
Low Power IEEE 802.11n LDPC Decoder Hardware

Merve Peyic, Hakan A. Baba, Ilker Hamzaoglu, Mehmet Keskinoz

Electronics Engineering, Sabanci University, Tuzla 34956 Istanbul, Turkey

mervep@su.sabanciuniv.edu, altugb@su.sabanciuniv.edu, hamzaoglu@sabanciuniv.edu, keskinoz@sabanciuniv.edu

Abstract—In this paper, we present a low power hybrid

low-density-parity-check (LDPC) decoder hardware

implementing layered min-sum decoding algorithm for IEEE

802.11n Wireless LAN Standard. The LDPC decoder

hardware, which has 27 check node datapaths and 24x162

variable node memory, is implemented in Verilog HDL and

verified to work correctly in a Xilinx Virtex II FPGA. For 648

block length and 1/2 code rate, on a Xilinx Virtex II FPGA, the

LDPC decoder hardware implementation works at 83.5 MHz

and it can process 60.68 Mbps. For 648 block length and 5/6

code rate, on a Xilinx Virtex II FPGA, the LDPC decoder

hardware implementation works at 71.5 MHz and it can

process 113.78 Mbps. The power consumption of the

implementation on a Xilinx Virtex II FPGA is estimated as

2052 mW for 648 block length and 1/2 code rate and 1989 mW

for 648 block length and 5/6 code rate using Xilinx XPower

tool. In this paper, we propose two novel techniques, sub-

matrix reordering and differential shifting, for reducing the

power consumption of a LDPC decoder hardware. We applied

glitch reduction, sub-matrix reordering and differential

shifting techniques to our LDPC decoder hardware. These

techniques do not affect the bit error rate (BER) of a LDPC

decoder. For block length 648 and code rate 1/2, these three

techniques together reduced the power consumption of the

LDPC decoder hardware in total by 23.7% to 1,565.84 mW.

For block length 648 and code rate 5/6, they together reduced

the power consumption of the LDPC decoder hardware in total

by 38.98% to 1,214.22 mW.

I. INTRODUCTION

In communication systems, Forward Error Correction (FEC)

techniques are used to detect and/or correct the errors on the

received bit streams. Low-density-parity-check (LDPC) codes are

an example of ECCs which were first proposed by Robert Gallager

in 1960 [1] and rediscovered by MacKay after 30 years in mid

1990s [2]. They are now used as error correction code in many

communication standards such as IEEE 802.11n, the recently

developed wireless LAN standard.

The parity check matrix of an LDPC code determines the BER,

the throughput and the complexity of the LDPC decoder. The

parity check matrixes used in IEEE 802.11n standard have layered

structures and they consist of shifted versions of identity matrixes

concatenated to form 12 different matrixes for 648, 1296 and 1944

block lengths and 1/2, 2/3, 3/4 and 5/6 code rates [3]. The 324x648

parity check matrix used in IEEE 802.11n standard for 648 block

length and 1/2 code rate is shown in Figure 1. A layer consists of

multiple rows (parity check equations) and concatenation of these

layers forms the whole parity check matrix. For example, the parity

check matrix for 1/2 code rate consists of 12 layers and each layer

is composed of 24 sub-matrixes of size 27x27 which are either null

matrixes or shifted versions of identity matrixes.

Several decoding algorithms for LDPC codes have been

proposed in the literature [4]. In this paper, we used the min-sum

decoding algorithm with layered belief propagation in log-

likelihood ratio (LLR) domain, because it satisfies the throughput

and BER requirements of IEEE 802.11n standard and it has low

computational complexity and fast convergence.

Since a parallel LDPC decoder hardware is not scalable for large

parity check matrixes [5], in this paper, we present a low power

hybrid LDPC decoder hardware for IEEE 802.11n wireless LAN

standard. The LDPC decoder hardware has 27 check node

datapaths and 24x162 variable node memory. The hardware is

implemented in Verilog HDL and verified to work correctly in a

Xilinx Virtex II FPGA. For 648 block length and 1/2 code rate, on

a Xilinx Virtex II FPGA, the LDPC decoder hardware

implementation works at 83.5 MHz and it can process 60.68 Mbps

if it does 3 iterations (36 sub-iterations) for each codeword. For

648 block length and 5/6 code rate, on a Xilinx Virtex II FPGA,

the LDPC decoder hardware implementation works at 71.5 MHz

and it can process 113.78 Mbps if it does 3 iterations (12 sub-

iterations) for each codeword.

The power consumption of the implementation on a Xilinx

Virtex II FPGA is estimated as 2052 mW for 648 block length and

1/2 code rate and 1989 mW for 648 block length and 5/6 code rate

using Xilinx XPower tool. In this paper, we propose two novel

techniques, sub-matrix reordering and differential shifting, for

reducing the power consumption of an LDPC decoder hardware.

We applied glitch reduction, sub-matrix reordering and differential

shifting techniques to our LDPC decoder hardware. These

techniques do not affect the BER of an LDPC decoder. For block

length 648 and code rate 1/2, these three techniques together

reduced the power consumption of the LDPC decoder hardware in

total by 23.7% to 1,565.84 mW. For block length 648 and code rate

5/6, they together reduced the power consumption of the LDPC

decoder hardware in total by 38.98% to 1,214.22 mW.

Several hybrid LDPC decoder hardware architectures are

proposed in the literature [6, 7, 8, 9, 10, 11, 12]. Some of these

LDPC decoders are proposed for IEEE 802.11n standard. Our

LDPC decoder hardware is similar to the LDPC decoder hardware

proposed in [8] for DVB-S2 standard. The power consumption is

only reported in [11] for an ASIC implementation. We, therefore,

could not compare the power consumption of our LDPC decoder

hardware with the other LDPC decoders.

The rest of the paper is organized as follows. Section II

describes LDPC codes and layered min-sum LDPC decoding

algorithm. The LDPC decoder hardware architecture is presented

in Section III. The power consumption reduction for the LDPC

decoder hardware is explained in Section IV. The implementation

results are given in Section V. Section VI concludes the paper.

Figure 1. Parity Check Matrix for 648 block length and 1/2 code rate

II. LDPC CODES

LDPC decoding is done based on a parity check matrix which

consists of “0”s and “1”s defining the parity check equations. An

example 4x8 parity check matrix is shown in Figure 2. An MxN

parity check matrix has M parity check equations and N variables.

For an MxN parity check matrix, M check nodes and N variable

nodes exchange information between themselves iteratively

according to the LDPC decoding algorithm. “1”s in the parity

check matrix determine the connections between the variable nodes

and the check nodes. The information exchange is done only

between the nodes connected to each other. LDPC decoding

process for the 4x8 parity check matrix is shown in Figure 3.

Variable nodes receive soft information, the likelihood ratio of

probabilities of that bit being 1 or 0, from the channel and this

information is iteratively passed between check nodes and variable

nodes to satisfy the parity check equations specified by the parity

check matrix [1, 2]. This operation can be done in logarithmic

domain to simplify multiplication operations to addition operations

in which case the decoder gets log-likelihood ratios (llr) from the

channel [4]. This algorithm can be further simplified to min-sum

decoding algorithm with a small degradation in BER. The steps of

the min-sum decoding algorithm are shown below:

i. Take the llr values from the channel for each variable node as the

initial variable node messages.

Qn = LLR(n) (1)

ii. Update each check node with the variable node messages they

are connected to, according to the min-sum algorithm.

Rmn = ' ' '

'
\

\

() min ()
n m n C n n m

n C n

sign Q Q
∈

∈

×∏ (2)

where C is the set of variable nodes connected to a check node.

iii. Update each variable node with the check node messages they

are connected to.

Qnm = '

' \

()
m n

m V m

LLR n R
∈

+ ∑ (3)

where V is the set of check nodes connected to a variable node.

iv. After each layer, calculate the decoder output by summing up

all check node messages for each variable node.

Qn = '

'

()
m n

m V

LLR n R
∈

+ ∑ (4)

v. Finally the hard decision is made according to the soft decoder

outputs.

When the min-sum decoding algorithm is implemented using a

hybrid LDPC decoder hardware, its BER performance can be

improved by using layered decoding technique in which message

updates are not done only after finishing the whole parity check

matrix but also after finishing each layer of the parity check matrix

[6, 7]. The layered decoding can be used for the parity check

matrixes with layered structure such as the parity check matrixes

used in IEEE 802.11n standard. For example, for the parity check

matrix used for 648 block length and 1/2 code rate in IEEE

802.11n standard, after the 27 check nodes finishes the min-sum

algorithm for the variable nodes they are connected to in one layer,

these variable nodes are updated and the 27 check nodes uses these

updated messages for the next layer. Since message updating is

also done after finishing each layer in an iteration, the time spent

for processing a layer is called a sub-iteration. Therefore, for the

parity check matrix used for 1/2 code rate, 12 sub-iterations are

done in one iteration.

III. LDPC DECODER HARDWARE

In this paper, we present a hybrid LDPC decoder hardware

implementation of the parity check matrixes specified in the IEEE

802.11n standard for 648 block size [3]. As shown in Figure 4, our

hardware architecture is similar to the LDPC decoder hardware

proposed in [8]. Since sub-matrix size of the parity check matrixes

is 27x27, we used 27 check node datapaths for implementing the

min-sum decoding algorithm for one layer in parallel. After

variable-node updates are finished for one layer, the next layer of

the parity check matrix is processed resulting in a hybrid LDPC

decoder implementation.

Figure 2. A 4x8 Parity Check Matrix

Figure 3. LDPC Decoding for the 4x8 Parity Check Matrix

0 0 0 0 0 1 0

22 0 17 0 0 12 0 0

6 0 10 24 0 0 0

2 0 20 25 0 0 0

23 3 0 9 11 0 0

24 23 1 17 3 10 0 0

25 8 7 18 0 0 0

13 24 0 8 6

− − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − −

− − − − − − − − − − 0 0

7 20 16 22 10 23 0 0

11 19 13 3 17 0 0

25 8 23 18 14 9 0 0

3 16 2 25 5 1 0

− − − − − − −

− − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − −

Figure 4. LDPC Decoder Hardware Architecture

Figure 5. Check Node Datapath

The hardware architecture consists of a 24x162 variable node

memory, 2 barrel shifters, 27 check node datapaths and 27 12x38

check node memories. 24x162 bit memory is used to store the 648

variable node messages each one being 6-bit including 1 sign bit.

The variable node memory is organized such that in each word

27*6 = 162 bit messages are stored to send 27 variable node

messages to 27 check node datapaths in parallel.

Since the sub-matrixes of the IEEE 802.11n standard are shifted

versions of 27x27 identity matrixes, before sending variable node

messages, the word has to be shifted by the read barrel shifter to

send the correct variable node messages to each check node

datapath. Then the updated variable node messages are written

back to memory after they are shifted back to their original

position by write barrel shifter.

In the 648 block-length and 5/6 code rate parity check matrix,

each check node is connected to 22 variable nodes. Therefore to

compute the check node message as in equation 2, each check node

datapath is sent the variable node messages in 22 cycles. In our

decoder hardware, instead of storing all variable node messages for

every check node, we only store their sum for every variable node,

calculated as in equation 4.

Then, as shown in Figure 5, in the check node datapath, the

check node message, sent in the previous iteration, is subtracted

from the total variable node message to extract the individual

variable node message for that check node, as in equation 5.

1i i

nm n mnQ Q R −
= − (5)

After calculating Qnm for all 22 variable node messages, the

block “Rm
i finder” finds the minimum and one-but-minimum

magnitudes among the 22 Qnm messages and sends a 38-bit length

message containing 4-bit min and one-but-min magnitudes, 5-bit

index of the minimum, 24-bit signs of 24 variable nodes, of which

only 22 are used for each layer, and 1-bit for xor of the signs of 22

variable nodes. This 38-bit compressed message is stored in 4x38

check node memories. The “Rmn
i-1 finder” and “Rmn

i finder” in a

check node datapath are used to decompress the 38 bit Rm

messages and find the individual check-to-variable node messages.

The 24x5 Qnm memories keep the Qnm values which will later be

added with Rmn to finally update the variable node sending the Qn

to the variable node memory.

IV. POWER CONSUMPTION REDUCTION

The LDPC decoder hardware is implemented in Verilog HDL.

The Verilog RTL design is synthesized to a 2V8000ff1157 Xilinx

Virtex II FPGA with speed grade 5 using Mentor Graphics

Precision RTL 2005b. The resulting netlist is placed and routed to

the same FPGA using Xilinx ISE 8.2i.
The power consumption of the LDPC decoder hardware

implementation on a Xilinx Virtex II FPGA is estimated using

Xilinx XPower tool. In order to estimate the dynamic power

consumption, timing simulation of the placed and routed netlist of

the LPDC decoder hardware implementation is done using Mentor

Graphics ModelSim SE for 10 codewords and 10 iterations and the

signal activities are stored in a VCD file. This VCD file is used for

estimating the power consumption of the LDPC decoder hardware

using Xilinx XPower tool.

The dynamic power consumption of the LDPC decoder

hardware implementation for 648 block length, and 1/2 and 5/6

code rates on a Xilinx Virtex II FPGA at 33 MHz are shown in

Table I and Table II. The dynamic power consumption of the

LDPC decoder hardware is divided into three categories; signal

power, logic power and clock power. Signal power is the power

dissipated in routing tracks between logic blocks. Logic power is

the amount of power dissipated in the parts where computations

take place. Clock power is due to clock tree used in the FPGA.

Since the LDPC decoder hardware is interconnection dominant, a

significant amount of power, 58.37% of total power consumption

of 1/2 code rate and 60.88% of total power consumption of 5/6

code rate, is dissipated in routing tracks.

In this paper, we propose two novel techniques, sub-matrix

reordering and differential shifting, for reducing the power

consumption of the LDPC decoder hardware.

In the hybrid LDPC decoder hardware designs, a read barrel

shifter is used for shifting the current variable node values after

reading them from the variable node memory and a write barrel

shifter is used for shifting the new variable node values produced

by the check node datapaths before writing them to the variable

node memory. In differential shifting technique, new variable node

values produced by check node datapaths are written to variable

node memory without being shifted. Therefore, in the next

iteration, the current variable node values are shifted by the

difference between the previous write shift amount and the current

read shift amount, i.e. the previous write shift and the current read

shift are done together by the read barrel shifter.

Therefore, implementing the differential shifting technique in

the LDPC decoder hardware is done by removing the write barrel

shifter, by properly updating the shift amounts for the read barrel

shifter and by changing the initial variable node memory

organization to make it suitable for the differential shift amounts.

Figure 6. Differential Shift Amounts for the Parity Check Matrix for 648

Block Length and 1/2 Code Rate

Figure 7. Sub-matrix Reordering for the Parity Check Matrix for 648

Block Length and 1/2 Code Rate

TABLE I. POWER CONSUMPTION OF LDPC DECODER HARDWARE
FOR 1/2 CODE RATE

Power

(mW)

Initial

Hardware

Glitch

Reduction

Sub-Matrix

Reordering
Differential

Shifting

Clock 550.49 566.23 570.64 547.47

Logic 305.11 264.83 262.62 218.83

Signal 1,198.02 1,031.13 996.70 798.80

Total 2,052.55 1,863.10 1,830.69 1,565.84

TABLE II. POWER CONSUMPTION OF LDPC DECODER HARDWARE
FOR 5/6 CODE RATE

Power

(mW)

Initial

Hardware

Glitch

Reduction

Sub-Matrix

Reordering
Differential

Shifting

Clock 488.43 496.11 486.34 495.23

Logic 288.62 238.73 227.00 173.64

Signal 1,211.37 794.60 768.50 544.45

Total 1,989.85 1,530.30 1,482.75 1,214.22

Since there is no write shifter, after the last layer the updated

variable node messages will be written to variable node memory in

the read shifted order and in the next iteration, in the first layer the

variable node messages has to be read shifted by taking into

account the read shift amounts of the last layer. Therefore, each

variable node message received from the channel is written to a

variable node memory word after shifted by the read shift amount

of the last layer to make the shift amounts of the first layer

consistent for all iterations. The differential shift amounts for the

parity check matrix of 1/2 code rate is shown in Figure 6.

In the hybrid LDPC decoder hardware design, the sub-matrixes

in one layer of a parity check matrix are processed by the check

node datapaths sequentially starting from the first sub-matrix until

the last sub-matrix in the parity check matrix. Processing the sub-

matrixes in one layer of a parity check matrix by the check node

datapaths in a different order does not affect the BER of an LDPC

decoder. Therefore, in sub-matrix reordering technique, the sub-

matrixes in one layer of a parity check matrix are processed by the

check node datapaths in the order that results in a smaller amount

of switching activity by both reading the same 162-bit variable

node memory word and shifting it with the same shift amount in

the consecutive clock cycles as much as possible.

As shown in Figure 1 for rate 1/2, in the parity check matrixes

used in IEEE 802.11n, some sub-matrixes in consecutive layers are

shifted with the same shift amount. For example, as shown in

Figure 7, in the parity check matrix for 648 block length and 1/2

code rate, in both the first and the second layers the 13th sub-

matrix is shifted by 0, therefore while processing the first layer we

read the 13th sub-matrix the last and while processing the second

layer we read the 13th sub-matrix the first in order to avoid reading

a different variable node memory word which will result in

unnecessary switching activity. Therefore, the sub-matrixes in this

parity check matrix are processed by the check node datapaths in

the below order.

Layer 1: 12 – 0 – 4 – 5 – 8 – 11 – 13

Layer 2: 13 – 0 – 1 – 4 – 6 – 7 – 8 – 14

Layer 3: 14 – 0 – 2 – 4 – 8 – 10 – 15

Layer 11: 22 – 0 – 2 – 4 – 5 – 7 – 8 – 23

Layer 12: 23 – 0 – 4 – 7 – 8 – 9 – 12

Glitch is a spurious transition at a node within a single cycle

before the node settles to the correct logic value [13]. Unlike

ASICs, in which signals can be routed using any available silicon,

FPGAs implement interconnects using fixed metal tracks and

programmable switches. The relative scarcity of programmable

switches often forces signals to take longer routes than would be

seen in an ASIC. As a result, the potential for unequal delays

among signals, and hence the creation of glitches, is more likely

than that in an ASIC. Thus, reducing glitches by pipelining is an

effective power reduction technique for FPGAs. Pipeline registers

can be inserted after the read barrel shifter, shown as dashed

rectangle in Figure 4, for reducing the glitches in the LDPC

decoder hardware.

We first applied glitch reduction, then applied sub-matrix

reordering and finally applied differential shifting techniques to our

LDPC decoder hardware implementation. These techniques do not

affect the BER of an LDPC decoder. The impact of these

techniques on the power consumption of LDPC decoder hardware

for block length 648 and code rate 1/2 is shown in Table I and for

block length 648 and code rate 5/6 is shown in Table II.

For block length 648 and code rate 1/2, glitch reduction

technique reduced the power consumption of the LDPC decoder

hardware by 189.45 mW, sub-matrix reordering technique further

reduced the power consumption of the LDPC decoder hardware by

32.41 mW and differential shifting technique further reduced the

power consumption of the LDPC decoder hardware by 264.85

mW. Therefore, these three techniques together reduced the power

consumption of the LDPC decoder hardware in total by 23.7% to

1,565.84 mW.

For block length 648 and code rate 5/6, glitch reduction

technique reduced the power consumption of the LDPC decoder

hardware by 459.55 mW, sub-matrix reordering technique further

reduced the power consumption of the LDPC decoder hardware by

47.55 mW and differential shifting technique further reduced the

power consumption of the LDPC decoder hardware by 268.53

mW. Therefore, these three techniques together reduced the power

consumption of the LDPC decoder hardware in total by 38.98% to

1,214.22 mW.

24 11 9 2 10 0 0

22 7 17 19 25 12 0 0

11 19 20 12 24 0 0

23 11 10 1 22 0 0

21 10 2 9 11 0 0

1 23 1 14 3 10 0 0

1 18 24 18 26 0 0

15 24

− − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − −

− 19 5 26 0 0

21 23 15 22 10 17 0 0

4 24 17 21 6 0 0

14 12 4 8 14 23 0 0

5 20 15 16 14 1 0

− − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − −

TABLE III. AREA OF LDPC DECODER HARDWARE FOR 1/2 CODE
RATE

Category
Initial

Hardware

Glitch

Reduction

Differential

Shifting

Function

Generators
16,136 15,731 13,850

CLB Slices 11,303 11,038 10,153

DFFs 4,401 4,759 4,734

Block RAMs 116 118 118

TABLE IV. AREA OF LDPC DECODER HARDWARE FOR 5/6 CODE
RATE

Category
Initial

Hardware

Glitch

Reduction

Differential

Shifting

Function

Generators
14,048 13,143 11,260

CLB Slices 10,154 9,404 8,588

DFFs 4,777 4,812 4,812

Block RAMs 89 91 90

V. IMPLEMENTATION RESULTS

The LDPC decoder hardware is implemented in Verilog HDL.

The implementation is verified with RTL simulations using Mentor

Graphics ModelSim SE. RTL simulation results for both 1/2 and

5/6 code rates matched the results of MATLAB models of the

LDPC decoding algorithm for 1/2 and 5/6 code rates.

The Verilog RTL design is synthesized to a 2V8000ff1157

Xilinx Virtex II FPGA with speed grade 5 using Mentor Graphics

Precision RTL 2005b. The resulting netlist is placed and routed to

the same FPGA using Xilinx ISE 8.2i. The LDPC decoder

hardware implementation works at 45.5 MHz for 648 block length

and 1/2 code rate and it works at 45.5 MHz for 648 block length

and 5/6 code rate. The FPGA resource usages of the LDPC decoder

implementations for 648 block length and 1/2 and 5/6 code rates

are shown in Table III and IV respectively.

After applying glitch reduction technique, the LDPC decoder

hardware implementation works at 55.5 MHz for 648 block length

and 1/2 code rate and it works at 55.5 MHz for 648 block length

and 5/6 code rate. After applying glitch reduction technique, the

FPGA resource usages of the LDPC decoder implementations for

648 block length and 1/2 and 5/6 code rates are shown in Table III

and IV respectively.

Applying sub-matrix reordering technique did not affect the

frequency and area of the LDPC decoder implementations.

After further applying differential shifting technique, for 648

block length and 1/2 code rate, the LDPC decoder hardware

implementation works at 83.5 MHz and it can process 60.68 Mbps

if it does 3 iterations (36 sub-iterations) for each codeword, and for

648 block length and 5/6 code rate, it works at 71.5 MHz and it can

process 113.78 Mbps if it does 3 iterations (12 sub-iterations) for

each codeword. After applying differential shifting technique, the

FPGA resource usages of the LDPC decoder implementations for

648 block length and 1/2 and 5/6 code rates are shown in Table III

and IV respectively.

VI. CONCLUSIONS

 In this paper, we presented a low power hybrid LDPC decoder
hardware implementing layered min-sum decoding algorithm for

IEEE 802.11n Wireless LAN Standard. The hardware is

implemented in Verilog HDL and verified to work correctly in a

Xilinx Virtex II FPGA. For 648 block length and 1/2 code rate, on

a Xilinx Virtex II FPGA, the LDPC decoder hardware

implementation works at 83.5 MHz and it can process 60.68 Mbps.

For 648 block length and 5/6 code rate, on a Xilinx Virtex II

FPGA, the LDPC decoder hardware implementation works at 71.5

MHz and it can process 113.78 Mbps.
The power consumption of the implementation on a Xilinx

Virtex II FPGA is estimated as 2052 mW for 648 block length and

1/2 code rate and 1989 mW for 648 block length and 5/6 code rate

using Xilinx XPower tool. In this paper, we also proposed two

novel techniques, sub-matrix reordering and differential shifting,

for reducing the power consumption of a LDPC decoder hardware.

We applied glitch reduction, sub-matrix reordering and differential

shifting techniques to our LDPC decoder hardware. These

techniques do not affect the BER of a LDPC decoder. For block

length 648 and code rate 1/2, these three techniques together

reduced the power consumption of the LDPC decoder hardware in

total by 23.7% to 1,565.84 mW. For block length 648 and code rate

5/6, they together reduced the power consumption of the LDPC

decoder hardware in total by 38.98% to 1,214.22 mW.

REFERENCES

[1] R. G. Gallager, “Low density parity check codes”, IRE
Transations on Information Theory, vol. 8, pages 21-28, 1962.

[2] D. MacKay and R. Neal, “Near shannon limit performance of
low density parity check codes”, Electronics Letters, volume
32, pages 1645-1646, August 1996.

[3] “IEEE 802.11n Wireless LAN Medium Access Control MAC
and Physical Layer PHY specifications”, IEEE 802.11n-D2.0,
2007.

[4] Lingyan Sun, “Implementation and Evaluation of Iterative
Soft Detection / Decoding Using Field Programmable Gate
Array”, PhD Thesis, Carnegie Mellon University, Aug. 2005.

[5] A.J. Blanksby and C.J. Howland, “A 690-mW 1-Gb/s 1024-b,
rate-1/2 low-density parity-check code decoder” IEEE
Journal of Solid-State Circuits, vol 37, pages 404–412, 2002.

[6] M. Mansour and N. Shanbhag, “Architecture-aware low-
density parity-check codes”, IEEE Int. Symp. on Circuits and
Systems, May 2003.

[7] M. Mansour and N. Shanbhag, “A 640-Mb/s 2048-bit
programmable LDPC decoder chip,” IEEE J. of Solid-State
Circuits, vol. 41, no.3, pp. 684- 698, March 2006.

[8] J. Dielissen, A. Hekstra, V. Berg, “Low cost LDPC decoder
for DVB-S2”, Design, Automation & Test in Europe
Conference, March 2006.

[9] T. Brack, M. Alles, T. Lehnigk-Emden, F. Kienle, N. Wehn,
Lapos, N.E. Insalata, F. Rossi, M. Rovini, L. Fanucci, “Low
Complexity LDPC Code Decoders for Next Generation
Standards”, Design, Automation & Test in Europe
Conference, April 2007.

[10] J. Dielissen, A. Hekstra, “Non-fractional parallelism in LDPC
Decoder implementations”, Design, Automation & Test in
Europe Conference, April 2007.

[11] Weihuang Wang and Gwan Choi, “Minimum-Energy LDPC
Decoder for Real-Time Mobile Application”, Design,
Automation & Test in Europe Conference, April 2007.

[12] K. Gunnam, G. Choi, W. Wang, M. Yeary, “Multi-Rate
Layered Decoder Architecture for Block LDPC Codes of the
IEEE 802.11n Wireless Standard”, IEEE Int. Symp. on
Circuits and Systems, May 2007.

[13] S. J. E. Wilton, S-S. Ang and W. Luk, "The Impact of
Pipelining on Energy per Operation in Field-Programmable
Gate Arrays'', International Conference on Field-
Programmable Logic and its Applications, August 2004.

