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THE MULTINOMIAL SELECTION PROBLEM

Abstract

In this thesis, we study indifference-zone multinomial selection procedures, that

is, procedures for selecting the most probable (“best”) multinomial cell. Such pro-

cedures have a number of real-world applications — for instance, which is the most

popular television show in a particular time slot, or which manufacturing strategy

has the highest probability of yielding the largest profit on a particular trial? The

indifference-zone procedures we examine all satisfy a probability requirement that

guarantees to correctly select with high probability the best multinomial category

under a variety of underlying probability configurations. We show by Monte Carlo

and exact calculations that certain sequential sampling procedures perform better

than others. We also offer various extensions and thoughts for future research.

Keywords: Multinomial selection problems, selection procedures, ranking proce-

dures, sequential procedures, open procedures, truncated procedures.



ÇOK TERİMLİ SEÇİM PROBLEMİ

Özet

Bu tezde biz tarafsızlık-bölgesi çok terimli seçim prosedürleri üzerine alıştık. Bu

prosedürler en olası (“en iyi”) çok terimli hücreyi seçmeye çalışır. Bu prosedürlerin

bir çok gerçek hayat uygulaması vardr: Örneğin, belli bir zaman aralığında hangi

televizyon programı en çok seviliyor, ya da hangi üretim stratejisi en yüksek kar elde

etme olasılığımızı en yüksek yapıyor. Tarafsızlık- bölgesi prosedürleri gerekli olasılık

değerlerini sağlayarak, en yüksek olasılıkla (ve bir çok olasılık konfigürasyonunda )

en iyi çok terimli kategoriyi seçmemizi garanti eder. Bu çalışmada bazı prosedürlerin

diğerlerinde daha iyi olduklarını Monte Carlo simlasyonları ve tam hesaplamalarla

gösterdik. Bunun yanında birçok genişletme ve ileriki araştırmalar için fikirler öne

sürüldü.

Anahtar kelimeler: Çok terimli seçim problemi, seçim prosedürleri, sıralama

prosedürleri, sıralı prosedürler, açık prosedürler, kesilmiş prosedürler.
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1 Introduction

One of the most important problems in statistical and industrial engineering appli-

cations is that of finding the best of a number of competing systems. For example,

• Which queueing set-up offers customers the shortest expected waiting time?

• Which simulated manufacturing layout generates the greatest expected

throughput?

• Which layout has the smallest variance?

• Which drug has the highest probability of giving relief?

• Which political candidate has the highest probability of winning the election?

• Which soft drink is the favorite?

In the above examples, the experimenter or decision-maker is faced with the

problem of choosing among competing stochastic systems, and therefore faces un-

certainty when making such decisions. One could resort to classical hypothesis

testing, e.g., H0 : µ1 = µ2 = · · · = µk, but such hypothesis tests typically determine

if any of the competing systems are simply “different” from the others — they do

not necessarily determine which of the competitors is actually the best. A branch of

statistics, known as ranking and selection, attempts to do more. Namely, selection

procedures try to find the best among the competitors with a high probability of

correct selection.

Specific procedures have been developed over the last 50 years for a number of

interesting scenarios. For instance, there is a large literature on the so-called normal

selection problem, where we are interested in finding the best among a number of

competing normal populations, e.g., which normal population has the largest mean

or the smallest variance? The normal selection problem may be appropriate if we are

interested in finding that one of a number of service center configurations having the

smallest expected waiting time for customers. The Bernoulli selection problem also

has numerous industrial and medical applications. For example, suppose that we are

interested in selecting the drug that have the highest cure rate, where each patient
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can be regarded as a Bernoulli trial. There is also a rich literature on this Bernoulli

problem. Many other general selection problems are discussed in the literature —

which is the best Poisson distribution? The best exponential? The multivariate

normal distribution with the largest Mahalanobis distance?

The goal of the current thesis is to study multinomial selection procedures,

which we regard as being almost as important as the normal and Bernoulli classes.

Here, we are interested in developing and evaluating selection procedures to choose

the system that has the highest probability of being the “most desirable” (which

corresponds to the multinomial cell having the highest probability). For example,

which television show during a particular time period is the most popular? Which

political candidate is most likely to win? Which manufacturing strategy has the

highest probability of yielding the largest profit on a particular trial?

Our contributions in this thesis are organized as follows. In Section 2, we start

with an introduction to the multinomial distribution, along with notation that will

be used in the subsequent sections. Section 3 describes and motivates a compendium

of multinomial selection procedures that have been popular in the literature. We

also provide comparisons of the procedures in terms of various performance criteria

such as the achieved probability of correct selection and the expected sample size

for certain underlying probability configurations. We show how to evaluate these

performance criteria via Monte Carlo simulation methods in Section 4, and via

exact methods in Sections 5 and 6. The technique described in Section 5 can be

applied to special cases of the procedures under discussion; it is based on the classic

gambler’s ruin problem and yields explicit expressions for the performance criteria

of interest. The methods given in Section 6 can be used on more-general procedures

and yield exact numerical results. Section 7 proposes some procedure extensions,

while Section 8 gives conclusions and describes future work.
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2 Notation and Set-Up

To get things going, this section discusses notation and set-up. We begin in Sec-

tion 2.1 with an elementary introduction to the multiniomial distribution, followed

in Section 2.2 by a general discussion on the problem of selecting the most prob-

able multinomial category. More specifically, Section 2.3 deals with the so-called

indifference-zone methodology for selecting the most probable multinomial category.

Finally, Section 2.4 provides a short literature review related to relevant procedures

and other issues.

2.1 The Multinomial Distribution

Our goal for now is to find the cell of a multinomial distribution that is the most

probable. We will expand the problem purview later on by showing how this problem

can be interpreted as that of finding that one of k competing general systems having

the highest probability of yielding the “most desirable” observation.

So for the time being, we shall consider an experiment with k possible outcomes,

E1, E2, . . . , Ek, where the Ej’s form a partition of the associated sample space, i.e.,

the Ej’s are mutually exclusive and exhaustive. Let the random variables Xij = 1

or 0 according as Ei does or does not occur on the jth trial of the experiment, for

i = 1, 2, . . . , k, j = 1, 2, . . ., i.e., Xij = 1 if event i “wins” trial j, and Xij = 0 if event

i “loses” trial j. Further, let Xj ≡ (X1j, X2j, . . . , Xkj) denote the vector-observation

corresponding to the outcome of the jth trial of the experiment. In addition, let

Yin ≡ ∑n
j=1 Xij be the total number of wins for event i after n observations, where

we also define the vector notation Y n ≡ (Y1n, Y2n, . . . , Ykn).

Example 1. We are conducting a survey on the soft drink preferences of university

students. Suppose we ask person j whether she likes Coke, Pepsi, or Sprite the best.

If she chooses Coke, then Xj = (1, 0, 0); a choice of Pepsi yields Xj = (0, 1, 0); and

Sprite gives Xj = (0, 0, 1). After we ask 150 students, we find that 73 students

preferred Coke, 36 chose Pepsi, and 41 said Sprite. So we have Y1,150 = 73, Y2,150 =

41, and Y3,150 = 36, i.e., Y 150 = (73, 36, 41). ¤

Assume that the outcomes of any trial are independent and identically dis-

tributed (i.i.d.), that is, X1,X2, . . . ,Xk are i.i.d. Suppose that pi denotes the prob-
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ability of the event Ei occurring, i = 1, 2, . . . , k, where 0 ≤ pi ≤ 1 and
∑k

i=1 pi = 1.

Thus, pi = Pr(Xij = 1), for all i, j. The quantity pi can be interpreted as the

probability that event i will “win” a particular trial. Later on, we will expand the

definition of pi so that it is the probability that, on a particular trial, system i will

yield the “most desirable” observation out of those coming from k competing sys-

tems. In any case, we henceforth use the vector notation p ≡ (p1, p2, . . . , pk). We

are now in a position to define the multinomial distribution, which is of fundamental

interest in this thesis.

Definition 1. If X1,X2, . . . ,Xk are i.i.d., each with underlying probability vector

p, then we say that the vector Y n has the multinomial (or k-nomial) distribution

with parameters n and p.

The probability mass function (p.m.f.) of the multinomial distribution is given

by the following expression (see, for example, any standard probability and statistics

text such as Hines et al. [12]).

p(y) ≡ Pr(Y n = y)

= Pr(Y1n = y1, Y2n = y2, . . . , Ykn = yk)

=

( ∑k
i=1 yi

y1, y2 . . . , yk

)

py1

1 py2

2 · · · pyk

k

=
n!

∏k
i=1(yi!)

k
∏

i=1

pyi

i ,

where y ≡ (y1, y2, . . . , yk) and
∑k

i=1 yi = n.

Example 2. Suppose we are gambling with a dice which has 12 sides. If we throw

a number divisible by 4, we lose 10 YTL; if we throw a prime number, we win 10

YTL; and in all other cases, we come out even. In this case, the probability vector

associated with win, draw, and lose is p = (1/4, 1/3, 5/12). Now suppose we play

this game 6 times. The probability of exactly two losses, one draw, and three wins

is given by

Pr (Y 6 = (2, 1, 3)) =
6!

2!1!3!
(1/4)2(1/3)1(5/12)3 = 0.090422. ¤
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2.2 Selecting the Most Probable Multinomial Category

The components of the vector p ≡ (p1, p2, . . . , pk) are generally unknown in practice.

For purposes of exposition, suppose we denote the ordered probabilities as p|1| ≤
p|2| ≤ · · · ≤ p|k|. We assume that the experimenter has no knowledge concerning

the values of the pi’s or of the p[j]’s; we also assume that the pairings of the p[j]’s

with the Ei’s (1 ≤ i, j ≤ k) are completely unknown. The category associated with

p[k] is the “best” (most probable) category. Our goal in this research is to select the

event Ei (or, later on, the system) associated with the largest probability p|k|. If,

after sampling, we do indeed choose the category associated with p|k|, we say that

we have made a correct selection (CS).

Example 3. Continuing with Example 2, suppose we do not actually know the prob-

abilities for losing, drawing, or winning, and we want to determine which outcome

has the largest probability of occurrence on a single trial. The obvious selection rule

that we will adopt is to choose the event that occurs the most frequently during the

six trials, using randomization to break ties if they occur. Let Y 6 = (Y`, Yd, Yw) de-

note the number of occurrences of (lose, draw, win) in the six trials. The probability

that we correctly select the win event is given by:

Pr {the win event occurs the most often in the six trials}

= Pr {Yw > Y` and Yw > Yd}

+
1

2
Pr {Yw = Y` and Yw > Yd} +

1

2
Pr {Yw = Yd and Yw > Y`}

+
1

3
Pr {Yw = Y` = Yd}

= Pr{Y 6 = (0, 0, 6), (0, 1, 5), (1, 0, 5), (0, 2, 4), (2, 0, 4), (1, 1, 4), (1, 2, 3), (2, 1, 3)}

+
1

2
Pr{Y 6 = (3, 0, 3)} +

1

2
Pr{Y 6 = (0, 3, 3)} +

1

3
Pr{Y 6 = (2, 2, 2)}.

Table 1 lists the outcomes favorable to a CS of the win event, along with the

associated probabilities of these outcomes, incorporating randomization when ties

occur.

Hence, we see that the probability of correctly selecting the win event as the

most probable outcome, based on n = 6 trials, is 0.48828. This probability can

be increased by increasing the sample size n. In fact, Figure 1 plots the exact
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Table 1: Correct Selection Probabilities for Example 3

Outcome Contribution
(lose,draw,win) to Pr{CS in six trials}

(0,0,6) 0.00523
(0,1,5) 0.02512
(1,0,5) 0.01884
(0,2,4) 0.05024
(2,0,4) 0.02826
(1,1,4) 0.07535
(1,2,3) 0.12056
(2,1,3) 0.09042
(3,0,3) (1/2)(0.02261)
(0,3,3) (1/2)(0.05358)
(2,2,2) (1/3)(0.10851)

0.48828

probability of correct selection (Pr(CS)) for this example as we increase n from 1 to

100; we find that the Pr(CS) increases from about 0.4 to almost 0.85 as we do so.

¤
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Figure 1: The Pr(CS) for Example 3 as we increase n from 1 to 100

2.3 The Indifference-Zone Approach

We will study the performance characteristics of statistical procedures that are de-

vised to select the best category under a specified constraint on the probability of

correct selection. We limit consideration to procedures that guarantee the following

so-called indifference-zone probability requirement:

Pr(CS) ≥ P ? whenever p[k] ≥ θ?p[k−1]. (1)

Here, {θ?, P ?} (θ? > 1 and 1/k < P ? < 1) are constants specified by the exper-

imenter prior to the start of experimentation. The quantity P ? is obviously the

experimenter’s desired probability of correct selection under the indifference-zone

condition p[k] ≥ θ?p[k−1] where, θ? is the smallest ratio between the best and second-

best cell probabilities. How can this indifference-zone condition be interpreted? By

way of explanation, we make two fundamental definitions.

Definition 2. The preference zone is set of probability configurations Ω ≡ {p :
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p[k] ≥ θ?p[k−1]} for which we prefer to make a correct decision, i.e., that of selecting

the category associated with p[k]. The complement Ωc of the preference zone is called

the indifference zone. This is the region of p-space for which we are not necessarily

concerned with making a correct selection.

Some additional motivation will supply the rationale behind the indifference or

preference zones.

Example 4. As a simple example, suppose that we are interested in determining

which of Coke, Pepsi, and Sprite is the most popular. Clearly, the underlying

probability configurations p1 = (0.49, 0.48, 0.03) and p2 = (0.50, 0.25, 0.25) give rise

to different interpretations. One could argue that in configuration p1, Coke and

Pepsi fare about the same (usually within the sampling error of most surveys); but

in configuration p2, Coke obviously dominates the situation. In fact, in the case

of p1, one could argue that we might be indifferent about declaring Coke or Pepsi

to be the most popular (since they are so close); but in configuration p2, we would

certainly prefer to correctly report that Coke is the most popular. ¤

Of course, in real life, we would not know the actual underlying configuration p.

So a good selection procedure might be designed to prefer to detect configurations

such as p2 in Example 4, yet not worry about (be indifferent about detecting)

configurations such as p1. Thus, in the spirit of the current discussion, the parameter

θ? can be interpreted as the smallest ratio between the best and second-best cell

probabilities, p[k]/p[k−1], that the experimenter deems as “worth detecting.” If θ? ≈
1, then we would prefer to detect small ratios between the best and second-best cell

probabilities, such as that given by configuration p1 in Example 4. On the other

hand, if θ? À 1, then we will only be concerned about detecting ‘large” ratios.

The choice of θ? is the responsibility of the experimenter, and may be determined

by budget and other practical considerations. Further, note that specification of

θ? ≈ 1 is much more demanding than specifying θ? À 1, since θ? ≈ 1 requires that

the procedure must be able to distinguish between category probabilities that are

comparatively close to each other. Thus, if one specifies θ? ≈ 1, we would expect to

take more observations, so as to guard against missing a correct selection when the

two best cell probabilities are close.

8



Remark 1. The task of choosing the two parameters {θ? P ?} is not onerous at

all, and certainly does not mitigate against using a selection procedure instead of

some kind of hypothesis test. In fact, a standard hypothesis test also requires

the specification of two parameters — the level of significance α and the Type II

error probability β — so the burden of specifying {θ?, P ?} is completely reasonable.

Indeed, selection procedures were originally regarded as an alternative approach

to traditional hypothesis testing — instead of asking the hypothesis test question

“are the cell probabilities of the multinomial distribution different?”, a selection

procedure asks the more-useful question “which cell probability is the largest?”

Finally, whether or not one advocates one methodology over the other, there are a

number of papers in the literature that combine the hypothesis testing and selection

methodologies — keeping both sides happy (see, for example, the standard reference

Hsu [13]). ¤

2.4 What to Look for in a Procedure

With n vector-observations X1,X2, . . . ,Xn in hand, we recall the running sums

yin ≡
∑n

j=1 xij, i = 1, 2, . . . , k, n = 1, 2, . . ., where the quantity yin can be inter-

preted as the number of times category i has been sampled after n observations

(stages) have been taken. We denote the ordered yin-values after n observations

have been taken by by y[1]n ≤ y[2]n ≤ · · · ≤ y[k]n, n = 1, 2, . . .. Typical multino-

mial selection procedures — described in the next section of this thesis and in the

cited references — will stop sampling when the largest counter y[k]n is “significantly

ahead” of the other yin’s, or when we hit a sampling budget bound, say at n = n0

observations.

In the next section, we give details on a number of indifference-zone multinomial

selection procedures from the literature, including the following. Procedure MBEM

is a single-stage procedure originally discussed in Bechhofer, Elmaghraby, and Morse

[2]. Bechhofer and Kulkarni [7] proposed a closed (bounded) sequential procedure

MBK that is a more-efficient implementation of procedure MBEM in terms of the

number of observations taken. Ramey and Alan [16] studied a closed sequential pro-

cedure MRA that is usually even more parsimonious than MBK. Procedure MBKS,

due to Bechhofer, Kiefer, and Sobel [6], is an open (unbounded) sequential procedure

9



related to the classical sequential probability ratio test. Bechhofer and Goldsman

[4, 5] proposed procedure MBG, a truncated (bounded) version of procedure MBKS,

which is somewhat more efficient than the former.

How exactly would one assess the performance of a particular multinomial selec-

tion procedure, or how would we compare the performances of any of the procedures?

First and foremost, any procedure must guarantee the indifference-zone probability

requirement (1) — in fact, all of the procedures studied herein do so (as proven

in the cited references). In addition to satisfying the probability requirement, a

procedure must be frugal with observations, especially when applied to realistic

configurations of the underlying unknown probability vector p. Two choices of p

that are of particular importance are:

1. The slippage configuration (SC) (often referred to as the least-favorable con-

figuration),

p1 = θ?p, p2 = p3 = · · · = pk = p,

where θ? > 1, i.e.,

p1 =
θ?

θ? + k − 1
, p2 = p3 = · · · = pk =

1

θ? + k − 1
.

2. The equal-probability configuration (EP), p1 = p2 = · · · = pk = 1/k.

For all of the procedures discussed in this thesis, it can be shown (see the cited

references) that Pr(CS) ≥ P ? for p = SC — which make sense since the SC is

in the preference zone Ω. Furthermore, the SC can be regarded as a worst-case

configuration for all p ∈ Ω in that this configuration minimizes Pr(CS|p) among all

p ∈ Ω (this is why the SC is also called the least favorable configuration in such

cases). Not only does the SC yield the lowest Pr(CS) among all p ∈ Ω, it also often

results in the highest expected number of observations, E(T |p) for p ∈ Ω.

When considering the EP configuration, there is no concept of a “correct selec-

tion,” since all of the cells have the same probability. However, in terms of sampling

requirements, the EP configuration can be regarded as a worst-case configuration

for all p — not just those falling in the preference zone.

For purposes of evaluating the performance of a particular multinomial procedure

10



(or for comparing the performances of competing multinomial procedures), the above

comments suggest that we ought to report operating characteristics such as the

achieved Pr(CS|SC), E[T |SC], and E[T |EP]. See, as an example, Tables 7–10 in the

Appendix.

We are finally ready to discuss a number of indifferent-zone multinomial selection

procedures.

11



3 Some Multinomial Selection Procedures

In this section, we will review several popular indifference-zone multinomial selection

procedures from the literature. In each case, we will describe the procedure’s setup

(i.e., what needs to be specified before running the procedure), its sampling rule

(i.e., how much sampling is conducted at any given stage of the procedure), its

stopping rule (i.e., how we decide when to stop sampling), and its terminal decision

rule (i.e., how we make our selection for the most probable cell once sampling has

terminated). The terminal decision rule typically chooses as best that cell that has

accumulated the most observations, using randomization in the rare case of ties.

Section 3.1 deals with the single-stage Bechhofer, Elmagrhraby, and Morse [2]

procedure, while Section 3.2 concerns a more-efficient, closed, sequential version

of the former, due to Bechhofer and Kulkarni [7]. Section 3.3 describes an even-

more-efficient, closed, sequential procedure from Ramey and Alam [16]. Section 3.4

gives an open, sequential procedure from Bechhofer, Kiefer, and Sobel [6], while

Section 3.5 discusses a closed version of the former, due to Bechhofer and Goldsman

[4, 5]. Section 3.6 compares the procedures based on the criteria of Pr(CS) and the

expected value of T .

3.1 Procedure MBEM

The first indifference-zone procedure in the literature, MBEM, was proposed by

Bechhofer, Elmagrhraby, and Morse (BEM) [2]; see also the sister article, Kesten

and Morse [14]. Procedure MBEM is a single-stage procedure, that is, a procedure

that takes all of its multinomial observations at the same time. The number of

observations nBEM is pre-determined before the experiment begins, and is chosen as

the minimum number of observations that will satisfy the probability requirement

(1) for the user-specified choices of P ? and θ?.

Setup: For given k, θ?, and P ?, use Tables 7–10 to select the sample size nBEM.

Sampling Rule: Take n = nBEM random multinomial observations Xj =

(X1j, X2j, . . . , Xkj), j = 1, 2, . . . , n, in single stage.

Terminal Decision Rule: For each category, calculate the sample sum
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yin =
∑n

j=1 xij, i = 1, 2, . . . , k. Select the category with largest sample sum. In the

case of a tie, randomize.

Example 5. Continuing our soft drink example, suppose we wish to determine

which of the k = 3 competitors Coke, Pepsi, and Sprite is the most popular. The

survey company will ask n individuals to state their preferred brand. The company

will declare the favorite brand as that corresponding to largest observed proportion

of positive responses. Suppose that the company wants the probability of correct

selection to be at least P ? = 0.90, whenever the ratio of largest to second largest true

(but unknown) proportions is at least θ? = 2.0. Referring to Table 7, we find that

nBEM = 29 individuals must be interviewed. If, after interviewing the 29 people, it

turns out that Coke = 20, Pepsi = 6, and Sprite = 3, we select Coke as the most

popular soda. On the other hand, if Coke = Pepsi = 13 and Sprite = 3, we flip a

coin to determine the winner between Coke and Pepsi. ¤

3.2 Procedure MBK

We now consider a more-efficient, sequential version of procedure MBEM. By way

of motivation, we return to the previous example.

Example 6. Consider the soda survey discussed in Example 5, where we have

k = 3 competitors, a desired Pr(CS) of P ? = 0.90, and an indifference parameter of

θ? = 2.0, so that procedure MBEM requires that we interview nBEM = 29 persons.

But what if, after having interviewed the 25th person, the situation is that y25 =

(14, 9, 2)? This tally indicates that Coke has a substantial lead over Pepsi with

only 4 observations left to be conducted — indeed, so substantial that it would not

be possible for Pepsi to catch up with Coke, even were Pepsi to garner all of the

remaining 4 observations. In other words, if y25 = (14, 9, 2), then Coke is guanrateed

to be chosen as the favorite product in the final analysis. In such a case, we could

allow procedure MBEM to terminate sampling prematurely without affecting the

procedure’s ultimate selection of Coke. ¤

With the scenario of Example 6 in mind, Bechhofer and Kulkarni (B-K) [7]

devised a sequential procedure for the selecting the most probable cell that is more
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efficient than procedure MBEM (which always requires a fixed sample size nBEM).

The B-K sequential procedure MBK employs curtailment and achieves the same

probability of correct selection as procedure MBEM does, while, at the same time,

potentially requiring lower number of observations over procedure MBEM. In plain

English, procedure MBK stops sampling when the category currently in the lead is

guaranteed, at worst, a tie with the category currently in second place — even if all

of the remaining observations were to be awarded to the category in second place.

In fact, B-K show that, for any probability configuration p,

Pr(CS using MBK|p) = Pr(CS using MBEM|p)

and

E(T using MBK|p) ≤ E(T using MBEM|p) = nBEM,

where T denotes the (random) number of observations taken until the point that

the procedure terminates sampling.

Setup: For given k, θ?, and P ∗, use Tables 7–10 to select the (maximum possible)

sample size nBEM.

Sampling Rule: At the mth stage of sampling, m = 1, 2, . . ., take the multinomial

observation Xm = (X1m, X2m . . . , Xkm).

Stopping Rule: Calculate the sample sums yim, i = 1, 2, . . . , k, through stage m.

Stop sampling at first stage m where there exists a category i such that

yim ≥ yjm + nBEM − m for all j 6= i.

Terminal Decision Rule: Let the random variable T represent the value of

m at termination. If T < nBEM, then the procedure terminated with a single

category having the largest tally y[k]T ; and we select this category as the winner. If

T = nBEM, then we may have multiple categories tied for the lead; so we randomize,

if necessary, to pick the winner.

Thus, curtailment of the procedure takes place when one of the categories has
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sufficiently more successes than all of the other categories; and even if the category

in second place were to experience a “reversal of fortune” with all of the remaining

outcomes occurring from that category, it would still be unable to defeat the current

leader (at best, it could only tie the leader). The following examples illustrate how

the procedures runs under various sampling scenarios.

Example 7. Continue under the setup of Example 5, where k = 3, P ? = 0.90,

θ? = 2.0, and nBEM = 29. Suppose we have the following sequence of observations.

m x1m x2m x3m y1m y2m y3m

...
...

...
...

...
...

...

21 0 1 0 12 6 3

22 0 0 1 12 6 4

23 1 0 0 13 6 4

We stop sampling at observation T = 23 and select category 1 as the best because

y1m = 13 > y2m + nBEM − m = 6 + 29 − 23

and

y1m = 13 > y3m + nBEM − m = 4 + 29 − 23.

Hence, both categories 2 and 3 have no chance to win, even if they are preferred in

all of the remaining interviews. ¤

Example 8. This is a slight permutation of Example 7. Suppose we have the

following sequence of observations.

m x1m x2m x3m y1m y2m y3m

...
...

...
...

...
...

...

21 0 1 0 12 6 3

22 0 0 1 12 7 3

23 1 0 0 13 7 3

Now, we stop sampling at observation T = 23 and select category 1 because

y1m = 13 ≥ y2m + nBEM − m = 7 + 29 − 23
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and

y1m = 13 > 3 + 29 − 23.

In this case, category 2 can at best only tie category 1, while category 3 have no

chance even to tie. ¤

Example 9. Assume that in yet another favorite drink survey we come up with the

following results.

m x1m x2m x3m y1m y2m y3m

...
...

...
...

...
...

...

27 0 1 0 10 11 6

28 1 0 0 11 11 6

29 0 0 1 11 11 7

At the end of the survey, since y1,29 = y2,29 = 11, we randomize among the two

categories using probability 1/2 for each, and then select the category chosen by the

random device as the winner. ¤

Remark 2. Note that procedure MBK employs the slightly non-intuitive termina-

tion criterion of stopping when the cell currently in first place can at worst end up

in a tie (instead of being guaranteed a win) were sampling to continue to the max-

imum possible number of observations nBEM. Bechhofer and Kulkarni [7] proved

that either termination criterion (stopping when at worst a tie is guaranteed or

when at worst a win is guaranteed) gives precisely the same Pr(CS) as the original

single-stage procedure MBEM. Since stopping when at worst a tie can be achieved

is more parsimonious than stopping when a win is guaranteed, B-K adopted the

former approach. ¤

We make some brief comments on the entries in Tables 7–10. First of all, we

obtained the values of nBEM for the procedure MBEM from Table 8.1 in Bechhofer,

Santner, and Goldsman [8]. In order to generate the entries for procedure MBK in

Tables 7–10, we used simulations programmed in Matlab; for each table entry, we

ran 40000 independent replications of the simulation. We were also able to calculate

many of the table values analytically. (More details on our exact calculations as well

as the Monte Carlo implementation will be given in Section 4.) In our simulations,
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the required inputs are the number of competing categories (k), the indifference-

zone ration of the largest to second largest probabilities (θ?), the desired probability

of correct selection (P ?), and original single-stage sample size (nBEM).

When we analyze the entries in Tables 7–10, we see that the attained Pr(CS|SC)

values all meet or exceed the nominal required value P ?. In addition, the expected

numbers of observations required in the SC, E[T |SC], are typically about 10% less

than the single-stage procedure’s corresponding truncation numbers nBEM. Hence,

we can conclude that the performance of procedure MBK is superior to that of

procedure MBEM. ¤

3.3 Procedure MRA

Ramey and Alam (R-A) [16] proposed a closed, sequential procedure MRA. In this

procedure, the observations are taken one-at-a-time until either the count of any

category is equal to N , or the difference between the count of the leading category

and that of the next largest is r. The procedure is closed since the maximum

possible number of observations that can be taken is k(N − 1) + 1 — correspond-

ing to a permutation of the sample-sum vector yk(N−1)+1 = (k, k−1, k−1, . . . , k−1).

Setup: For given k, θ?, and P ∗, use Tables 11 and 12 to select the termination pair

(r,N).

Sampling Rule: At the mth stage of sampling, m = 1, 2, . . ., take the multinomial

observation Xm = (X1m, X2m . . . , Xkm).

Stopping Rule: Calculate the sample sums yim, i = 1, 2, . . . , k, through stage m,

and then order them, y[1]m ≤ y[2]m ≤ · · · ≤ y[k]m. Stop sampling at first stage m

where there exists a category such that

y[k]m = N

or

y[k]m = y[k−1]m + r.

Terminal Decision Rule: At the stopping point T , the category having the

largest count y[k]T is selected as best (no randomization ever being necessary).
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The values of (r,N) are dependent on k, θ?, and P ?, and are chosen in such a

way as to satisfy the probability requirement (1), while at the same time minimizing

E[T |SC]. The determination of the optimal (r,N) values is typically carried out by

what amounts to a complete enumeration of a reasonable set of possible (r,N)

values. Ramey and Alam provide (r,N) tables for a variety of choices of k, θ?, P ?;

but see Bechhofer and Goldsman [3] for some corrections to their tables. Our Tables

11 and 12 extend the range of applicable table values over those given in [3]. For

more details on how we actually carry out the calculations, see the Monte Carlo and

exact methodologies outlined in Sections 4–6 of this thesis, which can be used to

determine appropriate (r,N) values.

Example 10. Consider the soda survey discussed in Example 5, where we have

k = 3 competitors, a desired Pr(CS) of P ? = 0.90, and an indifference parameter

of θ? = 2.0, so that, by Table 11, procedure MRA terminates at the pair (r,N) =

(4, 15). Thus, the procedure terminates as soon as one of the products receives 15

votes, or as soon as one of the products receives 4 more votes than the other two

competitors.

m x1m x2m x3m y1m y2m y3m

...
...

...
...

...
...

...

15 1 0 0 2 8 5

16 1 0 0 3 8 5

17 0 1 0 3 9 5

Since

y2,17 ≥ y1,17 + r = y1,17 + 4 and y2,17 ≥ y3,17 + r = y3,17 + 4,

we stop at observation T = 17 and select cell 2 as the most probable. ¤

Example 11. Under the same set-up as Example 10, with (r,N) = (4, 15), suppose

we have the following sequence of observations.
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m x1m x2m x3m y1m y2m y3m

...
...

...
...

...
...

...

32 1 0 0 13 14 8

33 0 0 1 13 14 9

34 0 1 0 13 15 9

Since y2,34 = N = 15, we stop at observation T = 34 and select cell 2 as the most

probable. ¤

3.4 Procedure MBKS

Bechhofer, Kiefer, and Sobel MBKS[6] proposed an open, sequential sampling

procedure MBKS for selecting the multinomial category having the highest cell

probability. Their procedure is related to a classical Wald-style sequential proba-

bility ratio test [18]. Since the procedure is open, it can continue sampling for an

arbitrarily long time. In fact, the stopping rule depends only on the differences

between the total numbers of wins (and not on a pre-determined truncation

number). The procedure runs as follows.

Setup: Determine the k, θ?, and P ? values.

Sampling Rule: At the mth stage of sampling, m = 1, 2, . . ., take the multinomial

observation Xm = (X1m, . . . , Xkm).

Stopping Rule: Calculate the sample sums yim, i = 1, 2, . . . , k, through stage m,

and then order them, y[1]m ≤ y[2]m ≤ · · · ≤ y[k]m. Also calculate

zm ≡
k−1
∑

i=1

(1/θ?)y[k]m−y[i]m .

Stop sampling at first stage m where there exists a category such that

zm ≤ 1 − P ?

P ? .

Terminal Decision Rule: At the stopping point T , select the event associated

with y[k]T . (Ties will not be possible under the stopping rule in play here.)
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Example 12. Let us return to our soft drink example, for which we had k = 3

competitors, a desired Pr(CS) of P ? = 0.90, and an indifference parameter of θ? =

2.0. Consider the data realization

m x1m x2m x3m y1m y2m y3m

...
...

...
...

...
...

...

15 1 0 0 8 2 5

16 0 1 0 8 3 5

17 1 0 0 9 3 5

We stop sampling at stage T = 17 and select category 1 as the most probable since

z17 = (1/2)6 + (1/2)4 = 5/64 ≤ (1 − P ?)/P ? = 1/9. ¤

3.5 Procedure MBG

While studying procedure MBKS, Bechhofer and Goldsman (B-G) [4, 5] found

that the Pr(CS) achieved in the least favorable configuration always exceeded

the probability requirement (1)’s lower bound of P ?, sometimes by a substantial

amount. In an effort to reduce the expected sample size, while still adhering to

the probability requirement, B-G incorporate a truncation point (i.e., a limit on

the total number of observations that can be taken) in their procedure MBG. The

truncation point nBG is chosen as the minimum limit such that the probability

requirement is satisfied; thus, procedure MBG trades some of the wasteful, extra

Pr(CS) from procedure MBKS for a reduction in the value of E[T ].

Setup: For given k, θ?, and P ?, find the truncation number nBG from Tables 13

and 14.

Sampling Rule: At the mth stage of sampling, m = 1, 2, . . ., take the multinomial

observation Xm = (X1m, . . . , Xkm).

Stopping Rule: Calculate the sample sums yim, i = 1, 2, . . . , k, through stage m,

and then order them, y[1]m ≤ y[2]m ≤ · · · ≤ y[k]m. Also calculate

zm ≡
k−1
∑

i=1

(1/θ?)y[k]m−y[i]m .
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Stop sampling at first stage m where there exists a category such that either

zm ≤ 1 − P ?

P ? (2)

or

m = nBG (3)

or

y[k]m ≥ y[k−1]m + nBG − m. (4)

Terminal Decision Rule: At the stopping point T , select the event associated

with y[k]T . Break ties with randomization. (Ties will not be possible if we happen

to stop at time T < nBG.)

The first stopping criterion (2) is the stopping rule from the open procedure

MBKS; the second criterion (3) is simply the truncation rule; and the third (4) is a

curtailment rule in the spirit of procedure MBK. Note that (3) is redundant in light

of (4), but we retain it for ease of exposition. Some examples will serve to illustrate

this procedure’s multiple stopping criteria.

Example 13. Going back to our soft drink example with k = 3 three competitors,

P ? = 0.9, and θ? = 2.0, Table 13 shows that we can use a truncation number of a

survey for nBG = 34 people. Consider the data

m x1m x2m x3m y1m y2m y3m

...
...

...
...

...
...

...

15 1 0 0 8 2 5

16 0 1 0 8 3 5

17 1 0 0 9 3 5

As in Example 12, we stop sampling by the first criterion (2) and select category 1.

¤

Example 14. Under the same setup as in Example 13, with truncation number

nBG = 34, consider the following sequence of observations.
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m x1m x2m x3m y1m y2m y3m

...
...

...
...

...
...

...

32 0 0 1 11 9 12

33 1 0 0 12 9 12

34 1 0 0 13 9 12

We stop sampling by the second criterion (3) and select category 1 because m =

nBG = 34 observations have been taken. ¤

Example 15. Yet again under the setup of Example 13, with nBG = 34, consider

the following sequence.

m x1m x2m x3m y1m y2m y3m

...
...

...
...

...
...

...

32 1 0 0 11 12 9

33 1 0 0 12 12 9

34 0 0 1 12 12 10

We stop sampling by the second criterion (3) because m = nBG = 34 observations

have been taken. Since we have a tie between y1,34 and y2,34, we randomly select

between categories 1 and 2. ¤

Example 16. Consider one last visit to the soft drink survey of Example 13, still

using nBG = 34. Suppose we observe

m x1m x2m x3m y1m y2m y3m

...
...

...
...

...
...

...

28 0 1 0 11 8 9

29 1 0 0 12 8 9

30 1 0 0 13 8 9

As categories 2 and 3 can do no better than tie category 1 in the nBG−m = 34−30 =

4 potential remaining observations, we stop by the third criterion (4), and we select

category 1. ¤
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3.6 Comparison of Procedures

All of the procedures that we have looked at in this section are designed to sat-

isfy the probability requirement (1). Generally speaking, the sequential procedures

MBK, MRA, MBKS, and MBG tend to be more parsimonious with observations

than the single-stage procedure MBEM. In fact, we have already seen that, for any

p-configuration, procedure MBK achieves the same Pr(CS) as procedure MBEM, yet

is also more efficient in terms of E[T ] than is procedure MBEM. Further, although

both procedures MBKS and MBG satisfy (1), procedure MBG is — by definition —

the more efficient of the two. So with procedures MBEM and MBKS out of the way,

we shall only compare the sampling efficiency of procedures MBK, MRA, and MBG

in the sequel.

In addition, a comparison of Tables 7 and 8 (for procedure MBK), Tables 11 and

12 (for procedure MRA), and Tables 13 and 14 (for procedure MBG) shows that

procedure MBK only rarely defeats procedures MRA and MBG in terms of E[T ] —

and then only for the occasional p = EP entry. So, for all intents and purposes, we

only need to continue with our consideration of procedures MRA and MBG.

When we compare the performances of procedures MRA and MBG, we see that

there is no uniform dominance of one of the procedures over the other — for some

choices of k, P ?, θ? and p, procedure MRA gives smaller E[T |p] values than does

MRA; in some cases, vice versa.

When we look in our simulation results we can compare MRAand MBGin 120

different k, P ?, θ? combinations: (for k = 2, 3, 4, 5; P ? = 0.75, 0.90, 0.95; and

θ? = 1.2, 1.4, . . . , 3.0), MBGperforms better in 76 cases, MRAperforms better in

27 cases and they have the same performance within ±0.01 values in 17 cases.

The performances of the two procedures have the closest values for k = 2, where

we have all the 17 ties. As k increases we see that MBGperforms better than

MRA, for k = 3, 4, 5 the MBGprocedure performs better in 18, 22, and 25 (P ?, θ?

combinations) cases respectively. As θ? increases, for the same k and P ? combina-

tion, we observe the MBGprocedure performs better than the MRAprocedure (the

MBGperforms better for all combinations of θ? = 1.2 and θ? = 1.4, except for k = 3,

P ? = 0.75 combination).

23



4 Monte Carlo Estimation of Performance Crite-

ria

To generate the tables at the Appendix and, for testing the procedures we have

described in the previous section, we have used Monte Carlo simulations. To obtain

Monte Carlo simulation results, we have used Matlab. In this section we will briefly

explain how the simulation results were obtained. In all simulations the inputs are:

number of competing systems (k), the ratio of largest to second larger proportions

(θ?), desired probability of correct selection(P ?), and truncation number (n0).

In the initialization part, we define the required intervals for each category, for

being able to match generated random variable with the corresponding category.

For example, lets say we have three categories (k = 3) and (θ? = 2). The required

probability interval for each category are, (0,0.5], for category one, (0.5,0.75] for

category two, and (0.75,1.0] for category three. The initialization procedure is the

same for all procedures.

After the initialization, we began “sampling”; we generate standard uniform

random number and look for the corresponding category for that number. For

corresponding category i we increase the yi value by 1. We continue this procedure

till one of the stopping criteria is achieved. At the termination part we determine

which category is the winner of that sampling procedure, and how many samples we

had before the process terminates. In our simulations we have done these procedure

40000 times. After each replication we store which category is the winner, and how

many sample we had. We count how many times our desired category won (say Wi).

The ratio of Wi

40000
is the probability of correct selection value of the simulation. We

also take the average of sampling numbers at the termination, to obtain expected

number of observations E(n).
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5 Exact Results via Random Walk Methods

For the MBKS procedure (untruncated version of MBG) which is an open sequential

procedure, we can calculate the performance characteristics by using random walk

arguments. The procedure is said to be open since it is not possible, before the

experiment starts, to state an upper bound on the number of observations required

to terminate sampling. In this procedure with k = 2 the observations are taken one

at a time until

(1/θ?)y[2]m−y[1]m ≤
(

1 − P ?

P ?

)

is equivalent to

|y1m − y2m| ≥ `n

(

P ?

1 − P ?

)

/`n(θ?).

Hence we are only interested in the difference between the total number of wins

for system i after m observations. Let

R =

⌈

`n

(

P ?

1 − P ?

)

/`n(θ?)

⌉

,

where d·e is the “ceiling” (or round-up) function, so that we can model the procedure

as a Gambler’s Ruin problem, at which the gambler starts at R and the game ends

when he hits 0 or 2R. Hence, it is a Markov chain with transition probabilities

P0,0 = P2R,2R = 1

Pi,i+1 = p1 = 1 − Pi,i−1, i = 0, 1, . . . , 2R − 1

The Pr(CS)can also be defined as the probability of starting from i, the gambler’s

fortune will eventually reach 2R (Pi). By conditioning on the initial selection we

obtain

Pi = p1Pi+1 + p2Pi−1, i = 1, 2, . . . , 2R − 1

since p1 + p2 = 1,

p1Pi + p2Pi = p1Pi+1 + p2Pi−1

or,

Pi+1 − Pi = p2

p1
(Pi − Pi−1), i = 1, 2, . . . , 2R − 1

by using P0 = 0 we obtain that,
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Pi =







1−(p2/p1)i

1−(p2/p1)2R if p1 6= p2

i
2R

if p1 = p2

.

For p1 > p2 (so that category 1 is the better),

Pr(CS) =
1 − (p2/p1)

R

1 − (p2/p1)2R
= [(p1/p2)

R + 1]−1.

Thus, for instance, if P1 = 0.6 and P2 = 0.4 then the probability of correct

selection is 0.9997 when 2R = 10 In this case the expected value for the number of

observations required can be calculated by:

E[N ] =







R2 if p1 = p2

R
p1−p2

− 2R
p1−p2

· 1
1+(p1/p2)R if p1 6= p2

.

We can also show that the probability of stopping at observation n is:

[

p
n−d

2
1 p

n+d

2
2 + p

n+d

2
1 p

n−d

2
2

]

× 2n−1

d

2d−1
∑

k=1

cosn−1(πk/2d) sin(πk/2d) sin(πk/2).

For different θ values we can plot the the probability of stopping at observation

n. Figure 2 gives such plots for θ values 3, 2, 1.6, and 1.2.
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Figure 2: The Probability of Stopping at n
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6 Exact Calculation Methodology

In this section, we will formulate an iterative method for calculating the perfor-

mance characteristics of various sequential procedures for selecting the most prob-

able multinomial cell. Such performance characteristics include the exact probabil-

ity of obtaining a correct selection and the exact expected number of observations

before procedure termination, all under arbitrary configurations of the underlying

probabilities.

We now describe a methodology to calculate exactly various performance char-

acteristics of generic multinomial selection procedures — namely, the exact proba-

bility of obtaining a correct selection and the exact expected number of observations

before procedure termination, all under arbitrary configurations of the underlying

probabilities.

Let us denote by T the number of vector-observations that a particular procedure

P requires before termination. The quantity T may be fixed, as in the Bechhofer,

Elmaghraby, and Morse [2] (BEM) procedure, or — more likely — a random variable,

as in most other procedures of interest. We will give algorithms to calculate the

exact values of Pr(CS|p) and E(T |p) for a variety of procedures P under arbitrary

underlying probability vectors p.

To start things off, consider the running counts y = (y1m, y2m, . . . , ykm) after m

stages of sampling. We define the notation #(`1, `2, . . . , `k) to be the number of

distinct paths of the sampling process {ym : m = 1, 2, . . .} that lead to procedure

termination exactly when ym = `, where ` ≡ (`1, `2, . . . , `k).

Example 17. Consider the BEM procedure with k categories, and suppose that

we are directed to take T = n vector observations. Then it is obvious that #` =
(

n
`1,`2...,`k

)

, the usual multinomial coefficient. /

Similar calculations for sequential procedures take a little more thought, though

we begin with a trivial example.

Example 18. Consider the Ramey and Alam [16] (R-A) procedure with k = 2,

r = 2, and N = 3, so that the procedure terminates sampling when either y[k]m −
y[k−1]m = r or y[k]m = N . Then #(2, 0) = 1 since only one path of the sampling
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process leads to termination exactly when y2 = (2, 0), namely, the path y1 =

(1, 0) → y2 = (2, 0). /

It is obvious that the number of paths such that the procedure terminates at `

is equal to the total number of potential paths to ` minus the number of paths to `

that terminate en route. In other words,

#` =

( ∑k
i=1 `i

`1, `2 . . . , `k

)

− [ number of paths to ` that terminate en route ].

Example 19. Suppose we apply the R-A procedure to the case in which k = 2,

r = 2, and N = 3. Further suppose that the want to calculate #(3, 1). Noting that

the R-A procedure terminates (en route to y4 = (3, 1)) if y2 = (2, 0), we have

#(3, 1) =

(

4

1

)

− [ number of paths from (2,0) to (3,1) ]#(2, 0) = 4 −
(

2

1

)

= 2. /

Generalizing the above example by giving an explicit expression for the number

of ways to terminate enroute, it is easy to see that

#` =

( ∑k
i=1 `i

`1, `2 . . . , `k

)

−
`1

∑

j1=0

`2
∑

j2=0

· · ·
`k

∑

jk=0

( ∑k
i=1(`i − ji)

`1 − j1, `2 − j2, . . . , `k − jk

)

#(j1, j2, . . . , jk).

(5)

Remark 3. By symmetry,

#` = #(`1, `2, . . . , `k) = #(any permutation of `1, `2, . . . , `k).

Hence, we need only explicitly calculate values of #` = #(j1, j2, . . . , jk) such that

j1 ≥ j2 ≥ · · · ≥ jk, since all other values will follow by symmetry. /

Definition 3. The only nonzero #`’s are those for which the procedure in question

terminates. In fact, for a given procedure, we introduce the termination set (or

stopping set) T ≡ {` : the procedure terminates} = {` : #` > 0}.

We are now in a position to present a more-interesting example.

Example 20. Consider the R-A procedure using some choice of termination pa-

rameters (r,N). In this case, we need only calculate the #`’s for the following
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configurations of `.

#(j2 + r, j2, j3, . . . , jk), 0 ≤ j2 ≤ N − r − 1, j2 ≥ j3 ≥ · · · ≥ k (6)

and

#(N, j2, j3, . . . , jk), N − r ≤ j2 ≤ N − 1, j2 ≥ j3 ≥ · · · ≥ k. (7)

Any #` that is not a permutation of (6) or (7) must equal 0, because it is impossible

for the R-A procedure to terminate at such #` values. /

Remark 4. It will facilitate matters if we calculate the #`’s in the following iterative

manner.

1. Initialize all #`’s equal to zero.

2. Using Equation (5), calculate the next (left-lexicographically) #` correspond-

ing to a termination configuration. By the above Remarks, we obtain at this

step (with no further calculations) all of the #`’s that are permutations of the

current case.

3. If there are no other configurations left to check, stop. Otherwise, go to Step

2. /

Remark 5. The left-lexicographic order of calculation is necessary since the com-

putation of #` involves all of the previous #`’s (as well as their permutations). If

we store all of the values of these previous #`’s as they are calculated, we avoid

recursive re-computation in Equation (5).

Example 21. Consider the Bechhofer and Kulkarni [7] (B-K) curtailed procedure

with k = 3 and upper bound B = 5. Recall that B-K samples up to B vector-

observations, but terminates if the category currently in first place can do no worse

than tie. Then the algorithm proceeds as follows.

1. Initialize all #(`1, `2, `3)’s to 0.

2. Using Equation (5), set #(2, 1, 1) =
(

4
2,1,1

)

− 0 = 12. Note that symmetry

implies that #(1, 2, 1) = #(1, 1, 2) = 12.
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2. Again using Equation (5), set #(2, 2, 1) =
(

5
2,2,1

)

−1 ·#(2, 1, 1)−1 ·#(1, 2, 1) =

30 − 12 − 12 = 6. By symmetry, we have #(2, 1, 2) = #(1, 2, 2) = 6.

2. By (5), set #(3, 0, 0) = 1. Thus, #(0, 3, 0) = #(0, 0, 3) = 1.

2. By (5), set #(3, 1, 0) =
(

4
3,1,0

)

−1·#(3, 0, 0) = 3. Thus, #(0, 1, 3) = #(0, 3, 1) =

#(1, 0, 3) = #(1, 3, 0) = #(3, 0, 1) = 3.

2. By (5), set #(3, 2, 0) =
(

5
3,2,0

)

− 1 · #(3, 0, 0) − 1 · #(3, 1, 0) = 6. Thus,

#(0, 2, 3) = #(0, 3, 2) = #(2, 0, 3) = #(2, 3, 0) = #(3, 0, 2) = 6.

3. End, since there are no more ways to stop. /

The only (small) difficulty lies in determining which `-configurations correspond

to stopping configurations ` ∈ T . A more-substantive example may help to explain.

Example 22. Consider the R-A procedure with arbitrary k, r,N . All terminating

configurations ` ∈ T are of (or are permutations of) the following forms.

(j2 + r, j2, j3, . . . , jk), 0 ≤ j2 ≤ N − r − 1, j2 ≥ j3 ≥ · · · ≥ jk (8)

and

(N, j2, j3, . . . , jk), N − r ≤ j2 ≤ N − 1, j2 ≥ j3 ≥ · · · ≥ jk. (9)

Thus, in the case of R-A, we would need to calculate the following quantities (as

well as all of their permutations with no additional effort).

#(j + r, j, 0, . . . , 0)

#(j + r, j, 1, 0, . . . , 0)

#(j + r, j, 1, 1, . . . , 0)
...

#(j + r, j, 1, 1, . . . , 1)

#(j + r, j, 2, . . . , 0)
...

#(j + r + 1, j + 1, 0, . . . , 0)
...

#(N − 1, N − r − 1, . . . , N − r − 1)







































































































#`’s of the form in (8)
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#(N,N − r, 0, . . . , 0)

#(N,N − r, 1, 0, . . . , 0)
...

#(N,N − 1, N − 1, . . . , N − 1)































#`’s of the form in (9)

/

Example 23. As an example within Example 22, consider the case k = 3, r = 2,

N = 4.

#(2,0,0) = 1

#(3,1,0) = 2

#(3,1,1) = 10



















#`’s of the form in (8)

#(4,2,0) = 4

#(4,2,1) = 28

#(4,2,2) = 123

#(4,3,0) = 8

#(4,3,1) = 64

#(4,3,2) = 320

#(4,3,3) = 960



































































#`’s of the form in (9)

/

We are now in the position to calculate the probability that a correct selection

takes place. We will assume, without loss of generality, that the most-probable

category is category 1. Therefore, a CS takes place if, at sample termination time

T ,

1. Category 1 has the more wins than any other category (i.e., y1T = y[k]T >

y[k−1]T ), or

2. If category 1 is tied with other categories for the most wins, we randomize

among these contenders and happen to select category 1 (for example, if y1T =

y[k]T = y[k−1]T = · · · = y[k−s+1]T > y[k−s]T , then category 1 is selected with

probability 1/s).

Henceforth, let r(`) denote the randomization constant associated with the

Pr(CS) if we were to stop sampling at state `. In other words, if `[1] ≤ `[2] ≤ · · · ≤ `[k]
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denote the ordered `i’s, and if we again assume without loss of generality that cat-

egory 1 is the most probable, then

r(`) ≡







0 if `1 < `[k]

1/s if `1 = `[k] = `[k−1] = · · · = `[k−s+1] > `[k−s]

.

In addition, if the true vector of underlying probabilities is p, then for any procedure,

we have

Pr(CS|p) =
∞

∑

`1=0

∞
∑

`2=0

· · ·
∞

∑

`k=0

#` r(`)
k

∏

i=1

p`i

i =
∑

`∈T

#` r(`)
k

∏

i=1

p`i

i , (10)

where the term #` r(`)
∏k

i=1 p`i

i is simply the probability that the procedure will

terminate at configuration `, scaled by the randomization constant r(`). Further,

the expected number of vector-observations until procedure termination is

E(T |p) =
∞

∑

`1=0

∞
∑

`2=0

· · ·
∞

∑

`k=0

#` s(`)
k

∏

i=1

p`i

i =
∑

`∈T

#` s(`)
k

∏

i=1

p`i

i , (11)

where s(`) ≡
∑k

i=1 `i and where the term #` s(`)
∏k

i=1 p`i

i represents each `’s con-

tribution to the expected value. Note that in the cases of both Equations (10) and

(11), we only need to sum over those values of ` ∈ T since #` = 0 for all ` /∈ T .

Example 24. Consider the B-K curtailed procedure with k = 3 and upper bound

B = 5. The first three columns of Table 2 give all of the possible termination

points ` (i.e., all ` ∈ T ), along with their associated #` and r(`) values. Column

4 of Table 2 gives each `’s contribution #` r(`)
∏k

i=1 p`i

i to the overall Pr(CS|p) for

any underlying probability configuration p. Column 5 of the table gives each `’s

contribution #` s(`)
∏k

i=1 p`i

i to the overall E(T |p) for any underlying probability

configuration p.

At this point, we can study the behavior of a procedure for certain probability

configurations p of interest.

In the case of the SC, Equations (10) and (11) simplify to

Pr(CS|p = SC) =
∑

`∈T

#` r(`)(θ?)`1ps(`) (12)
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Table 2: Performance characteristics for Example 24

contribution contribution
` #` r(`) to Pr(CS|p) to E(T |p)

(1, 1, 2) 12 0 0 48p1p2p
2
3

(1, 2, 1) 12 0 0 48p1p
2
2p3

(2, 1, 1) 12 1 12p2
1p2p3 48p2

1p2p3

(1, 2, 2) 6 0 0 30p1p
2
2p

2
3

(2, 1, 2) 6 1/2 3p2
1p2p

2
3 30p2

1p2p
2
3

(2, 2, 1) 6 1/2 3p2
1p

2
2p3 30p2

1p
2
2p3

(0, 0, 3) 1 0 0 3p2
3

(0, 3, 0) 1 0 0 3p3
2

(3, 0, 0) 1 1 p3
1 3p3

1

(0, 1, 3) 3 0 0 12p2p
3
3

(0, 3, 1) 3 0 0 12p3
2p3

(1, 0, 3) 3 0 0 12p1p
3
3

(1, 3, 0) 3 0 0 12p1p
3
2

(3, 0, 1) 3 1 3p3
1p3 12p3

1p3

(3, 1, 0) 3 1 3p3
1p2 12p3

1p2

(0, 2, 3) 6 0 0 30p2
2p

3
3

(0, 3, 2) 6 0 0 30p3
2p

2
3

(2, 0, 3) 6 0 0 30p2
1p

3
3

(2, 3, 0) 6 0 0 30p2
1p

3
2

(3, 0, 2) 6 1 6p3
1p

2
3 30p3

1p
2
3

(3, 2, 0) 6 1 6p3
1p

2
2 30p3

1p
3
2
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and

E(T |p = SC) =
∑

`∈T

#` s(`)(θ?)`1ps(`). (13)

In addition, in the case of the EP, we have

Pr(CS|p = EP) = 1/k (14)

and

E(T |p = EP) =
∑

`∈T

#` s(`)(1/k)s(`). (15)

Example 25. Again consider the B-K curtailed procedure with k = 3 and upper

bound B = 5 from Example 24. The first three columns of Table 3 give all of the

possible termination points `, along with their associated #` and r(`) values. Col-

umn 4 of Table 3 gives each `’s contribution #` r(`)
∏k

i=1 p`i

i to the overall Pr(CS|p)

for any underlying probability configuration p. Column 5 of the table gives each `’s

contribution #` s(`)
∏k

i=1 p`i

i to the overall E(T |p) for any underlying probability

configuration p. Note that, if we add up all the E(T |p = EP) expected values, we

get 37/9.

7 Extensions:Multivariate Normal

Up to this point we have used i.i.d. observations for simulating the multinomial

procedures, but it is also possible that the simulator may induce positive correlation

among different competing simulated systems. In some cases, the simple technique

of common random numbers can be used. In other cases, more complex methods

can also be implemented. The reason we use correlation is, as correlation increases

among populations, it becomes easier for the experimenter to distinguish which of

the populations is the “best”.

In the previous selection procedures we used, it is obvious that, an increase in θ?

results in the distinction of the best multinomial system. In the following example

we illustrate how positive correlation induction yields increased θ?.

Example 26. Suppose that k = 2, and Xi’s are normally distributed with unknown

mean µi and known common variance σ2. If one observation is larger that another,
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Table 3: Performance characteristics for Example 25

contribution to contribution to contribution to
` #` r(`) Pr(CS|p = SC) E(T |p = SC) E(T |p = EP)

(1, 1, 2) 12 0 0 48(θ?)1p4 48/81

(1, 2, 1) 12 0 0 48(θ?)1p4 48/81

(2, 1, 1) 12 1 12(θ?)2p4 48(θ?)2p4 48/81

(1, 2, 2) 6 0 0 30(θ?)1p5 30/243

(2, 1, 2) 6 1/2 3(θ?)2p5 30(θ?)2p5 30/243

(2, 2, 1) 6 1/2 3(θ?)2p5 30(θ?)2p5 30/243

(0, 0, 3) 1 0 0 3p3 3/27

(0, 3, 0) 1 0 0 3p3 3/27

(3, 0, 0) 1 1 (θ?)3p3 3(θ?)3p3 3/27

(0, 1, 3) 3 0 0 12p4 12/81

(0, 3, 1) 3 0 0 12p4 12/81

(1, 0, 3) 3 0 0 12(θ?)1p4 12/81

(1, 3, 0) 3 0 0 12(θ?)1p4 12/81

(3, 0, 1) 3 1 3(θ?)3p4 12(θ?)3p4 12/81

(3, 1, 0) 3 1 3(θ?)3p4 12(θ?)3p4 12/81

(0, 2, 3) 6 0 0 30p5 30/243

(0, 3, 2) 6 0 0 30p5 30/243

(2, 0, 3) 6 0 0 30(θ?)2p5 30/243

(2, 3, 0) 6 0 0 30(θ?)2p5 30/243

(3, 0, 2) 6 1 6(θ?)3p5 30(θ?)3p5 30/243

(3, 2, 0) 6 1 6(θ?)3p5 30(θ?)3p5 30/243
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the larger one is taken to be more desirable. Define p1 ≡ P (X1 > X2) and p2 ≡ 1−p1.

Suppose µ1 > µ2; so we can let p1 ≡ θp and p2 ≡ p, where θ = 1−p
p

> 1. Also let,

ρ ≡ Corr(X1, X2) ≥ 0.

Then,

p1 = P (X1 > X2) = P (X1 − X2 > 0)

= P{[X1 − X2 − (µ1 − µ2)]/ω > −(µ1 − µ2)]/ω},

where ω =
√

2σ2(1 − p)

= 1 − Φ(−(µ1 − µ2)/ω) = Φ((µ1 − µ2)/ω),

where Φ(.)is the N(0,1) cdf

= θρp, say, = 1 − p.

So θρ = (1 − p)/p = Φ(η)/(1 − Φ(η)),

where η = (µ1 − µ2)/ω.

Hence,

θρ/θ0 = [Φ(η)/Φ(η‘)] × [(1 − Φ(η))/(1 − Φ(η‘))],

where η‘ = η
√

1 − p.

This quantity is obviously greater than 1; θρ > θ0.

Simulating Multivariable Normal

To clarify correlation induction, we have simulated different setups, In this subsec-

tion, you may find tables that illustrate how positive correlation induction can result

in increased θ?.

For simulation we have generated multivariate normal random numbers with

different systems. For each multivariate normal distribution we used correlation

coefficient ρ between values 0 and 1 with 0.1 increment.

In the table below, you can find results generated from 40000 replications. In the

top row of the table, we have the systems we are comparing. In the first column of

the table you can see the simulation results, when we compare two identical N(0, 1)

(Normally distributed with mean = 0 and variance = 1) systems, by using different

ρ (correlation coefficient) values.

In this example we used, θ? = 2 , P ? = 0, 9 values and corresponding n0 = 15
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value from table 13. For termination, we used the same conditions that we have

used at MBGprocedure.

Table 4: Multivariate Normal with k = 2, θ? = 2, P ? = .90 values

N(0, 1) vs. N(0, 1) N(1, 1) vs. N(0, 1) N(1, 1) vs. N(1, 2) N(1, 1) vs. N(1, 4) N(1, 1) vs. N(2, 4)
ρ Pr(CS) E(T |p) Pr(CS) E(T |p) Pr(CS) E(T |p) Pr(CS) E(T |p) Pr(CS) E(T |p)

0.0 0.4998 10.57 0.9812 7.20 0.4992 10.59 0.5042 10.57 0.9115 8.79
0.1 0.4981 10.59 0.9870 6.97 0.4994 10.62 0.5017 10.59 0.9151 8.74
0.2 0.4994 10.57 0.9899 6.71 0.5002 10.60 0.5011 10.60 0.9191 8.67
0.3 0.4987 10.58 0.9934 6.44 0.4970 10.56 0.4986 10.57 0.9229 8.61
0.4 0.4969 10.62 0.9965 6.13 0.4986 10.56 0.4999 10.57 0.9296 8.52
0.5 0.4983 10.58 0.9980 5.82 0.5014 10.58 0.5029 10.58 0.9334 8.45
0.6 0.4974 10.59 0.9993 5.40 0.5050 10.58 0.4956 10.58 0.9411 8.34
0.7 0.5001 10.55 0.9998 4.97 0.5020 10.57 0.5021 10.59 0.9447 8.29
0.8 0.5001 10.60 1.0000 4.51 0.5020 10.57 0.5010 10.59 0.9486 8.18
0.9 0.5039 10.55 1.0000 4.11 0.5022 10.60 0.4985 10.57 0.9526 8.08
1.0 0.5000 15.00 1.0000 4.00 0.5015 10.61 0.5008 10.60 0.9592 7.97

Table 5: Multivariate Normal with k = 3, θ? = 2, P ? = .90 values

N(1, 1) vs. N(1, 2) vs. N(2, 1) vs. N(2, 2) vs. N(1, 4) vs.
N(1, 1) & N(1, 1) N(1, 1) & N(1, 1) N(1, 1) & N(1, 1) N(1, 1) & N(1, 1) N(1, 2) & N(1, 1)

ρ Pr(CS) E(T |p) Pr(CS) E(T |p) Pr(CS) E(T |p) Pr(CS) E(T |p) Pr(CS) E(T |p)
0.0 0.3340 23.38 0.4713 23.04 0.9923 10.83 0.9855 11.90 0.5306 22.55
0.1 0.3329 23.23 0.4853 22.84 0.9945 10.25 0.9890 11.45 0.5332 22.52
0.2 0.3302 23.28 0.4982 22.86 0.9960 9.72 0.9917 11.04 0.5451 22.43
0.3 0.3310 23.33 0.5143 22.73 0.9971 9.12 0.9929 10.53 0.5523 22.38
0.4 0.3335 23.35 0.5277 22.79 0.9986 8.49 0.9947 10.09 0.5655 22.28
0.5 0.3325 23.35 0.5553 22.58 0.9993 7.82 0.9966 9.56 0.5815 22.19
0.6 0.3294 23.31 0.5790 22.39 0.9997 7.11 0.9978 9.05 0.5868 22.01
0.7 0.3335 23.24 0.6156 22.15 1.0000 6.40 0.9984 8.50 0.6029 21.82
0.8 0.3321 23.28 0.6662 21.63 1.0000 5.70 0.9993 7.89 0.6236 21.65
0.9 0.3389 23.24 0.7422 20.65 1.0000 5.13 0.9998 7.25 0.6340 21.53
1.0 0.0000 18.07 0.7646 17.18 1.0000 5.00 0.9998 6.45 0.6544 21.12

These tables justify our claim that positive correlation induction results same as

increased θ?. When we examine the tables closely, when comparing two systems with

different mean and same standard deviation we see that as the ρ value increases,

the process is more in favor of the desired category, i.e. the probability of correct

selection increases and the expected number of observations to be taken decreases. If

we look at “N(1,1) vs. N(0,1)“ column we clearly see these results. The Pr(CS)value

increases from 0.9812 to 1 and E(T |p)value decreases from 7.1954 to 4.

Another observation from Tables 4,5 is, when we compare the results of two

different observations, when the mean of desired category is larger than the other

categories, by increasing the variance of desired category and keeping all other values
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the same, it is against the favorable category. For example take “N(2,1) vs. N(1,1)

& N(1,1)“and “N(2,2) vs. N(1,1) & N(1,1)” columns, As the variance increases

the Pr(CS)value decreases (from 0.9923 to 0.9855) and E(T |p)value increases (from

10.8279 to 11.9047).

Table 6: Comparision of k = 2, 3, and 4 for θ? = 2, θ? = 1.4 and P ? = 0.90

N(1, 2) vs. N(0, 4) N(1, 2) vs. N(1, 2) vs.N(0, 4),
N(0, 4) and N(0, 4) N(0, 4) and N(0, 4)

θ? ρ Pr(CS) E(T |p) Pr(CS) E(T |p) Pr(CS) E(T |p)
0,0 0.8896 9.05 0.8644 18.23 0.8365 28.86
0.1 0.8973 8.98 0.8733 18.08 0.8388 28.57
0.2 0.8977 8.94 0.8714 18.04 0.8420 28.43
0.3 0.9059 8.91 0.8798 17.83 0.8463 28.17
0.4 0.9076 8.82 0.8854 17.68 0.8542 27.90

2.0 0.5 0.9101 8.79 0.8894 17.50 0.8579 27.88
0.6 0.9156 8.72 0.8966 17.34 0.8660 27.59
0.7 0.9196 8.67 0.9005 17.16 0.8712 27.31
0.8 0.9245 8.59 0.9042 16.99 0.8762 27.01
0.9 0.9291 8.53 0.9131 16.78 0.8792 26.71
1.0 0.9356 8.43 0.9165 16.66 0.8894 26.44

0 0.9892 21.53 0.9903 43.89 0.9893 69.24
0.1 0.9897 21.17 0.9916 43.06 0.9890 68.36
0.2 0.9915 20.96 0.9925 42.32 0.9895 67.41
0.3 0.9918 20.59 0.9929 41.71 0.9912 66.36
0.4 0.9919 20.32 0.9936 40.93 0.9917 65.22

1.4 0.5 0.9926 19.98 0.9937 40.24 0.9916 64.09
0.6 0.9937 19.71 0.9948 39.56 0.9931 63.06
0.7 0.9949 19.36 0.9952 38.69 0.9933 62.03
0.8 0.9954 18.99 0.9960 38.09 0.9943 60.82
0.9 0.9959 18.57 0.9967 36.99 0.9944 59.38

1 0.9968 18.14 0.9967 36.28 0.9953 58.32

In Table 6 the desired category is N (1, 2) in both cases. In the first case, we

have two categories, N (1, 2) and N (0, 4), but in the second case we have one

additional rival -which is identical to the rival in the previous case- so we have three

systems: N (1, 2) , N (0, 4) and N (0, 4). When comparison is with two systems it

is easier for desired category to dominate, on the other hand when we have three

categories, the probability of selecting the desired category decreases. In the first

case, the probability of selecting the desired category is P (N (1, 2) > N (0, 4)), but

in the second case the probability will become, P (N (1, 2) > N (0, 4) andN (0, 4)).

Hence, the desired category should defeat both systems. As it can also be seen from

the simulation results, it is clear that the first probability is larger than the second

one.
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8 Conclusions and Future Work

In this thesis we studied indifference- zone multinomial selection procedures, which

are for selecting the most probable (“best”) multinomial cell. We have reviewed

five popular multinomial selection procedures from the literature, and tested their

performances by using Monte Carlo simulations. After reviewing these processes,

we have proposed an alternative approach: Random Walk, in order to show that the

procedures are consistent compared with different point if views. Beside the sim-

ulations, we also discussed the exact calculation methodologies for the procedures,

in a generic form. In addition to multinomial selection procedures, we proposed a

multivariate normal extension, which we induce positive correlation among different

competing systems.

In this thesis we work on indifference-zone multinomial selection procedures,

which stop when one of the competitors is sufficiently ahead of the others, i.e. guar-

antees to win. As an alternative approach we can use elimination of the worst com-

petitor. If one of the competitors is sufficiently behind the others, i.e. guarantees to

lose, we can remove that category from further selection procedure. Because of cost

considerations, we are looking for taking the minimum number observations, which

will ensure the probability of correct being greater than P ?. For a closed, sequential

procedure we can also model it as a dynamic programming problem and solve it to

find the required number of observations. In this study we proposed an extension:

Multivariate Normal, which we use multivariate normal distribution instead of i.i.d.

multivariate, but we have not deeply studied this idea. New procedures which will

handle with the multivariate normal distributed cases can be formed.
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9 Appendix

Table 7: Performance Characteristics of Procedures MBEM and MBK for k = 2 and
3. (Pr(CS|SC) values are for both procedures; E[T |SC] and E[T |EP] values are only
for procedure MBK.)

k = 2 k = 3
P ? θ? nBEM Pr(CS|SC) E[T |SC] E[T |EP] nBEM Pr(CS|SC) E[T |SC] E[T |EP]

3.0 1 0.7456 1.00 1.00 5 0.7696 3.95 4.11
2.8 3 0.8257 2.39 2.50 6 0.7834 4.49 4.92
2.6 3 0.8094 2.40 2.50 6 0.7519 4.55 4.92
2.4 3 0.7919 2.42 2.50 7 0.7457 5.56 5.79

0.75 2.2 3 0.7703 2.43 2.50 9 0.7523 7.29 7.68
2.0 5 0.7911 3.96 4.12 12 0.7568 9.91 10.43
1.8 5 0.7505 4.00 4.12 17 0.7594 14.42 15.08
1.6 9 0.7642 7.31 7.53 26 0.7484 22.74 23.59
1.4 17 0.7631 14.23 14.68 52 0.7498 47.21 48.52
1.2 55 0.7550 49.12 50.04 181 0.7499 171.78 174.45
3.0 7 0.9286 5.16 5.81 11 0.9027 8.46 9.49
2.8 7 0.9165 5.23 5.81 13 0.9050 10.11 11.32
2.6 7 0.8984 5.28 5.82 15 0.9047 11.83 13.23
2.4 9 0.9087 6.82 7.54 18 0.9022 14.43 16.02

0.90 2.2 11 0.9068 8.43 9.29 22 0.9044 17.98 19.79
2.0 15 0.9120 11.70 12.85 29 0.9044 24.23 26.44
1.8 19 0.9020 15.16 16.48 40 0.9019 34.29 37.00
1.6 31 0.9064 25.50 27.54 64 0.9010 56.56 60.16
1.4 59 0.9027 50.71 53.83 126 0.9003 115.20 120.59
1.2 199 0.8984 181.95 188.70 427 0.8974 406.81 416.97
3.0 9 0.9503 6.54 7.55 17 0.9559 12.96 15.07
2.8 11 0.9550 8.03 9.31 19 0.9519 14.69 16.94
2.6 13 0.9576 9.55 11.06 22 0.9535 17.26 19.78
2.4 15 0.9552 11.21 12.84 26 0.9519 20.77 23.59

0.95 2.2 19 0.9573 14.41 16.45 32 0.9519 26.10 29.32
2.0 23 0.9535 17.79 20.15 42 0.9498 35.02 38.91
1.8 33 0.9550 26.22 29.38 59 0.9514 50.49 55.31
1.6 49 0.9503 40.34 44.38 94 0.9505 82.89 89.32
1.4 97 0.9522 83.60 90.08 186 0.9510 169.83 179.39
1.2 327 0.9502 299.90 313.66 645 0.9504 614.03 632.56
3.0 19 0.9903 13.30 16.50 29 0.9900 21.81 26.45
2.8 21 0.9905 14.91 18.31 33 0.9902 25.20 30.29
2.6 25 0.9913 17.98 21.96 39 0.9904 30.25 36.04
2.4 29 0.9903 21.21 25.66 46 0.9900 36.38 42.77

0.99 2.2 37 0.9912 27.62 33.13 58 0.9916 46.84 54.33
2.0 47 0.9909 35.97 42.50 75 0.9909 62.03 70.85
1.8 65 0.9910 51.27 59.52 106 0.9914 90.08 101.06
1.6 101 0.9914 82.80 93.97 167 0.9908 146.43 160.72
1.4 193 0.9907 166.20 182.88 330 0.9908 300.12 321.17
1.2 653 0.9900 599.29 633.52 1148 0.9896 1090.57 1131.48
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Table 8: Performance Characteristics of Procedures MBEM and MBK for k = 4 and
5. (Pr(CS|SC) values are for both procedures; E[T |SC] and E[T |EP] values are only
for procedure MBK.)

k = 4 k = 5
P ? θ? nBEM Pr(CS|SC) E[T |SC] E[T |EP] nBEM Pr(CS|SC) E[T |SC] E[T |EP]

3.0 8 0.7685 6.43 6.91 11 0.7687 9.28 9.92
2.8 9 0.7670 7.39 7.88 12 0.7509 10.22 10.89
2.6 10 0.7575 8.28 8.82 14 0.7477 12.08 12.80
2.4 12 0.7543 10.10 10.68 17 0.7529 14.87 15.69

0.75 2.2 15 0.7523 12.86 13.56 22 0.7541 19.55 20.50
2.0 20 0.7524 17.49 18.31 29 0.7543 26.17 27.29
1.8 29 0.7558 25.90 27.00 41 0.7523 37.64 38.98
1.6 46 0.7532 42.07 43.48 68 0.7551 63.63 65.43
1.4 92 0.7495 86.46 88.41 137 0.7515 130.87 133.36
1.2 326 0.7496 315.43 319.29 486 0.7559 474.52 479.26
3.0 16 0.9030 12.97 14.49 21 0.9029 17.64 19.54
2.8 19 0.9072 15.58 17.38 24 0.9013 20.41 22.44
2.6 22 0.9046 18.31 20.25 29 0.9048 24.97 27.29
2.4 26 0.9011 21.98 24.09 35 0.9028 30.55 33.13

0.90 2.2 33 0.9039 28.36 30.84 44 0.9039 38.99 41.89
2.0 43 0.8985 37.69 40.56 58 0.9027 52.19 55.61
1.8 61 0.9046 54.55 58.10 83 0.9031 76.06 80.16
1.6 98 0.9031 89.77 94.33 134 0.9037 125.15 130.42
1.4 196 0.9043 184.15 190.78 271 0.9041 258.44 265.97
1.2 692 0.9006 669.53 682.31 964 0.9004 940.36 954.55
3.0 23 0.9523 18.53 21.22 29 0.9511 24.19 27.29
2.8 26 0.9497 21.23 24.09 34 0.9543 28.70 32.15
2.6 31 0.9516 25.64 28.93 40 0.9525 34.24 38.01
2.4 37 0.9514 31.14 34.73 48 0.9520 41.69 45.84

0.95 2.2 46 0.9506 39.38 43.46 61 0.9539 53.74 58.55
2.0 61 0.9528 53.20 58.09 81 0.9531 72.56 78.18
1.8 87 0.9530 77.50 83.52 115 0.9523 104.99 111.66
1.6 139 0.9518 126.89 134.64 185 0.9522 172.27 180.80
1.4 278 0.9522 260.65 271.84 374 0.9531 355.81 368.08
1.2 979 0.9519 946.18 967.47 1331 0.9533 1296.80 1320.00
3.0 39 0.9898 30.96 36.66 48 0.9910 39.49 45.82
2.8 45 0.9900 36.26 42.50 56 0.9907 46.66 53.65
2.6 53 0.9907 43.29 50.27 66 0.9918 55.78 63.43
2.4 63 0.9908 52.39 60.06 80 0.9915 68.68 77.20

0.99 2.2 79 0.9911 66.90 75.68 100 0.9914 87.25 96.87
2.0 104 0.9921 89.89 100.23 133 0.9919 118.20 129.45
1.8 147 0.9910 130.02 142.52 189 0.9913 171.22 184.78
1.6 235 0.9900 213.19 229.33 305 0.9909 282.32 299.68
1.4 471 0.9909 439.63 462.99 616 0.9908 583.61 608.42
1.2 1660 0.9894 1600.54 1644.99 2191 0.9904 2130.06 2176.92
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Table 9: Performance Characteristics of Procedures MBEM and MBK for k = 6 and
7. (Pr(CS|SC) values are for both procedures; E[T |SC] and E[T |EP] values are only
for procedure MBK.)

k = 6 k = 7
P ? θ? nBEM Pr(CS|SC) E[T |SC] E[T |EP] nBEM Pr(CS|SC) E[T |SC] E[T |EP]

3.0 14 0.7624 12.13 12.94 17 0.7618 15.01 15.92
2.8 16 0.7607 14.01 14.85 20 0.7604 17.85 18.85
2.6 19 0.7598 16.83 17.76 23 0.7573 20.74 21.78
2.4 23 0.7600 20.62 21.63 28 0.7514 25.51 26.66

0.75 2.2 29 0.7547 26.34 27.49 36 0.7537 33.18 34.50
2.0 38 0.7525 34.95 36.30 48 0.7510 44.79 46.28
1.8 56 0.7599 52.29 53.94 70 0.7519 66.16 67.95
1.6 90 0.7567 85.38 87.44 114 0.7543 109.17 111.43
1.4 184 0.7555 177.46 180.40 234 0.7542 227.10 230.38
1.2 658 0.7532 645.89 651.29 840 0.7520 827.40 833.29
3.0 26 0.9022 22.41 24.57 31 0.9016 27.22 29.60
2.8 30 0.9005 26.14 28.48 36 0.8997 31.94 34.49
2.6 36 0.9032 31.72 34.32 43 0.9022 38.53 41.36
2.4 44 0.9059 39.28 42.16 53 0.9060 48.01 51.19

0.90 2.2 56 0.9071 50.62 53.95 68 0.9059 62.36 65.98
2.0 74 0.9060 67.83 71.65 90 0.9058 83.57 87.70
1.8 106 0.9044 98.64 103.21 130 0.9064 122.33 127.26
1.6 172 0.9078 162.70 168.49 211 0.9063 201.32 207.56
1.4 349 0.9032 335.82 344.03 430 0.9029 416.52 425.16
1.2 1249 0.9003 1224.51 1239.83 1545 0.9012 1519.92 1535.94
3.0 36 0.9526 30.79 34.33 42 0.9496 36.65 40.36
2.8 41 0.9517 35.48 39.24 49 0.9528 43.20 47.27
2.6 49 0.9507 42.93 47.05 59 0.9542 52.54 57.10
2.4 60 0.9532 53.22 57.87 72 0.9533 64.85 69.91

0.95 2.2 76 0.9555 68.35 73.61 91 0.9517 83.07 88.68
2.0 101 0.9538 92.20 98.28 121 0.9539 111.87 118.36
1.8 144 0.9528 133.51 140.76 174 0.9538 163.10 170.86
1.6 233 0.9491 219.75 228.97 283 0.9524 269.27 279.03
1.4 475 0.9522 456.18 469.26 578 0.9510 558.69 572.43
1.2 1697 0.9504 1661.96 1686.42 2075 0.9520 2039.16 2064.58
3.0 58 0.9912 49.00 55.91 68 0.9907 58.58 65.98
2.8 68 0.9909 58.13 65.75 79 0.9912 68.84 76.83
2.6 80 0.9911 69.25 77.58 94 0.9919 82.85 91.65
2.4 97 0.9906 85.19 94.33 114 0.9908 101.76 111.44

0.99 2.2 122 0.9913 108.69 119.01 145 0.9917 131.15 142.12
2.0 163 0.9914 147.55 159.59 193 0.9910 177.11 189.69
1.8 233 0.9911 214.55 228.95 277 0.9914 258.17 273.08
1.6 377 0.9916 353.70 371.84 450 0.9906 426.17 445.06
1.4 766 0.9912 732.83 758.76 918 0.9905 884.18 911.03
1.2 2737 0.9904 2674.89 2723.51 3297 0.9911 3234.11 3283.89
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Table 10: Performance Characteristics of Procedures MBEM and MBK for k = 8
and 10. (Pr(CS|SC) values are for both procedures; E[T |SC] and E[T |EP] values are
only for procedure MBK.)

k = 8 k = 10
P ? θ? nBEM Pr(CS|SC) E[T |SC] E[T |EP] nBEM Pr(CS|SC) E[T |SC] E[T |EP]

3.0 20 0.7545 17.95 18.93 27 0.7578 24.76 25.93
2.8 23 0.7496 20.83 21.87 31 0.7532 28.64 29.87
2.6 28 0.7576 25.57 26.77 37 0.7529 34.44 35.77
2.4 34 0.7564 31.36 32.65 46 0.7532 43.17 44.66

0.75 2.2 43 0.7530 40.08 41.51 60 0.7631 56.78 58.48
2.0 59 0.7623 55.58 57.27 81 0.7614 77.32 79.27
1.8 86 0.7600 81.91 83.95 118 0.7632 113.63 115.95
1.6 140 0.7600 134.87 137.41 192 0.7557 186.65 189.43
1.4 286 0.7559 278.87 282.40 396 0.7576 388.51 392.43
1.2 1030 0.7537 1016.96 1023.34 1433 0.7550 1419.48 1426.30
3.0 37 0.9052 32.97 35.60 47 0.8997 42.80 45.64
2.8 43 0.9067 38.65 41.49 57 0.9086 52.28 55.52
2.6 51 0.9047 46.30 49.38 67 0.9046 62.00 65.40
2.4 63 0.9073 57.78 61.22 83 0.9112 77.42 81.26

0.90 2.2 80 0.9081 74.18 78.01 105 0.9087 98.81 103.05
2.0 107 0.9074 100.28 104.72 141 0.9065 133.96 138.78
1.8 154 0.9080 146.03 151.33 204 0.9092 195.68 201.37
1.6 251 0.9039 241.02 247.60 335 0.9049 324.59 331.67
1.4 514 0.9026 500.04 509.18 688 0.9041 673.51 683.32
1.2 1851 0.9039 1825.35 1842.21 2489 0.9024 2462.66 2480.29
3.0 49 0.9536 43.39 47.41 64 0.9576 57.88 62.45
2.8 58 0.9549 51.82 56.29 74 0.9571 67.48 72.35
2.6 69 0.9559 62.25 67.15 89 0.9557 81.91 87.19
2.4 84 0.9526 76.68 81.98 109 0.9565 101.24 107.03

0.95 2.2 106 0.9557 97.81 103.73 138 0.9545 129.40 135.79
2.0 142 0.9556 132.59 139.39 186 0.9548 176.10 183.46
1.8 205 0.9549 193.76 201.90 269 0.9544 257.29 266.00
1.6 334 0.9539 319.90 330.15 440 0.9521 425.37 436.21
1.4 684 0.9519 664.20 678.51 903 0.9532 882.61 897.68
1.2 2464 0.9517 2427.59 2453.83 3269 0.9515 3231.58 3259.05
3.0 78 0.9911 68.26 76.02 99 0.9920 88.68 97.10
2.8 91 0.9919 80.50 88.90 115 0.9918 103.94 112.97
2.6 108 0.9915 96.57 105.72 137 0.9917 125.03 134.79
2.4 132 0.9915 119.36 129.49 168 0.9918 154.81 165.59

0.99 2.2 167 0.9914 152.91 164.19 214 0.9912 199.33 211.32
2.0 224 0.9907 207.65 220.79 287 0.9912 270.16 283.89
1.8 322 0.9910 302.78 318.17 415 0.9899 395.08 411.34
1.6 525 0.9904 500.61 520.17 679 0.9913 653.97 674.36
1.4 1074 0.9900 1039.85 1067.18 1394 0.9910 1358.90 1387.42
1.2 3869 0.9903 3805.54 3856.22 5043 0.9908 4978.42 5030.75
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Table 11: Performance Characteristics of Procedure MRA for k = 2 and 3

k = 2 k = 3
P ? θ? (r, N) Pr(CS|SC) E[T |SC] E[T |EP] (r, N) Pr(CS|SC) E[T |SC] E[T |EP]

3.0 (1,1) 0.7500 1.00 1.00 (2,3) 0.7962 3.68 4.25
2.8 (2,2) 0.8274 2.39 2.50 (2,3) 0.7733 3.74 4.25
2.6 (2,2) 0.8113 2.40 2.50 (2,3) 0.7510 3.81 4.25
2.4 (2,2) 0.7914 2.42 2.50 (2,5) 0.7601 4.70 5.54

0.75 2.2 (2,2) 0.7661 2.43 2.50 (3,5) 0.7555 6.39 7.05
2.0 (2,3) 0.7737 3.09 3.25 (4,5) 0.7556 8.81 9.63
1.8 (2,4) 0.7555 3.44 3.61 (4,7) 0.7570 12.39 13.74
1.6 (3,5) 0.7559 5.96 6.26 (4,12) 0.7572 18.24 20.93
1.4 (5,9) 0.7553 12.68 13.27 (6,15) 0.7075 30.28 32.67
1.2 (11,29) 0.7552 46.89 48.87 (14,48) 0.7038 117.16 123.16
3.0 (2,12) 0.9000 3.20 4.00 (3,5) 0.9004 6.76 8.74
2.8 (3,4) 0.9156 4.63 5.34 (3,6) 0.9004 7.58 10.13
2.6 (3,5) 0.9154 5.23 6.24 (3,8) 0.9030 8.62 12.12
2.4 (3,6) 0.9113 5.72 6.94 (4,8) 0.9104 11.79 15.51

0.90 2.2 (3,8) 0.9024 6.32 7.83 (4,10) 0.9026 13.67 18.47
2.0 (4,8) 0.9033 8.90 10.59 (4,15) 0.9015 16.51 23.60
1.8 (4,14) 0.9011 11.00 13.92 (5,19) 0.9040 24.43 34.21
1.6 (5,21) 0.9006 17.00 21.48 (6,30) 0.9021 37.82 53.07
1.4 (9,32) 0.9023 39.71 47.80 (9,52) 0.9051 79.36 106.76
1.2 (20,104) 0.9062 152.02 177.59 (27,157) 0.9018 361.32 415.56
3.0 (3,6) 0.9522 5.25 6.94 (4,7) 0.9505 9.77 13.73
2.8 (4,6) 0.9542 6.88 8.57 (4,8) 0.9504 10.75 15.52
2.6 (4,7) 0.9545 7.55 9.65 (4,10) 0.9510 12.18 18.48
2.4 (4,9) 0.9548 8.47 11.38 (4,14) 0.9509 13.84 22.82

0.95 2.2 (4,12) 0.9506 9.39 13.12 (5,14) 0.9511 18.58 27.88
2.0 (5,14) 0.9537 13.09 17.90 (5,22) 0.9505 22.40 37.03
1.8 (6,18) 0.9511 18.04 24.33 (6,31) 0.9548 32.31 53.77
1.6 (8,27) 0.9520 29.44 39.18 (8,40) 0.9520 53.56 82.35
1.4 (11,54) 0.9518 56.80 77.67 (12,72) 0.9532 112.10 164.23
1.2 (27,172) 0.9532 238.31 301.29 (36,228) 0.9517 532.21 636.84
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Table 12: Performance Characteristics of Procedure MRA for k = 4 and 5

k = 4 k = 5
P ? θ? (r, N) Pr(CS|SC) E[T |SC] E[T |EP] (r, N) Pr(CS|SC) E[T |SC] E[T |EP]

3.0 (2,4) 0.7718 5.15 6.39 (2,5) 0.7544 6.66 8.76
2.8 (2,5) 0.7621 5.68 7.17 (3,5) 0.8046 10.25 12.90
2.6 (3,5) 0.8045 8.92 10.88 (3,5) 0.7707 10.59 12.89
2.4 (3,5) 0.7731 9.22 10.90 (3,6) 0.7683 12.65 15.58

0.75 2.2 (3,6) 0.7626 10.88 12.96 (3,8) 0.7683 15.70 19.94
2.0 (3,8) 0.7525 13.37 16.17 (3,11) 0.7504 18.85 24.29
1.8 (4,10) 0.7579 20.72 24.30 (4,12) 0.7518 28.75 34.88
1.6 (4,20) 0.7514 30.05 37.29 (5,19) 0.7533 48.60 58.56
1.4 (6,33) 0.7530 65.27 78.23 (7,35) 0.7516 99.71 118.62
1.2 (16,89) 0.7532 273.40 302.04 (21,106) 0.7532 431.10 470.55
3.0 (3,7) 0.9091 9.87 14.71 (3,8) 0.9046 12.58 19.95
2.8 (3,9) 0.9069 11.02 17.42 (3,11) 0.9038 14.19 24.26
2.6 (4,8) 0.9050 14.39 19.81 (4,9) 0.9044 18.74 26.96
2.4 (4,10) 0.9107 16.98 24.35 (4,11) 0.9046 21.87 32.46

0.90 2.2 (4,13) 0.9050 19.92 29.76 (5,13) 0.9081 29.83 42.48
2.0 (5,15) 0.9060 27.93 39.22 (5,18) 0.9093 37.76 56.94
1.8 (5,25) 0.9022 36.07 55.15 (6,22) 0.9004 53.05 74.41
1.6 (7,33) 0.9098 63.33 89.82 (7,36) 0.9016 84.33 122.00
1.4 (12,56) 0.9021 142.59 181.62 (10,68) 0.9014 176.25 245.95
1.2 (38,108) 0.9006 617.24 672.24 (36,210) 0.9031 864.02 964.39
3.0 (4,9) 0.9577 13.75 22.19 (4,10) 0.9573 17.37 29.80
2.8 (4,10) 0.9520 14.96 24.36 (4,11) 0.9505 18.97 32.39
2.6 (4,12) 0.9504 16.70 28.11 (4,15) 0.9506 21.72 40.99
2.4 (5,13) 0.9531 22.30 34.65 (5,15) 0.9577 29.05 48.16

0.95 2.2 (5,17) 0.9518 26.28 43.35 (5,19) 0.9506 34.15 58.96
2.0 (6,21) 0.9534 36.26 57.56 (6,23) 0.9518 47.27 78.04
1.8 (7,28) 0.9507 50.97 79.66 (8,29) 0.9507 72.32 108.05
1.6 (9,43) 0.9521 84.53 128.40 (10,45) 0.9511 118.88 175.37
1.4 (16,76) 0.9517 196.68 226.94 (14,87) 0.9516 245.24 355.48
1.2 (54,258) 0.9506 886.33 966.43 (44,283) 0.9509 1147,24 1315.94
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Table 13: Performance Characteristics of Procedure MBG for k = 2 and 3

k = 2 k = 3
P ? θ? nBG Pr(CS|SC) E[T |SC] E[T |EP] nBG Pr(CS|SC) E[T |SC] E[T |EP]

3.0 1 0.7456 1.00 1.00 5 0.7570 3.24 3.84
2.8 3 0.8257 2.39 2.50 6 0.7638 3.70 4.27
2.6 3 0.8094 2.40 2.50 7 0.7567 3.93 4.60
2.4 3 0.7919 2.42 2.50 8 0.7588 5.41 6.21

0.75 2.2 3 0.7703 2.43 2.50 10 0.7535 6.00 7.03
2.0 5 0.7763 3.07 3.25 13 0.7471 7.99 9.25
1.8 7 0.7504 3.44 3.62 18 0.7506 11.32 13.04
1.6 9 0.7521 5.97 6.25 32 0.7529 17.62 20.47
1.4 19 0.7588 11.28 12.05 71 0.7507 33.87 40.11
1.2 67 0.7522 36.74 39.42 285 0.7526 117.96 139.75
3.0 6 0.8969 3.77 5.06 12 0.9013 6.99 9.26
2.8 7 0.9147 4.64 5.35 15 0.9037 7.76 10.62
2.6 9 0.9179 5.23 6.28 16 0.9001 9.15 12.21
2.4 11 0.9113 5.73 6.95 22 0.9015 10.42 14.54

0.90 2.2 15 0.9025 6.32 7.84 25 0.9012 13.31 18.13
2.0 15 0.9024 8.89 10.61 34 0.9026 17.18 23.57
1.8 27 0.9032 11.00 13.98 50 0.9007 23.65 33.22
1.6 41 0.9005 17.07 21.48 83 0.8989 37.46 53.15
1.4 79 0.8989 32.93 42.15 170 0.8994 73.70 104.73
1.2 267 0.8991 111.83 142.51 670 0.8978 253.04 368.39
3.0 11 0.9516 5.26 6.96 20 0.9508 8.87 13.73
2.8 15 0.9516 5.62 7.82 22 0.9523 10.47 16.04
2.6 13 0.9535 7.57 9.68 25 0.9519 12.30 18.68
2.4 17 0.9563 8.43 11.39 31 0.9512 14.52 22.38

0.95 2.2 23 0.9506 9.40 13.17 41 0.9521 17.62 28.01
2.0 27 0.9537 13.08 17.88 52 0.9484 23.07 36.27
1.8 35 0.9491 18.00 24.35 71 0.9525 32.57 50.72
1.6 59 0.9502 26.54 37.19 125 0.9505 50.39 81.79
1.4 151 0.9475 48.33 72.12 266 0.9499 99.50 164.76
1.2 455 0.9506 166.12 242.39 960 0.9523 344.97 575.82
3.0 21 0.9916 9.57 15.39 33 0.9903 14.19 25.87
2.8 23 0.9902 10.13 16.36 38 0.9901 15.81 29.49
2.6 31 0.9909 10.91 19.92 46 0.9902 18.19 35.07
2.4 35 0.9900 14.11 24.17 54 0.9900 22.33 42.31

0.99 2.2 48 0.9903 15.58 28.27 69 0.9907 26.82 52.66
2.0 59 0.9936 20.53 37.17 92 0.9901 34.60 68.69
1.8 89 0.9901 27.26 51.71 137 0.9900 48.46 99.70
1.6 158 0.9904 42.46 84.53 255 0.9907 77.28 171.65
1.4 273 0.9907 82.12 156.78 505 0.9904 152.27 338.44
1.2 935 0.9909 278.93 543.95 2000 0.9905 529.42 1239.04
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Table 14: Performance Characteristics of Procedure MBG for k = 4 and 5

k = 4 k = 5
P ? θ? nBG Pr(CS|SC) E[T |SC] E[T |EP] nBG Pr(CS|SC) E[T |SC] E[T |EP]

3.0 9 0.7666 5.79 6.81 12 0.7595 7.45 9.16
2.8 9 0.7508 6.02 7.09 13 0.7518 8.37 10.23
2.6 11 0.7539 7.03 8.48 17 0.7595 9.80 12.26
2.4 15 0.7556 8.30 10.12 20 0.7521 11.97 14.78

0.75 2.2 17 0.7505 10.50 12.52 25 0.7519 14.99 18.47
2.0 24 0.7559 13.79 16.65 34 0.7503 19.78 24.54
1.8 35 0.7513 19.45 23.53 50 0.7477 28.29 35.30
1.6 57 0.7480 31.31 37.86 86 0.7511 45.60 57.72
1.4 124 0.7512 62.48 76.18 184 0.7504 92.81 117.08
1.2 495 0.7492 220.84 273.27 730 0.7505 333.13 422.21
3.0 19 0.9065 9.91 14.33 24 0.9039 13.12 19.13
2.8 22 0.9042 11.22 16.33 28 0.9024 15.02 22.06
2.6 26 0.9000 13.18 19.18 34 0.9016 17.33 26.03
2.4 31 0.9039 15.91 23.03 42 0.9013 21.22 31.97

0.90 2.2 39 0.9033 19.80 28.72 52 0.9011 26.58 39.85
2.0 53 0.9011 25.59 37.49 71 0.9020 35.28 53.17
1.8 75 0.8998 36.85 53.92 104 0.9030 50.36 76.44
1.6 126 0.8980 58.86 86.85 172 0.9001 81.10 123.58
1.4 274 0.9035 117.14 177.37 374 0.9012 164.91 253.87
1.2 1050 0.9000 417.16 636.50 1460 0.9010 590.56 923.03
3.0 26 0.9526 12.98 20.69 34 0.9509 16.56 27.58
2.8 30 0.9478 14.73 23.69 39 0.9509 19.23 31.85
2.6 36 0.9510 17.13 27.81 46 0.9510 22.63 37.43
2.4 44 0.9504 20.67 33.81 58 0.9518 27.19 45.88

0.95 2.2 56 0.9514 25.88 42.53 74 0.9518 33.92 57.96
2.0 74 0.9508 33.81 55.73 98 0.9512 45.17 76.58
1.8 106 0.9506 48.26 79.50 142 0.9508 64.78 109.31
1.6 180 0.9496 76.46 129.08 240 0.9489 103.83 179.88
1.4 380 0.9497 153.00 263.76 510 0.9520 209.40 370.56
1.2 1500 0.9516 544.74 957.39 2000 0.9502 750.17 1352.08
3.0 46 0.9900 18.85 37.64 57 0.9906 23.65 48.49
2.8 52 0.9901 21.17 42.46 65 0.9900 27.02 55.26
2.6 61 0.9902 25.02 50.21 78 0.9904 31.99 66.24
2.4 73 0.9903 30.30 60.36 92 0.9903 38.81 78.53

0.99 2.2 95 0.9902 37.35 76.97 117 0.9905 48.48 98.44
2.0 130 0.9900 48.93 103.71 158 0.9901 63.94 132.60
1.8 192 0.9906 70.10 151.46 225 0.9900 91.45 189.40
1.6 340 0.9905 111.41 262.97 390 0.9904 148.21 319.71
1.4 650 0.9902 224.62 495.42 730 0.9901 297.02 608.78
1.2 2500 0.9903 792.39 1811.22 2950 0.9904 1068.97 2307.34
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