pn(x) = (. . . ((a0x+ a1)q−2 + a2)q−2 . . .+ an)q−2 + an+1, n ≥ 1

where ai 6= 0 for all i = 0, 2, 3, · · · , n and Lemma 1.5.12 showed the close relation

between the values of Pn(x) and Fn(x).

In the following section, we first define permutations of Fq based on nonconstant ra-

tional transformations, then present the results about the cycle structure of these

permutations, which will be frequently used throughout this thesis.

2.1. Permutations defined by Rational Transformations and Their Cycle

Structure

Let

R(x) =
ax+ b

cx+ d
∈ Fq(x), c 6= 0, (2.1)

be a nonconstant rational transformation. As before we define the permutation of Fq
related to (2.1) as

F (x) =

 R(x) if x 6= −d
c
,

a
c

if x = −d
c
.

(2.2)
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In this section, the cycle structure of this particular permutation will be considered.

Let

A =

 a b

c d


denote the matrix in GL(2, q) associated with R(x) in (2.1) (and at the same time with

F (x) in (2.2)). The cycle decomposition of the permutation F is closely related to the

properties of the characteristic polynomial f(x) = x2 − tr(A)x+ det(A) of the matrix

A.

We define two sequences (An) and (Bn) over Fq recursively by using the matrix A, An+1

Bn+1

 = A

 An

Bn

 , A0 = s0, B0 = 1, (2.3)

for s0 ∈ Fq. Putting sn = F n(s0), n ≥ 0, we observe that sn = An/Bn if Bm 6= 0 for

0 ≤ m ≤ n, and sn = An+1/Bn+1 if Bm 6= 0 for 0 ≤ m ≤ n − 1 and Bn = 0. From

(2.3), it is easily seen that the sequences (An) and (Bn) satisfy

An+1 = aAn + bBn and Bn+1 = cAn + dBn (2.4)

for all n ≥ 1. Since c 6= 0, from the second equation in (2.4), we obtain

An =
Bn+1 − dBn

c
(2.5)

and
An
Bn

=
−d
c

+
Bn+1

cBn

.

Inserting (2.5) into the first equation of (2.4), a second order recurrence relation is

obtained for Bn,

Bn+2 = tr(A)Bn+1 − det(A)Bn

for n ≥ 0 with B0 = 1, B1 = cs0 + d. Note that the characteristic polynomial of

the recurrence relation (Bn) satisfies, is the same as the characteristic polynomial

f(x) = x2 − tr(A)x+ det(A) of the matrix A. Suppose that f(x) has roots α, β ∈ Fq2 .

Solving the recurrence relation for (Bn) yields

Bn =
αn+1 − βn+1 + (cs0 − a)(αn − βn)

α− β
(2.6)

and hence
An
Bn

= −d
c

+
αn+2 − βn+2 + (cs0 − a)(αn+1 − βn+1)

c[αn+1 − βn+1 + (cs0 − a)(αn − βn)]
(2.7)
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when Bn 6= 0 and α 6= β

Bn = ((n+ 1)α + (cs0 − a))αn−1 (2.8)

which yields
An
Bn

= −d
c

+
(n+ 2)α2 + (cs0 − a)(n+ 1)α

c[(n+ 1)α + (cs0 − a)n]
(2.9)

when α = β and Bn 6= 0.

The equations (2.7) and (2.9) above can also be expressed in the form

An
Bn

=
(αn+1 − βn+1)s0 − (αn − βn)(ds0 − b)
αn+1 − βn+1 + (αn − βn)(cs0 − a)

, (2.10)

An
Bn

=
(n+ 1)αs0 − n(ds0 − b)
(n+ 1)α + n(cs0 − a)

, (2.11)

which are sometimes more convenient to use in the following sections.

The result on the cycle decomposition of the permutation (2.2) is presented in

the next theorem. In the following, ord(z) denotes the order of an element z in the

multiplicative group of Fq2 . Concerning the cycle decomposition of permutations τ

of Fq, we use the following notation. Consider a permutation τ of Fq, which can be

expressed as a product of disjoint cycles (or which is of the type),

τ = τ
(1)
1 τ

(1)
2 . . . τ (1)

n1
τ

(2)
1 τ

(2)
2 . . . τ (2)

n2
. . . τ

(s)
1 τ

(s)
2 . . . τ (s)

ns
(2.12)

where each τ
(i)
j , 1 ≤ j ≤ ni, is a cycle of length li with l1 > l2 > . . . > ls ≥ 1 and

n1l1 +n2l2 + ...+nsls = q. The cycle decomposition of a permutation of the type (2.12)

will be denoted by

T (τ) = [n1 × l1, n2 × l2, . . . , ns × ls]

which means that in the cycle decomposition of τ there are n1 cycles of length `1, n2

cycles of length `2 and finally ns cycles of length `s.

Theorem 2.1.1 below, which we express in a slightly generalized form, is essentially

given in Theorem 1.2.5. The proof is presented here because it is a bit simpler than

that in [8].

Theorem 2.1.1 Let F be the permutation defined by (2.2), and let f(x) be the char-

acteristic polynomial of the matrix A associated with F . Let α, β ∈ Fq2 be the roots of

f(x).
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(i) Suppose f(x) is irreducible. If k = ord(α
β
) = q+1

t
, 1 ≤ t < q+1

2
, then

T (F ) = [(t− 1)× k, 1× (k − 1)].

In particular F is a full cycle if t = 1.

(ii) Suppose α, β ∈ Fq and α 6= β. If k = ord(α
β
) = q−1

t
, t ≥ 1, then

T (F ) = [(t− 1)× k, 1× (k − 1), 2× 1].

(iii) Suppose f(x) = (x− α)2, α ∈ F∗q = Fq \ {0}, then

T (F ) = [(pr−1 − 1)× p, 1× (p− 1), 1× 1].

Proof : We put sn = F n(s0) for s0 ∈ Fq. A fixed point s0 ∈ Fq of F (x), yields a

cycle of length one. The equation s0 = F (s0) = (as0 + b)/(cs0 + d), or equivalently

cs2
0 + (d − a)s0 − b = 0 has two distinct solutions in Fq if the discriminant D =

a2 − 2ad + d2 + 4bc is a nonzero square in Fq. If D = 0 there is only one solution

and no solution if D is a nonsquare in Fq. The term D is also the discriminant of the

characteristic polynomial f(x) = x2− tr(A)x+ det(A) of the matrix A hence there are

two cycles of length one if f(x) has two distinct roots in Fq, a cycle of length one if

f(x) has a double root, and none if f(x) is irreducible.

For α 6= β and s0 = a/c, we have Bn = αn+1−βn+1

α−β and equation (2.7) implies

An
Bn

= −d
c

+
αn+2 − βn+2

c(αn+1 − βn+1)
· (2.13)

If ord(α/β) = k, then n = k−1 is the smallest integer such that Bn = 0. Using (2.13),

we have sk−2 = −d/c and hence sk−1 = F (−d/c) = a/c = s0. Therefore the cycle

containing s0 = a/c is of length k − 1.

If s0 is not in the cycle containing a/c and hence −d/c, then from (2.10) it is easily

seen that Bn 6= 0 and sn = An/Bn for all n ≥ 0. In order to determine the length of

such a cycle, we put An/Bn = s0 in (2.7) and, obtain the condition

(as0 + b)(αn − βn) = s0(cs0 + d)(αn − βn).

Therefore we have n ≡ 0 mod k and thus the cycle has length k, or as0 +b = s0(cs0 +d)

and s0 is a fixed point of F (x). This completes the proof of (i) and (ii).
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In case α = β and s0 = a/c, (2.9) yields

An
Bn

= −d
c

+
n+ 2

c(n+ 1)
α. (2.14)

From (2.14), it is easy to see that the smallest integer satisfying sn = −d/c is n = p−2

and with a similar argument used for the previous case one can also see that the cycle

containing s0 = a/c is of length p− 1. The only fixed point of F is s0 = (a− d)/(2c).

This completes the proof for the case of a prime field. For q = pr, r > 1, suppose that

s0 is not in the cycle of a/c and it is not the fixed point (a − d)/(2c). Then we have

sn = An/Bn for all n ≥ 0, and by setting An/Bn = s0 in (2.9) we get

(as0 + b)n = s0(cs0 + d)n⇒ n(cs2
0 + (d− a)s0 − b) = 0

and since s0 is not the fixed point of F (x), we obtain n ≡ 0 mod p. 2

Remark 2.1.1 The rational function R(x) with a = a2, b = a−1
0 , c = 1, d = 0, gives

rise to the permutation F (x) which coincides with P1(x) = P̄1(x) = a0x
q−2 + a2.

In [8] Chou focuses on this particular permutation which was introduced in Section 1.2.

Theorem 2.1.1 gives the cycle structure of the polynomials P̄1(x) = (a0x + a1)q−2 + a2

and P1(x) = (a0x+ a1)q−2 for arbitrary values of a0, a1, a2.

The following lemma is an enumeration result on the permutations F of the type (2.2).

For the rest of the thesis φ denotes the Euler φ-function.

Lemma 2.1.2 Let k > 1 be a divisor of either q + 1 or q − 1. The number of monic

quadratic polynomials f(x) = x2 − Tx + D ∈ Fq[x] with two distinct roots α, β ∈ Fq2

and ord(α/β) = k is given by φ(k)
2

(q − 1).

Proof :

We have to distinguish two cases. If f(x) is reducible, then first we choose an

element δ ∈ F∗q of order k|q − 1. There are φ(k) such elements. Then we choose an

arbitrary element β ∈ F∗q and set α = δβ. The polynomial f(x) = (x− α)(x− β) ∈ Fq
will then have the required properties and the number of these polynomials is φ(k)

2
(q−1).

The number of irreducible polynomials g(x) = x2 + Cx + 1 ∈ Fq[x] of order k

is known to be φ(k)/2, see [26, Theorem 3.5]. Suppose g(δ) = 0. The polynomials

f(x) = x2 − Tx + D = (x − α)(x − β) ∈ Fq[x] with (T 2/D) − 2 = C are exactly the

polynomials that satisfy α/β = δ (see [7, Theorem 3]). Since C 6= −2, the parameter

T can be chosen in q − 1 different ways and then D is uniquely determined. 2
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Theorem 2.1.3 Let F and k be as in Theorem 2.1.1. Suppose q ≥ 5. The number of

distinct permutations F with the given cycle decomposition is equal to φ(k) q−1
2
q in the

cases (i) and (ii) of Theorem 2.1.1, and is equal to (q − 1)q in the case (iii).

Proof :

Without loss of generality we can assume that c = 1. Note that the matrix A,

with fixed characteristic polynomial f(x) = x2 − (a+ d)x+ (ad− b), is then uniquely

determined by the element a ∈ Fq. The number of permutations with the given cycle

decomposition is the product of the number of polynomials f(x) with the number of

choices for a ∈ Fq. If f(x) has distinct roots, then by Lemma 2.1.2, there are φ(k) q−1
2

choices for the polynomial f(x) where k|q + 1 or k|q − 1 according to whether f(x) is

irreducible or reducible. Once the characteristic polynomial f(x) is fixed, there are q

possible choices for a.

The formula for the case (iii) immediately follows from the fact that there are q − 1

polynomials of the form f(x) = (x− α)2, α ∈ F∗q and q choices for a ∈ Fq. 2

Theorem 2.1.1 plays an important role in our study of the cycle structure of Pn,

n ≥ 2. For n ≥ 1, the rational transformation R̄n(x) in (1.9) is of the form R(x) in

(2.1) and hence one can associate to it the characteristic polynomial

f̄(x) = f̄(n, x) = x2 − (αn+1 + βn)x+ αn+1βn − βn+1αn, (2.15)

with αk, βk, k ≥ 1, as in (1.10). Then the cycle decomposition of F̄n(x) follows by

Theorem 2.1.1 and one can determine the cycle structure of P̄n by the use of Lemma

1.5.12 together with the positioning of the poles x1, . . . , xn in the cycles of F̄n. The

same method also works for Pn(x) with

f(x) = f(n, x) = x2 − (αn−1 + βn)x+ αn−1βn − αnβn−1. (2.16)

2.2. Cycle Structure of P2(x)

In this section the cycle structure of the permutation

P2(x) = ((a0x+ a1)q−2 + a2)q−2 + a3, a0a2 6= 0
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will be studied. Using the notation of (1.11), we have the poles x1 = −a1

a0
, x2 = −a1a2+1

a0a2

such that x1, x2 6=∞ and the corresponding rational function becomes

R2(x) =
a0(a2a3 + 1)x+ a1(a2a3 + 1) + a3

a0a2x+ a1a2 + 1
. (2.17)

By (1.12), we have

P2(x) = (F2(x1) F2(x2))F2(x) (2.18)

with F2(x) = R2(x) if x 6= x2 and F2(x2) = (a2a3+1)/a2. The associated characteristic

polynomial becomes

f̄(x) = x2 − (a0(a2a3 + 1) + a1a2 + 1)x+ a0. (2.19)

In the following, C(τ, x) is used to refer to the cycle of the permutation τ ∈ Sq which

contains x ∈ Fq and `(τ, x) denotes the length of C(τ, x). We make the convention that

when we write y = τn(x), the exponent n is chosen to be minimal.

Lemma 2.2.4 Let F be a permutation of Fq, u, v ∈ Fq and P = (u v)F where multi-

plication is performed from right to left.

(a) If u = F n(v) and `(F, v) = l, then u /∈ C(P, v), `(P, v) = n and `(P, u) = l − n.

(b) If u /∈ C(F, v), `(F, u) = k and `(F, v) = l, then u ∈ C(P, v) and `(P, v) = k + l.

Proof :

(a) Let t0 = v and tj = P j(t0). Then tn = v, tj 6= v for 0 < j < n and `(P, v) = n.

Hence tj 6= u for all j ≥ 0, i.e. u /∈ C(P, v). Let s0 = u and sj = P j(s0). Then

sl−n = u and sj 6= u, 0 < j < l − n. Consequently, `(P, u) = l − n.

(b) Let t0 = v and tj = P j(t0), then we have tl = u, tk+l = v and tj 6= v for

0 < j < k + l.

2

First we consider the case where the polynomial in (2.19) has two distinct roots

α, β.

Lemma 2.2.5 Suppose f̄ in (2.19) has two distinct roots α, β ∈ Fq2 satisfying ord(α
β
) =

k. Let γ0 = (β − 1)/(α− 1) ∈ P1(Fq2).
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(a) x1 ∈ C(F2, x2) if and only if γk0 = 1.

(b) When (2.19) is reducible, the pole x1 is a fixed point of F2 if and only if a3 =

−a1/a0.

Proof :

(a) From the proof of Theorem 2.1.1, we see that the cycle which contains a2a3+1
a2

is

of length k − 1, and (2.10) implies that sn = Fn2 (s0) with s0 = a2a3+1
a2

satisfies

sn =
a2a3 + 1

a2

− αn − βn

a2(αn+1 − βn+1)
, 0 ≤ n ≤ k − 2,

where sk−2 = x2. Since F2(x1) = a3, x1 ∈ C(F2, x2) if and only if

a3 = F2(x1) = sn =
a2a3 + 1

a2

− αn − βn

a2(αn+1 − βn+1)
(2.20)

for some 0 ≤ n ≤ k − 2. Equation (2.20) is equivalent to αn(α− 1) = βn(β − 1)

and α 6= 1, which is equivalent to (α
β
)n = γ0. Consequently, x1 ∈ C(F2, x2) if

and only if γ0 ∈ 〈αβ 〉, or γk0 = 1. We remark here that γ0 = (α
β
)n holds for some

n ≤ k − 2, and not for n = k − 1, since (α
β
)k−1 = β

α
.

(b) The second assertion follows immediately by equating x1 = −a1

a0
and F2(x1) = a3.

2

The length `i of a cycle τ
(i)
j in (2.12) depends on the values of some parameters in

some cases below and hence the ordering of the `i’s varies. The notation T (τ) is used

when the ordering `1 > . . . > `s does not necessarily hold.

Theorem 2.2.6 Suppose that the polynomial f̄ in (2.19) has two distinct roots α, β ∈

Fq2 satisfying ord(α
β
) = k. Let k = q+1

t
, 1 ≤ t < (q + 1)/2, when f̄(x) is irreducible

and k = q−1
t

, 1 ≤ t ≤ (q − 1)/2, for α, β ∈ Fq. Put γ0 = (β − 1)/(α− 1) ∈ P1(Fq2).

1. If γk0 6= 1 and f̄(x) is irreducible, then T (P2) = [1 × (2k − 1), (t − 2) × k]. In

particular P2 is a full cycle if k = (q + 1)/2.

2. If γk0 6= 1 and f̄(x) is reducible, then

(a) T (P2) = [1× (2k − 1), (t− 2)× k, 2× 1], when a3 6= −a1/a0,

(b) T (P2) = [t× k, 1× 1], when a3 = −a1/a0.
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3. If γk0 = 1 and f̄(x) is irreducible, then T (P2) = [(t− 1)×k, 1×n, 1× (k−n− 1)]

for some integer 1 ≤ n ≤ k − 2.

4. If γk0 = 1 and f̄(x) is reducible, then T (P2) = [(t−1)×k, 1×n, 1×(k−n−1), 2×1]

for some integer 1 ≤ n ≤ k − 2.

Proof : Equation (2.18) implies that the cycle decomposition of P2(x) is the same

as the cycle decomposition of F2(x) given in Theorem 2.1.1, except for the cycles

containing x1, x2.

Recall that x2 is in the unique cycle of F2 of length k − 1. Therefore, the cycle

decomposition of P2(x) is obtained by Lemma 2.2.4 if we know the location of x1 in

the cycle decomposition of F2(x). The condition for x1 to be in the cycle of length

k − 1 is given by Lemma 2.2.5(a) when f̄(x) is reducible, F2 has two fixed points and

Lemma 2.2.5(b) gives the condition for x1 to be one. The claim for all possible cases

then follows immediately. 2

Remark 2.2.2 The exact cycle decomposition of P2(x), in the cases (3) and (4) of

Theorem 2.2.6 is determined by the smallest integer n for which (α/β)n = γ0 is satisfied.

Hence one encounters the problem of evaluating a discrete logarithm.

Theorem 2.2.7 Suppose that the polynomial f̄(x) in (2.19) has a double root α 6= 0.

1. If α = 1, then a0 = 1, a3 = −a1/a0 and T (P2) = [pr−1 × p ]. In particular, if

r = 1, then P2 is a full cycle of length q = p.

2. If α ∈ Fp \ {1}, then T (P2) = [(pr−1 − 1)× p, 1× n, 1× p− n− 1, 1× 1], where

n = α/(1− α).

3. If r > 1 and α ∈ Fq \ Fp, then T (P2) = [1× (2p− 1), (pr−1 − 2)× p, 1× 1].

Proof : (1) If f̄(x) = (x−1)2, from (2.19), it is easily seen that a0 = 1 and a3 = −a1/a0.

Thus x1 is a fixed point of F2 by Lemma 2.2.5(b). The assertion follows by Theorem

2.1.1 and Lemma 2.2.4.

(2) If x1 ∈ C(F2, x2) then by Theorem 2.1.1 and Lemma 2.2.4, the claimed cycle

decomposition is obtained. Hence F2(x1) = a3 and F2(x2) = (a2a3 + 1)/a2 are in the

same cycle. Thus s0 = F2(x2) would yield F2(x1) = sn for some n ≥ 1. Therefore
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(2.14) gives the condition

a3 =
a2a3 + 1

a2

− n

a2(n+ 1)α
or equivalently α =

n

n+ 1

for some 0 ≤ n ≤ p− 2. Hence x1, x2 are in the same cycle if and only if α ∈ Fp \ {1}.

Therefore the cycle decomposition above follows with n = α/(1− α).

(3) By using Theorem 2.1.1 and its proof, it is easy to see that in the cycle decom-

position of F2, the possible cycle lengths are p, p − 1, 1, and `(F2, x1) = p if and only

if x1 /∈ C(F2, x2) and x1 is not a fixed point. From the proofs of (1), (2), one can see

that this is equivalent to α ∈ Fq \ Fp. In this case, Lemma 2.2.4(b) implies that the

cycle of length p− 1 (containing x2) and the cycle of length p, which contains x1, join

up to form a cycle of length 2p− 1. 2

2.3. Enumeration of PPs of the Form P2(x) with Full Cycle

The connection between the permutations Pn and Fn brings up the question of

whether or not a one-to-one correspondence can be formed between the set of permu-

tations Pn and specific subsets of the set SR of all formal expressions SR = {R(x) =

(ax+ b)/(cx+ d) : (a, b, c, d) ∈ F4
q}.

As expected, there is a one-to-one correspondence only if n is small, namely for

P1, P2, and P3. In the case of P1(x) = (a0x + a1)q−2 = F1(x) , one needs to consider

the subset S(1)
R = {1/(a0x + a1) : a0 6= 0, a1 ∈ Fq}. The identification a = 1/a2, b =

a1/(a0a2), d = (a1a2 + 1)/(a0a2) describes a one-to-one correspondence between the set

of permutations of the form P2 and the set of rational transformations (ax+ b)/(x+d)

with a 6= 0. The permutation P2 is then given by P2(x) = ((a0x + a1)q−2 + a2)q−2 =

(a 0)ax+b
x+d

, where a, b, d are defined as above.

Proposition 2.3.8 Let q > 5. There is a one-to-one correspondence between the set

of permutations of the form P̄2 and the set of the formal expressions (ax+ b)/(cx+ d)

with c 6= 0, ad− bc 6= 0 and a− ad+ bc 6= 0.
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Proof :

Equating (2.17) with the formal expression ax+b
cx+d

, we obtain

a = a0(a2a3 + 1), b = a1(a2a3 + 1) + a3, c = a0a2, d = a1a2 + 1.

Then it follows immediately that c = a0a2 6= 0, a − (ad − bc) = a0a2a3 6= 0, and

ad − bc = a0 6= 0. For given a, b, c, d satisfying the above conditions, one gets the

unique solution of the above system of equations as

a0 = −D, a1 =
(1− d)D

c
, a2 = − c

D
and a3 =

a−D
c

,

with D = ad − bc. Consider the set ∆ = {(a, b, c, d) ∈ F4
q | c 6= 0, ad − bc 6= 0, a −

(ad − bc) 6= 0}. The cardinality of ∆ and the set of all possible expressions for P̄2 is

q(q − 1)3.

Now that a one-to-one correspondence is established between the set S(2)

R̄
= {R(x) =

(ax + b)/(cx + d) : (a, b, c, d) ∈ ∆}, and the set SP̄2
= {(((a0x + a1)q−2 + a2)q−2 + a3 :

a0a2a3 6= 0}, it remains to show that two elements P̄2(x) = ((a0x+a1)q−2 +a2)q−2 +a3

and P̄ ′2(x) = ((a′0x+a′1)q−2 +a′2)q−2 +a′3 of SP̄2
induce the same permutation if and only

if ai = a′i for i = 0, 1, 2, 3. Clearly, if P̄2 and P̄ ′2 correspond to rational transformations

R̄2 6= R̄′2 and q > 5, then the permutations are different. Now suppose that P̄2, P̄ ′2

are mapped to the same rational function (but distinct elements of S(2)

R̄
), i.e. R̄2 =

(ax+ b)/(cx+ d) and R̄′2 = (εax+ εb)/(εcx+ εd), ε 6= 1, by the injection above. Then

the corresponding poles are given by x1 = −a1/a0 = 1−d
c
, x′1 = −a′1/a′0 = 1−εd

εc
and

x2 = x′2 = −b/a. Hence by (2.18), P̄2 and P̄ ′2 induce different permutations.

2

The following corollary is an easy consequence of Theorem 2.1.1

Corollary 2.3.9 The permutation P2 is a full cycle if and only if

(1) (i) the polynomial f(x) in (2.19) is irreducible,

(ii) the roots α, β ∈ Fq2 of f(x) satisfy ord(α/β) = (q + 1)/2,

(iii) γ0 = (β − 1)/(α− 1) satisfies γ
(q+1)/2
0 6= 1, or

(2) Fq is a prime field and f(x) = (x− 1)2 (then a0 = 1, a3 = −a1).
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Proof : In case of (1), Theorem 2.1.1 implies that F2 is composed of two cycles C1, C2

of lengths (q + 1)/2 and (q − 1)/2, respectively. The pole x2 lies in the cycle C2. The

parameter γ0 introduced in Lemma 2.2.5 is related to the distribution of the poles,

more precisely, x1 ∈ C2 also if and only if γ
(q+1)/2
0 = 1. Hence by the condition (1-iii)

and Lemma 2.2.5(a) x1 ∈ C1, x2 ∈ C2 and (2.18) implies that C1, C2 join together to

yield a full cycle.

For the case (2), Theorem 2.1.1 (iii) implies that F2 is composed of a fixed point

and a cycle of length p − 1 which contains x2. Since a0 = 1, a3 = −a1, we have x1 as

the fixed point by Lemma 2.2.5(b) and (2.18) implies that the two cycles join up to

give P2, which is a cycle of length p. 2

Lemma 2.3.10 Suppose f(x) = x2 − Tx + D ∈ Fq[x] is irreducible with roots α, β ∈

Fq2, and let γ0 = (β − 1)/(α− 1). Then

(i) ord(γ0) divides q + 1,

(ii) γ0 6= 1 and γ0 6= β/α.

Proof : (i) With β = αq and the observation that

γq+1
0 =

(
β − 1

α− 1

)q+1

=

(
βq − 1

αq − 1

)(
β − 1

α− 1

)
= 1,

assertion (i) follows.

(ii) Easily follows from the assumption α 6= β. 2

Theorem 2.3.11 Let q > 5. The number of distinct permutations of the form P2(x) =

((a0x+ a1)q−2 + a2)q−2 + a3 ∈ Fq[x] with full cycle is

1
4
φ( q+1

2
)(q + 1)q(q − 1) when q = pr for a prime p with r > 1, and

1
4
φ(p+1

2
)(p+ 1)p(p− 1) + p(p− 1) when q = p is prime.

Proof : We first count those P2 which satisfy condition (1) of Proposition 2.3.9.

We fix a polynomial g(x) = (x − δ)(x − δ−1) with ord(δ) = (q + 1)/2. Among the

q − 1 polynomials fi(x) = x2 − Tix + Di = (x − αi)(x − βi), i = 1, . . . , q − 1 with

αi/βi = δ (see the proof of Lemma 2.1.2), we need to count the ones, which satisfy

ord( βi−1
αi−1

) - (q + 1)/2.

We put γ0(i) = βi−1
αi−1

and show that γ0(i) 6= γ0(j) for i 6= j. If γ0(i) = γ0(j), then

αjβi − αj − βi = αiβj − αi − βj. Multiplying both sides by δ = αi/βi = αj/βj yields

25



αiδ + αj = αjδ + αi which is equivalent to αi(δ − 1) = αj(δ − 1). Hence we have

αi = αj and therefore βi = βj, i.e. i = j. Consequently, the sets Γ̃ = {γ0(i), i =

1, . . . , q − 1} and Γ = {η ∈ Fq2 : ηq+1 = 1, η 6= 1, η 6= δ−1} are the same by Lemma

2.3.10. The cardinality of the set Γ0 = {η ∈ Γ : ord(η)|(q + 1)/2} is easily seen to be

(q + 1)/2− 2 and hence |Γ \ Γ0| = (q + 1)/2. Therefore, exactly (q + 1)/2 polynomials

in {fi(x), i = 1, . . . , q − 1} satisfy ord(αi/βi) = ord(δ) = (q + 1)/2 and γ
(q+1)/2
0(i) 6= 1.

Given such a polynomial fi(x) = x2 − Tix+Di, the coefficient a0 in (2.19) is uniquely

determined by a0 = Di, we have q choices for a1 ∈ Fq and q − 1 choices for a2 ∈ F∗q.

The coefficient a3 is then uniquely determined by T = a0(a2a3 + 1) + a1a2 + 1. Since

we have φ((q+1)/2)
2

distinct choices for the polynomial g(x), we obtain
φ( q+1

2
)

2
q+1

2
q(q− 1)

for the total number of permutations P2(x) with full cycle in case q = pr, r > 1. (Note

that here we use the one-to-one correspondence between the parameters (a0, a1, a2, a3)

describing P2 and permutations induced by them).

For the case that Fq = Fp is a prime field we additionally obtain permutations P2

with a full cycle if f(x) = (x− 1)2. As can be seen easily we then have

P2(x) = ((x+ a1)p−2 + a2)p−2 − a1

for some arbitrary a1 ∈ Fq and a2 ∈ F∗q. 2

2.4. Cycle Structure of P3(x)

In this section we determine the cycle structure of the permutations of the form P3(x).

Recall that P3(x) is defined as

P3(x) = (((a0x+ a1)q−2 + a2)q−2 + a3)q−2 + a4 ∈ Fq[x]

with ai 6= 0 for i = 0, 2, 3.

We have the poles x1 = −a1

a0
, x2 = −a1a2+1

a0a2
, x3 = −a1(a2a3+1)+a3

a0(a2a3+1)
by (1.11) and the

corresponding rational function R3(x) is given by

R3(x) =
(a0a4(a2a3 + 1) + a0a2)x+ a1a4(a2a3 + 1) + a3a4 + a1a2 + 1

a0(a2a3 + 1)x+ a1(a2a3 + 1) + a3

. (2.21)
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First, we assume that a2a3 + 1 6= 0 hence x3 ∈ Fq. Then the relation between the cycle

structure of P3(x) and F3(x) is given by Lemma 1.5.12 as

P3(x) = (F3(x2)F3(x1)F3(x3))F3(x) (2.22)

If a2a3 + 1 = 0 then the last pole becomes x3 = ∞ and this case will be investigated

at the end of this section.

The permutations P3(x) and P̄3(x) are both obtained as products of 3-cycles and

permutations defined by the rational transformations of the form (2.21) with a4 = 0

and a4 6= 0, respectively. We study only the cycle structure of the PPs of Fq of the

form

P3(x) = (((a0x+ a1)q−2 + a2)q−2 + a3)q−2, a0a2a3 6= 0 (2.23)

in this section, since the cycle structure of P̄3(x) can be obtained by applying the same

method. The characteristic polynomial in (2.16) associated with

R3(x) =
a0a2x+ a1a2 + 1

a0(a2a3 + 1)x+ a1(a2a3 + 1) + a3

(2.24)

becomes

f(x) = x2 − (a0a2 + a1(a2a3 + 1) + a3)x− a0 (2.25)

and F3 denotes the permutation corresponding to R3.

The following lemmas are needed for the analysis of the cycle decomposition of

P3. The integers n,m which appear in Lemmas 2.4.12, 2.4.13 are again chosen to be

minimal.

Lemma 2.4.12 Let F be a permutation of Fq, u, v, w ∈ Fq and P = (u v w)F .

Suppose that u = F n(w) and `(F,w) = l.

1. If v = Fm(w), then

(a) u, v, w lie in distinct cycles of P and `(P, u) = l − n, `(P, v) = n − m,

`(P,w) = m if m < n,

(b) u, v, w are in the same cycle of P with length l if m > n.

2. If v /∈ C(F,w) and `(F, v) = k, then v ∈ C(P,w), u /∈ C(P,w) and `(P,w) = k+n,

`(P, u) = l − n.
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Proof : (1) Let u = F (y1), v = F (y2) and w = F (y3), then P (y1) = v, P (y2) =

w and P (y3) = u. If m < n, then P (x) has the following three types of cycles:

(w F (w) . . . y2), (v = Fm(w) F (v) . . . y1) and (u = F n(w) F (u) . . . y3) of lengths

m, n−m and l − n, respectively.

If m > n then the cycle of F (x) of length l containing u, v, w becomes the cycle

(w F (w) . . . y1 v F (v) . . . y3 u F (u) . . . y2)

of P , again of length l.

For the proof of (2), as in the proof of (1), we assume u = F (y1), v = F (y2) and

w = F (y3). Then P (y1) = v, P (y2) = w and P (y3) = u and P (x) has the cycles

(w F (w) . . . y1 v . . . y2), (u = F n(w) . . . y3). 2

Remark 2.4.3 It is possible that both F and P are full cycles. Suppose that F is a

full cycle. It follows by Lemma 2.4.12(1.b) that P = (u v w)F = (v w)(u w)F is also

a full cycle if and only if m > n where u = F n(w) and v = Fm(w).

Lemma 2.4.13 Let u, v, w, F, P be as in Lemma 2.4.12. Suppose that u /∈ C(F,w),

`(F, u) = k and `(F,w) = l.

1. If v /∈ C(F, u), v /∈ C(F,w) and `(F, v) = j, then u, v, w are in the same cycle of

P , of length k + l + j.

2. If v = F n(u), then u ∈ C(P,w) with `(P, u) = `(P,w) = l + n and v /∈ C(P,w)

with `(P, v) = k − n.

3. If v = F n(w), then v ∈ C(P, u) with `(P, u) = `(P, v) = k+ l−n and w /∈ C(P, u)

with `(P,w) = n.

Proof : The proof is very similar to the proof of Lemma 2.4.12 and hence omitted. 2

Now we turn our attention to the permutation P3. By the lemmas given above,

it turns out that, for determining the cycle decomposition of P3, the location of the

elements F3(x1), F3(x2), F3(x3), i.e. x1, x2, x3 in the cycles of F3 relative to each other

is of ultimate importance. In the following lemma we consider the problem of locating

the poles within the cycles of F3.
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Lemma 2.4.14 Suppose that the polynomial f(x) in (2.25) has two distinct roots

α, β ∈ Fq2 with ord(α
β
) = k. Let γ1 = (β − a3)/(α− a3), γ2 = (a2β + 1)/(a2α+ 1), γ3 =

(β − a1)/(α− a1) ∈ P1(Fq2). Then

(i) x1 ∈ C(F3, x3) if and only if γk1 = 1,

(ii) x2 ∈ C(F3, x3) if and only if γk2 = 1,

(iii) the poles x1, x2, x3 lie in different cycles of F3 if and only if γk1 6= 1, γk2 6= 1 and

γk3 6= 1.

Proof : Note that for s0 = a2/(a2a3 + 1), we obtain by (2.10) that

sn =
1

a2a3 + 1

(
a2 +

αn − βn

αn+1 − βn+1

)
, 0 ≤ n ≤ k − 2. (2.26)

Recall that x3 is in the cycle of length k − 1 by the proof of Theorem 2.1.1.

(i) Obviously F3(x3) = a2

a2a3+1
is in the cycle of length k − 1. Consequently by (2.26),

the pole x1 = −a1

a0
is contained in this cycle if and only if

x1 =
1

a2a3 + 1

(
a2 +

αn − βn

αn+1 − βn+1

)
,

for some 0 ≤ n ≤ k − 2. This is equivalent to

αn(a0 + (a1a2a3 + a1 + a0a2)α)− βn(a0 + (a1a2a3 + a1 + a0a2)β) = 0

αn(−αβ + (α + β − a3)α)− βn(−αβ + (α + β − a3)β) = 0

and

αn+1(α− a3) = βn+1(β − a3) and α 6= a3

for some 0 ≤ n ≤ k − 2. This implies (α/β)n = (β − a3)/(α − a3) for 1 ≤ n ≤ k − 1

and so β−a3

α−a3
∈
〈
α
β

〉
, hence (β−a3

α−a3
)k = 1.

(ii) can be obtained similarly from the condition

x2 =
1

a2a3 + 1

(
a2 +

αn − βn

αn+1 − βn+1

)
for some 0 ≤ n ≤ k − 2.

(iii) If γk1 , γ
k
2 6= 1 then neither x1, nor x2 is in the cycle of length k − 1. Now we

note that F3(x2) = 0 and F3(x1) = 1/a3. Consequently, x1 ∈ C(F3, x2) if and only if

1/a3 = F n
3 (0) for some 0 ≤ n ≤ k − 1. With (2.10) we get

(a1a2 + 1)(αn − βn)

(αn+1 − βn+1)− a0a2(αn − βn)
=

1

a3
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for some 0 ≤ n ≤ k − 1, which is equivalent to

(
α

β
)n =

α− a1

β − a1

= 1/γ3

for some 0 ≤ n ≤ k − 1. 2

Theorem 2.4.15 Suppose that f(x) in (2.25) is irreducible with roots α, β ∈ Fq2. Let

k = ord(α
β
) = q+1

t
, 1 ≤ t < q+1

2
, and γ1 = (β − a3)/(α − a3), γ2 = (a2β + 1)/(a2α +

1), γ3 = (β − a1)/(α− a1).

(1) If γk1 = γk2 = 1 then

(a) T (P3) = [(t− 1)× k, 1× (k− 1) ], in particular P3 is a full cycle if k = q+ 1,

or

(b) T (P3) = [(t− 1)× k, 1×m, 1× (k − n− 1), 1× (n−m)]

for some integers 1 ≤ m < n ≤ k − 2.

(2) If γk1 6= 1 and γk2 = 1 then T (P3) = [1× (k + n), (t− 2)× k, 1× (k − n− 1)] for

some integer 1 ≤ n ≤ k − 2.

(3) If γk1 , γ
k
2 , γ

k
3 6= 1 then T (P3) = [1 × (3k − 1), (t − 3) × k]. In particular P3 is a

full cycle if 3 divides q + 1 and k = (q + 1)/3.

(4) If γk1 , γ
k
2 6= 1 and γk3 = 1 then T (P3) = [1× (k + n− 1), (t− 2)× k, 1× (k − n)]

for some integer 1 ≤ n ≤ k − 1.

(5) If γk1 = 1 and γk2 6= 1 then T (P3) = [1× (2k− n− 1), (t− 2)× k, 1× n] for some

integer 1 ≤ n ≤ k − 2.

Proof : If we put u = F3(x2), v = F3(x1) and w = F3(x3), and recall that P3(x) =

(F3(x2) F3(x1) F3(x3))F3(x), then the theorem follows from Lemmas 2.4.12, 2.4.13,

2.4.14, and Theorem 2.1.1 on the cycle decomposition of F3(x). 2

Remark 2.4.4 The exact values for the parameters m and n are given by the relative

positions of the three poles when they are in the same cycle of F3. These relative

positions are essentially described by the integers ni for which we have γi = (α/β)ni,

i = 1, 2, 3. Their identification, as in the case of P2, requires the evaluation of discrete

logarithms.
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If f(x) is reducible over Fq, then F3 has fixed points, i.e. cycles of length one, which

have to be taken into consideration. F3 has two fixed points when the roots of f(x)

are distinct and has only one fixed point when f(x) has a double root.

Lemma 2.4.16 Suppose that f(x) in (2.25) is reducible over Fq. Then

(i) the pole x1 is a fixed point of F3(x) if and only if a3 = −a0

a1
,

(ii) the pole x2 is a fixed point of F3(x) if and only if a2 = − 1
a1

.

Proof : The pole x1 is a fixed point of F3(x) if and only if −a1

a0
= 1

a3
= F3(x1). Hence

the condition in part (i) follows. F3(x2) = 0 and hence x2 is a fixed point of F3(x) if

and only if −a1a2+1
a0a2

= 0. 2

Remark 2.4.5 Suppose that f(x) in (2.25) has distinct roots α, β ∈ Fq and γ1, γ2 are

as in Lemma 2.4.14. For i = 1, 2, γki 6= 1 when xi is not a fixed point. The pole x3,

which is always in the cycle of F3 of length k − 1, is not a fixed point of F3 unless

k = 2.

Theorem 2.4.17 Suppose that f(x) in (2.25) has two distinct roots α, β ∈ Fq. Let

k = ord(α
β
) = q−1

t
, 1 ≤ t ≤ q−1

2
, and γ1 = (β − a3)/(α − a3), γ2 = (a2β + 1)/(a2α +

1), γ3 = (β − a1)/(α− a1), γ1, γ2, γ3 ∈ P1(Fq).

(1)-(5) If a3 6= −a0/a1 and a2 6= −1/a1, then T (P3) is the same as in the cases (1)-(5)

of Theorem 2.4.15, except that, in each case P3 has two more cycles of length 1

(here of course, k = q−1
t

, not q+1
t

as in Theorem 2.4.15).

(6) If a3 = −a0/a1 and a2 = −1/a1, then T (P3) = [1 × (k + 1), (t − 1) × k]. In

particular P3 is a full cycle if k = q − 1.

(7) (a) If a3 = −a0/a1 and γk2 = 1 or

(b) if a2 = −1/a1 and γk1 = 1,

then T (P3) = [(t − 1) × k, 1 × n, 1 × (k − n), 1 × 1], with 2 ≤ n ≤ k − 1 in the

case of (a) and 1 ≤ n ≤ k − 2 in the case of (b).

(8) If a3 = −a0/a1, a2 6= −1/a1, γk2 6= 1 or a3 6= −a0/a1, a2 = −1/a1, γk1 6= 1 then

T (P3) = [1× 2k, (t− 2)× k, 1× 1].
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Proof : The assertion follows as in the proof of Theorem 2.4.15, by using Lemmas

2.4.12, 2.4.13, 2.4.14, 2.4.16, with u = F3(x2), v = F3(x1), w = F3(x3) and by Theorem

2.1.1. 2

Now we focus on the case where the polynomial f(x) in (2.19) has a double root

α ∈ F∗q = F∗pr . We recall that in this case, T (F3) = [(pr−1 − 1)× p, 1× (p− 1), 1× 1].

We will use the following lemma.

Lemma 2.4.18 Suppose that f(x) in (2.25) has a double root α ∈ F∗q. Then

(i) x1 ∈ C(F3, x3) if and only if α/a3 ∈ Fp \ {1},

(ii) x2 ∈ C(F3, x3) if and only if −a2α ∈ Fp \ {1},

(iii) x1 ∈ C(F3, x2) if and only if a1/α ∈ Fp \ {1}.

Proof : For s0 = a2/(a2a3 + 1), the equation (2.11) can be written as

An
Bn

=
1

a2a3 + 1

(
a2 +

n

α(n+ 1)

)
=

1

a0(a2a3 + 1)

(
a0a2 − α

n

n+ 1

)
. (2.27)

If we set sn = F n
3 (s0), then sn = An

Bn
in (2.27) for n = 0, 1, . . . , p− 2.

(i) From (2.27) we obtain that x1 is in the cycle of length p − 1, i.e. in the cycle

that contains x3, if and only if

F3(x1) =
1

a3

=
a2

a2a3 + 1
+

n

(n+ 1)α
· 1

a2a3 + 1
or

n

n+ 1
=

α

a3

for some 0 ≤ n ≤ p− 2. This is equivalent to α/a3 ∈ Fp \ {1}.

(ii) The analogous condition for x2 is

F3(x2) = 0 =
a2

a2a3 + 1
+

n

(n+ 1)α
· 1

a2a3 + 1
or

n

n+ 1
= −a2α.

(iii) Since F3(x2) = 0 and F3(x1) = 1/a3, one can obtain the condition for x1, x2 to be

in the same cycle, by setting s0 = 0 in (2.11). This yields

1

a3

=
(a1a2 + 1)n

(n+ 1)α− a0a2n
or na1 = α(n− 1)

for some 1 ≤ n ≤ p− 1. 2

Remark 2.4.6 If r = 1, Fq is a prime field, then α = a3 if and only if x1 is a fixed point

of F3(x) and hence by Lemma 2.4.16, a3 = −a0/a1. Similarly α = −1/a2 implies that
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x2 is a fixed point and a2 = −1/a1. Using α2 = −a0 and 2α = a0a2 +a1(a2a3 + 1) +a3,

it can be shown that these equivalences also hold if Fq is not a prime field. Consequently

`(F3, x1) = p if and only if α/a3 ∈ Fq\Fp and `(F3, x2) = p if and only if −a2α ∈ Fq\Fp.

Moreover one easily obtains that α = a1 implies that either x1 or x2 is fixed point of

F3(x).

Theorem 2.4.19 Suppose that f(x) in (2.25) has a double root α ∈ F∗q = F∗pr .

(1) If α/a3 ∈ Fp \ {1} and −a2α ∈ Fp \ {1} then

(a) T (P3) = [(pr−1 − 1)× p, 1× (p− 1), 1× 1], or

(b) T (P3) = [(pr−1 − 1)× p, 1×m, 1× (p− n− 1), 1× (n−m), 1× 1] for some

integers 1 ≤ m < n ≤ p− 2.

(2) If α = −1/a2 and α/a3 ∈ Fp \ {1}, or α = a3 and −a2α ∈ Fp \ {1}, then

T (P3) = [(pr−1− 1)× p, 1× n, 1× (p− n)] for some integer 1 ≤ n ≤ p− 2 in the

first case and 2 ≤ n ≤ p− 1 in the second case.

(3) If r ≥ 2, α/a3 ∈ Fp \ {1} and −a2α ∈ Fq \ Fp then

T (P3) = [1×(2p−n−1), (pr−1−2)×p, 1×n, 1×1] for some integer 1 ≤ n ≤ p−2.

(4) If r ≥ 2, α/a3 ∈ Fq \ Fp and −a2α ∈ Fp \ {1} then

T (P3) = [1 × (p + n), (pr−1 − 2) × p, 1 × (p − n − 1), 1 × 1] for some integer

1 ≤ n ≤ p− 2.

(5) If r ≥ 2, and α = a3 and −a2α ∈ Fq \Fp, or α/a3 ∈ Fq \Fp and α = −1/a2, then

T (P3) = [1× 2p, (pr−1 − 2)× p].

(6) If r ≥ 2, −a2α ∈ Fq \ Fp and a1/α ∈ Fp \ {1} or a1 = 0, then

T (P3) = [(pr−1 − 2) × p, 1 × (p + n − 1), 1 × (p − n), 1 × 1] for some integer

1 ≤ n ≤ p− 1.

(7) If r ≥ 2, α/a3 ∈ Fq \ Fp, −a2α ∈ Fq \ Fp, a1/α ∈ Fq \ Fp and a1 6= 0, then

T (P3) = [1× (3p− 1), (pr−1 − 3)× p, 1× 1].

Proof : The theorem follows from Lemmas 2.4.12, 2.4.13, 2.4.16, 2.4.18, the remark

thereafter, and Theorem 2.1.1. 2
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Finally we consider the case where a2a3 + 1 = 0 = α3, i.e. x3 =∞ or equivalently

P3(x) = (((a0x+ a1)q−2 + a2)q−2 − 1

a2

)q−2. (2.28)

The function R3(x) reduces to the linear polynomial

R3(x) = −a2(a0a2x+ a1a2 + 1), (2.29)

in this case thus F3(x) = R3(x) for all x ∈ Fq. From Equation (2.28) one sees that

P3(x1) = 0 and P3(x2) = −a2. Therefore

P3(x) =


F3(x) x 6= x1, x2

F3(x2) = 0 x = x1

F3(x1) = −a2 x = x2.

(2.30)

and

P3(x) = (F3(x1) F3(x2))F3(x) = (−a2 0)F3(x), (2.31)

hence the cycle decomposition of P3(x) can easily be determined by Lemma 2.2.4. We

note that F3(x) = ax + b is a full cycle when r = 1 i.e. Fq is a prime field, a = 1

and b 6= 0. If a 6= 1 and k is the order of a in Fq, then F3(x) has one fixed point

℘ = b/(1 − a) and T (F3) = [(q − 1)/k × k, 1 × 1]. The following proposition gives

the conditions for P3 to be a full cycle. The cycle decomposition of P3 in the cases

where it is not a full cycle can easily be obtained by an argument, similar to that used

previously.

Proposition 2.4.20 Let P3(x) = (((a0x + a1)q−2 + a2)q−2 − 1
a2

)q−2, a0a2 6= 0. The

permutation P3 is a full cycle if and only if ord(−a0a
2
2) = q−1 and one of the following

holds: a1 = a0a2 or a1 = −1/a2.

Proof : Note that the fixed point ℘ of F3 is equal to x1 if and only if a1 = a0a2 and

℘ is equal to x2 if and only if a1 = −1/a2. Then the proof follows from Lemma (2.2.4)

and the previous paragraph. 2

Remark 2.4.7 Since x3 = ∞ yields P3 = (−a2 0)F3, where F3 is a linear function,

by putting F3(x) = x (i.e a0 = −1/a2
2 and a1 = −1/a2 in (2.28)) and −a2 = a we get

P3(x) = pa(x), the transposition (1.6), described by Carlitz.
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2.5. Enumeration of Permutations of the form P3(x) with Full Cycle

In this section we count the number of P3(x) with full cycle. First we give a result

establishing a one-to-one correspondence between P3(x) and a certain subset of F4
q (or

formal expressions of the form (ax+ b)/(cx+ d)).

Proposition 2.5.21 Let q > 5. There is a one-to-one correspondence between the set

of PPs of the form P3 and the set of the formal expressions (ax + b)/(cx + d) with

a 6= 0, ad− bc 6= 0 and c+ ad− bc 6= 0.

Proof : We put

a = a0a2, b = a1a2 + 1, c = a0(a2a3 + 1), d = a1(a2a3 + 1) + a3

by considering (2.24). Then it immediately follows that a = a0a2 6= 0, c + ad − bc =

a0a2a3 6= 0, and ad− bc = −a0 6= 0. For given a, b, c, d satisfying the above conditions,

one gets the unique solution of the above system of equations as

a0 = −D, a1 =
(1− b)D

a
, a2 = − a

D
and a3 =

c+D

a
,

with D = ad − bc. Note that the cardinality of the set ∆ = {(a, b, c, d) ∈ F4
q | a 6=

0, ad − bc 6= 0, c + ad − bc 6= 0} (and that of the set of possible expressions for P3) is

q(q − 1)3.

Now that a one-to-one correspondence is established between the set S(3)
R = {R(x) =

(ax+b)/(cx+d) : (a, b, c, d) ∈ ∆}, and the set SP3 = {(((a0x+a1)q−2 +a2)q−2 +a3)q−2 :

a0a2a3 6= 0}, it remains to show that two elements P3(x) = (((a0x+ a1)q−2 + a2)q−2 +

a3)q−2 and P ′3(x) = (((a′0x+a′1)q−2 +a′2)q−2 +a′3)q−2 of SP3 induce the same permutation

if and only if ai = a′i for i = 0, 1, 2, 3. Clearly, if P3 and P ′3 correspond to rational

transformations R3 6= R′3 and q > 5, then the permutations are different. Now suppose

that P3, P ′3 are mapped to the same rational function (but distinct elements of S(3)
R ),

i.e. R3 = (ax+b)/(cx+d) and R′3 = (εax+εb)/(εcx+εd), ε 6= 1, by the injection above.

Then the corresponding poles are given by x1 = −a1/a0 = 1−b
a
, x′1 = −a′1/a′0 = 1−εb

εa

and clearly x2 = x′2 = −b/a and x3 = x′3 = −d/c (if c = 0, then x3 = x′3 is the pole at

infinity). Hence by (2.22), (2.31), P3 and P ′3 induce different permutations.

2
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Remark 2.5.8 The set of permutations P3 with x3 6=∞, i.e. a2a3+1 6= 0, corresponds

to the set S(3′)
R = {R(x) = (ax + b)/(cx + d) : (a, b, c, d) ∈ ∆, c 6= 0}, which is of

cardinality q(q − 1)2(q − 2).

We emphasize that if (a0, a1, a2, a3) 6= (a
′
0, a

′
1, a

′
2, a

′
3), then the permutations induced by

P3, P
′
3 and also by P̄2, P̄

′
2, are actually distinct. This is not true anymore for P̄3.

For u, v ∈ F∗q, the transposition (u v), for instance, can be expressed as P̄3 for both

choices of a0 = −1/(u − v)2, a1 = −ua0, a2 = v − u, a3 = 1/(u − v), a4 = v, and

a′0 = a0, a′1 = −va0, a′2 = −a2, a′3 = −a3, a′4 = u.

The following remark collects all possible full cycle cases for P3(x) which are given

in Theorems 2.4.15, 2.4.17 and Proposition 2.31.

Remark 2.5.9 The permutation P3 in (2.23) is a full cycle if and only if one of the

following conditions (1)-(4) is satisfied.

(1) (i) The polynomial f(x) in (2.25) is irreducible,

(ii) the roots α, β ∈ Fq2 of f(x) satisfy ord(α/β) = q+1 so that F3 is a full cycle,

and

(iii) the pole x1 lies between the poles x2, x3 in the cycle F3.

(2) (i) The polynomial f(x) in (2.25) is irreducible,

(ii) 3 divides q+ 1, and the roots α, β ∈ Fq2 of f(x) satisfy ord(α/β) = (q+ 1)/3,

i.e. F3 is composed of 2 cycles of length (q+ 1)/3 and 1 cycle of length (q− 2)/3,

(iii) the elements γ1 = (β − a3)/(α − a3), γ2 = (a2β + 1)/(a2α + 1), γ3 = (β −

a1)/(α − a1) ∈ Fq2 satisfy γ
(q+1)/3
1 , γ

(q+1)/3
2 , γ

(q+1)/3
3 6= 1, i.e. the poles x1, x2, x3

are in distinct cycles of F3.

(3) (i) The polynomial f(x) in (2.25) has two distinct roots α, β ∈ Fq,

(ii) ord(α/β) = q − 1, i.e. F3 is composed of one cycle of length q − 2 and two

cycles of length 1,

(iii) a2a3 + 1 6= 0, i.e. the pole x3 is in Fq,

(iv) a3 = −a0/a1 and a2 = −1/a1, i.e. x1, x2 are the fixed points of F3.

(4) (i) a2a3 + 1 = 0, i.e. F3(x) is linear,
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(ii) ord(−a0a
2
2) = q − 1, and

(iii) either a1 = a0a2 or a2 = −1/a1, i.e. either x1 or x2 is the fixed point of F3.

Before we give the results about the number of P3 with full cycle, we present a

lemma on some simple properties of the parameters γ1, γ2, γ3 introduced in Theorem

2.4.15.

Lemma 2.5.22 Suppose f(x) = x2 − Tx + D ∈ Fq[x] is irreducible with roots α, β ∈

Fq2, and let γi, i = 1, 2, 3 be defined as in Section 2.4. Then

(i) ord(γi) divides q + 1 for i = 1, 2, 3,

(ii) γi 6= 1 and γi 6= β/α for i = 1, 2 and γ3 6= 1,

(iii) γ1 = γ2 if and only if a2a3 + 1 = 0, and γ2 = γ3 if and only if a1a2 + 1 = 0.

Proof : (i) With β = αq and the observation that

γq+1
1 =

(
β − a3

α− a3

)q+1

=

(
βq − aq3
αq − aq3

)(
β − a3

α− a3

)
= 1,

the assertion follows for γ1 and also similarly for γ2, γ3.

(ii) Follows from the assumptions a2 6= 0, a3 6= 0 and α 6= β.

(iii) Trivial. 2

Theorem 2.5.23 Let q > 5. The number of distinct permutations of the form P3(x) =

(((a0x+ a1)q−2 + a2)q−2 + a3)q−2 ∈ Fq[x] with full cycle is

1
4
φ(q + 1)(q − 1)2(q − 2) + 3φ(q − 1)(q − 1), if 3 - (q + 1) and

1
4
φ(q + 1)(q − 1)2(q − 2) + 3φ(q − 1)(q − 1) + 1

9
φ
(
q+1

3

)
(q − 1)(q + 1)2, if 3 | (q + 1).

The proof consists of four parts, corresponding to each condition in Remark 2.5.9.

Proof : We start with case (1) of Remark 2.5.9 and fix a polynomial f(x) = x2−Tx+

D ∈ Fq[x] with roots α, β ∈ Fq2 satisfying ord(α
β
) = q+1. Then any associated rational

function of the form R(x) = (ax + b)/(cx + d) satisfies a + d = T and ad − bc = D.

We recall that the corresponding permutation is always a full cycle. This cycle can be

expressed as (s0 s1 . . . sq−1) with s0 = a/c, sq−1 = −d/c = x3. Equation (2.10) shows

that

sn =
a

c
−D αn − βn

c(αn+1 − βn+1)
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for 0 ≤ n ≤ q − 2. In order that the pole x1 lies between x2 and x3, we fix a pair

of integers (j1, j2) with 0 ≤ j2 < j1 ≤ q − 2, and put sj1 = x1, sj2 = x2. Since

x1 = −a1/a0 = (1 − b)/a and x2 = −b/a, we have sj2+1 = R(−b/a) = 0 and sj1+1 =

R((1− b)/a) = a/(D + c). Here we note that D + c 6= 0. Consequently we have

sj2+1 = 0 =
a

c
−D αj2+1 − βj2+1

c(αj2+2 − βj2+2)
,

which uniquely yields a = D(αj2+1 − βj2+1)/(αj2+2 − βj2+2). We note that a 6= 0,

otherwise αj2+1 = βj2+1 which contradicts with ord(α/β) = q + 1. With

sj1+1 =
a

D + c
=
a

c
−D αj1+1 − βj1+1

c(αj1+2 − βj1+2)

we obtain

c = a((αj1+2 − βj1+2)/(αj1+1 − βj1+1))−D.

Finally, we get d = T −a and b = ad−D
c

. Hence with the choice of the characteristic

polynomial f(x) and the positions j1, j2 for the poles x1, x2 in the cycle of F3, we obtain

a, b, c, d uniquely, where a 6= 0, ad− bc+ c 6= 0, and of course ad− bc 6= 0. It is easy to

see that different choices of the triples f(x), j1, j2 give different elements of the set ∆,

defined in the proof of Remark 2.5.21. By the same proposition we know that in order

to enumerate the set of permutations P3 satisfying condition (1 ) of Proposition 2.5.9,

it is sufficient to count the possible choices for f(x), j1, j2. But there are φ(q+1)
2

(q − 1)

choices for f and (q − 1)(q − 2)/2 choices for the pairs (j1, j2).

We now turn our attention to the third case of Remark 2.5.9. In this case P3 is of

the form

P3(x) = (((a0x+ a1)q−2 − 1

a1

)q−2 − a0

a1

)q−2, (2.32)

and the associated characteristic polynomial is given by

f(x) = x2 − (a1 −
a0

a1

)x− a0. (2.33)

It is sufficient to determine the number of choices for the pair (a0, a1), a0a1 6= 0, for

which the roots α, β of the polynomial (2.33) satisfy ord(α/β) = q − 1. We recall that

there are φ(q−1)(q−1)
2

polynomials f(x) = x2−Tx+D with distinct roots α, β satisfying

ord(α/β) = q − 1. For a fixed polynomial f(x) with these properties, a0 in (2.33) is

determined to be a0 = −D 6= 0. With T = a1− a0

a1
we get exactly two nonzero solutions

for a1, namely

a1 =
T ±
√
T 2 − 4D

2
.
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Clearly T 2−4D is a nonzero square in Fq since f(x) has two distinct roots in Fq. Thus

we have φ(q − 1)(q − 1) permutations P3 of the form (2.32) with a full cycle.

We now consider the fourth case of Remark 2.5.9. First suppose that a1 = a0a2, i.e.

x1 is the unique fixed point of the linear function F3(x) = R3(x) given in (2.29). Then

we require ord(−a0a
2
2) = ord(−a2

1

a0
) = q−1. For each of the φ(q−1) choices for −a2

1/a0

we have q − 1 choices for a1. The coefficients a0 and a2 are then uniquely determined

as nonzero elements of Fq, and hence a3 is uniquely given by a2a3 + 1 = 0. When x2 is

the fixed point of F3 we similarly get the same number, φ(q − 1)(q − 1).

Therefore in case a2a3 + 1 = 0, the total number of P3(x) with full cycle is given by

2φ(q − 1)(q − 1). This completes the proof of the theorem if 3 does not divide q + 1.

Finally we assume that 3 divides q + 1 and consider the case (2) of Remark 2.5.9.

For each of the
φ( q+1

3
)

2
(q − 1) distinct irreducible polynomials f(x) = x2 − Tx + D =

(x−α)(x− β) with ord(α
β
) = q+1

3
we can determine the number of permutations P3 as

follows. By (2.25) the parameters a0, a1, a2, a3 satisfy a0 = −D and a0a2 + a1(a2a3 +

1) + a3 = T . We also recall that a2a3 6= 0. Hence we have q − 1 choices for a2. The

parameter a1 is uniquely determined by

a1 =
T +Da2 − a3

a2a3 + 1
, (2.34)

if and only if a3 6= −1/a2. Consequently, for each f we obtain precisely (q − 1)(q − 2)

possible parameters (a0, a1, a2, a3), and hence distinct permutations P3. We therefore

have the cardinality of the set SF of permutations P3, satisfying the conditions (2-i,

ii) of Remark 2.5.9:

|SF | =
φ( q+1

3
)

2
(q − 1)2(q − 2).

We recall that for P3 ∈ SF , the permutation F3 is composed of exactly 3 cycles.

Our aim, of course, is to obtain the cardinality of the set S = {P3 ∈ SF : γ
(q+1)/3
i 6=

1, i = 1, 2, 3}, i.e. we wish to enumerate P3 ∈ SF , for which the poles x1, x2, x3 lie in

distinct cycles of F3. For this purpose, we evaluate |SF \S| by considering the partition:

SF \ S = S1,3 ∪ S2,3 ∪ S1,2 ∪ S1,2,3, (2.35)

where Si,j is the set referring to the case of the two poles xi, xj being in the same cycle

of F3, which does not contain the third pole, 1 ≤ i < j ≤ 3. The set S1,2,3, obviously

refers to the remaining P3 with all three poles lying in the same cycle of F3.
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In parts (i)-(iv) below, we calculate the cardinalities of the four sets in (2.35),

partitioning SF \ S.

(i): We recall that this case is equivalent with γ
(q+1)/3
1 = 1 and γ

(q+1)/3
2 6= 1, which

implies γ
(q+1)/3
3 6= 1. Since we have γ1 6= 1, β

α
by Lemma 2.5.22, out of the q+1

3
elements

of Fq2 whose order divides (q + 1)/3, γ1 can have only q+1
3
− 2 values. For each choice

of γ1 = (β − a3)/(α − a3) we uniquely obtain a3 = (αγ1 − β)/(γ1 − 1). Note that a3

is in fact an element of Fq. Now γ2 is among the 2(q + 1)/3 elements of Fq2 whose

order divides q + 1 but not (q + 1)/3. The coefficient a2 is then uniquely given by

a2 = (γ2 − 1)/(β − αγ2), again an element in Fq. Since a0 = −D is determined by

f(x), we finally obtain a1 by equation (2.34) which is well-defined by Lemma 2.5.22.

Therefore |S1,3| = τ1 = φ( q+1
3

)(q − 1) (q+1)(q−5)
9

.

(ii): This case is essentially the same as (i), with γ1, γ2 are interchanged. Hence

|S2,3| = τ2 = τ1 = φ( q+1
3

)(q − 1) (q+1)(q−5)
9

.

(iii): This case applies for γ
(q+1)/3
2 6= 1 and γ

(q+1)/3
3 = 1. Then γ

(q+1)/3
1 6= 1 follows.

Since we only have to exclude γ3 = 1, we have q−2
3

choices for γ3, each choice uniquely

defines a1 = (αγ3 − β)/(γ3 − 1) ∈ Fq. For γ2 we have 2(q + 1)/3 choices, again

each choice uniquely determines a2. From T = a0a2 + a1(a2a3 + 1) + a3 we obtain

a3 = (T − a1 − a0a2)/(a1a2 + 1) which by Lemma 2.5.22 is well-defined since γ2 6= γ3.

Consequently, |S1,2| = τ3 = φ( q+1
3

)(q − 1) (q+1)(q−2)
9

.

(iv): This is equivalent to γ
(q+1)/3
1 = γ

(q+1)/3
2 = 1 and consequently also γ

(q+1)/3
3 = 1.

Again by choosing γ1 and γ2 appropriately we obtain a3 and a2, respectively, and then

by equation (2.34) we get a1. Here we need to exclude the possibility γ2 = γ1 in order

to avoid a2a3 + 1 = 0. Consequently for each of the (q− 5)/3 possible choices for γ1 we

have exactly (q − 8)/3 choices for γ2. This yields |S1,2,3| = τ4 = φ( q+1
3

) (q−1)(q−5)(q−8)
18

.

Finally we can calculate

|S| =
φ( q+1

3
)

2
(q − 1)2(q − 2)−

i=4∑
i=1

τi = φ(
q + 1

3
)(q − 1)

(q + 1)2

9
,

and the proof is complete. 2
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CHAPTER 3

CONSTRUCTIONS OF Pn WITH FULL CYCLE

In this chapter we consider the construction of permutations Pn with given number

of cycles, where we focus on the most interesting case of permutations with full cycle.

We first introduce some preliminaries in the first two sections.

3.1. Multiplication by Transpositions

Cohn and Lempel determined the number of distinct cycles obtained by multiplying a

single cycle of length m by a sequence of symbol-disjoint transpositions in [11]. Beck

generalized this result to arbitrary transpositions in [5]. We use the main results of [5]

which will be presented in this section.

We fix a cycle τ = (s0 s1 . . . sm−1) and consider the set T of transpositions of

the set {s0, s1, . . . , sm−1}. For two transpositions σ1 = (si1 sj1), σ2 = (si2 sj2) ∈ T we

define (σ1 ∧ σ2)τ = σ1 ∧ σ2 by

σ1 ∧ σ2 =

 1 if σ1σ2τ is a full cycle,

0 if σ1σ2τ is not a full cycle,

where the multiplication, again, is performed from right-to-left. The next definition

associates a binary matrix to a sequence σ1, σ2, . . . , σk of k transpositions in T (cf. [5]).

The link relation matrix of the transpositions σ1, σ2, . . . , σk ∈ T is defined to be the

binary, symmetric k × k-matrix L(σ1, σ2, . . . , σk) = (Lij), where

Lji = Lij = σi ∧ σj if 1 ≤ i < j ≤ k and Lii = 0 for i = 1, . . . k.
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We remark that for the definition of ∧, the ordering of the transpositions is crucial.

The following proposition is the main theorem of [5]. As usual null(A) denotes the

dimension of the null space of the matrix A.

Proposition 3.1.1 The number of cycles in the cycle decomposition of σ1σ2 . . . σkτ is

given by null (L(σ1, σ2, . . . , σk)) + 1.

An easy consequence of the above result is that the product σ1σ2 . . . σkτ is a full cycle

if and only if the matrix L(σ1, σ2, . . . , σk) is invertible.

Example 3.1.1 Lemma 2.4.12(1.b) shows that (si1 , sj)(si2 , sj)τ is a full cycle if and

only if sj = τ k(si1), sj = τm(si2) and m > k, in other words, τ = (..si2 ...si1 ...sj..). In

this case we have (si1 , sj) ∧ (si2 , sj) = 1 and the corresponding link relation matrix is 0 1

1 0

 .

We close this section with some remarks on link relation matrices.

Each link relation matrix has zeros in the main diagonal. We call a binary, symmet-

ric matrix with zero diagonal a binary symplectic matrix in accordance with [27, Chap-

ter 15]. From [27, p.436], one can see that there are exactly

N(k, k) = 2
k
2

( k
2
−1)

k/2∏
i=1

(2k+1−2i − 1)

invertible binary symplectic k × k-matrices if k is even and there is none if k is odd.

We define two canonical invertible binary symplectic matrices which we will use in

the construction of Pn(x) with full cycle.

For an even integer k, let K = (Kij) be the k × k-matrix defined by

K2t,2t−1 = K2t−1,2t = 1, t = 1, 2, . . . , k/2

andKij = 0 for the remaining entries. ThenK is in block diagonal form with

 0 1

1 0


as blocks. Evidently each row and each column of K contains exactly one nonzero

element, and K is invertible. We call this matrix the canonical invertible symplectic

k×k-matrix of type I. Now again for an even integer k, we define another k×k-matrix

M = (Mij) over F2 by

Mij = 1 if and only if i+ j ≤ k + 1 and i 6= j.
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Clearly M is an invertible binary symplectic matrix. We call the matrix M the canon-

ical invertible symplectic k × k-matrix of type II.

3.2. Link Relation Matrices and Ordering of the Poles

Suppose that for a given Pn(x) the poles defined by (1.11) are distinct elements of Fq.

Recall that by Lemma 1.5.12 we have

Pn(x) = (Fn(xn−1) . . . Fn(x1) Fn(xn))Fn(x),

which can also be written as

Pn(x) = (Fn(x1) Fn(xn))(Fn(x2) Fn(xn)) . . . (Fn(xn−1) Fn(xn))Fn(x)

:= σ1σ2 . . . σn−1Fn(x). (3.1)

If Fn(x) = τ is a full cycle, then the number of cycles in the cycle decomposition of

Pn(x) is determined by the rank of the link relation matrix L(σ1, σ2, . . . , σn−1). By

the example following the Proposition 3.1.1 we see that σi1 ∧ σi2 = 1 for i1 < i2 if

and only if Fn(xn) = τ k(Fn(xi1)), Fn(xn) = τm(F (xi2)) and m > k or equivalently

xn = τ k(xi1), xn = τm(xi2) and m > k (where again the exponents k,m are mini-

mal). The ordering of the poles in τ therefore determines the link relation matrix

L(σ1, σ2, . . . , σn−1). Unfortunately, not all invertible binary symplectic matrices give a

proper ordering of the poles for the construction of Pn(x) with full cycle when Fn(x)

is a full cycle. In Section 3.5 we deal with the problem of identifying the appropriate

matrices for this construction.

Example 3.2.2 Suppose that n is odd, τ = Fn(x) is a full cycle and the poles in τ are

ordered as follows:

x2, x1, x4, x3, . . . , x2t, x2t−1, . . . , xn−1, xn−2, xn.

If i is even, then there is no j such that i < j and xj appears before xi in τ . Thus

the ith row of the link relation matrix L contains only zeros after the main diagonal.
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If i is odd, then xi+1 is the only pole with larger index that lies before xi and hence

Li,i+1 = 1 is the only 1 in the ith row after the main diagonal. Therefore this ordering

of the poles corresponds to the canonical invertible symplectic (n− 1)× (n− 1)-matrix

of type I.

Example 3.2.3 For an odd integer n we consider the canonical invertible symplectic

(n−1)× (n−1)-matrix M of type II. We regard it as L(σ1, σ2 . . . , σn−1), corresponding

to (3.1), and determine the ordering of the poles in τ = Fn(x) = (s0 s1 . . . sq−1) where

sq−1 = xn. All entries in the first row are 1 except for M11. Thus the poles xi = sji,

2 ≤ i ≤ n − 1, all appear before x1 = sj1, i.e. ji < j1 for all 2 ≤ i ≤ n − 1. For the

elements in the second row of M we have M2j = 1, 3 ≤ j ≤ n − 2, and M2,n−1 = 0.

Thus other than x1, xn−1 is the only pole which lies between x2 and xn, i.e. j2 < jn−1

and ji < j2 for 3 ≤ i ≤ n − 2. With a similar argument we see that x1, . . . , xi−1

and xn−1, . . . , xn−(i−1) all lie between xi and xn, i = 3, . . . , (n+ 1)/2. Consequently we

obtain the ordering

x(n+1)/2, x(n−1)/2, x(n+3)/2, x(n−3)/2, . . . , xn−2, x2, xn−1, x1, xn

of the poles in accordance with the matrix M .

3.3. Constructing Pn with Prescribed Poles

Let x1, x2, . . . , xn be fixed poles in Fq, not necessarily distinct. Note however that

xi, xi+1, xi+2, 1 ≤ i ≤ n− 2, are always distinct.

For the rational function Rn(x) = (ax + b)/(cx + d), associated with Pn, we have

xn = −d/c and xn−1 = −b/a. Since w.l.o.g. we can put c = 1 and thus d = −xn, we

have q − 1 choices for Rn(x). As can be seen below, any one of these possible choices

for Rn(x) = (ax+ b)/(x+ d) = (εax+ εb)/(εx+ εd) uniquely defines Pn(x).

The construction procedure starts with the initial values

αn = ε, βn = εd, αn−1 = εa, βn−1 = εb
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where d = −xn and a, b are fixed elements of Fq such that xn−1 = −b/a and ε is a

variable. By the identity

ai =
βi + xi−2αi

βi−1 + xi−2αi−1

, i = 3, . . . , n, (3.2)

which follows by (1.10) and (1.11), we obtain the unique value for an,

an =
εd+ xn−2ε

εb+ xn−2εa
=

d+ xn−2

b+ xn−2a
.

Then we can express αn−2 = αn − anαn−1 and βn−2 = βn − anβn−1, again as multiples

of ε. Similarly one obtains by the equation (3.2) the exact values for an−1, . . . , a3, and

values for αn−3, βn−3, . . . , α1, β1 as multiples of ε. In the final step a2, a1, a0 and ε are

calculated:

From α0 = 0, β0 = 1 and α2 = a2α1 + α0 we first obtain a2 = α2/α1. The identity

β2 = a2β1 + β0 = a2β1 + 1 then yields the value for ε. Finally, we have a1 = β1 and

a0 = α1.

Remark 3.3.1 An obvious modification of this algorithm also works when some xi =

∞, see [3].

3.4. Constructions of Pn with Full Cycle

In this section we present two constructions of Pn with full cycle. We first consider the

case where n is odd.

The main idea here is to choose a rational linear transformation R(x) = Rn(x) such

that the corresponding permutation Fn(x) is a full cycle, and then to position the poles

x1, x2, . . . , xn−1, xn in this cycle in such a way that the link relation matrix correspond-

ing to the product of transpositions

(Fn(x1) Fn(xn))(Fn(x2) Fn(xn)) . . . (Fn(xn−1) Fn(xn)) (3.3)

is invertible. Proposition 3.1.1 implies in this case that the permutation Pn(x) in (3.1)

is a full cycle.
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First we choose an irreducible polynomial f(x) = x2 − tr(A)x + det(A) ∈ Fq[x] , of

order q + 1 to serve as the characteristic polynomial of the matrix A associated with

R(x) = Rn(x) = (ax + b)/(cx + d). Theorem 2.1.1 guarantees that the corresponding

permutation Fn(x) is a full cycle, i.e. (s0 . . . sq−1). It also follows by the proof of

Theorem 2.1.1 that the cycle starting with s0 = a/c satisfies sq−1 = xn = −d/c. Now

we choose a suitable invertible (n−1)×(n−1) link relation matrix L(σ1, σ2, . . . , σn−1),

which exists since n − 1 is even. We position the poles x1 = sj1 , x2 = sj2 , . . . , xn−1 =

sjn−1 , xn = sq−1 according to the matrix L(σ1, σ2, . . . , σn−1). We use this ordering to

find the matrix A. Since we should have xn−1 = −b/a, from Fn(−b/a) = 0, xn−1 = sjn−1

and (2.10) we obtain the condition

sjn−1+1 =
a

c
− det(A)

c
· α

jn−1+1 − βjn−1+1

αjn−1+2 − βjn−1+2
= 0, (3.4)

where α, β ∈ Fq2 are the roots of f(x). The equation (3.4) yields

a = det(A) · α
jn−1+1 − βjn−1+1

αjn−1+2 − βjn−1+2
.

We note that a ∈ Fq. Then d = tr(A)−a, and for each q−1 choices of b ∈ F∗q we obtain

a unique value for c = (ad− det(A))/b. Now the values s0 = a/c, sjn−1 = xn−1 = −b/a

and sq−1 = xn = −d/c can be evaluated. The values of the remaining poles xi = sji ,

i = 1, . . . , n − 2, can be obtained from (2.10) with s0 = a/c, and Pn(x) can then be

determined with the procedure described in Section 3.3.

Example 3.4.4 q = 11, n = 5:

We choose the irreducible characteristic polynomial f(x) = x2 − 8x + 6, for which the

roots α and β = α11 satisfy ord(α/β) = q + 1 = 12. We fix the position of the poles as

s1 = x3, s4 = x2, s6 = x4, s8 = x1

where s0 = a/c, s10 = x5 and the matrix A is as specified in the construction above.

This particular ordering of the poles corresponds to the canonical invertible symplectic

4× 4-matrix of type II. From x4 = s6 we obtain

a = det(A) · α
7 − β7

α8 − β8
= 6

and thus d = 2. We choose b = 1 and calculate c = (ad− det(A))/b = 6. Consequently

R(x) = R5(x) =
6x+ 1

6x+ 2
=
x+ 2

x+ 4
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is the rational function associated with our permutation P5(x). Therefore x4 = −b/a =

9, x5 = −d/c = 7 and with (2.10) for s0 = a/c = 1, we obtain x1 = 6, x2 = 10, x3 = 5.

We can now apply the algorithm of Section 3.3 to determine P5(x):

As initial values we have

α5 = ε, β5 = 4ε, α4 = ε, β4 = 2ε.

Recursively we obtain

a5 =
β5 + x3α5

β4 + x3α4

= 6, α3 = α5 − a5α4 = 6ε, β3 = β5 − a5β4 = 3ε,

a4 =
β4 + x2α4

β3 + x2α3

= 7, α2 = α4 − a4α3 = 3ε, β2 = β4 − a4β3 = 3ε,

a3 =
β3 + x1α3

β2 + x1α2

= 5, α1 = α3 − a3α2 = 2ε, β1 = β3 − a3β2 = 10ε.

Finally we get a2 = α2/α1 = 7, and the equation β2 = a2β1 + 1 yields 3ε = 7 · 10ε + 1

and therefore ε = 10. Hence a1 = β1 = 1, a0 = α1 = 9, and our permutation P5(x),

which is a full cycle, is given by

P5(x) = (((((9x+ 1)9 + 7)9 + 5)9 + 7)9 + 6)9.

Now we consider the case where n is even. We choose an irreducible characteristic

polynomial f(x) = x2−tr(A)x+det(A) ∈ Fq[x] of order (q+1)/2 with roots α, β ∈ Fq2 ,

with the additional property that(
β − 1

α− 1

)(q+1)/2

6= 1.

Accordingly we fix a matrix A and a rational function R(x) = Rn(x) = (ax+ b)/(cx+

d). By Theorem 2.1.1 and Lemma 2.2.5(a), the associated permutation Fn(x) has

one cycle of length (q − 1)/2 that contains the pole −d/c and one cycle of length

(q + 1)/2 that contains the pole −b/a. Since Fn(−b/a) = 0 we consider the cycle

τ = (s0 s1 . . . s(q−1)/2), where s0 = 0 and sq−1/2 = −b/a. We choose an appropriate

invertible (n− 2)× (n− 2) link relation matrix that we correspond to the product of

transpositions

(Fn(x1) Fn(xn−1))(Fn(x2) Fn(xn−1)) . . . (Fn(xn−2) Fn(xn−1)).

According to this link relation matrix we choose the positions of the poles x1 = sj1 , x2 =

sj2 , . . . , xn−2 = sjn−2 , all in the cycle τ . The values for the poles x1 = sj1 , x2 =
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sj2 , . . . , xn−2 = sjn−2 can be calculated by the equation (2.10) with s0 = 0. The

permutation Pn(x) is then obtained by the procedure described in Section 3.3.

We note that we can write

Pn(x) = (Fn(x1) Fn(xn))(Fn(x2) Fn(xn)) . . . (Fn(xn−1) Fn(xn))Fn(x)

= (Fn(xn−1) Fn(xn))(Fn(x1) Fn(xn−1))(Fn(x2) Fn(xn−1)) . . . (Fn(xn−2) Fn(xn−1))Fn(x)

:= τnτ1τ2 . . . τn−2Fn(x).

With our choice of the poles, the transpositions τ1, . . . , τn−2 only act on the cycle τ

containing xn−1 = −b/a. Since we chose the corresponding link relation matrix to be

invertible, by Proposition 3.1.1 the product of these transpositions transform the cycle

of length (q+ 1)/2 into another cycle of length (q+ 1)/2. The cycle of length (q− 1)/2

is unchanged. The last transposition τn = (Fn(xn−1) Fn(xn)) joins up the two cycles,

resulting in the full cycle Pn(x).

Example 3.4.5 q = 17, n = 6:

The roots α, β of the irreducible polynomial x2 +x+ 8 satisfy ord(α/β) = (q+ 1)/2 = 9

and ((β − 1)/(α− 1))9 = 6(α+ 1) 6= 1. We choose the corresponding rational function

R(x) = R6(x) = (x + 7)/(x + 15), which yields the poles x6 = 2 and x5 = 10. The

associated permutation F6(x) has then a cycle of length 9 of the form (s0, s1, . . . , s8)

with s0 = 0 and s8 = x5 = 10. We choose the remaining poles to be

s1 = x2, s3 = x1, s4 = x4, s6 = x3

which corresponds to the canonical invertible symplectic 4 × 4-matrix of type I. By

(2.10), for s0 = 0 we obtain x1 = 14, x2 = 5, x3 = 15 and x4 = 6. Applying the

algorithm of Section 3.3 we obtain

P6(x) = ((((((4x+ 12)15 + 9)15 + 10)15 + 3)15 + 5)15 + 16)15,

which is the full cycle (1, 9, 12, 7, 13, 8, 11, 2, 0, 5, 6, 3, 10, 16, 15, 4, 14).
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3.5. Matrices, which are Suitable for Construction of Permutations with

Full Cycle

Given a polynomial f(x) = x2 − tr(A)x + det(A) ∈ Fq[x] of order q + 1 and

an invertible binary symplectic matrix, can we always choose an ordering of poles

x1, x2, . . . , xn in the cycle of F (x) which allows a construction of Pn(x) with a full cycle

as in Section 3.4? The answer is ”no”. In this section we will characterize the matrices

which enable such a construction.

Recall that for the (n− 1)× (n− 1) link relation matrix L(σ1, . . . , σn−1) = (`ij), we

have

`ij =

 1 if xn = F k
n (xi), xn = Fm

n (xj) with m > k,

0 if xn = F k
n (xi), xn = Fm

n (xj) with m < k,

for any 1 ≤ i < j ≤ n − 1. We remark here that xn = F k
n (xi) always means that k is

the minimal number satisfying this equality. We arrange the elements in the full cycle

Fn(x) so that the pole xn is the last element of the cycle.

The invertible binary symplectic matrices which are not suitable for the construction

of Pn(x) with full cycle are characterized in the following proposition.

Proposition 3.5.2 Let n be an odd integer and L be an (n − 1) × (n − 1) invertible

binary symplectic matrix. L does not correspond to an ordering of poles x1, . . . , xn in

a cycle if and only if for some integers i, j, k with 1 ≤ i < j < k ≤ n − 1 we have

lij = 0, lik = 1, ljk = 0 or lij = 1, lik = 0, ljk = 1.

Proof : Suppose L satisfies lij = 0, lik = 1, ljk = 0 for some integers 1 ≤ i < j < k ≤

n−1. From lij = 0, we see that the poles are arranged in the order . . . , xi, . . . , xj, . . . , xn

and since lik = 1 the poles xi, xk, xn will be ordered as . . . , xk, . . . , xi, . . . , xn. Hence

we have the ordering . . . , xk, . . . , xi, . . . , xj, . . . , xn which contradicts to the entry ljk =

0. For the other case we have lij = 1, lik = 0, ljk = 1. The poles are ordered as

. . . , xj, . . . , xi, . . . , xn since lij = 1 and lik = 0 implies . . . , xi, . . . , xk, . . . , xn which
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gives . . . , xj, . . . , xi, . . . , xk, . . . , xn. On the other hand xjk = 1 yields the ordering

. . . , xk, . . . , xj, . . . , xn which is a contradiction.

There are 23 = 8 choices for the entries lij, lik, ljk for 1 ≤ i < j < k ≤ n − 1 but the

number of permutations of the poles xi, xj, xk, xn is 3! = 6 with xn always located at

the end. This shows us that there are only two cases given by the proposition which

do not correspond to an ordering of the poles. 2

Some Examples: The following 4 × 4 matrices are types of invertible binary

symplectic matrices which can not be used to order the poles x1, . . . , x5.

K =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , L =


0 0 1 1

0 0 1 0

1 1 0 0

1 0 0 0

 , M =


0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

 .

For the first matrix we have k12 = 0, k13 = 1, k23 = 0, for the second matrix

l12 = 0, l14 = 1, l24 = 0 and for the third matrix m12 = 1,m13 = 0,m23 = 1.

In the following part we present some examples of (n−1)×(n−1) invertible binary

symplectic matrices which are suitable for the construction of Pn(x) with full cycle when

n is an odd integer. The first two types of matrices are actually the invertible binary

symplectic matrices introduced in Section 3.1.

TYPE 1


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0





0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0





0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


Corresponding ordering of the poles:

x2, x1, x4, x3, ..., x2t, x2t−1, ..., xn−1, xn−2, xn, for all 3 ≤ t ≤ (n− 3)/2.
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TYPE 2


0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0





0 1 1 1 1 1

1 0 1 1 1 0

1 1 0 1 0 0

1 1 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0





0 1 1 1 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 1 1 1 0 0

1 1 1 0 1 0 0 0

1 1 1 1 0 0 0 0

1 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0


Corresponding ordering of the poles:

x(n+1)/2, x(n−1)/2, x(n+3)/2, x(n−3)/2, ..., xn−2, x(2, xn−1, x1, xn.

TYPE 3


0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0





0 1 1 1 1 1

1 0 0 0 1 0

1 0 0 1 1 0

1 0 1 0 1 0

1 1 1 1 0 0

1 0 0 0 0 0





0 1 1 1 1 1 1 1

1 0 0 0 0 0 1 0

1 0 0 0 0 1 1 0

1 0 0 0 1 1 1 0

1 0 0 1 0 1 1 0

1 0 1 1 1 0 1 0

1 1 1 1 1 1 0 0

1 0 0 0 0 0 0 0


Corresponding ordering of the poles:

xn−2, x2, xn−3, x3, ..., x(n+1)/2, x(n−1)/2, xn−1, x1, xn.

TYPE 4


0 0 0 1

0 0 1 1

0 1 0 1

1 1 1 0





0 0 0 0 0 1

0 0 0 0 1 1

0 0 0 1 1 1

0 0 1 0 1 1

0 1 1 1 0 1

1 1 1 1 1 0





0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 1

0 0 0 1 0 1 1 1

0 0 1 1 1 0 1 1

0 1 1 1 1 1 0 1

1 1 1 1 1 1 1 0


Corresponding ordering of the poles:

xn−1, x1, xn−2, x2, ..., x(n+1)/2, x(n−1)/2, xn.
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TYPE 5


0 1 0 1

1 0 0 0

0 0 0 1

1 0 1 0





0 1 0 1 0 1

1 0 0 0 0 0

0 0 0 1 0 1

1 0 1 0 0 0

0 0 0 0 0 1

1 0 1 0 1 0





0 1 0 1 0 1 0 1

1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 1

1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1

1 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1

1 0 1 0 1 0 1 0


Corresponding ordering of the poles:

x2, x4, ..., xn−1, x1, x3, ...xn−2, xn.

TYPE 6


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0





0 1 1 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 0





0 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1

1 1 0 1 1 1 1 1

1 1 1 0 1 1 1 1

1 1 1 1 0 1 1 1

1 1 1 1 1 0 1 1

1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 0


Corresponding ordering of the poles:

xn−1, xn−2, xn−3, ..., x3, x2, x1, xn.

TYPE 7


0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0





0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 0 0 1

1 0 0 0 1 1

1 0 0 1 0 1

1 0 1 1 1 0





0 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1

1 0 0 0 0 0 1 1

1 0 0 0 0 1 1 1

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 1

1 0 1 1 1 1 1 0


Corresponding ordering of the poles:

x2, xn−1, x3, xn−2, ..., x(n+3)/2, x(n+1)/2, x1, xn.
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TYPE 8


0 0 1 0

0 0 1 1

1 1 0 0

0 1 0 0





0 0 0 1 0 0

0 0 0 1 1 0

0 0 0 1 1 1

1 1 1 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0





0 0 0 0 1 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 0

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

0 1 1 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0


Corresponding ordering of the poles:

x(n+1)/2, x1, x(n+3)/2, x2, ..., xn−2, x(n−1)/2, xn.

TYPE 9


0 1 0 1

1 0 0 1

0 0 0 1

1 1 1 0





0 1 0 1 0 1

1 0 0 1 0 1

0 0 0 1 0 1

1 1 1 0 0 1

0 0 0 0 0 1

1 1 1 1 1 0





0 1 0 1 0 1 0 1

1 0 0 1 0 1 0 1

0 0 0 1 0 1 0 1

1 1 1 0 0 1 0 1

0 0 0 0 0 1 0 1

1 1 1 1 1 0 0 1

0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 0


Corresponding ordering of the poles:

xn−1, xn−3, ..., x4, x2, x1, x3, ..., xn−2, xn.
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CHAPTER 4

PERMUTATIONS ASSOCIATED WITH GENERALIZED FIBONACCI

SEQUENCES

Let p be an odd prime and q = pr where r ≥ 1. In this chapter we consider the

PPs of the form (1.8) with a0 = 1, an+1 = 0 and ai = a for all 1 ≤ i ≤ n where a ∈ F∗q.

Consequently, our PPs are of the form

Pa,n(x) = (. . . ((x+ a)q−2 + a)q−2 . . .+ a)q−2 ∈ Fq[x]. (4.1)

One can see immediately that Ra,n(x) takes the form

Ra,n(x) = a+ 1/(a+ 1/(. . .+ a+ 1/(x+ a) . . .)),

and hence the connection of Pa,n(x) to the generalized Fibonacci sequences becomes

evident. Recall that the generalized Fibonacci sequence (Gn) is defined as Gn+2 =

aGn+1 +Gn for all n ≥ 0 with a ∈ F∗q, G0 = 0, G1 = 1.

4.1. Cycle Structure

Let η be the real valued function on F∗q defined as

η(c) =

 1 if c is a square in Fq,

−1 otherwise.

η is a multiplicative character of Fq called the quadratic character of Fq.
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Theorem 4.1.1 Let Pa,n be the permutation defined by (4.1) and f(x) be the polyno-

mial f(x) = x2 − ax− 1 ∈ Fq[x] with the roots α, β ∈ Fq2. Let k = ord(α
β
) when α 6= β

and η be the quadratic character of Fq.

(a) If η(a2 + 4) = −1 then

τ(Pa,n) = [(
q + 1

k
− 1)gcd(k, n)× k

gcd(k, n)
, gcd(k − 1, n)× k − 1

gcd(k − 1, n)
].

(b) If η(a2 + 4) = 1 then

τ(Pa,n) = [(
q − 1

k
− 1)gcd(k, n)× k

gcd(k, n)
, gcd(k − 1, n)× k − 1

gcd(k − 1, n)
, 2× 1].

(c) If a2 + 4 = 0 then

τ(Pa,n) = [(pr−1 − 1)gcd(p, n)× p

gcd(p, n)
, gcd(p− 1, n)× p− 1

gcd(p− 1, n)
, 1× 1].

Proof :

The polynomial Pa,n(x) can be written as the composition of the permutation

Pa,1(x) = (x + a)q−2 ∈ Fq[x] as (Pa,1)n(x) = Pa,n(x). Hence, the cycle structure

of the permutation Pa,n(x) is fully determined by the cycle structure of Pa,1(x), i.e.

τ(Pa,n) = τ(P n
a,1).

Recall that Pa,1(x) = Fa,1(x) for all x ∈ Fq, where Fa,1(x) is the permutation defined

by the rational transformation Ra,1(x) = 1
x+a
∈ Fq(x). The characteristic polyno-

mial associated with Ra,1(x) is the polynomial f(x) = x2 − ax − 1 ∈ Fq[x] and the

conditions (a),(b),(c) correspond to f(x) being irreducible, having distinct roots and

having a double root in Fq, respectively. By Theorem 2.1.1, one obtains the cycle

decomposition of Pa,1 for the cases (a),(b),(c) as follows:

(a) τ(Pa,1) = [( q+1
k
− 1)× k, 1× (k − 1)],

(b) τ(Pa,1) = [( q−1
k
− 1)× k, 1× (k − 1), 2× 1],

(c) τ(Pa,1) = [(pr−1 − 1)× p, 1× (p− 1), 1× 1].

We write Pa,1 as a product of disjoint cycles as

Pa,1 = C1C2 . . . Cs

where s = q−1
k

, s = q+1
k

and s = pr−1 in the cases (a),(b),(c) respectively. We arrange

the cycles so that `(C1) = k − 1, `(Cj) = k for 2 ≤ j ≤ s in the first two cases and
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`(C1) = p− 1, `(Cj) = p for 2 ≤ j ≤ s in the last case. Since the cycles C1, C2, . . . , Cs

are disjoint, we have Pa,n = P n
a,1 = Cn

1C
n
2 . . . C

n
s .

We only have to show that for a cycle C = (σ1σ2 . . . σ`(C)) of length `(C), τ(Cn) =[
gcd(n, `(C))× `(C)

gcd(n,`(C))

]
. Then the proof follows for all the cases of the theorem.

Let t be the length of the cycle Cσ1 containing σ1 in the cycle decomposition of Cn,

i.e. Cσ1 = (σ1σn+1 . . . σ(t−1)n+1) with the indices written modulo `(C). It is clear that

the cycles of Cn are all of the same length t and the order of Cn is t = `(C)
gcd(`(C),n)

.

2

Remark 4.1.1 The case (c) of the theorem occurs if and only if q ≡ 1 mod 4 and

a = 2γ where γ ∈ Fq satisfies γ2 + 1 = 0. Hence, we do not have the case (c) of

Theorem 4.1.1 in case q ≡ 3 mod 4.

Corollary 4.1.2 Let Ga be the subgroup generated by Pa,1(x) = (x+a)q−2 ∈ Fq[x] and

f(x) = x2 − ax− 1 ∈ Fq[x].

(i) Suppose that q ≡ 3 mod 4 or a2 + 4 6= 0. If for the roots α, β ∈ Fq of f(x) we

have ord(α
β
) = k > 1 then

|Ga| =

 k − 1 if k=q+1 or k=q-1,

k(k − 1) otherwise.

(ii) If q ≡ 1 mod 4 and a = 2γ where γ ∈ Fq satisfies γ2 + 1 = 0 then

|Ga| =

 p− 1 if r=1,

p(p− 1) otherwise.

Proof : The proof follows from the arguments used in the proof of Theorem 4.1.1. 2

The following corollary is an easy consequence of Theorem 4.1.1 and Remark 4.1.1.

Corollary 4.1.3 Suppose that a ∈ Fp and q = p. Then |Ga| = p if and only if p ≡ 3

mod 4 and ord(α
β
) = p+ 1.
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4.2. Generalized Fibonacci Sequences and Poles of Pa,n

Recall that the generalized Fibonacci sequence (Gn) is defined as Gn+2 = aGn+1 +

Gn for all n ≥ 0 with a ∈ F∗q, G0 = 0, G1 = 1.

Lemma 4.2.4 The rational function Ra,n(x) associated to Pa,n(x) satisfies

Ra,n(x) =
Gn−1x+Gn

Gnx+Gn+1

for all n ≥ 1.

Proof :

For n = 1,

Ra,1(x) =
1

x+ a
and

G0x+G1

G1x+G2

=
1

x+ a
. (4.2)

Hence the claim is true for this case.

Suppose that Ra,n−1(x) = Gn−2x+Gn−1

Gn−1x+Gn
. Then

Ra,n(x) =
1

a+Ra,n−1(x)
=

1

a+ Gn−2x+Gn−1

Gn−1x+Gn

=
Gn−1x+Gn

(aGn−1 +Gn−2)x+ aGn +Gn−1

=
Gn−1x+Gn

Gnx+Gn+1

.

2

Consequently, the string of poles is given by Oa,n = {xi : xi = −Gi+1

Gi
, i =

1, . . . , n} ⊂ P1(Fq).

The polynomial f(x) = x2 − ax− 1 ∈ Fq[x] is the characteristic polynomial of the

shortest recurrence relation satisfied by the sequence (Gn). If f(x) in Theorem 4.1.1

has distinct roots α, β ∈ Fq2 , then Gn is of the form

Gn = c1α
n + c2β

n.

From the initial values G0, G1, we derive the formula

Gn =
αn − βn

α− β
, n ≥ 0,
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and therefore

Oa,n = {xi : xi = −Gi+1

Gi

= −α
i+1 − βi+1

αi − βi
, i = 1, . . . , n}.

If ord(α
β
) = k then Gk = 0 and hence xk−1 = 0, xk =∞.

If a2 + 4 = 0 i.e. the polynomial f(x) has a double root α ∈ Fq, then Gn is of the form

Gn = (c1 + c2n)αn

and we obtain the formula

Gn = n
(a

2

)n−1

, n ≥ 0.

The string of poles is then

Oa,n = {xi : xi = −Gi+1

Gi

=
−(i+ 1)

i

a

2
, i = 1, . . . , n}

for all n ≥ 1 with xp−1 = 0 and xp =∞, i.e.

Oa,n ⊆ {α
a

2
∈ Fq : α ∈ Fp \ {p− 1}} ∪ {∞}

with equality for all n ≥ p.

The following lemma is an easy generalization of d’Ocagne’s identity for Fibonacci

sequences

Lemma 4.2.5 Gn+1Gj −GnGj+1 = (−1)j+1Gn−j for all n ≥ j ≥ 0.

Proof :

For n ≥ j we have

Gn+1Gj −GnGj+1 = (aGn +Gn−1)Gj −Gn(aGj +Gj−1)

= −(GnGj−1 −Gn−1Gj)

= −(Gj−1(aGn−1 +Gn−2)−Gn−1(aGj−1 +Gj−2))

= (−1)2(Gn−1Gj−2 −Gj−1Gn−2).

By repeating this process, we obtain the equality

(−1)j(Gn−j+1G0 −G1Gn−j) = (−1)j+1Gn−j.

2
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Proposition 4.2.6 Let f(x) = x2− ax− 1 ∈ Fq[x] and α, β ∈ Fq2 be the roots of f(x)

with α 6= β. Let k = ord(α
β
). Then

(a) the poles x1, . . . , xk associated to Pa,k are all distinct,

(b) xrk+j = xj for all r ≥ 1 and 1 ≤ j ≤ k,

(c) the poles xi for i = 1, .., n − 1, n + 1, ..., k are not the fixed points of Fa,n(x) for

any 1 ≤ n ≤ k − 1.

Proof :

(a) Assume that xi = xj for some 1 ≤ i 6= j < k. Then

xi = −Gi+1

Gi

= −Gj+1

Gj

, and

Gi+1Gj −GiGj+1 = 0.

Without loss of generality, suppose that j ≤ i. Then we can write the equality as

(−1)j+1Gi−j = 0

by using Lemma 4.2.5, which implies Gi−j = 0. This contradicts the fact that k is the

smallest integer with Gk = 0. For j < k, we have xj 6= ∞, otherwise Gj = 0 which is

again a contradiction.

(b) (α
β
)k = 1 implies

Grk =
αrk − βrk

α− β
=

(βk)r − (βk)r

α− β
= 0 (4.3)

for all r ≥ 1. Lemma 4.2.5 and (4.3) gives

Grk+j+1Gj −Gj+1Grk+j = (−1)j+1Grk = 0.

Then we have

xrk+j = −Grk+j+1

Grk+j

= −Gj+1

Gj

= xj.

(c) Note that Fa,n(x) = Ra,n(x) for all x ∈ Fq \ {xn} where xn is the pole of the

rational transformation Ra,n(x). Since

Fa,n(x) = x⇐⇒ Ra,n(x) = x for x ∈ Fq \ {xn},
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the fixed points of Fa,n(x) other than xn are the roots of the polynomial

g(x) = x2 + ax− 1 ∈ Fq[x].

g

(
−Gi+1

Gi

)
=

(
−Gi+1

Gi

)2

+ a− Gi+1

Gi

− 1 =
G2
i+1 − aGi+1Gi −G2

i

G2
i

=
Gi+1(Gi+1 − aGi)−G2

i

G2
i

=
Gi+1Gi−1 −G2

i

G2
i

=
(−1)i

G2
i

where the last equality follows by the generalization of Cassini’s identity. Hence xi is

not a root of g(x) for i = 1, ..., n− 1, n+ 1, ..., k.

For x = xn = −Gn+1

Gn
, we obtain Fa,n(xn) = −Gn−1

Gn
, and hence xn is a fixed point if and

only if Gn+1 +Gn−1 = 0. 2

In this chapter, we worked on the cycle structure and the string of poles of a certain

subset of Pn(x), namely, the set of polynomials Pa,n(x) for n ≥ 1. When we impose

conditions on the coefficients ai for 0 ≤ i ≤ n, the requirements for having a certain

cycle structure became easier to check and also the set of polynomials we worked on is

a cyclic subgroup of the group of PPs over Fq.

Recall that for a permutation p(x) over Fq, it is always possible to find Pn(x) such

that p(x) = Pn(x) with n ≥ 0. The minimal n satisfying the equality is called the

Carlitz rank of p(x) which is denoted by Crk(p(x)), see [3]. In other words, Crk(p(x))

is the minimum number of inversions needed to obtain p(x). In [3], a method was

presented to determine the Carlitz rank of permutations. As observed in [3], it is

not possible to write Pn(x) as Pm(x) for m < n < q−1
2

, when the poles are distinct.

In our example, the relation of the poles x1, · · · , xn with the generalized Fibonacci

sequence enabled us to determine the string of poles completely for any n ≥ 1. If

f(x) has a double root then the poles x1, · · · , xp are distinct and if f(x) has distinct

roots α, β ∈ Fq2 with k = ord(α
β
) then the poles x1, · · · , xk are distinct by Proposition

4.2.6(a). By using the results in [3], we obtain that

Crk(Pa,n(x)) = n, when n ≤ min

{
p+ 1,

q − 1

2

}
.

in case f(x) has a double root and

Crk(Pa,n(x)) = n, when n ≤ min

{
k + 1,

q − 1

2

}
.
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when f(x) has distinct roots.

A natural extension of the results in this chapter would be to impose other condi-

tions on the coefficients ai, for 0 ≤ i ≤ n + 1, of Pn(x) ∈ Fq[x] and study the cycle

structure of the resulting PPs.
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