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ABSTRACT

This paper presents a new method for multiple structure segmenta-
tion, using a maximum a posteriori (MAP) estimation framework,
based on prior shape densities involving nonparametric multivariate
kernel density estimation of multiple shapes. Our method is mo-
tivated by the observation that neighboring or coupling structures
in medical images generate configurations and co-dependencies
which could potentially aid in segmentation if properly exploited.
Our technique allows simultaneous segmentation of multiple ob-
jects, where highly contrasted, easy-to-segment structures can help
improve the segmentation of weakly contrasted objects. We demon-
strate the effectiveness of our method on both synthetic images and
real magnetic resonance images (MRI) for segmentation of basal
ganglia structures.

Index Terms— MRI, brain, Basal Ganglia, curve evolution,
multi object image segmentation, shape priors, nonparametric shape
density.

1. INTRODUCTION

Medical image segmentation has improved the diagnosis of many
human diseases through more robust and accurate extraction of rel-
evant tissues from medical image data. One of the main motivations
for the segmentation of subcortical structures in the brain MR images
is the analysis of chemicals in various basal ganglia (BG) structures
for diagnosis of neurodegenerative diseases. The amount of chem-
ical accumulation and shape deformations in subcortical structures
are thought to provide important clues in early diagnosis. However,
the information obtained from these images does not often provide
enough contrast or clear boundary patterns of subcortical structures.
Under such conditions, use of prior information based on shape is
gaining increased attention in MR image segmentation algorithms.

Introducing shape priors into deformable models is not a nov-
elty. There are numerous existing automatic segmentation methods
that enforce constraints about the underlying shapes. In a typical ac-
tive contour-based image segmentation, a curve length penalty term
is often used for regularization, which makes the assumption that
shorter curves are in general more likely than the longer ones [1].
However, in many applications, more structured prior information
about the shapes is available. In [2] [3], principal component anal-
ysis (PCA) of the signed distance functions of training data is used
to capture the variability of shapes. However, these techniques can
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be applied only when the shape variability is rather small. Sec-
ondly, these techniques can handle only unimodal, Gaussian-like
shape densities. In particular, these methods cannot deal with mul-
timodal shape densities, which involve multiple classes of shapes.
As a solution to the limitation of PCA and unimodal Gaussian dis-
tribution models, techniques based on nonparametric shape densities
learned from example training shapes have been proposed in [4], [5].

Although a nonparametric prior is very adequate to capture non-
linear shape variability, some challenging applications in medical
image segmentation still require some additional information to be
used. In many cases, objects to be segmented, have one or more
neighboring structures, whose location and shape provide informa-
tion about the local geometry that can aid in the delineation. In this
fashion, the relative shape arrangements among these neighbors can
be modeled based on statistical information from a training set. In
[6], a joint prior based on a parametric shape model, is proposed
to capture co-variations shared among the different shape classes,
which improves the performance of segmentation. With a similar
approach in a Bayesian framework, in [7], joint prior information of
the multiple objects is used to capture the dependencies among the
different shapes where multiple objects with clearer boundaries are
used as reference objects to provide constraints in the segmentation
of poorly contrasted objects. Another coupled shape prior model,
which is based on the cumulative distribution function of shape fea-
tures, is proposed in [8]. In [8], relative inter-object distances are
defined as a shape feature to capture information about the interac-
tion between multiple objects.

In this paper, having the inspiration of capturing co-variations
and dependencies between different shapes, we propose a new
method that extends nonparametric shape priors to the problem
of coupled segmentation of multiple objects. We use multivariate
density estimation to estimate unknown joint distribution of mul-
tiple shapes which effectively captures coupling between distinct
shapes in a scene. This key property of our method allows segment-
ing multiple objects simultaneously where the new prior provides
automatical, coupled constraints to be used in challenging image
scenarios. Moreover, as compared to existing methods [6], [7]
which are based on prior of multiple objects, our approach takes
the advantage of using nonparametric density estimate, in order to
capture non-linear shape variability.

2. SEGMENTATION FRAMEWORK BASED ON COUPLED
SHAPE PRIORS

In a typical active contour model, the segmentation process involves
an iterative algorithm for minimization of an energy functional. We
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define our energy (cost) functional in a MAP estimation framework
as

E(C) = − log p(data|C)− log pC(C) (1)

where C is a set of evolving curves
{
C1, ..., Cm

}
that match the

boundary of the shapes. The first term, log p(data|C), called the
likelihood term, enforces some form of data fidelity; and log pC(C)
is a joint prior density for the shapes involved. In particular, we
choose the likelihood term as in [9], which is a common technique
used in previous works such as [3], [5], [6], [7]. In this paper, we
focus on building the coupled shape prior pC(C).

2.1. Coupled Prior Model of Multiple Objects

Here the essential idea is to construct coupled nonparametric shape
prior information pC(C) for m different class of objects. Let us as-
sume we are given N example training samples {C1, ..., CN}. Each
”sample” consists of multiple shapes, each of which corresponds to
one of m objects, i.e Ci =

{
C1

i , ...Cm
i

}
. The pose variation in the

training data is removed by an alignment operation, as in [3]. In this
operation we calculate a set of similarity transformation parameters
(translation, scaling and rotation) for each sample in the training set
to align binary shapes with each other. We align each sample of the
mth object within its own members and we obtain

{
C̃1, ..., C̃N

}
.

After alignment, any variability due to pose differences is removed
and what remains is shape variation. Fig. 1 shows binary aligned
shape representations for 2 objects (head of caudate and putamen)
from 12 different slices.

(a) (b)

Fig. 1. Aligned Training Shapes for (a) head of caudate and (b)
putamen extracted from multi-modality sequences.

To build a joint prior model for multiple objects, we choose level
sets as the representation of shapes [10] and we use multivariate
Parzen density estimation (see [11]) to estimate the unknown joint
shape distribution. For the sake of simplicity of exposition and with-
out loss of generality, let us take m = 2, and then, define the joint
kernel density estimate of two shapes as,

p
C̃1,C̃2(C̃1, C̃2) =

1

N

N∑
i=1

m=2∏

k=1

k(d(φ
C̃k , φ

C̃k
i

), σk) (2)

where k(., σk) is a Gaussian kernel with standart deviation σk. In
this equation, φ

C̃k is the candidate signed distance function and φ
C̃k

i

is the signed distance function for the ith training shape of the kth

object. Note that, given a distance measure d(., .), we can construct
the kernel function for joint density estimation, by multiplying sepa-
rate kernels k(., σk) for each object. Our nonparametric shape prior
in (2) can be used with a variety of distance metrics. In this work,
we consider two specific metrics, namely the template metric and the
L2 distance dL2 between signed distance functions. For the kernel

size σk, for the kth object, we use maximum likelihood kernel size
with leave-one-out [12].

As compared to existing single shape prior based approaches [3],
[5] in this framework, we produce much more accurate joint shape
densities in cases where there are shape dependencies between the
multiple objects involved. This is a phenomenon we observe in basal
ganglia structures.

2.2. Gradient Flow for the Coupled Shape Prior

In this part, we compute the gradient flow of the joint prior in equa-
tion (2) for the two curves which are represented implicitly by their
corresponding signed distance functions. We adress how the gradi-
ent flow for the coupled shape prior is obtained with gradient descent
optimization.

In differentiating the logarithm of the expession given in (2), we
use shorthand notation, kσk for k(dL2(φC̃k , φ

C̃k
i

), σk). Note that

φ
C̃k is a function of time t and φ

C̃k is a shorthand notation for the
evolving level set function φ

C̃k (t). Using these, we obtain

∂

∂t
log p

C̃1,C̃2(C̃1, C̃2) =
1

N

N∑
i=1

{k′σ1kσ2 + kσ1k′σ2}

p
C̃1,C̃2(C̃1, C̃2)

(3)

Then, we compute the gradient direction that increases most rapidly
for each object curve. Using the L2 distance in kernels, we find that
the gradient directions for the curves C̃k, where k = 1, 2, are

∂φ
C̃k

∂t
=

1

σk
2

N∑
i=1

λi(C̃1, C̃2)(φ
C̃k

i

(x)− φ
C̃k (x)) (4)

where λi(C̃1, C̃2) =
k(dL2 (φ

C̃1 ,φ
C̃1

i

),σ1)k(dL2 (φ
C̃2 ,φ

C̃2
i

),σ2)

Np
C̃1,C̃2 (C̃1,C̃2)

, and

N∑
i=1

λi(C̃1, C̃2) = 1. The final expression (4), evolves the curves

toward shapes at the local maximum of the coupled shape prior of
two objects. Note that, training shapes that are closer to the evolv-
ing curve get more weight. Furthermore, the weighting function λi

depends on each curve in exactly the same way. In particular, due
to the coupled nature of this weight, given a pair (C̃1, C̃2) in the
evolution process training shape pairs in which the second training
shape is closer to C̃2 get relatively more weight in the evolution of
the first curve as well. This shows one aspect of the coupled nature
of our shape-based segmentation aproach.

2.3. Iterative Segmentation Algorithm

Given an arbitrary test image, the objects to be segmented in the
scene are not necessarily aligned with the shapes in our training set.
Due to the pose differences, we relate the density estimates of candi-
date curves, pC(C) with density estimates of aligned curves, pC̃(C̃).
In order to do that, describing each candidate curve by its shape and
pose, we interpret C̃ as the shape of C after being transformed by T :

C̃ = T [p]C (5)

where T is a similarity transformation (translation, scaling and ro-
tation) with parameters p = p1, ..., pm for each object and m is the
number of objects. Then during the evolution process, we align each
candidate curve with its training shapes. For a review of the pose
update algorithm we refer the reader to [5]. We can summarize the



principal steps of our segmentation algorithm as follows:

1. Evolve C = C1, ..., Cm until iteration time to without shape
prior

2. At t = t0, for all m, compute the pose p = p1, ..., pm

3. while (t0 < iterations < maxIteration)

a ) fix p, and for all m

- compute C̃ = T [p]C using (Eqn. (5))

- compute
∂φ

C̃k

∂t
for log pC(C) using (Eqn. (4))

- relate C = T−1[p]C̃

b ) Update C using both 1 data and shape force

c ) fix C and update p

3. EXPERIMENTAL RESULTS

In this section we show segmentation results for the head of caudate
and the putamen which are two subcortical structures of the brain.
We first consider 2D synthetic images created by adding noise over
binary images representing the brain structures in Fig.1. These im-
ages are obtained through manual segmentation of true MR images.
In training the set, we use 11 of these slices (with size 512x448)
from four different patients and we perform segmentation on im-
ages which are not in the training set. We work with high contrasted
caudate and low contrasted, occluded putamen to focus on the cou-
pling effect of using the joint shape prior. We compare our results on
putamen with those of [5], which uses independent priors for the two
structures. Segmentation results with single prior and coupled prior
for both structures are shown in Fig.2. The results for our method on
putamen, visually show better segmentation than the results obtained
by using a single prior.

(a) (b)

Fig. 2. Segmentation of the head of caudate (blue curve) and oc-
cluded putamen (red curve) (a) with single prior information and,
(b) coupled prior information.

We also show quantitative comparison of the two methods by
computing several performance measures such as false positive rate:

FPR =
FP

FP + TN
(6)

false negative rate:

FNR =
FN

FN + TP
(7)

mean ±σ
Putamen

FPR (%) FNR (%) 1 - D.C. (%)
Single Prior 0.76 ±2 13.5 ±5.3 16.8 ±5.9
Coupled Prior 0.70 ±2 13.1 ±5.0 13.8 ±4.2

Table 1. Average performance results on 12 synthetic images.

Initial Middle (t = t0) Final

Fig. 3. Three steps in the segmentation of head of caudate and puta-
men in an MR slice with no prior (top row), with single prior (middle
row) and with coupled prior information (bottom row).

Dice Coefficient (DC) (see [13]):

DC =
2TP

FP + FN + 2TP
(8)

where FP is false positive pixels inside the segmenting curve but
out of the true shape, and FN is false negative pixels inside the true
shape but out of the segmenting curve. TN is true negative pixels out
of true shape and segmenting curve. TP is true positive pixels inside
both true shape and segmenting curve. We present average values
over 12 tests for 12 different images, in Table. 1.

We then consider Proton Density (PD) sequences of real MR
data sets with 2 subcortical structures of interest, head of caudate
and putamen. We use a training set of 11 pairs of shapes. Fig. 3
top row shows initial, middle and final steps of the segmentation
using only gray level information as proposed in [9], where the head
of caudate and left putamen cannot be segmented well, due to low
contrast. The middle row in the Fig. 3 shows the result of using

1Data force can be obtained by computing the gradient flow of the first
term in Eqn. (1)



independent shape prior for each structure [5]. In this case, due to
the leakage in putamen and mismatch in the right part of caudate,
the result is not satisfactory. Fig. 3 bottom row shows the results of
our coupled shape prior model, where the coupling between putamen
and caudate improves the results.

In Table. 2, it can be observed that our method achieves a much
lower FPR for putamen and FNR for caudate than the technique in
[5]. According to (1 - DC) measure, our method performs better than
the other methods for both objects.

%, %, %
Putamen Head of Caudate

FPR FNR 1-D.C. FPR FNR 1-D.C
Without Prior 1.10 5 12 4.2 8 22
Single Prior 1.08 4 13 0.29 20 17
Coupled Prior 0.88 4 8 0.35 14 13

Table 2. Performance results on the real MR data set.

4. CONCLUSIONS

In this paper, we proposed an approach for introducing coupled
shape prior into the segmentation process. We use multivariate
Parzen density estimation to estimate the unknown joint distribution
of multiple shapes. We introduce a new mechanism which automat-
ically captures the coupling between distinct shapes in a scene. We
evolve multiple curves in parallel with the influence of joint prior to
segment poorly contrasted difficult shapes.

Our preliminary experiments demonstrated that our method has
much promise for multi-object segmentation in medical imaging ap-
plications. This current work does not include any pose constraints
on relative positions of coupled shapes. Moreover, the data term that
we use, can be incorporated with some statistical priors based on in-
tensity characteristics of the tissues. We are currently working on
incorporating these approaches to our pricipal approach in order to
improve our segmentation results in more challenging scenarios. We
are working on segmentation of other subcortical structures, as well.
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