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Abstract—In this paper, we present a low power hybrid 

low-density-parity-check (LDPC) decoder hardware 

implementing layered min-sum decoding algorithm for IEEE 

802.11n Wireless LAN Standard. The LDPC decoder 

hardware, which has 27 check node datapaths and 24x162 

variable node memory, is implemented in Verilog HDL and 

verified to work correctly in a Xilinx Virtex II FPGA. For 648 

block length and 1/2 code rate, on a Xilinx Virtex II FPGA, the 

LDPC decoder hardware implementation works at 83.5 MHz 

and it can process 60.68 Mbps. For 648 block length and 5/6 

code rate, on a Xilinx Virtex II FPGA, the LDPC decoder 

hardware implementation works at 71.5 MHz and it can 

process 113.78 Mbps. The power consumption of the 

implementation on a Xilinx Virtex II FPGA is estimated as 

2052 mW for 648 block length and 1/2 code rate and 1989 mW 

for 648 block length and 5/6 code rate using Xilinx XPower 

tool. In this paper, we propose two novel techniques, sub-

matrix reordering and differential shifting, for reducing the 

power consumption of a LDPC decoder hardware. We applied 

glitch reduction, sub-matrix reordering and differential 

shifting techniques to our LDPC decoder hardware. These 

techniques do not affect the bit error rate (BER) of a LDPC 

decoder. For block length 648 and code rate 1/2, these three 

techniques together reduced the power consumption of the 

LDPC decoder hardware in total by 23.7% to 1,565.84 mW. 

For block length 648 and code rate 5/6, they together reduced 

the power consumption of the LDPC decoder hardware in total 

by 38.98% to 1,214.22 mW. 

I. INTRODUCTION 

In communication systems, Forward Error Correction (FEC) 

techniques are used to detect and/or correct the errors on the 

received bit streams. Low-density-parity-check (LDPC) codes are 

an example of ECCs which were first proposed by Robert Gallager 

in 1960 [1] and rediscovered by MacKay after 30 years in mid 

1990s [2]. They are now used as error correction code in many 

communication standards such as IEEE 802.11n, the recently 

developed wireless LAN standard.  

The parity check matrix of an LDPC code determines the BER, 

the throughput and the complexity of the LDPC decoder. The 

parity check matrixes used in IEEE 802.11n standard have layered 

structures and they consist of shifted versions of identity matrixes 

concatenated to form 12 different matrixes for 648, 1296 and 1944 

block lengths and 1/2, 2/3, 3/4 and 5/6 code rates [3]. The 324x648 

parity check matrix used in IEEE 802.11n standard for 648 block 

length and 1/2 code rate is shown in Figure 1. A layer consists of 

multiple rows (parity check equations) and concatenation of these 

layers forms the whole parity check matrix. For example, the parity 

check matrix for 1/2 code rate consists of 12 layers and each layer 

is composed of 24 sub-matrixes of size 27x27 which are either null 

matrixes or shifted versions of identity matrixes. 

Several decoding algorithms for LDPC codes have been 

proposed in the literature [4]. In this paper, we used the min-sum 

decoding algorithm with layered belief propagation in log-

likelihood ratio (LLR) domain, because it satisfies the throughput 

and BER requirements of IEEE 802.11n standard and it has low 

computational complexity and fast convergence.  

Since a parallel LDPC decoder hardware is not scalable for large 

parity check matrixes [5], in this paper, we present a low power 

hybrid LDPC decoder hardware for IEEE 802.11n wireless LAN 

standard. The LDPC decoder hardware has 27 check node 

datapaths and 24x162 variable node memory. The hardware is 

implemented in Verilog HDL and verified to work correctly in a 

Xilinx Virtex II FPGA. For 648 block length and 1/2 code rate, on 

a Xilinx Virtex II FPGA, the LDPC decoder hardware 

implementation works at 83.5 MHz and it can process 60.68 Mbps 

if it does 3 iterations (36 sub-iterations) for each codeword. For 

648 block length and 5/6 code rate, on a Xilinx Virtex II FPGA, 

the LDPC decoder hardware implementation works at 71.5 MHz 

and it can process 113.78 Mbps if it does 3 iterations (12 sub-

iterations) for each codeword. 

The power consumption of the implementation on a Xilinx 

Virtex II FPGA is estimated as 2052 mW for 648 block length and 

1/2 code rate and 1989 mW for 648 block length and 5/6 code rate 

using Xilinx XPower tool. In this paper, we propose two novel 

techniques, sub-matrix reordering and differential shifting, for 

reducing the power consumption of an LDPC decoder hardware. 

We applied glitch reduction, sub-matrix reordering and differential 

shifting techniques to our LDPC decoder hardware. These 

techniques do not affect the BER of an LDPC decoder. For block 

length 648 and code rate 1/2, these three techniques together 

reduced the power consumption of the LDPC decoder hardware in 

total by 23.7% to 1,565.84 mW. For block length 648 and code rate 

5/6, they together reduced the power consumption of the LDPC 

decoder hardware in total by 38.98% to 1,214.22 mW. 

Several hybrid LDPC decoder hardware architectures are 

proposed in the literature [6, 7, 8, 9, 10, 11, 12]. Some of these 

LDPC decoders are proposed for IEEE 802.11n standard. Our 

LDPC decoder hardware is similar to the LDPC decoder hardware 

proposed in [8] for DVB-S2 standard. The power consumption is 

only reported in [11] for an ASIC implementation. We, therefore, 

could not compare the power consumption of our LDPC decoder 

hardware with the other LDPC decoders.    

The rest of the paper is organized as follows. Section II 

describes LDPC codes and layered min-sum LDPC decoding 

algorithm. The LDPC decoder hardware architecture is presented 

in Section III. The power consumption reduction for the LDPC 

decoder hardware is explained in Section IV. The implementation 

results are given in Section V. Section VI concludes the paper. 

 



Figure 1.  Parity Check Matrix for 648 block length and 1/2 code rate 

II. LDPC CODES 

LDPC decoding is done based on a parity check matrix which 

consists of “0”s and “1”s defining the parity check equations. An 

example 4x8 parity check matrix is shown in Figure 2. An MxN 

parity check matrix has M parity check equations and N variables. 

For an MxN parity check matrix, M check nodes and N variable 

nodes exchange information between themselves iteratively 

according to the LDPC decoding algorithm. “1”s in the parity 

check matrix determine the connections between the variable nodes 

and the check nodes. The information exchange is done only 

between the nodes connected to each other. LDPC decoding 

process for the 4x8 parity check matrix is shown in Figure 3. 

Variable nodes receive soft information, the likelihood ratio of 

probabilities of that bit being 1 or 0, from the channel and this 

information is iteratively passed between check nodes and variable 

nodes to satisfy the parity check equations specified by the parity 

check matrix [1, 2]. This operation can be done in logarithmic 

domain to simplify multiplication operations to addition operations 

in which case the decoder gets log-likelihood ratios (llr) from the 

channel [4]. This algorithm can be further simplified to min-sum 

decoding algorithm with a small degradation in BER. The steps of 

the min-sum decoding algorithm are shown below: 

 

i. Take the llr values from the channel for each variable node as the 

initial variable node messages. 

 

Qn = LLR(n)              (1) 

 

ii. Update each check node with the variable node messages they 

are connected to, according to the min-sum algorithm.  

 

Rmn = ' ' '

'
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where C is the set of variable nodes connected to a check node. 

 

iii. Update each variable node with the check node messages they 

are connected to.  
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where V is the set of check nodes connected to a variable node. 

 

iv. After each layer, calculate the decoder output by summing up 

all check node messages for each variable node. 
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'
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v. Finally the hard decision is made according to the soft decoder 

outputs. 

 

When the min-sum decoding algorithm is implemented using a 

hybrid LDPC decoder hardware, its BER performance can be 

improved by using layered decoding technique in which message 

updates are not done only after finishing the whole parity check 

matrix but also after finishing each layer of the parity check matrix 

[6, 7]. The layered decoding can be used for the parity check 

matrixes with layered structure such as the parity check matrixes 

used in IEEE 802.11n standard. For example, for the parity check 

matrix used for 648 block length and 1/2 code rate in IEEE 

802.11n standard, after the 27 check nodes finishes the min-sum 

algorithm for the variable nodes they are connected to in one layer, 

these variable nodes are updated and the 27 check nodes uses these 

updated messages for the next layer. Since message updating is 

also done after finishing each layer in an iteration, the time spent 

for processing a layer is called a sub-iteration. Therefore, for the 

parity check matrix used for 1/2 code rate, 12 sub-iterations are 

done in one iteration.  

III. LDPC DECODER HARDWARE 

In this paper, we present a hybrid LDPC decoder hardware 

implementation of the parity check matrixes specified in the IEEE 

802.11n standard for 648 block size [3]. As shown in Figure 4, our 

hardware architecture is similar to the LDPC decoder hardware 

proposed in [8]. Since sub-matrix size of the parity check matrixes 

is 27x27, we used 27 check node datapaths for implementing the 

min-sum decoding algorithm for one layer in parallel. After 

variable-node updates are finished for one layer, the next layer of 

the parity check matrix is processed resulting in a hybrid LDPC 

decoder implementation. 

 

 

Figure 2.  A 4x8 Parity Check Matrix 

 

Figure 3.  LDPC Decoding for the 4x8 Parity Check Matrix 
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Figure 4.  LDPC Decoder Hardware Architecture 

 

Figure 5.  Check Node Datapath 

The hardware architecture consists of a 24x162 variable node 

memory, 2 barrel shifters, 27 check node datapaths and 27 12x38 

check node memories. 24x162 bit memory is used to store the 648 

variable node messages each one being 6-bit including 1 sign bit.  

The variable node memory is organized such that in each word 

27*6 = 162 bit messages are stored to send 27 variable node 

messages to 27 check node datapaths in parallel.  

Since the sub-matrixes of the IEEE 802.11n standard are shifted 

versions of 27x27 identity matrixes, before sending variable node 

messages, the word has to be shifted by the read barrel shifter to 

send the correct variable node messages to each check node 

datapath. Then the updated variable node messages are written 

back to memory after they are shifted back to their original 

position by write barrel shifter.  

In the 648 block-length and 5/6 code rate parity check matrix, 

each check node is connected to 22 variable nodes. Therefore to 

compute the check node message as in equation 2, each check node 

datapath is sent the variable node messages in 22 cycles. In our 

decoder hardware, instead of storing all variable node messages for 

every check node, we only store their sum for every variable node, 

calculated as in equation 4.  

Then, as shown in Figure 5, in the check node datapath, the 

check node message, sent in the previous iteration, is subtracted 

from the total variable node message to extract the individual 

variable node message for that check node, as in equation 5. 

 
1i i

nm n mnQ Q R −
= −               (5) 

 

After calculating Qnm for all 22 variable node messages, the 

block “Rm
i finder” finds the minimum and one-but-minimum 

magnitudes among the 22 Qnm messages and sends a 38-bit length 

message containing 4-bit min and one-but-min magnitudes, 5-bit 

index of the minimum, 24-bit signs of 24 variable nodes, of which 

only 22 are used for each layer, and 1-bit for xor of the signs of 22 

variable nodes. This 38-bit compressed message is stored in 4x38 

check node memories. The “Rmn
i-1 finder” and “Rmn

i finder” in a 

check node datapath are used to decompress the 38 bit Rm 

messages and find the individual check-to-variable node messages. 

The 24x5 Qnm memories keep the Qnm values which will later be 

added with Rmn to finally update the variable node sending the Qn 

to the variable node memory.  

IV. POWER CONSUMPTION REDUCTION 

The LDPC decoder hardware is implemented in Verilog HDL. 

The Verilog RTL design is synthesized to a 2V8000ff1157 Xilinx 

Virtex II FPGA with speed grade 5 using Mentor Graphics 

Precision RTL 2005b. The resulting netlist is placed and routed to 

the same FPGA using Xilinx ISE 8.2i.  
The power consumption of the LDPC decoder hardware 

implementation on a Xilinx Virtex II FPGA is estimated using 

Xilinx XPower tool. In order to estimate the dynamic power 

consumption, timing simulation of the placed and routed netlist of 

the LPDC decoder hardware implementation is done using Mentor 

Graphics ModelSim SE for 10 codewords and 10 iterations and the 

signal activities are stored in a VCD file. This VCD file is used for 

estimating the power consumption of the LDPC decoder hardware 

using Xilinx XPower tool.   

The dynamic power consumption of the LDPC decoder 

hardware implementation for 648 block length, and 1/2 and 5/6 

code rates on a Xilinx Virtex II FPGA at 33 MHz are shown in 

Table I and Table II. The dynamic power consumption of the 

LDPC decoder hardware is divided into three categories; signal 

power, logic power and clock power. Signal power is the power 

dissipated in routing tracks between logic blocks. Logic power is 

the amount of power dissipated in the parts where computations 

take place. Clock power is due to clock tree used in the FPGA. 

Since the LDPC decoder hardware is interconnection dominant, a 

significant amount of power, 58.37% of total power consumption 

of 1/2 code rate and 60.88% of total power consumption of 5/6 

code rate, is dissipated in routing tracks. 

In this paper, we propose two novel techniques, sub-matrix 

reordering and differential shifting, for reducing the power 

consumption of the LDPC decoder hardware.  

In the hybrid LDPC decoder hardware designs, a read barrel 

shifter is used for shifting the current variable node values after 

reading them from the variable node memory and a write barrel 

shifter is used for shifting the new variable node values produced 

by the check node datapaths before writing them to the variable 

node memory. In differential shifting technique, new variable node 

values produced by check node datapaths are written to variable 

node memory without being shifted. Therefore, in the next 

iteration, the current variable node values are shifted by the 

difference between the previous write shift amount and the current 

read shift amount, i.e. the previous write shift and the current read 

shift are done together by the read barrel shifter.  

Therefore, implementing the differential shifting technique in 

the LDPC decoder hardware is done by removing the write barrel 

shifter, by properly updating the shift amounts for the read barrel 

shifter and by changing the initial variable node memory 

organization to make it suitable  for  the  differential shift amounts. 



   

Figure 6.  Differential Shift Amounts for the Parity Check Matrix for 648 

Block Length and 1/2 Code Rate                              

 

Figure 7.  Sub-matrix Reordering for the Parity Check Matrix for 648 

Block Length and 1/2 Code Rate 

TABLE I.  POWER CONSUMPTION OF LDPC DECODER HARDWARE 
FOR 1/2 CODE RATE 

Power     

(mW) 

Initial 

Hardware 

Glitch 

Reduction 

Sub-Matrix 

Reordering 
Differential 

Shifting 

Clock 550.49 566.23 570.64 547.47 

Logic 305.11 264.83 262.62 218.83 

Signal 1,198.02 1,031.13 996.70 798.80 

Total 2,052.55 1,863.10 1,830.69 1,565.84 

TABLE II.  POWER CONSUMPTION OF LDPC DECODER HARDWARE 
FOR 5/6 CODE RATE 

Power     

(mW) 

Initial 

Hardware 

Glitch 

Reduction 

Sub-Matrix 

Reordering 
Differential 

Shifting 

Clock 488.43 496.11 486.34 495.23 

Logic 288.62 238.73 227.00 173.64 

Signal 1,211.37 794.60 768.50 544.45 

Total 1,989.85 1,530.30 1,482.75 1,214.22 

 

Since there is no write shifter, after the last layer the updated 

variable node messages will be written to variable node memory in 

the read shifted order and in the next iteration, in the first layer the 

variable node messages has to be read shifted by taking into 

account the read shift amounts of the last layer. Therefore, each 

variable node message received from the channel is written to a 

variable node memory word after shifted by the read shift amount 

of the last layer to make the shift amounts of the first layer 

consistent for all iterations. The differential shift amounts for the 

parity check matrix of 1/2 code rate is shown in Figure 6. 

In the hybrid LDPC decoder hardware design, the sub-matrixes 

in one layer of a parity check matrix are processed by the check 

node datapaths sequentially starting from the first sub-matrix until 

the last sub-matrix in the parity check matrix. Processing the sub-

matrixes in one layer of a parity check matrix by the check node 

datapaths in a different order does not affect the BER of an LDPC 

decoder. Therefore, in sub-matrix reordering technique, the sub-

matrixes in one layer of a parity check matrix are processed by the 

check node datapaths in the order that results in a smaller amount 

of switching activity by both reading the same 162-bit variable 

node memory word and shifting it with the same shift amount in 

the consecutive clock cycles as much as possible.  

As shown in Figure 1 for rate 1/2, in the parity check matrixes 

used in IEEE 802.11n, some sub-matrixes in consecutive layers are 

shifted with the same shift amount. For example, as shown in 

Figure 7, in the parity check matrix for 648 block length and 1/2 

code rate, in both the first and the second layers the 13th sub-

matrix is shifted by 0, therefore while processing the first layer we 

read the 13th sub-matrix the last and while processing the second 

layer we read the 13th sub-matrix the first in order to avoid reading 

a different variable node memory word which will result in 

unnecessary switching activity. Therefore, the sub-matrixes in this 

parity check matrix are processed by the check node datapaths in 

the below order. 
   

Layer 1: 12 – 0 – 4 – 5 – 8 – 11 – 13  

Layer 2: 13 – 0 – 1 – 4 – 6 – 7 – 8 – 14  

Layer 3: 14 – 0 – 2 – 4 – 8 – 10 – 15  

  ..................... 

                      

Layer 11: 22 – 0 – 2 – 4 – 5 – 7 – 8 – 23  

Layer 12: 23 – 0 – 4 – 7 – 8 – 9 – 12  

 

Glitch is a spurious transition at a node within a single cycle 

before the node settles to the correct logic value [13]. Unlike 

ASICs, in which signals can be routed using any available silicon, 

FPGAs implement interconnects using fixed metal tracks and 

programmable switches. The relative scarcity of programmable 

switches often forces signals to take longer routes than would be 

seen in an ASIC. As a result, the potential for unequal delays 

among signals, and hence the creation of glitches, is more likely 

than that in an ASIC. Thus, reducing glitches by pipelining is an 

effective power reduction technique for FPGAs. Pipeline registers 

can be inserted after the read barrel shifter, shown as dashed 

rectangle in Figure 4, for reducing the glitches in the LDPC 

decoder hardware. 

We first applied glitch reduction, then applied sub-matrix 

reordering and finally applied differential shifting techniques to our 

LDPC decoder hardware implementation. These techniques do not 

affect the BER of an LDPC decoder. The impact of these 

techniques on the power consumption of LDPC decoder hardware 

for block length 648 and code rate 1/2 is shown in Table I and for 

block length 648 and code rate 5/6 is shown in Table II. 

For block length 648 and code rate 1/2, glitch reduction 

technique reduced the power consumption of the LDPC decoder 

hardware by 189.45 mW, sub-matrix reordering technique further 

reduced the power consumption of the LDPC decoder hardware by 

32.41 mW and differential shifting technique further reduced the 

power consumption of the LDPC decoder hardware by 264.85 

mW. Therefore, these three techniques together reduced the power 

consumption of the LDPC decoder hardware in total by 23.7% to 

1,565.84 mW.  

For block length 648 and code rate 5/6, glitch reduction 

technique reduced the power consumption of the LDPC decoder 

hardware by 459.55 mW, sub-matrix reordering technique further 

reduced the power consumption of the LDPC decoder hardware by 

47.55 mW and differential shifting technique further reduced the 

power consumption of the LDPC decoder hardware by 268.53 

mW. Therefore, these three techniques together reduced the power 

consumption of the LDPC decoder hardware in total by 38.98% to 

1,214.22 mW.  
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TABLE III.  AREA OF LDPC DECODER HARDWARE FOR 1/2 CODE 
RATE 

Category 
Initial 

Hardware 

Glitch 

Reduction 

Differential 

Shifting 

Function 

Generators 
16,136 15,731 13,850 

CLB Slices 11,303 11,038 10,153 

DFFs 4,401 4,759 4,734 

Block RAMs 116 118 118 

TABLE IV.  AREA OF LDPC DECODER HARDWARE FOR 5/6 CODE 
RATE 

Category 
Initial 

Hardware 

Glitch 

Reduction 

Differential 

Shifting 

Function 

Generators 
14,048 13,143 11,260 

CLB Slices 10,154 9,404 8,588 

DFFs 4,777 4,812 4,812 

Block RAMs 89 91 90 

V. IMPLEMENTATION RESULTS 

The LDPC decoder hardware is implemented in Verilog HDL. 

The implementation is verified with RTL simulations using Mentor 

Graphics ModelSim SE. RTL simulation results for both 1/2 and 

5/6 code rates matched the results of MATLAB models of the 

LDPC decoding algorithm for 1/2 and 5/6 code rates.  

The Verilog RTL design is synthesized to a 2V8000ff1157 

Xilinx Virtex II FPGA with speed grade 5 using Mentor Graphics 

Precision RTL 2005b. The resulting netlist is placed and routed to 

the same FPGA using Xilinx ISE 8.2i. The LDPC decoder 

hardware implementation works at 45.5 MHz for 648 block length 

and 1/2 code rate and it works at 45.5 MHz for 648 block length 

and 5/6 code rate. The FPGA resource usages of the LDPC decoder 

implementations for 648 block length and 1/2 and 5/6 code rates 

are shown in Table III and IV respectively. 

After applying glitch reduction technique, the LDPC decoder 

hardware implementation works at 55.5 MHz for 648 block length 

and 1/2 code rate and it works at 55.5 MHz for 648 block length 

and 5/6 code rate. After applying glitch reduction technique, the 

FPGA resource usages of the LDPC decoder implementations for 

648 block length and 1/2 and 5/6 code rates are shown in Table III 

and IV respectively. 

Applying sub-matrix reordering technique did not affect the 

frequency and area of the LDPC decoder implementations.  

After further applying differential shifting technique, for 648 

block length and 1/2 code rate, the LDPC decoder hardware 

implementation works at 83.5 MHz and it can process 60.68 Mbps 

if it does 3 iterations (36 sub-iterations) for each codeword, and for 

648 block length and 5/6 code rate, it works at 71.5 MHz and it can 

process 113.78 Mbps if it does 3 iterations (12 sub-iterations) for 

each codeword. After applying differential shifting technique, the 

FPGA resource usages of the LDPC decoder implementations for 

648 block length and 1/2 and 5/6 code rates are shown in Table III 

and IV respectively. 

VI. CONCLUSIONS 

 In this paper, we presented a low power hybrid LDPC decoder 
hardware implementing layered min-sum decoding algorithm for 

IEEE 802.11n Wireless LAN Standard. The hardware is 

implemented in Verilog HDL and verified to work correctly in a 

Xilinx Virtex II FPGA. For 648 block length and 1/2 code rate, on 

a Xilinx Virtex II FPGA, the LDPC decoder hardware 

implementation works at 83.5 MHz and it can process 60.68 Mbps. 

For 648 block length and 5/6 code rate, on a Xilinx Virtex II 

FPGA, the LDPC decoder hardware implementation works at 71.5 

MHz and it can process 113.78 Mbps. 
The power consumption of the implementation on a Xilinx 

Virtex II FPGA is estimated as 2052 mW for 648 block length and 

1/2 code rate and 1989 mW for 648 block length and 5/6 code rate 

using Xilinx XPower tool. In this paper, we also proposed two 

novel techniques, sub-matrix reordering and differential shifting, 

for reducing the power consumption of a LDPC decoder hardware. 

We applied glitch reduction, sub-matrix reordering and differential 

shifting techniques to our LDPC decoder hardware. These 

techniques do not affect the BER of a LDPC decoder. For block 

length 648 and code rate 1/2, these three techniques together 

reduced the power consumption of the LDPC decoder hardware in 

total by 23.7% to 1,565.84 mW. For block length 648 and code rate 

5/6, they together reduced the power consumption of the LDPC 

decoder hardware in total by 38.98% to 1,214.22 mW. 
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