
A TOOLBOX FOR PRIVACY PRESERVING DISTRIBUTED DATA

MINING

by

SELİM VOLKAN KAYA

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

August 2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Sabanci University Research Database

https://core.ac.uk/display/11740053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c©Selim Volkan Kaya 2007

All Rights Reserved

A TOOLBOX FOR PRIVACY PRESERVING DISTRIBUTED DATA MINING

APPROVED BY

Assoc. Prof. Dr. Erkay Savaş ..
(Thesis Co-Supervisor)

Assist. Prof. Dr. Yücel Saygın ..
(Thesis Supervisor)

Assist. Prof. Dr. Albert Levi ..

Assist. Prof. Dr. Cem Güneri ..

Assist. Prof. Dr. Selim Balcısoy ..

DATE OF APPROVAL: ..

to My Family

&

Alkım

Acknowledgements

It is a pleasure to express my gratitude to all who made this thesis possible. I would

like to thank my thesis advisors Assoc. Prof. Dr. Erkay Savaş and Assist. Prof. Dr.

Yücel Saygın for their inspiration, guidance, patience, enthusiasm and motivation. I

would especially like to thank Thomas B. Pedersen for being my mentor and my best

friend for the last 2 years. Without their support, it would be impossible to complete

this thesis. I am grateful to my family for the concern, caring, love and support they

provided throughout my life.

v

A TOOLBOX FOR PRIVACY PRESERVING DISTRIBUTED DATA MINING

Selim Volkan Kaya

Computer Science and Engineering, MS Thesis, 2007

Supervisors: Assoc. Prof. Dr. Erkay Savaş and Assist. Prof. Dr. Yücel Saygın

Keywords: Data Mining, Cryptography, Secure Multi-party Computation,

Distributed Computing, Algorithms

Abstract

Distributed structure of individual data makes it necessary for data holders to per-
form collaborative analysis over the collective database for better data mining results.
However each site has to ensure the privacy of its individual data, which means no
information is revealed about individual values. Privacy preserving distributed data
mining is utilized for that purpose. In this study, we try to draw more attention to
the topic of privacy preserving data mining by showing a model which is realistic for
data mining, and allows for very efficient protocols. We give two protocols which are
useful tools in data mining: a protocol for Yao’s millionaires problem, and a protocol
for numerical distance. Our solution to Yao’s millionaires problem is of independent
interest since it gives a solution which improves on known protocols with respect to
both computation complexity and communication overhead. This protocol can be used
for different purposes in privacy preserving data mining algorithms such as comparison
and equality test of data records. Our numerical distance protocol is also applicable
to variety of algorithms. In this study we applied our numerical distance protocol in a
privacy preserving distributed clustering protocol for horizontally partitioned data. We
show application of our protocol over different attribute types such as interval-scaled,
binary, nominal, ordinal, ratio-scaled, and alphanumeric. We present proof of security
of our protocol, and explain communication, and computation complexity analysis in
detail.

vi

MAHREMİYET KORUYUCU VERİ MADENCİLİĞİ İÇİN BİR KÜTÜPHANE

GERÇEKLEMESİ

Selim Volkan Kaya

Bilgisayar Bilimi ve Mühendisliği, Yüksek Lisans Tezi, 2007

Tez Danışmanları: Doç. Dr. Erkay Savaş ve Yrd. Doç. Dr. Yücel Saygın

Anahtar sözcükler: Veri Madenciliği, Kriptografi, Güvenli Çoklu Hesaplama, Dağıtık

Hesaplama, Algoritmalar

Özet

Günümüzde verilerin kurumlar arasındaki dağıtık yapısı, kurumların bu veriler
üzerinde daha iyi raporlamar almaları için ortak hesaplama yapmalarını gerekli kılmıştır.
Bununlar birlikte, ortak hesaplama evresinde herbir veri sahibi kurum kendi verisinin
mahremiyetini sağlamalı ve hiçbir kişisel veriyi açığa çıkartmamalıdır. Mahremiyet
koruyucu veri madenciliği işte bu noktada devreye girer. Bu çalışmamızda veri maden-
ciliği için gerçekçi ve çok daha verimli işlem yapılmasına olanak sağlayacak protokoller
önererek mahremiyet koruyucu veri madenciliğine dikkatleri daha fazla çekmek istedik.
Bu amaçla veri madenciliği için yararlı iki farklı protokol önerisinde bulunduk. Bu pro-
tokoller Yao’nun milyonerler problemi ve sayısal fark protokolleridir. Yao’nun milyoner-
ler problemi için önerdiğimiz method bugüne kadar aynı problem için önerilen method-
lardan haberleşme ve işlem yükü açısından çok daha iyi sonuçlar vermiştir. Ayrıca bu
methodun veri madenciliğinin pek çok alanında kullanımı vardır. Buna örnek olarak
veri kayıtlarının karşılaştırılması ve eşitlik testi yapılması verilebilir. Önerdiğimiz
ikinci method olan sayısal fark protokolünün de mahremiyet koruyucu veri maden-
ciliğinde pek çok uygulaması vardır. Bu çalışmamızda, sayısal fark protokolümüzü
yatay olarak dağıtılmış verinin mahremiyeti koruyarak gruplanması protokolüne uygu-
ladık. Ayrıca sayısal fark protokolümüzün sıralı, sayısal, alfabetik, aralık-ölçekli ve
oran-ölçekli veri tipleri üzerinde sorunsuz çalıştığını gösterdik. Buna ek olarak, sayısal
fark protokolümüzün güvenli olduğunun ispatını, haberleşme ve işlem yükünü detayları
ile açıkladık.

1

vii

Table of Contents

Acknowledgements v

Abstract vi

Özet vii

1 Introduction 1
1.1 Contributions of this Research . 2

2 Privacy Preserving Clustering over Horizontally Partitioned Data 3
2.1 Introduction . 3
2.2 Related Work and Background . 4
2.3 Preliminaries . 6

2.3.1 Homomorphic Secret Sharing 7
2.4 Our Protocol . 8

2.4.1 Application of Our Protocol to Different Data Types 10
2.5 Security of our Protocol . 11
2.6 Complexity Analysis . 13

2.6.1 Computation Complexity . 14
2.6.2 Communication Complexity . 14

2.7 Implementation and Performance Evaluation 15
2.7.1 Experimental Setup . 15
2.7.2 Computation Cost Analysis . 17
2.7.3 Communication Cost Analysis 20

2.8 Discussion . 23

3 An Efficient Solution to Millionaires’ Problem 25
3.1 Introduction . 25

3.1.1 Related Work . 26
3.2 Preliminaries . 29

3.2.1 XOR Homomorphic Secret Sharing Scheme 29
3.2.2 AND Homomorphic Secret Sharing Scheme 29

3.3 Evaluating Greater Than (GT) function 30
3.4 Our Protocol . 32
3.5 Complexity Analysis of Our Protocol 35

3.5.1 Computation Complexity . 35
3.5.2 Communication Complexity . 36

4 Conclusion and Future Work 37

viii

List of Figures

2.1 Overview of the numerical distance protocol 9
2.2 Computation cost for different database sizes: (a) For numeric attribute

from synth. dataset. (b) For numeric attribute from real dataset. (c)
For alphanumeric attributes. 18

2.3 Computation cost for different number of data holders: (a) For numeric
attribute from synth. dataset. (b) For numeric attribute from real
dataset. (c) For alphanumeric attributes. 19

2.4 Computation cost for different average alphanumeric attribute lengths . 19
2.5 Overall communication cost for different database sizes: (a) For numeric

attribute from synth. dataset. (b) For numeric attribute from real
dataset. (c) For alphanumeric attributes. 21

2.6 Communication cost of data holders for different database sizes: (a) For
numeric attribute from synth. dataset. (b) For numeric attribute from
real dataset. (c) For alphanumeric attributes. 21

2.7 Overall communication cost for different numbers of data holders: (a)
For numeric attribute from synth. dataset. (b) For numeric attribute
from real dataset. (c) For alphanumeric attributes. 22

2.8 Communication cost of data holders for different numbers of data hold-
ers: (a) For numeric attribute from synth. dataset. (b) For numeric
attribute from real dataset. (c) For alphanumeric attributes. 22

2.9 Overall communication cost for different average alphanumeric attribute
lengths . 23

ix

List of Tables

2.1 Computation Complexities of our Protocol and [11] 14
2.2 Communication Complexities of our Protocol and [11] 15

3.1 Comparison of Computation Cost for Different Protocols 35
3.2 Comparison of Communication Cost for Different Protocols 36

x

CHAPTER 1

Introduction

Advances in data storage technologies make it possible to store and manage huge

amounts of data. When combined with advanced access and processing capabilities,

this provides new opportunities such as extracting new information from the stored

data. Data mining techniques provide added value to data by extracting interesting and

previously unknown patterns. The mined information is valuable but also sensitive from

the privacy perspective since it may reveal confidential information about individuals.

Therefore, data mining algorithms have to take privacy into consideration and they

must guarantee that no sensitive information is retrieved without the consent of the

data holder.

Privacy preserving distributed data mining is a new area of research which deserves

more attention from the cryptology community. When personal data, spread out over

several sites, is collected, and data mining or other analysis is performed on the joint

data, the privacy of sensitive information is at risk. In recent years the data mining

community has started to address these privacy issues, but no satisfactory protocols

have been suggested so far.

Today personal data is spread out over several servers. Many governmental and

private institutions collect data about their users and clients. In some cases it is fruitful

to collect this data, and perform analysis on the union of all personal data available.

In other words, many data-holders decide to join their data, and perform an analysis

whose result is of mutual interest to the data-holders. On the other hand, each data-

holder wants to protect the privacy of his clients, so he is not willing to reveal the data

in his database.

Since the databases are often of considerable size, efficiency — especially in com-

munication — is of paramount importance. Even a constant overhead of a hundred,

say, is impractical if the databases contains terabytes of data.

1

1.1 Contributions of this Research

The goal of this study is to demonstrate that protocols with only a small constant

communication and computation overhead can be made for privacy-preserving data

mining. The main observation is that the use of semi-honest third parties is a re-

alistic assumption for data mining applications. Our protocols use 2–3 semi-honest,

non-colluding third parties, who receive secret shares of inputs. The data mining is

performed on the secret shares as in many other multi party computation protocols. If

we choose third parties who have an interest in the true result of the data mining, it

is fair to assume that they behave according to the protocol. We can guarantee non-

collusion by choosing third parties that have conflicting interests in the actual data.

As an example one third party can be a consumer organisation who is interested in the

privacy of consumers, while another third party is a representative of the industry —

they both have interests in the right outcome, but will never collude. Another benefit

of this model is that, while data-holders might only have limited computing power and

bandwidth, third parties with high computing power and bandwidth can be chosen.

In this study, two protocols are proposed taking the assumptions above into consid-

eration. The first protocol we propose is a numeric distance protocol. According to the

protocol, taking two private numeric values as inputs, absolute value of the distance

of these two numeric values is obtained without revealing none of the private inputs.

As an application of our numeric distance protocol, we propose a privacy preserving

distributed clustering algorithm.

The second protocol we propose is a greater-than-function protocol which answers

the question ’Is X greater than Y?’ without revealing private values X and Y. We show

that our protocol is the most efficient approach among the other protocols proposed

for the same problem. Our protocol can be applied in several privacy preserving data

mining algorithms such as Yao’s Millionaires’ problem, equivalence test, and record

matching.

2

CHAPTER 2

Privacy Preserving Clustering over

Horizontally Partitioned Data

2.1 Introduction

Recent advances in data management technologies, especially in the directions of perfor-

mance and storage capacity, cause a boost in database applications in the past decade.

Every organization tries to manage their customers or members through database man-

agement systems. However plain data has no meaning in the analytical sense, and it

has to be processed through some inference mechanisms. Data mining appears at that

point with the promise of extracting non-trivial and sensitive information from large

collections of data such as association rules, clusters and classification models. Valu-

able information extracted from plain data by means of data mining has a variety of

application areas such as segmentation of customers for determining future marketing

strategy, or analyzing associations among products with respect to buying behavior of

customers for determining shelf arrangement in a supermarket.

Today individual data is distributed among several organizations, and organizations

need to collaborate for better results by performing analysis on the union of all individ-

ual data available. However, privacy of individual data is important since migration of

data to an organization other than the holder of that data could reveal sensitive infor-

mation about each individual. Privacy preserving distributed data mining(PPDDM)

is utilized for this purpose. Accordingly, PPDDM tries to produce global results from

local databases without violating privacy of individuals.

Efficiency in communication and computation is crucial in PPDDM since databases

are often of considerable size. Sample scenarios are sensor networks or RFID applica-

tions, where the sensor nodes or RFID readers that contain the data (data holders) have

3

very limited computation and communication capacity. In such scenarios, reducing the

communication and computation costs is of utmost importance.

In this study we propose a new setting for privacy preserving clustering over hori-

zontally partitioned data with only a small constant communication and computation

overhead for data holders with no loss of accuracy. As stated by Inan et al.[11], we

reduce privacy preserving clustering problem to privacy preserving dissimilarity ma-

trix computation problem. After dissimilarity matrix is computed privately, it can be

input to any hierarchical clustering algorithm. Our protocol uses two semi-honest, non-

colluding third parties, who receive secret shares of inputs and compute intermediary

results, while a data miner performs the actual clustering.

The main observation we make is that the use of semi-honest third parties is a

realistic assumption for data mining applications. If we choose third parties who have

an interest in the true result of the data mining, it is fair to assume that they behave

according to the protocol. We can guarantee non-collusion by choosing third parties

that have conflicting interests in the actual data. As an example one third party can be

a consumer organization who is interested in the privacy of consumers, while another

third party is a representative of the industry — they both have interests in the right

outcome, but will never collude. Another benefit of this model is that, while data-

holders might only have limited computing power and bandwidth, third parties with

high computing power and bandwidth can be chosen. The most important benefit of

our protocol is that the communication cost of all participants is linear in the size of the

databases. Our protocol gives information theoretical security under the assumption

that the two third parties follow the protocol, and do not collude to extract information.

2.2 Related Work and Background

The first protocols for PPDDM are proposed by Agrawal and Srikant[2],and Lindell

and Pinkas[17] in 2000. In [2], Agrawal and Srikant use data perturbation for con-

struction of a classification model privately. The basic idea is that original data values

can be perturbed in such a way that original distribution of the aggregated data can

be recovered but not the individual data values. Perturbation technique is efficient to

implement however results in several side effects. First of all, even though the distribu-

tion of original values can be predicted with a certain confidence level, some accuracy

is lost. Secondly, modification of data does not fully preserve privacy of individual

4

values, and may cause privacy breaches as shown in [6, 7]. Finally, perturbation has a

predictable structure for certain cases and hence may not fully preserve privacy [13]. A

different perturbation method is proposed by Saygin et al.[24] in 2001 for association

rule hiding, where unknown values are introduced to hide sensitive association rules.

As a consequence of unknown values, new association rules are created which causes

computation overhead, and some insensitive rules present before perturbation process

are lost which causes accuracy lost.

[17] employs cryptography as its main tool and implements a decision tree learning

protocol. However oblivious transfer, which is the main building block of this pro-

tocol, causes huge computation and communication overhead due to exponentiation

operations for each bit of private inputs and expansion of each bit of private data as a

result of exponentiation respectively. [12] proposes a privacy preserving association rule

mining protocol over horizontally partitioned data taking advantage of commutative

encryption. Nevertheless the protocol requires encryption and decryption operations

to be performed over each private input by all of the participants resulting in a large

communication and computation cost.

Several protocols are proposed for privacy preserving clustering. Oliveira and Za-

iane [19] introduce geometric data transformation methods(GDTMs) to distort confi-

dential data values. The protocol tries to preserve main features of the confidential

data for clustering while perturbing the data to meet privacy requirements. However,

perturbation causes accuracy losses in clustering, and privacy of the data is not fully

guaranteed. Consequently, Oliveira and Zaiane [20] introduce the notion of Rotation-

Based Transformation(RBT). RBT provides confidentiality of attribute values while

completely preserving the original clustering results. However RBT method has a

computation overhead since attribute values are transformed pairwise, and selection

of attribute pairs should be done in such a way that variance between the original

and transformed attributes are maximum. In [21], Oliveira and Zaiane propose Object

Similarity-Based Representation(OSBR) and Dimensionality Reduction-Based Repre-

sentation(DRBT) methods for clustering over centralized and vertically partitioned

databases. Therefore, OSBR has high computation cost since each data owner sends a

dissimilarity matrix to a central party yielding a communication complexity of O(n2),

while DRBT can cause loss of accuracy due to dimensionality reduction in the original

data.

Merugu and Ghosh [18], and Klusch, Lodi and Moro [14] propose privacy preserving

5

clustering methods based on sharing models representing the original data instead of

sharing the original data itself. Accordingly, clustering can be performed over the

model without revealing the original data points. However clustering over low quality

representatives of the original data causes loss of accuracy while efforts for high quality

representatives means loss of privacy.

Vaidya and Clifton [26] propose a privacy preserving k-means clustering protocol

based on secure multi-party(SMC) computation. Nevertheless there is a huge commu-

nication and computation cost due to iterative execution of several SMC protocols till

a convergence point for the clusters is obtained. Jha, Kruger and McDaniel propose

two privacy preserving k-means clustering protocols for horizontally partitioned data in

[23]. The protocols use homomorphic encryption and oblivious polynomial evaluation

as their building block which are inefficient to be applied over large databases due to

cost of modular exponentiation and oblivious transfer respectively.

The most recent study for privacy preserving clustering is proposed by Inan et

al. [11] over horizontally partitioned data and the problem is reduced to secure com-

putation of dissimilarity matrix which will be input to any clustering algorithm but

k-means. Each entry of the dissimilarity matrix is computed by a secure difference

protocol where confidential data points are disguised by pseudo-random values and the

disguise is removed by a trusted third party revealing the final difference. However

secure difference protocol leads to privacy breaches because of the way pseudo-random

values are used. According to the secure difference protocol, initiator of the proto-

col creates two disguise factors; one for follower of the protocol to disguise initiators

value and the other for the trusted third party to disguise which participants input is

subtracted from the other. Nevertheless the latter disguise factor is the same for each

entry point within a row of dissimilarity matrix. In other words, trusted third party

can guess which site’s input is subtracted from the other with a probability of 1
2

for

each row. On the other hand, quadratic communication cost for dissimilarity matrix

computation is a huge burden for data holders.

2.3 Preliminaries

In our scenario we have ` data holders : DH1, . . . , DH` where DHi has a database

with ni objects: oi
1, . . . , o

i
ni

. The databases all have the same [schema] with m integer

attributes (from a finite field). Since all databases have the same schema, we can write

6

the union of the databases as o1, o2, . . . , oN , where N =
∑`

i=1 ni, and where object oi

has attributes ai
1, . . . , a

i
m. We say that the collective database is horizontally partitioned

between the ` data holders.

The goal of our protocol is to compute the dissimilarity matrix of all objects in all

databases, while keeping the actual values secret. Each entry of the dissimilarity matrix

contains the weighted Manhattan distance between two elements from the collective

database.

Dij =
m

∑

k=1

wk|a
i
k − a

j
k|, (2.1)

where i, j = 1, . . . , N , and w1, . . . , wm are predefined weights. We introduce the notion

of partial dissimilarity matrices which contains the numerical distance between a single

attribute, so that the dissimilarity matrix can be written

D =
m

∑

k=1

wkD
k, (2.2)

where Dk is the dissimilarity matrix with entries Dk[i, j] = |ai
k −a

j
k| which results from

considering only the kth attribute.

2.3.1 Homomorphic Secret Sharing

Informally secret sharing is a way to share a secret among m players in a way that

t− 1 or less colluding players cannot compute any information about the secret, but t

arbitrary players can recover the secret. A player that wishes to share his secret s will

create m secret-shares s1, . . . , sm and send one share to each player [3, 25].

The protocols we present in this study rely on additive secret sharing. To share a

secret integer1 s between two players, we choose a random integer r and give the share

r to the first player and the share s − r to the second player. Clearly both shares are

random when observed alone, so no single player can compute any information about

the secret. The secret is revealed by simply adding the two shares together, so the two

players can recover the secret together.

A secret sharing scheme is said to be homomorphic with respect to a binary oper-

ation · if there is a binary operation ? such that ci = ai ? bi, i = 1, . . . ,m are secret

shares of the secret a · b, when ai, bi are secret shares of a and b respectively.

Additive secret sharing is homomorphic with respect to addition: adding shares

1Or more precisely: to share an element from an additive group.

7

pairwise, gives an additive sharing of the sum of the secrets.

2.4 Our Protocol

There are two challenges for designing a protocol for computing Manhattan distance:(1)not

to reveal private inputs, (2)to hide which input is the largest. We employ additive ho-

momorphic secret sharing to fulfill the first challenge, with a very small communication

and computation overhead for the data holders. The inputs are shared between two

semi-honest non-colluding third parties, TP1 and TP2, who can compute a secret shar-

ing of the difference between by using the homomorphic property. To avoid revealing

the sign of the difference (which input is larger), TP1 and TP2 share a pseudo random

number generator. Before the protocol starts TP1 and TP2 will each fill a m×N×N ta-

ble, prng, with one bit values(either 0 or 1) from the pseudo random number generator

initialized with a shared seed.

Let ak and bk be the private values for the kth attribute of oA
i and oB

j held by

DHA and DHB respectively. The (i, j)th entry in the Dk is |ak − bk|. To compute this

Euclidean distance DHA selects a random number αk, and sends additive shares αk and

ak−αk to third party 1 (TP1) and 2 (TP2) respectively. Likewise DHB creates additive

sharing βk and bk − βk and sends them to TP1 and TP2 respectively. TP1 computes

sh1 = (−1)prng(k,i,j)(αk −βk) and TP2 computes sh2 = (−1)prng(k,i,j)((ak −αk)−

(bk − βk)), and they send the results to the miner DM . When DM adds the two

received values the result is

sh1 + sh2 = (−1)prng(k,i,j)(ak − bk). (2.3)

After receiving the numerical value the miner gets the results |sh1 + sh2| = |a − b|,

which is the required (i, j)th entry of Dk. Overview of our Euclidean distance protocol

is depicted in Figure 2.1.

To construct the dissimilarity matrix for the kth attribute, each data holder DHi

computes additive shares of their private values a1
k, a

2
k . . . ani

k . The resulting additive

shares of each private value are distributed to secret share arrays s
i,k
1 and s

i,k
2 . The

resulting secret share arrays s
i,k
1 and s

i,k
2 are sent to TP1 and TP1 respectively. Steps

of the protocol for data holders are demonstrated in Algorithm 1.

Receiving s
1,k

1(2), s
2,k

1(2), . . . , s
`,k

1(2) from all of the data holders, TP1(2) merges these ar-

rays into sk
1(2). After merge operation, sk

1(2) contains additive shares of the collective

8

a
k
− α

k

a
k b

k

α
k

β
k

b
k
− β

k

A B

TP
1

TP
2

DM

α
k
−β

k
(a

k
−α

k
)−(b

k
−β

k
)

Figure 2.1: Overview of the numerical distance protocol

Algorithm 1 DHi

Input: private values for attribute k: a1
k, a

2
k . . . ani

k

Output: secret share arrays s
i,k
1 and s

i,k
2

1: Initialize secret share arrays s
i,k
1 and s

i,k
2 of size ni

2: for j = 1 to ni do
3: (si,k

1 [j], si,k
2 [j]) = secretshare(aj

k)
4: end for
5: Sends s

i,k
1 to TP1

6: Sends s
i,k
2 to TP2

database for the kth attribute. Then TP1(2) initializes an N × N matrix Dk
1(2) and

fills each entry (i,j) with value (−1)prng[k,i,j](sk
1(2)[a]− sk

1(2)[b]). The resulting matrix

Dk
1(2) is additive share of Dk. TP1(2) sends Dk

1(2) to DM . The details of the protocol

for TP1 are depicted in Algorithm 2.

Algorithm 2 TP1

Input: Secret share arrays s
1,k
1 , s

2,k
1 , . . . , s

`,k
1 , matrix prng shared with TP2

Output: Secret share matrix Dk
1

1: Initialize secret share array sk
1 of size N =

∑`

i=1 ni

2: Initialize secret share matrix Dk
1 of size N × N

3: Merge s
1,k
1 , s

2,k
1 , . . . , s

`,k
1 into sk

1

4: for a = 1 to N do
5: for b = 1 to N do
6: Dk

1 [a, b] = (−1)prng[k,a,b](sk
1[a] − sk

1[b])
7: end for
8: end for
9: Sends Dk

1 to DM

It is trivial for DM to construct Dk from matrices Dk
1 and Dk

2 by simply computing

Dk
1 [i, j] + Dk

2 [i, j] for each entry (i,j) of Dk. The protocol for DM is depicted in

Algorithm 3.

When all m dissimilarity matrices have been computed, DM can compute the final

9

Algorithm 3 DM

Input: Secret share matrices Dk
1 and Dk

2

Output: Dk

1: Initialize secret share matrix Dk of size N × N

2: for a = 1 to N do
3: for b = 1 to N do
4: Dk[a, b] = Dk

1 [a, b] + Dk
2 [a, b]

5: end for
6: end for

dissimilarity matrix with the sum in Equation 2.2.

2.4.1 Application of Our Protocol to Different Data Types

As stated in [10], an object can be described by attributes of five different data types:(1)

Interval-Scaled, (2) Binary, (3) Nominal, (4) Ordinal, and (5) Ratio-Scaled. In this

section, we show how to apply our protocol for these data types.

1. Interval-Scaled attributes: These are attributes of continuous value from a linear

scale like age, weight, and height. Our protocol can directly be applied to interval-

scaled variables since this attribute type has numeric values.

2. Binary attributes: This attribute type has two values: 0 or 1. 0 means that

attribute is absent, and 1 means that it is present. For example, attribute married

is a binary attribute with values Yes(1), and No(0). We can easily adopt our

protocol for a binary attribute k by treating values of k as 0 and 1. As a result,

Dk[x, y] will be 0 if ax
k = a

y
k, and 1 otherwise.

3. Nominal attributes: Nominal attributes resemble binary attributes, however can

take on more than two states. For instance, attribute weather is nominal with

states sunny, windy, cloudy, and rainy. Application of our protocol to a nominal

attribute is as follows: If number of all possible states for a nominal attribute

k is m, then we can number each attribute value from range 1, 2, . . . ,m. After

computing Dk, non-zero entries of Dk are set to 1.

4. Ordinal attributes: Ordinal attributes are similar to nominal attributes, however

states of ordinal attributes are ordered. Attribute professional rank has values

ordered as assistant, associate, and full. To adopt a nominal attribute k with

m states to our protocol, each state is numbered from range 1, 2, . . . ,m, where

states with higher rank get greater numbers. Then we can treat ordinal attribute

as interval-scaled.

10

5. Ratio-Scaled attributes: These are attributes of continuous value from a nonlinear

scale like exponential scale. Growth of a bacteria population is a typical example

for ratio-scaled attributes. A Ratio-Scaled attribute k can easily be adopted

to our protocol by employing logarithmic transformation such as each attribute

value ai
k is replaced with log ai

k. The updates attribute values are treated as

interval-scaled attributes.

6. Alphanumeric attributes: These are sequences(strings) of characters from a given

alphabet. Alphanumeric attributes are largely used by bioinformatics. For in-

stance, DNA sequence data is an alphanumeric attribute where alphabet of the

attribute is a,c,g,t. Edit distance[15] is a widely used notion to measure similarity

of two strings with respect to insertions, deletions, and substitutions required to

transform one string to another. For application of an alphanumeric attribute

k to our protocol, each alphanumeric attribute value ai
k needs to treated as an

array of characters from a finite alphabet and each character is numbered like or-

dinal attributes. For instance; alphabet of a,c,g,t for DNA data is mapped to the

values 0,1,2,3 respectively. Then secret sharing of characters for each attribute ai
k

is computed by data holders, and secret shares are sent to trusted third parties.

Trusted third parties form matrices which includes secret shares of difference of

each character of an attribute to other attributes’ characters. DM forms the orig-

inal difference matrix by simply adding these two matrices. At that point, as Inan

et al. proposed in [11], Character Comparison Matrix(CCM) is utilized, where

each entry (s,t,i,j) of CCM is filled as the the following: CCM [s][t][i][j] = 0 if ith

character of as
k is equal to jth character of at

k, and CCM [s][t][i][j] = 1 otherwise.

The final CCM is input to editdistance algorithm to form the final dissimilarity

matrix. The details of the protocol for alphanumeric attributes are depicted in

Algorithm 4,5, and 6 for DHi, TP1, and DM respectively.

2.5 Security of our Protocol

Our security definitions reflects that no (or at least not more than a negligible amount

of) information is revealed about any object in the collective database during the

data-mining protocol. Of course the final result of the protocol will on it’s own reveal

partial information, but information leakage is limited to whatever can be deduced

from the final result. In our protocol the partial dissimilarity matrices are computed

11

Algorithm 4 DHi for alphanumeric attributes

Input: private values for attribute k: a1
k, a

2
k . . . ani

k

Output: secret share arrays s
i,k
1 and s

i,k
2

1: Initialize secret share matrices s
i,k
1 and s

i,k
2 of size ni × len where len =

max(a1
k.length, a2

k.length . . . ani

k .length)
2: for j = 1 to ni do
3: for l = 1 to a

j
k.length do

4: (si,k
1 [j][l], si,k

2 [j][l]) = secretshare(aj
k[l])

5: end for
6: end for
7: Sends s

i,k
1 to TP1

8: Sends s
i,k
2 to TP2

Algorithm 5 TP1 for alphanumeric attributes

Input: Secret share matrices s
1,k
1 , s

2,k
1 , . . . , s

`,k
1 , matrix prng shared with TP2

Output: Secret share matrix Dk
1

1: Initialize secret share matrix sk
1 of size N × len where N =

∑`

i=1 ni and len =

max(s1,k
1 [0].length, s

2,k
1 [0].length, . . . , s

`,k
1 [0].length)

2: Initialize secret share matrix Dk
1 of size N × N × len × len

3: Merge s
1,k
1 , s

2,k
1 , . . . , s

`,k
1 into sk

1

4: for a = 1 to N do
5: for b = 1 to N do
6: for c = 1 to sk

1[a].length do
7: for d = 1 to sk

1[b].length do

8: Dk
1 [a, b, c, d] = (−1)prng[k,a,b,c,d](sk

1[a, c] − sk
1[b, d])

9: end for
10: end for
11: end for
12: end for
13: Sends Dk

1 to DM

Algorithm 6 DM for alphanumeric attributes

Input: Secret share matrices Dk
1 and Dk

2

Output: Dk

1: Initialize matrix CCM of size N × N × len × len

2: Initialize secret share matrix Dk of size N × N

3: for a = 1 to N do
4: for b = 1 to N do
5: for c = 1 to Dk

1 [a][b].length do
6: for d = 1 to Dk

1 [a][b][c].length do
7: if Dk

1 [a, b, c, d] + Dk
2 [a, b, c, d] == 0 then

8: CCM [a, b, c, d] = 0
9: else

10: CCM [a, b, c, d] = 1
11: end if
12: end for
13: end for
14: Dk[a, b] = editdistance(CCM [a, b])
15: end for
16: end for

12

and revealed to a third party. In general even the information given in the partial

dissimilarity matrices is too much, but we leave it for further improvements to complete

the data-mining without revealing any intermediate results. [See Section of future work

for a discussion on how this can be done.]

Definition A protocol for computing partial dissimilarity matrices is ε-secure if for

all parties, and for all attributes Ai
j

∣

∣P [Ai
k = x|Dk,M] − P [Ai

k = x|D]
∣

∣ < ε, (2.4)

where M is a transcript of all messages send to a given party.

Theorem 2.5.1 The protocol is private.

Proof Since data holders never receive any information, Equation (2.4) is satisfied

for these parties. Since blinding factors αi are chosen randomly and independent,

Equation (2.4) is also satisfied for TP1. Since attributes ai are chosen from finite fields

ai−αi are also independent of the data, so Equation (2.4) is also satisfied for TP2. The

values received by DM enables DM to build D, where each entry has a random sign

depending on rpng. If rpng is secure, no additional information can be computed.

2.6 Complexity Analysis

In this section, we analyze computation and communication complexity of our proto-

col. Each analysis will be performed for DHs, TPs, and DM separately. We show

effect of different data types to the complexity of our protocol. Since interval-scaled,

binary, nominal, ordinal, and ratio-scaled attributes are treated as numbers as shown

in Subsection 2.4.1, complexity of our protocol for these data types are the same. For

that reason, we denote these data types as numeric attributes throughout our analy-

sis. Therefore complexity analysis of our protocol is given with respect to alphanumeric

and numeric attributes. We also show complexity analysis of the privacy preserving

clustering protocol proposed by Inan et al. [11] to be able to make comparison with

our protocol.

13

2.6.1 Computation Complexity

Since computation of secret shares of private inputs can be performed in parallel by

each DH, computation complexity of our protocol for DHs is O(nmax) for numeric

attributes, where nmax = max(n1, n2, . . . , n`), and O((n × len)max) for alphanumeric

attributes, where (n × len)max = max(n1 × len1, n2 × len2, . . . , n` × len`) and leni is

the average length of alphanumeric attributes for DHi. On the other hand, for [11]

computation complexity of DHs is O(N2) for numeric attributes since data holders

compute shared dissimilarity matrices pairwise which requires serial execution. For

alphanumeric attributes, complexity of [11] is O(N2 × length2), where length is the

average length of alphanumeric attributes for the collective database.

In our protocol, for TPs, computation of secret share of Dk yields complexities of

O(N2) for numeric, and O(N2 × length2) for alphanumeric attributes, which is due to

computation of the global dissimilarity matrix, if we assume TPs operate in parallel

and rpng is generated in advance. In [11], there is only one TP and computation com-

plexity of TP is O(N2) for numeric, and O(N2 × length2) for alphanumeric attributes.

Complexity of our protocol for DH is O(N2) for numeric attributes which is the

cost of computing Dk. For alphanumeric attributes, DH computes CCM and Dk

resulting in a complexity of O(N2 × length2). There is no DM in [11]. We summarize

computation complexities of the protocols for each party in Table 3.1.

Table 2.1: Computation Complexities of our Protocol and [11]
Attribute Type DH TP DM

Numeric O(nmax) O(N2) O(N2)
Numeric for [11] O(N2) O(N2) −
Alphanumeric O((n × len)max) O(N2 × length2) O(N2 × length2)

Alphanumeric for [11] O(N2 × length2) O(N2 × length2) −

2.6.2 Communication Complexity

In our protocol, each DH sends secret shares of their private inputs to TPs resulting

in a total communication complexity of O(N) and O(N × length) for numeric and

alphanumeric attributes respectively. TPs send secret shares of Dk to DM and the

total communication complexity is O(N2) for numeric attributes, and O(N2× length2)

for alphanumeric attributes. Since final clustering is done by DM , there is no further

communication cost.

On the other hand, in [11], each DH sends local and shared dissimilarity matrices

14

to TP where global dissimilarity matrix is computed. Accordingly, communication

complexity is O(N2) for numeric attributes, and O(N2 × length2) for alphanumeric

attributes. Summary of the communication complexity analysis is depicted in Table

3.2.

Table 2.2: Communication Complexities of our Protocol and [11]
Attribute Type DH TP Total

Numeric O(N) O(N2) O(N2)
Numeric for [11] O(N2) − O(N2)
Alphanumeric O(N × length) O(N2 × length2) O(N2 × length2)

Alphanumeric for [11] O(N2 × length2) − O(N2 × length2)

2.7 Implementation and Performance Evaluation

In this chapter, performance evaluation of our protocol is explained and discussed in

detail with comparison to the protocol proposed in [11]. Our distributed clustering

protocol and [11] do not result in any loss of accuracy. Therefore, we perform only two

tests: communication cost analysis and computation cost analysis. The experiments

are conducted on an Intel Dual-Core Centrino PC with 2 MB cache, 2 GB RAM

and 1.83 GHz clock speed. We used C# programming language to implement the

algorithms.

2.7.1 Experimental Setup

To measure the performance of our protocol and [11], three test cases are identified.

These test cases are for different values of the following entities:

1. Total number of entities (total database size)

2. Average length of alphanumeric attributes

3. Number of data holders

To show performance of our protocol over different attribute types, each test case is

performed over numeric and alphanumeric attributes. For numeric attributes, we use

two different data types: integer and double. Since test results for integer and double

valued attribute values are similar, only test results for double data type are included

due to space consideration.

15

For each experiment, we measure the communication and computation overhead of our

protocol against the protocol proposed in [11], where each attribute value is blinded

by random disguise factors which are removed at the end revealing the final result.

[11] and our protocol only differ in the formation of the global dissimilarity matrix.

After global dissimilarity matrix is formed, a clustering algorithm takes this matrix

as input and the clustering is performed the same way in both protocols. Therefore,

comparisons of these protocols in the experiments are done with respect to formation

of the global dissimilarity matrices and clustering is not taken into consideration. For

all the experiments, we denote our protocol as “Our protocol” and [11] as “protocol” in

the figures. Except for the experiments on the number of data holders, we partitioned

the generated datasets into four by distributing them into four datasets evenly so that

each data holder has a balanced share.

For test case (1), we used total database sizes of 2K, 4K, 6K, 8K and 10K. Test case

(2) shows the behavior of the baseline protocol and our protocol for varying average

lengths of the alphanumeric attribute which are 5, 10, 15, 20, and 25. In test case (3),

number of data holders, excluding the third party, is 2, 4, 6, 8, and 10.

For each test case, we first use synthetically generated datasets. Synthetic datasets

are more appropriate for our experiments since we try to evaluate scalability and effi-

ciency of our protocol for varying parameters, and synthetic datasets can be generated

by controlling the number of entities, number of data holders, and average length of

attributes. Data generator is developed in Eclipse Java environment. For the numeric

attributes, each entity is chosen from the interval [0, 10000] uniformly, where precision

for double data type is set to three. For alphanumeric attributes, we created sequence

of characters whose length is chosen in accordance with normal distribution, the mean

value being equal to average length of the attribute and alphabet size is equal to four.

The reason for choosing alphabet size as four is to imitate behavior of DNA data in

our experiments.

We also use KDD’99 Network Intrusion Detection stream dataset [1] to show the perfor-

mance of our protocol over real datasets. We chose ’src bytes’ attribute of this dataset

as our target attribute, which is numeric. To make tests over real numeric datasets

compatible with tests over synthetic datasets, we divide real datasets into datasets of

size 2K, 4K, 6K, 8K and 10K.

In our experiments, we use Advanced Encryption Standard (AES) cipher to generate

pseudo-random numbers to hide data holders’ inputs. We use Cryptography namespace

16

of MS .Net platform to perform AES encryption in the implementation of our protocol

and [11]. For our protocol, keys and initialization vectors (IVs) are chosen by each

data holder independent of the others, while for [11], seeds for pseudo-random number

generator shared between data holders are used as keys and an initialization vector

(IV) globally known to every data holder is used. Ciphertext as a result of encryption

of IV by AES key is used as the pseudo-random number. For the next random number

generation, random number (ciphertext) generated in the previous step is used as the

message (plaintext) to be encrypted which yields the next random number as a result.

In our implementation, we use 128 bits AES encryption. We preferred AES for sake

of simplicity and safety. Nevertheless, a faster PRNG based on a stream cipher (such

as SEAL) can also be used to decrease the overhead in the computation complexity of

the proposed protocol.

2.7.2 Computation Cost Analysis

Comparison of computation costs for our protocol and [11] for varying database sizes

from 2K to 10K is depicted in Figure 2.2. For numeric attributes, Figures 2.2(a)

and 2.2(b) show that both our protocol and [11] behave quadratically which is due to

formation of global dissimilarity matrix. However our protocol performs better than

[11] since data holders operate in parallel in our protocol and the overall computa-

tion cost for each data holder is n AES encryption for computing secret shares of the

data, where n is database size of each data holder. However, [11] performs n AES

encryptions at each data holder to disguise data values and n AES encryptions at TP

to remove these disguise factors. As a result, [11] performs k ∗ n AES encryptions

more than our protocol where there are k data holders. As Figures 2.2(a) and 2.2(b)

show, execution time difference between our protocol and [11] gets larger as database

size increases since number of AES encryptions performed at TP also increases. On

the other hand, in our protocol no encryption is performed by any party other than

data holders. Comparing performance results of numeric attributes for real and syn-

thetic datasets, execution time for real dataset is slightly greater than execution time

of synthetic dataset due to implementation of our protocol since dissimilarity matrices

are formed in double data type which requires conversion of real datasets from type

integer to type double.For alphanumeric attributes, the situation is similar to numeric

attributes. However for alphanumeric attributes the difference in execution times are

larger than numeric attributes since extra number of AES encryptions that have to be

17

performed is n ∗ l where l is the average length of alphanumeric attribute.

2 4 6 8 10
0

50

100

150

DB Size (in thousands)
 (a)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

.)

Our Protocol
Protocol

2 4 6 8 10
0

50

100

150

DB Size (in thousands)
 (b)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

.)

Our Protocol
Protocol

2 4 6 8 10
0

500

1000

1500

DB Size (in thousands)
 (c)

Ex
ec

ut
io

n
Ti

m
e

(S
ec

.)

Our Protocol
Protocol

Figure 2.2: Computation cost for different database sizes: (a) For numeric attribute
from synth. dataset. (b) For numeric attribute from real dataset. (c) For alphanumeric
attributes.

Our protocol outperforms [11] when number of data holders increases. For this ex-

periment, we generate a dataset of 10K entities and then horizontally partitioned this

dataset by distributing the complete dataset over the data holders so that each party

holds the same number of entities. As depicted in Figure 2.3, execution time for [11]

increases as number of data holders increases. This is due to the fact that, Ck
2 number

of pairwise computation between data holders have to be performed to compute shared

dissimilarity matrices where k is total number of data holders. However, increase in

total execution time for [11] gets smaller as number of data holders increases since

amount of data owned by each data holder gets smaller. On the other hand, increase

in number of data holders reduces total execution time for our protocol since share of

each data holder gets smaller which means less encryption is performed by data holders

in parallel. In our protocol, the computation cost of TPs and DM does not effect from

the change in number of data holders.

To measure the relation between the length of alphanumeric attributes and the exe-

cution time, we generate 6K alphanumeric entities with varying average lengths. The

total execution times of the protocols are depicted in Figure 2.4. Accordingly, execution

times of the protocols with increasing average attribute length increase quadratically as

expected for our protocol and [11]. The execution time difference between our protocol

and [11] can be explained with the same reasoning as Figure 2.2(c).

18

2 4 6 8 10
40

60

80

100

120

140

Number of Data Holders
 (a)

E
xe

cu
tio

n
 T

im
e
 (

S
e
c.

)

Our Protocol
Protocol

2 4 6 8 10
60

80

100

120

140

Number of Data Holders
 (b)

E
xe

cu
tio

n
 T

im
e
 (

S
e
c.

)

Our Protocol
Protocol

2 4 6 8 10
0

500

1000

1500

Number of Data Holders
 (c)

E
xe

cu
tio

n
 T

im
e
 (

S
e
c.

)

Our Protocol
Protocol

Figure 2.3: Computation cost for different number of data holders: (a) For numeric
attribute from synth. dataset. (b) For numeric attribute from real dataset. (c) For
alphanumeric attributes.

5 10 15 20 25
0

200

400

600

800

1000

1200

1400

1600

Average length of Alphanumeric Attr.

E
xe

cu
tio

n
Ti

m
e

(S
ec

.)

Our Protocol
Protocol

Figure 2.4: Computation cost for different average alphanumeric attribute lengths

19

2.7.3 Communication Cost Analysis

Overall communication costs of our protocol and [11] for various database sizes are de-

picted in Figure 2.5. As seen in the figures, overall communication cost of our protocol

is almost twice of [11] for both numeric and alphanumeric attributes. This is due to

secret sharing employed in our protocol where two shares are created for each entity.

Both our protocol and [11] behave quadratically since overall communication cost is

dominated by communication cost of dissimilarity matrices. Figures 2.5(a) and 2.5(b)

also show that communication cost for synthetic dataset is larger than real dataset

since synthetic dataset is in double data format stored in 64 bits while real dataset is

in integer data format stored in 32 bits. On the other hand, apart from the overall

communication cost, communication cost of data holders for our protocol and [11] is

depicted in Figure 2.6. As shown in Figure 2.6, communication cost of our protocol

for data holders is linear in the size of each data holders dataset while [11] requires

quadratic communication for data holders. For that reason, communication cost of our

protocol for data holders is negligible compared to [11]. Accordingly, our protocol puts

the communication burden over trusted third parties and requires negligible amount of

communication from data holders which are resource limited. On the other hand [11]

requires all the communication performed by data holders. However our protocol is

more appropriate for the real life situation as seen from the example given in Section

3.1.

Analysis of overall communication costs for different number of data holders is de-

picted in Figure 2.7. A dataset containing 10K entities is evenly distributed among

data holders in these tests. As the figures show, communication cost of our protocol

remains the same for different number of data holders since collective database size

is the same. On the other hand, [11] shows an increase in communication cost when

number of data holders increase. However the amount of increase in communication

cost gets smaller as number of data holders increase, due to the same reasoning as in

Figure 2.3. As the figure shows, overall communication cost of our protocol is more

than [11]. However when communication costs of data holders are compared, our pro-

tocol outperforms [11] as shown in Figure 2.8. The same reasoning as in Figure 2.6 is

also applicable to Figure 2.8.

Figure 2.9 depicts the relation between communication cost and average length of al-

phanumeric attributes for both protocols. As seen in the figure, both protocols behave

quadratically with respect to increase in the average length of alphanumeric attributes.

20

2 4 6 8 10
0

2

4

6

8
x 10

5

DB Size (in thousands)
 (a)

C
om

m
un

ic
at

io
n

C
os

t (
K

B
)

Our Protocol
Protocol

2 4 6 8 10
0

1

2

3

4

5

6
x 10

5

DB Size (in thousands)
 (b)

C
om

m
un

ic
at

io
n

C
os

t (
K

B
)

Our Protocol
Protocol

2 4 6 8 10
0

0.5

1

1.5

2

2.5

3
x 10

7

DB Size (in thousands)
 (c)

C
om

m
un

ic
at

io
n

C
os

t (
K

B
)

Our Protocol
Protocol

Figure 2.5: Overall communication cost for different database sizes: (a) For numeric
attribute from synth. dataset. (b) For numeric attribute from real dataset. (c) For
alphanumeric attributes.

2 4 6 8 10
0

1

2

3

4
x 10

5

DB Size (in thousands)
 (a)

C
om

m
un

ic
at

io
n

C
os

t (
K

B
)

Our Protocol
Protocol

2 4 6 8 10
0

0.5

1

1.5

2

2.5

3
x 10

5

DB Size (in thousands)
 (b)

C
om

m
un

ic
at

io
n

C
os

t (
K

B
)

Our Protocol
Protocol

2 4 6 8 10
0

0.5

1

1.5

2
x 10

7

DB Size (in thousands)
 (c)

C
om

m
un

ic
at

io
n

C
os

t (
K

B
)

Our Protocol
Protocol

Figure 2.6: Communication cost of data holders for different database sizes: (a) For
numeric attribute from synth. dataset. (b) For numeric attribute from real dataset.
(c) For alphanumeric attributes.

21

2 4 6 8 10
3

4

5

6

7

8
x 10

5

Number of Data Holders
 (a)

C
o
m

m
u
n
ic

a
tio

n
 C

o
st

 (
K

B
)

Our Protocol
Protocol

2 4 6 8 10
1.5

2

2.5

3

3.5

4
x 10

5

Number of Data Holders
 (b)

C
o
m

m
u
n
ic

a
tio

n
 C

o
st

 (
K

B
)

Our Protocol
Protocol

2 4 6 8 10
1

1.5

2

2.5

3
x 10

7

Number of Data Holders
 (c)

C
o
m

m
u
n
ic

a
tio

n
 C

o
st

 (
K

B
)

Our Protocol
Protocol

Figure 2.7: Overall communication cost for different numbers of data holders: (a) For
numeric attribute from synth. dataset. (b) For numeric attribute from real dataset.
(c) For alphanumeric attributes.

2 4 6 8 10
0

1

2

3

4

5
x 10

5

Number of Data Holders
 (a)

C
o
m

m
u
n
ic

a
tio

n
 C

o
st

 (
K

B
)

Our Protocol
Protocol

2 4 6 8 10
0

0.5

1

1.5

2

2.5
x 10

5

Number of Data Holders
 (b)

C
o
m

m
u
n
ic

a
tio

n
 C

o
st

 (
K

B
)

Our Protocol
Protocol

2 4 6 8 10
0

0.5

1

1.5

2

2.5
x 10

7

Number of Data Holders
 (c)

C
o
m

m
u
n
ic

a
tio

n
 C

o
st

 (
K

B
)

Our Protocol
Protocol

Figure 2.8: Communication cost of data holders for different numbers of data holders:
(a) For numeric attribute from synth. dataset. (b) For numeric attribute from real
dataset. (c) For alphanumeric attributes.

22

5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

7

Average length of Alphanumeric Attr.

C
om

m
un

ic
at

io
n

C
os

t (
K

B
)

Our Protocol
Protocol

Figure 2.9: Overall communication cost for different average alphanumeric attribute
lengths

However, the amount of increase in the communication cost is higher for our protocol

than [11] due to redundant communication caused by secret sharing.

2.8 Discussion

In this section, we discuss the advantages of our protocol against [11] proposed by Inan

et al. There are two reasons why we choose [11] for comparison. Firstly, [11] is the most

recently proposed privacy preserving clustering protocol. Secondly, [11] has the most

similar structure to our protocol which provides fairness throughout our discussion.

[11] separates data holders into two: initiators and followers. Initiator i starts secure

difference protocol by sending its disguised inputs. Follower receives the disguised

values and computes difference of each of its input to i’s input. The main problem

with this setting is synchronization of data holders. In other words, follower has to

be idle and ready for computation when an initiator sends its input, which is hard

to manage in large distributed systems. On the other hand, our protocol requires no

interaction between data holders which means no synchronization requirements.

Dissimilarity matrices are computed in terms of local and shared dissimilarity matri-

ces in [11], where DM computes the final dissimilarity matrix by merging these local

and shared dissimilarity matrices received from data holders. This structure causes

quadratic computation and communication complexities for data holders with respect

to size of data holders’ local database. However it is more realistic to assume that data

holders have limited computation capabilities and to leave computation of dissimilarity

matrix to trusted third parties with high computation power, which is the case in our

protocol. Accordingly, computation and communication complexities of our protocol

for data holders are linear with the size of data holders’ databases.

23

Another problem with [11] is that, each initiator-follower and initiator-DM pairs

has to share a pseudo-random number generator seed which brings forward the problem

of seed generation and deployment in large distributed environments. However in our

protocol, merely one pseudo-random number generator seed between the two-trusted

third parties is shared.

In [11], the pseudo-random numbers used to disguise which attribute is subtracted

from the other is the same within each columns of shared dissimilarity matrix. If we

assume a shared dissimilarity matrix D of size m×n for DHx and DHy, then DM can

easily say that it is always D[j, k] = ax
j − a

y
k or D[j, k] = a

y
k − ax

j for j = 1, 2, . . . ,m.

Based on this observation, DM can find out the maximum and minimum attributes in

DHx ∪DHy by simply checking signs(positive, negative, zero) of the entries of D since

only for minimum and maximum attribute values, all entries of a column of D have

the same sign. If there is no such column in D, this means minimum and maximum

attribute values reside in DHx. However even if one such column exist in D, DM can

figure out with a certain confidence all the elements in DHx ∪ DHy if the domain of

possible values for that attribute is small. However this is not the case in our protocol

since for each entry of the dissimilarity matrix, a different pseudo-random number is

used.

24

CHAPTER 3

An Efficient Solution to

Millionaires’ Problem

3.1 Introduction

Secure evaluation of the greater-than function GT(x, y) tries to answer the question “Is

x greater than y?” without revealing inputs of the function (a.k.a Yao’s Millionaires’

problem). Several studies have been done on that issue; however most of these are

inefficient in the sense that communication and computation costs are very large. In

this study, we propose a more efficient solution to this problem taking [1] as our main

reference point. Fischlin [8] proposed a protocol based on quadratic-residuosity bit-

encryption of Goldwasser and Micali [9]. Goldwasser-Micali system (GM) uses modular

exponentiation of each bit of data for an RSA modulus N which results in expansion of

one bit to log(N) bits. There are several approaches [4, 16] to the same problem based

on encryption of each bit of data which are considered to be the most efficient ones.

Nevertheless expansion of bits due to modular exponentiation increases communication

cost. Also Modular exponentiation is costly to encrypt one bit of data.

For that reason, we adopt additive secret sharing to GM and merely use ⊕ oper-

ation to evaluate GT (x, y). Using ⊕ operation in this sense reduces communication

cost drastically since one bit of data is encoded into 2 bits of data. Additive secret

sharing also reduces computation cost due to one ⊕ operation instead of modular

exponentiation for encryption and decryption of the data.

However our protocol settings are a bit different from the protocols [8, 4, 16] for

Yao’s Millionaires’ problem. Our protocol requires existence of two semi-trusted third

parties. Semi-honest third parties obey the rules of the protocol without any collision

or collaboration with any other parties, however they could record whatever they re-

25

ceive throughout the whole protocol, they could try to infer useful information out of

the recorded data. Another difference of our protocol with respect to the previously

proposed protocols is that result of the evaluation for GT (x, y) could be delivered to

any party other than owners of the secrets x and y without loss of privacy and security.

This property makes our protocol appropriate for the applications where evaluation

result is required not to be known by the participants of the protocol while a third

party should know the result to form some global rules. Such applications exist for

data mining where a global data miner gets input from different data holders and

try to infer global information out of these different data sources such as clustering,

classification, association rule mining while learning no information about single data

sources. In other words, our protocol is flexible and adaptable for several applications

with its requirements and settings.

3.1.1 Related Work

The first solution to Yao’s Millionaires’ problem is proposed in [27]. However this

approach is far away from being efficient. All of the recent approaches considered to

efficient for solving secure greater-than function evaluation employ encryption as their

main tool to provide security. [16] tries to compare secrets of Alice and Bob, x and y

respectively, based on 0 − encoding (S0
s) and 1 − encoding (S1

s) of these numbers. S0
s

and S1
s of a number are the sets of binary strings such as :

S0
s = snsn−1 . . . si+11|si = 0, 1 ≤ i ≤ n

S1
s = snsn−1 . . . si|si = 1, 1 ≤ i ≤ n

Accordingly, if x > y := 1, then 1 − encoding of x (S1
x) has a common element with

0 − encoding of y (S0
y). After Alice and Bob has formed S1

x and S0
y of their secrets

respectively, the problem of evaluating the greater-than function is reduced to finding

intersection of S1
x and S0

y . If S1
x∩S0

y 6= ∅, then x > y := 1. [16] utilizes ElGamal Homo-

morphic Encryption scheme [5] to find intersection of S1
x and S0

y by taking advantage

of multiplicative homomorphic property of ElGamal Encryption scheme. Multiplica-

tive homomorphic property of ElGamal Encryption scheme provides ability to perform

multiplication over encrypted data, and reveal the multiplication result when data

is decrypted. This way multiplication operation is performed without revealing the

26

operands of the multiplication which are secrets. This property can be summarized as:

E(x) ∗ E(y) = E(x ∗ y)

Accordingly, Alice forms a 2×n table T , where T [xj, j] = E(1) and T [¬xj, j] = E(r)

where r is a random number for j=1,2, . . . ,n. Alice sends table T to Bob, where Bob

calculates ct = T [tn, n] ∗ T [tn−1, n − 1] ∗ . . . ∗ T [ti, i] for each t = tntn−1 . . . ti ∈ S0
y .

Bob randomizes each ct and sends them to Alice, where Alice decides x > y := 1 if

D(ct) = 1. Computation costs for Alice and Bob are 3n log p and 2n log p+2n modular

multiplications respectively, where p is the modulus for ElGamal Encryption and n is

length of the private input. Communication costs for Alice and Bob are 4n log p and

2n log p respectively. As seen from communication and computation cost of [16], the

dominant factor is n log p modular multiplications which is due to encryption of each

bit.

[8] proposes a protocol for secure greater-than function evaluation based on GM-

encryption scheme. GM- encryption is firstly proposed in [9] which uses quadratic-

residuosity to encrypt a bit. Encryption of a bit b with GM-encryption scheme is

performed as the following:

E(b) = zbr2 modN

where N = p ∗ q is an RSA modulus, z is a quadratic non-residue of Z∗

n with Jacobi

symbol +1, r is a random number such as r ∈ Z∗

n. The public key is (N, z) and the

private key is (p, q). GM-encryption scheme shows that E(b) is a quadratic non-residue

if and only if b is 1. Quadratic residuosity of bit b can be recognized efficiently only

if factorization p and q of N are known. GM-encryption scheme has three properties

that [8] uses, which are:

• XOR-property: E(a) ∗ E(b) = E(a ⊕ b)

• NOT-property: E(a) ∗ z = E(a ⊕ 1) = E(¬a)

• Re-randomization: Rand(E(a)) := E(a) ∗ E(0)

[8] uses a modified version of GM-encryption scheme to implement an AND-homomorphic

encryption scheme (EAND). Accordingly, a bit value b is encrypted as a sequence of λ

encrypted values which are either zE(b) or E(0). With respect to the modified version

27

of GM-encryption scheme, EAND(a) ∗EAND(b), which is pairwise ∗ operation of λ en-

crypted values, is equivalent to the evaluation of a ∧ b for bit values a and b, and the

result is 1 if EAND(a) ∗EAND(b) is a sequence of λ quadratic residues and 0 otherwise.

Greater-than function is formulated as:

x > y := ∨n
i=1

(

xi ∧ ¬yi ∧
n
j=i+1 ¬ (xj ⊕ yj)

)

(3.1)

where Equation (3.1) can be computed taking advantage of AND-homomorphic encryp-

tion scheme. The protocol starts when Alice encrypts her own secret x = xnxn−1 . . . x1

as E(xi) for i = 1, 2, . . . , n and sends encrypted values to Bob. Bob encrypts his own

secret y = ynyn−1 . . . x1 as E(yi) for i = 1, 2, . . . , n and compute encrypted values for

evaluation of ¬ (xj ⊕ yj) as E¬(xi⊕yi) = NOT (E(xi) ∗ E(yi)). Then Bob calculates

EAND
xi

= EAND(E(xi)) and EAND
yi

= EAND(NOT (E(yi))), and evaluation of Equa-

tions (3.1) is done by GTi = EAND
xi

∗ EAND
yi

∗
∏n

j=i+1 E¬(xj⊕yj). Bob sends GTi’s to

Alice, and Alice concludes that x > y := 1, if one of GTi’s is a sequence of λ quadratic

residues. Computation costs are nλ + 2n and 6nλ modular multiplications, and com-

putation costs are n log N and nλ log N for Alice and Bob respectively where N is an

RSA modulus. Similar to [16], the dominant factor is nλ modular multiplications due

to encryption of each bit.

Another cryptographic protocol for secure greater-than function evaluation is pro-

posed by [4]. Additive homomorphic property of Paillier Cryptosystem [22] is used to

implement this protocol. Additive homomorphism has the following property:

E(x) ∗ E(y) = E(x + y)

Using Paillier Cryptosystem (E), Alice initializes the protocol by encrypting each bit

of her secret x = xnxn−1 . . . x1 as E(xi) for i = 1, 2, . . . , n and sends encrypted values

to Bob. Then Bob follows a five step process:(1) Computes E(di) = E(xi − yi), (2)

Computes E(fi) = E(xi ⊕ yi) = E((xi − yi)
2) = E(xi − 2xiyi + yi), (3) Computes

E(γi) = E(2γi−1 + fi) where γ0 = 0, (4) Computes E(δi) = E(di + ri(γi − 1)) where

ri ∈R ZN , (5) Permutes E(δi) and sends to Alice. Alice decrypts E(δi), and concludes

that x > y := 1 if there exists a decrypted value +1. Computation costs are 12n log N

and 4n log N+28n modular multiplications while communication costs are 2n log N and

2n log N for Alice and Bob respectively. The dominant factor is caused by encryption

again which is n log N modular multiplications.

28

3.2 Preliminaries

Throughout this chapter, encryption and decryption operations are performed on single

bits. In order to compute a function over a number x, x is represented in binary notation

as x = xnxn−1 . . . x1 which can also be denoted as
∑

xn ∗ 2n−1 . We write S(x, r) = c

for secret sharing of bit x with random bit r and the corresponding shares of the secret

are assigned to bit r and c = r ⊕ x. Revealing the secret bit x from shares works in

similar fashion as c ⊕ r = x, which means a simple ⊕ operation over shares c and r

results in the original bit x.

3.2.1 XOR Homomorphic Secret Sharing Scheme

We use XOR operation for secret sharing of a bit x of information in the existence of

a random bit r. Basically our secret sharing scheme is:

S⊕(x, r) = c where x ⊕ r = c;

For restoring the secret x from c and random bit r, the corresponding procedure is

as the following:

D⊕(c, r) = x where c ⊕ r = x;

This additive secret sharing scheme has three properties which will be of great use

in the following sections. These properties are;

1. XOR homomorphism: S⊕(a, ra) ⊕ S⊕(b, rb) = S⊕(a ⊕ b, ra ⊕ rb)

2. NOT property: S⊕(¬a, ra) = 1 ⊕ S⊕(a, ra)

3. Rerandomization: Rand(S⊕(a, ra)) := 0 ⊕ S⊕(a, ra) = S⊕(r, r) ⊕ S⊕(a, ra) =

S⊕(r ⊕ a, r ⊕ ra)

3.2.2 AND Homomorphic Secret Sharing Scheme

XOR homomorphic secret sharing scheme explained in Section 3.2.1 can be used to

generate an AND homomorphic secret sharing scheme in the following manner: AND

homomorphic secret sharing (S∧) of a bit can be encoded as a sequence of XOR ho-

momorphic secret sharings (S⊕). Encoding of a bit is a sequence of λ elements each

29

of which will be either S⊕ of NOT x (S⊕(¬x, r)) or S⊕ of bit 0 (S⊕(0, r)). In other

words;

S∧(x) = S⊕

1 (x)|| . . . ||S⊕

λ (x) (3.2)

S⊕

i (x) = S⊕(¬xi, ri) or S⊕(0, ri) (3.3)

In Equation (3.3), choice of the value of S⊕

i is made by a fair coin flip. For secret

sharing of bit 1, we encode it as a sequence of λ random secret sharings of 0. For secret

sharing of bit 0, we encode it as a sequence of λ random secret sharings of 0 and 1.

Accordingly, computation of (x ∧ y) can be done as the following;

x ∧ y = S∧(x) ⊕ S∧(y)

= S⊕

1 (x) ⊕ S⊕

1 (y)|| . . . ||S⊕

λ (x) ⊕ S⊕

λ (y) (3.4)

S⊕

i (x) and S⊕

i (y) uses the same randomness to encrypt bits xi and yi in Equation

(3.4). If result of (S∧(x)⊕S∧(y)) is a sequence of all 0 ’s, this means x∧y = 1. On the

other hand, even if one of the elements in the sequence is 1, then x ∧ y = 0. However,

since value of S⊕

i is selected among S⊕(1, ri) or S⊕(0, ri) during the encoding phase

of bit 0, there can be failure in the encoding phase with probability of 2−λ if all the

elements in the sequence are chosen as S⊕(0, ri). Another failure scenario is that while

calculating S∧(x) ⊕ S∧(y), a piecewise ⊕ operation of encodings of 1 and 1 results in

encryption of 0 (S⊕(1, ri) ⊕ S⊕(1, ri) = S⊕(0, ri)). This kind of cancellation failures

occur with probability of 2−λ. For that reason, λ has to be chosen appropriately to

minimize failure probability.

3.3 Evaluating Greater Than (GT) function

Evaluation of the boolean function f(X,Y) such as: f(X,Y) = 1 if X > Y , and

f(X,Y) = 0 otherwise, can be done by comparison of each number bitwise such as if

X > Y , then xi = 1, and yi = 0, and xj = yj (which can be computed by ¬(xj ⊕ yj))

for all more significant bits [1] which is evaluated by Equation (3.1). Accordingly, GT

function can easily be implemented since the term ¬(xj⊕yj) can be computed by XOR

homomorphic scheme explained in Section 3.2.1, and the term xi∧¬yi∧
n
j=i+1¬ (xj ⊕ yj)

30

can be computed by AND homomorphic scheme explained in Section 3.2.2.

Evaluation of GT function based on our XOR and AND homomorphic secret sharing

scheme in Sections 3.2.1, 3.2.2 requires presence of two semi-honest third parties(SHTP)

since Equation (3.1) has to be computed securely without revealing any bits of x and

y. Evaluation process starts at Parties X and Y where shares of secret bits xi and

yi are formed by S⊕. Shares of each secret bit are distributed among SHTP. From

that point on, SHTP start computation to form shares of the evaluation for Equation

(3.1). SHTP share a seed to initialize a pseudo-random number generator (PRNG).

Based on this PRNG, SHTP form two components both: (1) Share of secret xi ∧ ¬yi,

(2)Share of secret ∧n
j=i+1¬ (xj ⊕ yj). SHTP compute the first component by employing

an encoding function based on shared PRNG. The encoding function is as the following;

Sci

encode(ci, PRNG, inverse) = (ri,j OR ci ⊕ inverse ⊕ ri,j) = ec
i,j (3.5)

S
xi∧¬yi

encode = ex
i,1 ⊕ e

y
i,1|| . . . ||e

x
i,λ ⊕ e

y
i,λ (3.6)

Encoding function in Equation (3.5) takes three parameters. First parameter ci is

share of the secret for either party X or Party Y. Second parameter is PRNG which

is used to randomize output of the encoding function in Equation (3.5). The third

parameter is the bit value inverse which determines whether to inverse the output or

not. There are two possible outputs of the function in Equation (3.5). To chose among

these possible outputs, shared PRNG is used. If random number created is odd, then

the first output, otherwise the second output is chosen to be the actual output. After

deciding on what is going to be the output, value of the output is calculated. For

that purpose, another random number rnd is created and value of the ri,j is set as

rnd mod 2. Equation (3.5) is called λ times for each bit of the share of the secret.

The second component is computed in a similar fashion by SHTP. The functions

used are;

S
xi,yi

encode(xi, yi, PRNG) = (ri,j OR xi ⊕ yi) = e
x⊕y
i,j (3.7)

S
∧n

j=i+1
¬(xj⊕yj)

encode = e
x⊕y
j,1 ⊕ . . . ⊕ e

x⊕y
n,1 || . . . ||ex⊕y

j,λ ⊕ . . . ⊕ e
x⊕y
n,λ (3.8)

Function in Equation (3.7) takes shares of the secrets for Party X and Y, and

PRNG as parameters. The encoding procedure is same as Equation (3.5). Output of

31

Equation (3.7) is used as input for Equation (3.8) and the resulting output is share of

each semi-trusted parties for component (2).

S
xi∧¬yi∧

n
m=i+1

¬(xj⊕yj)

encode = S
xi∧¬yi

encode ⊕ S
∧n

m=i+1
¬(xj⊕yj)

encode (3.9)

Using Equations (3.5),(3.6),(3.7),(3.8), the shares of the evaluation Equation (3.1)

is calculated. The final share of each SHTP for evaluation of the Equation (3.1) is

calculated by Equation 3.9. However share of the Equation (3.1) can reveal information

about which bit of Secret X and Y fulfill Equation (3.1) when combined in Computation

Site since resulting value for this bit will be a sequence of λ 0’s. Based on this fact,

Computation Site knows that value corresponding to that bit is 1 for Secret X and 0

for Secret Y, and the other more significant bits are equal. To prevent this information

leakage, SHTP will permute their final result with respect to a permutation scheme

they share, before sending their shares of the result to the Computation Site. The

details of the steps, each party follows is given in detail in Section 3.4.

3.4 Our Protocol

Algorithm 7 Party X

Input: Secret value x = xnxn−1 . . . x1

Output: cx
1 , c

x
2 , . . . , c

x
n and rx

1 , r
x
2 , . . . , r

x
n

1: for i = 0 to n do
2: cx

i = S⊕(xi, r
x
i)

3: end for
4: Sends cx

1 , c
x
2 , . . . , c

x
n to TRUSTED PARTY 1

5: Sends rx
1 , r

x
2 , . . . , r

x
n to TRUSTED PARTY 2

Algorithm 8 Party Y

Input: Secret value y = ynyn−1 . . . y1

Output: c
y
1, c

y
2, . . . , c

y
n and r

y
1 , r

y
2 , . . . , r

y
n

1: for i = 0 to n do
2: c

y
i = S⊕(yi, r

y
i)

3: end for
4: Sends c

y
1, c

y
2, . . . , c

y
n to Trusted party 2

5: Sends r
y
1 , r

y
2 , . . . , r

y
n to Trusted party 1

32

Algorithm 9 Trusted Party 1

Input: cx
1 , c

x
2 , . . . , c

x
n and r

y
1 , r

y
2 , . . . , r

y
n

Output: Permuted Matrix GT 1

1: Initialize PRNG with seed shared with Trusted party 2
2: Share permutation scheme with Trusted party 2
3: for i = 1 to n do
4: for j = 1 to λ do
5: ex

i,j = S
cx
i

encode(c
x
i , PRNG, 0)

6: e
y
i,j = S

r
y

i

encode(r
y
i , PRNG, 1)

7: end for
8: end for
9: for i = 1 to n do

10: for j = 1 to λ do
11: S

xi∧¬yi

encode[j] = ex
i,j ⊕ e

y
i,j

12: end for
13: end for
14: for i = 1 to n do
15: for j = 1 to λ do

16: e
x⊕y
i,j = S

cx
i ,r

y

i

encode(c
x
i , r

y
i , PRNG)

17: end for
18: end for
19: for i = 1 to n − 1 do
20: for j = 1 to λ do

21: S
∧n

m=i+1
¬(xj⊕yj)

encode[j] = e
x⊕y
m,j ⊕ . . . ⊕ e

x⊕y
n,j

22: end for
23: end for
24: for i = 1 to n − 1 do
25: for j = 1 to λ do

26: S
xi∧¬yi∧

n
m=i+1

¬(xj⊕yj)

encode[j] = S
xi∧¬yi

encode[j] ⊕ S
∧n

m=i+1
¬(xj⊕yj)

encode[j]

27: end for
28: end for
29: Permute Matrix Sxi∧¬yi∧

n
j=i+1

¬(xj⊕yj) with respect to column i’s resulting in GT 1

30: Sends Matrix GT 1 to Computation Site

33

Algorithm 10 Trusted Party 2

Input: c
y
1, c

y
2, . . . , c

y
n and rx

1 , r
x
2 , . . . , r

x
n

Output: Permuted Matrix GT 2

1: Initialize PRNG with seed shared with Trusted party 1
2: Share permutation scheme with Trusted party 1
3: Negate each Share of Party Y as ¬c

y
i = 1 ⊕ c

y
i

4: for i = 1 to n do
5: for j = 1 to λ do
6: ex

i,j = S
rx
i

encode(r
x
i , PRNG, 1)

7: e
y
i,j = S

c
y

i

encode(¬c
y
i , PRNG, 0)

8: end for
9: end for

10: for i = 1 to n do
11: for j = 1 to λ do
12: S

xi∧¬yi

encode[j] = ex
i,j ⊕ e

y
i,j

13: end for
14: end for
15: for i = 1 to n do
16: for j = 1 to λ do

17: e
x⊕y
i,j = S

rx
i ,c

y

i

encode(r
x
i , c

y
i , PRNG)

18: end for
19: end for
20: for i = 1 to n − 1 do
21: for j = 1 to λ do

22: S
∧n

m=i+1
¬(xj⊕yj)

encode[j] = e
x⊕y
m,j ⊕ . . . ⊕ e

x⊕y
n,j

23: end for
24: end for
25: for i = 1 to n − 1 do
26: for j = 1 to λ do

27: S
xi∧¬yi∧

n
m=i+1

¬(xj⊕yj)

encode[j] = S
xi∧¬yi

encode[j] ⊕ S
∧n

m=i+1
¬(xj⊕yj)

encode[j]

28: end for
29: end for
30: Permute Matrix Sxi∧¬yi∧

n
j=i+1

¬(xj⊕yj) with respect to column i’s resulting in GT 2

31: Sends Matrix GT 2 to Computation Site

Algorithm 11 Computation Site

Input: GT 1 and GT 2

Output: True if (X > Y), false otherwise
1: for i = 1 to n do
2: for j = 1 to λ do
3: GT [i][j] = GT 1[i][j] ⊕ GT 2[i][j]
4: end for
5: end for
6: for i = 1 to n do
7: if GT [i] is a sequence of λ 0’s then
8: return true
9: end if

10: end for
11: return false

34

3.5 Complexity Analysis of Our Protocol

In this section, we show computation and communication complexity of our protocol

with comparison to three protocols [8, 4, 16] proposed for greater-than function eval-

uation which are explained in detail in Subsection 3.1.1. The reason why we choose

these three protocols is that they are the most recently proposed protocols which are

considered to be the most efficient solutions to the secure greater-than function evalu-

ation.

3.5.1 Computation Complexity

The summary of computation costs for each protocol is depicted in Table 3.1. Com-

putation cost of our protocols can be explained in terms of Party X, Party Y, Trusted

Party 1, Trusted Party 2, and Computation Site. Party X and Y has the same compu-

tation cost which is composed of n fair coin flip and n ⊕ operations for secret sharing

of bits of secrets x and y. Computational cost of our protocol for Trusted Party 1 is

as the following: 6nλ (= 3 ∗ 2nλ) PRNG for lines 5, 6, and 16, 6nλ (= 6 ∗ nλ) ⊕

operations for lines 5, 6, 11, 16, 21, and 26. Trusted Party 2 has the same computation

cost as Trusted Party 1 if we ignore n ⊕ operations at line 3. Computation cost of

Computation Site is nλ ⊕ operations for line 3. Accordingly computational complexity

of our protocol is dominated by nλ PRNG. If we assume that 128 bits AES is used for

pseudo-random number generation, then complexity of our protocol is nλ log S where

S is an AES modulus. As explained in detail in Subsection 3.1.1, computational com-

plexity of [16],[4], and [8] are dominated by n log p, n log N , and nλ log N modular

multiplications respectively. Assuming a conservative security level for each protocol ,

we can say that it is possible to take log p = 512, log N = 512 and log S = 128.

Table 3.1: Comparison of Computation Cost for Different Protocols
Protocol Party X Party Y STTP1 STTP2

[8] (nλ + 2n)m (6nλ)m - -
[4] (12n log N)m (4n log N + 28n)m - -
[16] (3n log p)m (2n log p + 2n)m - -

Our Protocol nc + nx nc + nx 6nλx + 6nλr 6nλx + 6nλr + nx

*m, c, x, r stand for modular multiplication, fair coin flip, bitwise ⊕ operation, and

pseudo-random number generation respectively. *p is ElGamal modulus *N is RSA

modolus *n is length of private inputs in bits

35

3.5.2 Communication Complexity

Communication costs of our protocol are 2n for Party X and Party Y , and nλ for

Trusted Party 1 and 2. The summary of communication costs for all protocols are

depicted in Table 3.2. According to Table 3.2, our protocol causes a dramatic reduction

in communication cost compared to previously proposed protocols.

Table 3.2: Comparison of Communication Cost for Different Protocols
Protocol Party X Party Y STTP1 STTP2 Total

[8] n log N nλ log N - - n log N(λ + 1)
[4] 2n log N 2n log N - - 4n log N

[16] 4n log p 2n log p - - 6n log p

Our Protocol 2n 2n nλ nλ 4n + 2nλ

36

CHAPTER 4

Conclusion and Future Work

In this thesis, we have shown two very efficient protocols which are useful for data

mining. The efficiency was achieved by observing that the use of two (or three) semi-

honest non-colluding third parties is realistic in a data mining setting.

Our solution to Yao’s millionaires problem is of independent interest, since it im-

proves over existing protocols in both communication complexity and computation

complexity. It is, to the best of our knowledge, the best solution so far. Our solution

is based on the solution by Fischlin, but whereas Fischlin uses only one semi-honest

third party, we use two. Compared to Fischlin, our protocol has communication over-

head of 2λ, whereas practical implementations of Fischlin will have communication

overhead several orders of magnitudes more. Fischlin’s protocol uses exponentiation

of cipher-texts in the evaluation of each Boolean circuit, wheres our protocol executed

the Boolean circuit directly on bits (2λ bits in parallel).

Secondly by utilizing our numerical distance protocol, we proposed a privacy pre-

serving distributed clustering protocol for horizontally partitioned data using secret

sharing scheme, which is homomorphic with respect to addition operation. The model

that we adopted is unprecedented in the sense that it uses two non-colluding third

parties. The idea of using two third parties that greatly alleviates the computation

and communication burden of the data holders is especially useful in applications such

as sensor networks and RFID where data holders are resource-limited sensor nodes and

RFID readers. When compared to the most efficient former techniques, which exclu-

sively rely on the computation and communication capabilities of the data holders, our

protocol can run even on the most simple data holders, such sensor nodes or RFID

readers. One can even think that there is no need for the data holders to store the

actual data. It is true that the communication overhead between the two third parties

is greater than the other protocols. Nevertheless, third parties can easily be equipped

37

with high computation capability and bandwidth.

The use of two third parties and non-collusion property are realistic when they are

chosen to have conflicting interests in the data mining results of the actual data. As

an example, one third party can be a consumer organization who is interested in the

privacy of consumers, while the other is representative of the industry - they both have

interests in the right outcome, but will never collude.

We proved information theoretically that the third parties cannot gather any infor-

mation about the data under the non-colluding assumption. Therefore, our protocol

adopts a stronger security model than computational infeasibility, which is used by the

majority of other privacy preserving data mining algorithms.

Other two benefits of the proposed protocol are that the data holders do not need

to be synchronized or to share keys. Almost all previously proposed methods rely

on synchronous and interactive protocols, where data holders must always be on-line

during the protocol execution, while the data holders in our protocol can send the shares

of their data asynchronously at their convenience. Since there is no communication

between the data holders, there is no need for them to share keys; therefore there is no

key distribution problem.

And finally, the model based on the use of two third parties and homomorphic

secret sharing can be extended to other data types and different dissimilarity metrics.

38

Bibliography

[1] Referenced at kdd’99 classifier learning contest: http://www-

cse.ucsd.edu/users/elkan/clresults.htm (2006).

[2] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining. In

SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD international conference

on Management of data, pages 439–450. ACM Press, 2000.

[3] Charles Asmuth and John Bloom. A modular approach to key safeguarding. IEEE

Transactions on Information Theory, 29(2), 1983.

[4] I. Blake and V. Kolesnikov. Strong conditional oblivious transfer and computing

on intervals. Advances in Cryptology, 3329:515–529, 2004.

[5] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Trans. Inform. Theory, 31:469–472, 1985.

[6] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting

privacy breaches in privacy preserving data mining. In PODS ’03: Proceedings of

the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems, pages 211–222, New York, NY, USA, 2003. ACM Press.

[7] Alexandre Evfimievski, Ramakrishnan Srikant, Rakesh Agarwal, and Johannes

Gehrke. Privacy preserving mining of association rules. Inf. Syst., 29(4):343–364,

2004.

[8] M. Fischlin. A cost-effective pay-per-multiplication comparison method for mil-

lionaires. Lecture Notes in Computer Science, 2020:457–472, 2001.

[9] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, 28(2):270–299, 1984.

[10] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. The

Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, 2000.

39

[11] Ali Inan, Yücel Saygın, Erkay Savaş, Ayça Azgın Hintoğlu, and Albert Levi. Pri-

vacy preserving clustering on horizontally partitioned data. In Privacy Preserving

Clustering on Horizontally Partitioned Data, page 95. IEEE Computer Society,

2006.

[12] Murat Kantarcıoğlu and Chris Clifton. Privacy-preserving distributed mining of

association rules on horizontally partitioned data. IEEE Transactions on Knowl-

edge and Data Engineering, 16(9):1026–1037, 2004.

[13] Hillol Kargupta, Souptik Datta, Qi Wang, and Krishnamoorthy Sivakumar.

Random-data perturbation techniques and privacy-preserving data mining.

Knowl. Inf. Syst., 7(4):387–414, 2005.

[14] Matthias Klusch, Stefano Lodi, and Gianluca Moro. Distributed clustering based

on sampling local density estimates. In IJCAI ’03:Proceedings of the 18th Inter-

national Joint Conference on Artificial Intelligence, pages 485–490. AAAI Press,

2003.

[15] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions,

and reversals. Technical Report 8, 1966.

[16] H.Y. Lin and W.G. Tzeng. An efficient solution to the millionaires’ problem based

on homomorphic encryption. Lecture Notes in Computer Science, 3531:456–466,

2005.

[17] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Advances in

Cryptology — CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science,

pages 36–54. Springer, 2000.

[18] Srujana Merugu and Joydeep Ghosh. Privacy-preserving distributed clustering

using generative models. In ICDM ’03: Proceedings of the Third IEEE Interna-

tional Conference on Data Mining, pages 211–218, Washington, DC, USA, 2003.

IEEE Computer Society.

[19] Stanley Oliveira and Osmar R. Zaiane. Privacy preserving clustering by data

transformation. In 18th Brazilian Symposium on Databasesn, pages 304–318, 2003.

[20] Stanley Oliveira and Osmar R. Zaiane. Achieving privacy preservation when shar-

ing data for clustering. In International Workshop on Secure Data Management

40

in a Connected World (SDM’04) in conjunction with VLDB 2004, pages 67–82.

Springer Verlag, 2004.

[21] Stanley Oliveira and Osmar R. Zaiane. Privacy-preserving clustering by object

similarity-based representation and dimensionality reduction transformation. In

Workshop on Privacy and Security Aspects of Data Mining (PSDM’04) in conjunc-

tion with the Fourth IEEE International Conference on Data Mining (ICDM’04),

pages 21–30, 2004.

[22] P. Paillier. Public-key cryptosystems based on composite degree residuosity

classes. Lecture Notes in Computer Science, 1592:223–238, 1999.

[23] P. McDaniel S. Jha, L. Kruger. Privacy preserving clustering. In ESORICS’05:10th

European Symposium On Research In Computer Security, pages 397–417, 2005.

[24] Yucel Saygin, Vassilios S. Verykios, and Chris Clifton. Using unknowns to prevent

discovery of association rules. SIGMOD Rec., 30(4):45–54, 2001.

[25] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,

November 1979.

[26] Jaideep Vaidya and Chris Clifton. Privacy-preserving k-means clustering over

vertically partitioned data. In KDD’03: Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 206–215,

New York, NY, USA, 2003. ACM Press.

[27] Andrew C. Yao. Protocols for secure computation. In 23rd Annual IEEE Sympo-

sium on Foundations of Computer Science (FOCS), pages 160–164, 1982.

41

