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1 Introduction

The airline crew pairing problem (CPP) is one of the classical problems
in airline operations research due to its crucial impact on the cost
structure of an airline. Moreover, the complex crew regulations and
the large scale of the resulting mathematical programming models have
rendered it an academically interesting problem over decades. The CPP
is a tactical problem, typically solved over a monthly planning horizon,
with the objective of creating a set of crew pairings so that every flight
in the schedule is covered, where a crew pairing refers to a sequence of
flights operated by a single crew starting and ending at the same crew
base.

This paper discusses how an airline may hedge against a certain type
of operational disruption by incorporating robustness into the pairings
generated at the planning level. In particular, we address how a set
of extra flights may be added into the flight schedule at the time of
operation by modifying the pairings at hand and without delaying or
canceling the existing flights in the schedule. We assume that the set of
potential extra flights and their associated departure time windows are
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known at the planning stage. We note that this study was partially mo-
tivated during our interactions with the smaller local airlines in Turkey
which sometimes have to add extra flights to their schedule at short
notice, e.g., charter flights. These airlines can typically estimate the
potential time windows of the extra flights based on their past experi-
ences, but prefer to ignore this information during planning since these
flights may not need to be actually operated. Typically, these extra
flights are then handled by recovery procedures at the time of opera-
tion which may lead to substantial deviations from the planned crew
pairings and costs. The reader is referred to [3] for an in-depth discus-
sion of the conceptual framework of this problem which we refer to as
the Robust Crew Pairing for Managing Extra Flights (RCPEF). In [3],
the authors introduce how an extra flight may be accommodated by
modifying the existing pairings and introduce a set of integer program-
ming models that provide natural recovery options without disrupting
the existing flights. These recovery options are available at the plan-
ning stage and render operational recovery procedures that pertain to
crew pairing unnecessary.

The main contribution of this work is introducing a column gen-
eration algorithm that can handle the robust model proposed in the
next section. This model poses an interesting theoretical challenge and
is not amenable to a traditional column generation algorithm designed
for the conventional CPP. We point out that in [3] the authors explic-
itly generate all possible crew pairings and solve the proposed integer
programs by a commercial solver. This approach is clearly not compu-
tationally feasible for large crew pairing instances, and in the current
work we present our preliminary algorithms and results for large in-
stances of RCPEF. We demonstrate the proposed solution approaches
on a set of actual data acquired from a local airline [2].

2 Robust Airline Crew Pairing Problem

In this section, we first introduce the proposed robust model and then
discuss the difficulties that arise while solving this model by conven-
tional methods. This leads us to the two solution approaches presented
in this paper.

In [3], the authors examine several recovery options for managing the
extra flights at the planning level. They classify the possible solutions
into two types:

• Type A. Two pairings are selected and (partially) swapped to cover
an extra flight.
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• Type B. One pairing with sufficient connection time between two
consecutive legs is modified to cover an extra flight.

In this work, we incorporate one Type A and two Type B solutions
as illustrated in Figure 1 where the estimated time window of the ex-
tra flight k is depicted by the blue (shaded) rectangles. In Figure 1(a),
the original pairings p and q, covering the flight legs i1, i2 and j1, j2,
respectively, are partially swapped so that the extra flight k is inserted
into the flight schedule (Type A). The resulting pairings after swapping
are illustrated in the figure where the term deadhead refers to a repo-
sitioning of crew members to another airport as passengers on a flight,
train, etc. In Figures 1(b) and 1(c), the original pairing p is modified
to accommodate the extra flight k (Type B). The feasibility rules that
define both Type A and B solutions are explained in detail in [3].
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Fig. 1. Recovery options for covering the extra flight k.

The proposed robust mathematical model is given below:

min
∑

p∈P
cpyp +

∑

k∈K
dkzk+

∑

k∈K
dk


∑

p∈P
(1− yp)ākp +

∑

p,q∈P
(1− xk

(p,q))āpqk


 (1)

s.t
∑

p∈P
aipyp ≥ 1, ∀i ∈ F , (2)

∑

p∈P
ākpyp +

∑

p,q∈P
āpqkxk

(p,q) ≥ 1− zk, ∀k ∈ K, (3)

2āpqkxk
(p,q) ≤ yp + yq, ∀p, q ∈ P, ∀k ∈ K (4)

yp ∈ {0, 1}, p ∈ P, (5)
zk ∈ {0, 1}, k ∈ K, (6)

xk
(p,q) ∈ {0, 1}, p, q ∈ P, k ∈ K, (7)
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where F is the set of all flights, K is the set of all extra flights, and P is
the set of all feasible pairings. Here, cp is the cost of pairing p, and dk

is the opportunity cost of failing to cover extra flight k. Furthermore,
we define the parameters aip = 1 if flight i is included in pairing p, and
0 otherwise; ākp = 1 if extra flight k can be inserted into pairing p as a
Type B solution, and 0 otherwise; and āpqk = 1 if pairings p and q can
form a Type A solution to cover extra flight k, and 0 otherwise. The
decision variable yp is set to 1 if pairing p is selected, and 0 otherwise.
Also, let xk

(p,q) be an auxiliary binary variable that takes the value 1 if
two pairings p and q forming a Type A solution for extra flight k are
both included in the solution, and 0 otherwise. Finally, we define the
binary variable zk equal to 1 if no Type A or B solution is present in
the solution for extra flight k, and 0 otherwise.

The objective (1) minimizes the sum of the pairing costs and the
opportunity costs of not accommodating the extra flights. Constraints
(2) and (3) are the coverage constraints for the regular and extra flights,
respectively. Observe that the model may opt for not covering an extra
flight k if this is too expensive, setting zk to 1. Constraints (4) prescribe
that a Type A solution for extra flight k formed by pairings p and q is
only possible if both of these pairings are selected.

The formulation (1)-(7) has both exponentially many variables, one
for each pairing, and exponentially many constraints of type (4) which
makes it both practically and theoretically challenging. Typical crew
pairing models incorporate exponentially many variables, but have a
fixed number of constraints and are solved by traditional column gener-
ation approaches where the pricing subproblem is a multi-label shortest
path problem solved over an appropriate flight/duty network. (See [1]
for a review of these concepts.) In our proposed robust model, the num-
ber of constraints (4) is not known a priori and depends on the pairings
present in the model. Thus, ideally this formulation requires simulta-
neous row and column generation. In the next section, we present our
preliminary algorithms developed for the problem RCPEF.

3 Solution Approaches

In both approaches presented here, the primary goal is to fix the number
constraints in the model before applying column generation.

The Static Approach

In the “static” approach, all pairings that construct Type A solutions
are generated a priori before column generation is applied to the linear
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programming (LP) relaxation of (1)-(7). To this end, we identify all
possible flights and connections that may appear in a pairing before
covering an extra flight or its associated deadhead by a breadth-first-
search and then construct pairings over this reduced network. We next
run pairwise feasibility checks on these generated pairings to determine
Type A solutions. Thus, all constraints (4) are identified and added to
the model along with the associated auxiliary variables xk

(p,q) before the
column generation procedure is invoked to identify Type B solutions
and new pairings that may lower the objective function value. Upon
termination of the column generation procedure, a primal heuristic is
applied if the LP optimal solution is not integral.

We point out that the static approach is an exact method for solving
the LP relaxation of (1)-(7) because all constraints (4) are explicitly
included in the model. Clearly, the computational effort for this algo-
rithm will be excessive for large instances of RCPEF.

The Dynamic Approach

In the static approach, all constraints (4) are incorporated into the
formulation prior to column generation. In the “dynamic” approach, we
opt for the complete opposite for speed. We exclude all variables xk

(p,q)

and constraints (4) from the formulation and dynamically generate
pairings that reduce the objective and yield Type B solutions. After the
column generation terminates, we check whether the available pairings
yield any Type A solutions and add the associated constraints and
variables to the model. Next, we solve the LP relaxation of (1)-(7) with
the available constraints and variables and invoke a primal heuristic, if
necessary, in order to obtain an integer feasible solution to RCPEF.

The proposed dynamic approach does not necessarily provide an
optimal solution to the LP relaxation of (1)-(7) because pairings leading
to Type A solutions may be missed during the column generation. In
order to reach a compromise between speed and solution quality, we
promote that at least N (partial) pairings that may potentially form
Type A solutions are kept on each node during the pricing subproblem.
At the end of the pricing subproblem, such pairings are added to a
special pool. This pool is examined for Type A solutions after the
column generation terminates.

4 Computational Results

In this section, we present our preliminary results on the proposed
static and dynamic approaches. Our primary goal is to illustrate the
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trade-off between robustness (as indicated by the number of Type A
and B solutions obtained) and computational effort. We conducted a
numerical study on two sets of actual data. The results are presented
in Table 1 where in each cell the number of Type A solutions identified
is followed by the solution time in parentheses. No more than 2 Type
B solutions per extra flight were obtained in all cases.

Dynamic Static
| F | | K | N = 0 N = 10 N = 50 N = 100 N = 500

1 0(0.17) 10(0.31) 14(0.62) 18(0.71) 18(0.96) 18(0.50)
42 2 0(0.17) 10(0.32) 86(0.67) 98(0.75) 118(1.03) 118(0.70)

3 0(0.20) 10(0.42) 93(0.71) 106(0.81) 128(1.31) 128(1.34)
1 10(0.71) 40(1.07) 64(1.39) 64(1.70) 64(2.57) 64(1.83)

96 2 20(0.86) 80(1.15) 128(1.64) 128(1.98) 128(2.87) 128(5.86)
3 38(0.86) 60(1.25) 136(1.76) 141(2.06) 141(3.42) 141(9.70)

Table 1. Comparison of the number of Type A solutions and CPU times for
the dynamic and static approaches.

Two trends are clear from Table 1. First, the performance of the
dynamic approach depends critically on the value of N . There is a
threshold value for N above which extra solution time is spent with
no additional benefit. Second, the dynamic approach outperforms the
static approach for large problem instances.

5 Future Research

The results in Section 4 point to a clear need for simultaneous row
and column generation for solving the proposed model. We are going
to pursue this interesting direction in the future.
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