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ABSTRACT

Arithmetic operations in finit,e fields have many applications in cryptography, coding theory,
and computer algebra. The realization of these operations can often be made more efficient by
the normal basis representation of the field elements.

This thesis is aimed at giving a survey of recent results concerning normal bases and efficient
ways of multiplication, inversion, and exponentiation when the normal basis representation is
used.



OZET

Sonlu cisimlerdeki aritmetik islemlerin kriptografi,kodlama teorisi ve bilgisayar cebirinde
bir¢ok uygulamasi vardir. Bu igslemlerin ger¢eklenmesi, genellikle cisim elemanlanrnn normal
baz gosterimi sayesinde daha verimli yapilabilmektedir .

Bu tez,normal bazlar ve normal baz gosterimi kullanilarak yapilan ¢carpma, ters alma ve iis
alma islemlerinin verimli yollarina dair en son sonuglarin incelenerek sunulmasini amag

edinmistir .
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CHAPTER 1

INTRODUCTION

My thesis consists of five chapters. In the first chapter, we will give some basic def-
initions, theorems and results related with the normal basis for some finite field. In
the second chapter, we will mention the advantages of using normal basis represen-
tation and will address some further properties of normal bases which are obtained
recently. Moreover, we will give whether there is an advantage of using the pair
of dual bases to multiply two elements of finite field. In addition to this, we will

examine the complexity of the normal bases for the finite fields Fomn over Fs.

In the third chapter, the concept of optimal normal bases will be introduced.
Thus, we will mentione the constructions and types of optimal normal bases over
finite fields. It will also be proved in this chapter that all the optimal normal bases

in finite fields are completely determined by Theorems 3.1.2 and 3.1.3.

There are many applications of optimal normal bases. In the first section of
fourth chapter, we will study a multiplication algorithm by using optimal normal
basis and simple permutation of the basis elements. Besides, we will mentione the
concept of modified optimal normal bases which also produce efficiency in multipli-
cation. Next, it will be shown that large powers of the generators of optimal normal
bases, which have high multiplicative order, can be computed efficiently. Finally, we

will give an algorithm finding the multiplicative inverse of a field element efficiently.

In this chapter, we essentially follow the terminology and notation of [20]. F,

denotes the finite field with ¢ elements. A finite extension ' = Fym of the finite



field K = Fj is regarded as a vector space over K. Then I has a dimension m over
K, and if {aq, ..., ., } is a basis of F over K, each element o € F' can be uniquely

represented in the form

a=caoa+ ..+ cpan

with ¢; € K for 1 < 7 < m. We introduce a mapping from F' to K which we will

use frequently.

Definition 1.0.1 For a € F = Fym and K = Fy, the Trace function Trp/k(a) of

m—1

a over K is defined by Trpjx(a) = a+a? + ...+ af

In other words, the trace of a is the sum of the conjugates a, a4, ...,a4" " of a
with respect to K. Another description of the trace may be obtained as follows. Let
f € Klz| be the minimal polynomial of o over K; i.e.; the uniquely determined
monic polynomial f € K|z] generating the ideal J = {g € K[z] : g(a) = 0} of K[z].
Then the degree d of f is a divisor of m. The polynomial g(z) = f(x)™/¢ € K|x]
is called the characteristic polynomial of a over K. It is well known (see [20]
Theorem 2.14) that, the roots of f in F' are given by a, a4, ..., aqd_l, and then this

implies that the roots of g in F' are precisely the conjugates of o with respect to K.

Hence
g@) =2+ ap 12"+ ..t ag=(z —a)(z —a?).. (v — oﬂmfl)’

and a comparison of coefficients shows that Trp/k (o) = —ap—1. In particular,
Trp/k(a) is always an element of K.
If « € F is a root of monic, irreducible polynomial g(x) of degree m, then trace of
g(z) is defined as the Trp k().

The properties of the trace function Trp,k are well known. We give them below

for the sake of completeness.

Theorem 1.0.2 Let K = I, and F' = Fym. Then the trace function T'rp/k satisfies

the following properties:
(i) Trp/k(a+ B) = Trp/x(a) + Trpx(B) for alla, B € F;
(ii) Trp/k(ca) = cTrpg(a) forallce K, a € F;



(iii) T'rp/k is a linear transformation from F onto K, where both F' and K are
viewed as vector spaces over K ;

(iv) Trp/k(a) =ma for all a € K ;

(v) Trp/k(a?) = Trp/k(a) for all o € F.

Proof. (i) Take any «, 3 € F

qm—l

Trpgla+B) = a+fB8+(@+p8)"+ ...+ (a+0)

m—1

— a4 B+t + B+ a4

= Trpk(e) +Trpx(B)

(ii) For ¢ € K we have ¢ = ¢ for all j > 0. Hence, we can conclude for any a € F,

m—1 m—1

Trpk(ca) = ca+cla?+ . +ct af
= cat+ecal+...+ca?"
= Irp/k(o)

(iii) Using first and second properties, together with the fact that Trp/x € K for
all o € F', show that Trp/k is a linear transformation from F' into K. To prove
that this mapping is onto, it suffices then to show the existence of an a € F with
Trp/x(o) # 0. Now, Trp/g(a) = 0 if and only if o is a root of the polynomial
29" + . 4+ 274z € K[z] in F. However, this polynomial can have at most ¢™ '
roots in F'. Indeed, F' has ¢™ elements. Hence there exists an element a € F' such
that Tr(«) is nonzero. Therefore, trace is onto.

(iv)This follows from the definition of the trace function.

(v)Take any a € F. One has a?" = «, and so
Trp/k(af) = o+ o + . +a"
= Trp/k(a).
O
Theorem 1.0.3 Let F' be a finite extension of the finite field K, both considered as
vector spaces over K. Then the linear transformations from F into K are exvactly

the mappings Lg, 3 € F, where Lg(a) = Trp/x(Ba) for all « € F. Furthermore,

we have Lg # L., whenever 3 and «y are distinct elements of F.



Proof. Each mapping Lg is a linear transformation from F' into K by Theorem

1.0.2(iii). For 8,y € F with 3 # v, we have

Ly(@) = Ly(@) = Trpjx(Ba) = Trex(ya) = Trex((6 = v)a) # 0

for suitable o € F' since Trp/x maps F' onto K, and so the mappings Lg and L,
are different. If K = F, and F' = Fm, then the mappings L produce ¢™ different
linear transformations from F' into K. But, every linear transformation from F
into K can be obtained by assigning arbitrary elements of K to the m elements of a
given basis of F' over K. Since this can be done in ¢ different ways, the mappings

L already exhaust all possible linear transformations from F' into K.

Theorem 1.0.4 Let I be a finite extension of K = F,. Then for a € F' we have
TT’F/K(Oé) =0 if and only if « = B9 — (3 for some € F.

Proof. The sufficiency of condition is obvious by Theorem 1.0.2(v). To prove
the necessity, suppose o € F' = Fym with Trp k(o) = 0 and 3 is a root of 29—z — «

in some extension field F'. Then 7 — 8 = « and

m—1

0=Trpg(e) = a+a’+..+af
= (B =)+ (B = B) 4 .+ (57 = )"
= ("= 8)+ (87 = 4 + .+ (87 = 57)
= 07 -5

m—1

so that 8 € F.
O
Let us recall here that the dimension of F' = Fym over K = I is called the

degree of the extension, denoted by [F': K].

Theorem 1.0.5 Let K be a finite field, let F' be a finite extension of K and E a
finite extension of F. Then Trg k(o) = Trp/x(Tre/r(a)) for all a € E.



Proof. Let K = F,, let [F: K] =m and [E : F| = n, so that [E : K| = mn
by using Theorem 1.84 (in [20]). Then for o € E we have

T?”F/K<TTE/F(C¥)) = Z TTE/F ¢

: (zaqam)

Z Z v
i=0 j=0
mn—1
Z TT’E/K<O{)
O

Definition 1.0.6 Let K be a finite field and F a finite extension of K. Then
two bases {c, ..., } and {B, ..., Bm} of F over K are said to be dual bases if for

1 <14,7 <m we have

0 fori#j
1 fori=j

TTF/K(Oéiﬁj) = 5ij =

Note that, d;; defined above is called the Kronecker delta function. A basis that
is its own dual basis is called a self dual basis. A basis is called weakly self dual,
if there exists v € Fym and a permutation 7 of the indices {1,2,...,m} so that

Bi = Yoy for alli, 1 <i < m.

Theorem 1.0.7 For any basis {ay, ..., } of F over K there exists a unique dual

basis {51, ..., B}

Proof. If {ay,...,a;,,} is a basis of F' over K, we can calculate the coefficients

¢j(a) € K, 1<4,j <m, in the unique representation
a=ci(a)a; + ... + cp(a)ay,

of an element o € F.. We note that ¢; : @ — ¢;(a) is a linear transformation from

F into K, and so according the Theorem 1.0.3, there exists 3; € I’ such that

cj(a) = Tre/x(Bjo)



for all o € F. Putting o = o, 1 <@ < m, we see that Trp/k(Bj0u) = 0 for @ # j

and 1 for ¢ = j. Furthermore, {/3, ..., B} is again a basis of F' over K, for if
dify + ... + dpfBm =0

with d; € K for 1 <17 < m then by multiplying by a fixed «; and applying the trace
function Trp/k, one shows that d; = 0.

Note that the dual basis {01, ..., Bn} of a given basis {aq, ..., @, } is uniquely
determined since the elements 3; € F' are uniquely determined by the linear trans-
formations ¢; according to the Theorem 1.0.3. O Example: Let o € F; be a root
of the irreducible polynomial z? + x + 1 in Fy[z]. Then {a, 1+ a} is a basis of F}

over F5. Dual basis of this basis is also itself.

Definition 1.0.8 Let K = F, and ' = Fyn. Then a basis of ' over K of the form
{1, a,a?,...,a™ '}, consisting of a suitable element o € F, is called a polynomial

basis of F' over K. The element « is often taken to be a primitive element of F'.

Definition 1.0.9 Let K = F, and F' = Fyn. A basis of F' over K of the form
{o, 00, ..., "}, for a suitable element o € F and its conjugates with respect to

K ,is called a normal basis of F over K.

Example: The basis {a,a + 1} of Fj over Fy is a normal basis of F; over Fy

since 1 + a = o?.

Theorem 1.0.10 (Gao 1993) The dual basis of a normal basis is also a normal

basis.

Proof. Let M = {a,a% a?,...,a? '} be a normal basis of F,» over F, and

N ={p,Pa, ..., B} its dual. Let

a  af .. oad! Bi Bo . Pa




Then AB = I,, and so BA = I,,. Observe that
(AB)T = BTAT = BTA = 1,,,

since A is a symmetric matrix. This means BA = BT A = I,,. Hence BT = B. It
follows that 3; = ﬁi’H. Thus N is normal basis.

O

Lemma 1.0.11 (Artin Lemma). Let Vq,..., W, be distinct homomorphisms from
a group G into the multiplicative group F* of an arbitrary field F', and let aq, ..., G,

be elements of F' that are not all 0. Then for some g € G we have

a1Vi(g) + ... + anVn(g) # 0.

Proof. Use induction on m. The case m = 1 being trivial. We assume that
m > 1 and the statement is true for any m — 1 distinct homomorphisms. Now
take Wy, ..., ¥,, and ay, ..., a,, as in the lemma. If a; = 0, the induction hypothesis

immediately produces the result. Thus a; # 0. Suppose we had
a1Vi(g) + ... + an¥n(g) =0 (1.1)

for all g € G. Since ¥; # V,,, there exists h € G with Uy(h) # ¥,,(h). Then

replacing g by hg in (1.1), we get
a1V (h)¥i(g) + ... + am Vo ()W, (g) =0 (1.2)
for all ¢ € G. After multiplication by \Ilm(h)_1 we obtain
b101(g) + o + b1 T (9) + @ Vin(g) = 0

for all g € G, where b; = ai\Ili(h)\Ilm(h)fl for 1 <i < m — 1. By subtracting this

identity from (1.1), we arrive
Cl\Ill(g) + ...+ Cmfl\pmfl(g> =0

forall g € G, where ¢; = a;—b; for 1 <i<m — 1. But ¢; = al—al\Ill(h)\IJm(h)_l +

0, and we have a contradiction to the induction hypothesis.

We want to recall a few concepts and facts from linear algebra.



Definition 1.0.12 If T is a linear operator on the finite-dimensional vector space
V' over the arbitrary field K, then a polynomial f(x) = apa™ + ...+ a1x +ag € K|x]
15 said to annihilate T if a, T+ ...+ a1 T +aogl = 0, where I is the identity operator
and 0 is the zero operator on V. The uniquely determined monic polynomial of least

positive degree with this property is called the minimal polynomial for T

The minimal polynomial for 7' divides the characteristic polynomial g(z) for T
(Cayley Hamilton Theorem), which is given by ¢g(z) = det(xI — T') and is a monic

polynomial of degree equal to the dimension of V.

Definition 1.0.13 A vector o € V s called a cyclic vector if the vectors T*a,
k=0,1,..., span V.

Lemma 1.0.14 Let T be a linear operator on the finite-dimensional vector space
V. Then T has a cyclic vector if and only if characteristic and minimal polynomials

for T are identical.

Theorem 1.0.15 (Normal Basis Theorem). For any finite field K and any finite

extension I of K, there exists a normal basis of F' over K.

Proof. Let K = F, and F' = Fm with m > 2. From Theorem 2.21 (in [1])
and remarks following it, we know that the distinct automorphisms of F over K
are given by €, 0,02, ...,0™ ! where ¢ is the identity mapping on F, o(a) = a4 for
a € F, and a power o7 refers to the j-fold composition of o with itself. Because of
ola+ ) =oc(a)+o(f) and o(ca) = o(c)o(a) = co(a) for a, B € F and ¢ € K, the
mapping o may also be considered as a linear operator on the vector space F' over K.
Since 0™ = ¢, the polynomial 2™ —1 € K[z] annihilates o. Lemma 1.0.11, applied to
€,0,0%,...,0™ ! viewed as endomorphisms of ¥, shows that no nonzero polynomial
in K[z]| of degree less than m annihilates 0. Consequently, 2™ — 1 is the minimal
polynomial for the linear operator o. Since the characteristic polynomial for o is
a monic polynomial of degree m that is divisible by the minimal polynomial for o,
it follows that the characteristic polynomial for ¢ is also given by ™ — 1. Lemma
1.0.14 implies then existence of an element o € F' such that a, o(a),0?(a), ... span

m—l(

F. By dropping repeated elements, we see that a, o(a),0?(a),...,o a) span F



and thus form a basis of F' over K. Since this basis consists of a and its conjugates

with respect to K, it is a normal basis of F' over K.



CHAPTER 2

NORMAL BASES AND COMPLEXITY

With the development of coding theory and the appearance of several cryptosystems
using finite fields, the implementation of finite field arithmetic, in either hardware
or software, is needed. These implementations based on finite field multiplications
are by the use of normal bases representation. Of course, the advantages of using a
normal basis representation has been known for many years. Actually, Hensel [14]
noticed the advantage of the normal basis representation in 1888. The complexity
of the hardware design of such multiplication schemes is heavily dependent on the
choice of the normal bases used [27]. Hence it is essential to find normal bases of
"low complexity”. This chapter aims at explaining what is meant by complexity of

a normal basis.

2.1 A Recent Result on Normal Bases

Before looking at how the addition and multiplication in Fj» can be done, we address
some further properties of normal bases which are obtained recently [3]. It is known
that when ¢ is a power of a prime p and if either m is a power of p or m itself is a
prime different from p having ¢ as one of its primitive roots, then the roots of any
irreducible polynomial of degree m and of nonzero trace are linearly independent
over Fy. (see [26]) However, converse has been recently proved by Chang, Reed,
Truong [3].

Let ¢ be a power of a prime p, and m > 2 an integer. A monic irreducible



polynomial f(z) € F,[z] of degree m is called a normal polynomial over Fy if it is a

minimal polynomial of a normal element of F,m over F,. We know from Chapter 1

that the roots of normal polynomial consist of normal basis elements and the sum of
1

this basis elements is called trace of f(x) which equals to the coefficient of —z™~!.

Let g be p". Let m = p“.k with p and k are relatively prime, in £, one has
2™ — 1= (2" = 1" = (hi(2)...he(2))""

for some distinct irreducible factors h;(z) € Fylz],i = 1,2, ...,t, where hy(z) = z—1.

Assume that h;(z) has degree d; for i = 1,2,...;¢, and let
M;(x) = (¢ —1)/hi(z)

fori =1,2,....,t. Then My(z) = (2™ —1)/hy(z) = 2™ ' +...+x+1, My(x), ..., My(z)
are the maximal factors of ™ — 1, and every proper factor of 2 — 1 divides at least
one of the these M;(x)’s.

The polynomial 37 c;z? € F[z] corresponding with the polynomial f(z) =
S o cixt s called the linearized q—associate of f(x) in Flx], denoted by L,(f(x)).

A polynomial in Fj[z] is called a ¢ — polynomial over Fy if it is of the form
cnx? + . 4 1zt + cor,

for some nonnegative integer n and ¢, ¢, ..., ¢, € Fy. Two special g-polynomials
are used here, namely,

L™ —1)=27 —ux,

and
gm () = Ly(M,) = Lq(w””“1 +..t+z+1)

SO gm(x) = 7" 429" 4 42t + 1,
We need the following propositions and lemmas to prove the main result of this

section.

Proposition 2.1.1 (Lidl and Niederreiter) The degree of any irreducible factor of
29" — x is a divisor of m, and conversely, every monic irreducible polynomial with

. . . m
degree, a divisor of m, is a factor of x4 — x.



Proof. Assume that f(x) divides 29" — z where f(z) is an irreducible poly-
nomial in F,[x]. Let @ be a root of f(z). Then a?" = «a. Hence, @ € Fym. This
means [ (a) C Fym. Therefore, deg(f(z))=[F,(c) : F,] divides [Fm : F,] = m by
Theorem 1.84 in [20].

If deg(f(x))= n divides m, then F,,, contains F,, as a subfield by Theorem 2.6
in [20]. Hence, [F(a) : F,] = n where a is a root of f(z) and so Fy(a) = Fyn. Thus,

one has o € Fjn, and a?” = a. This means that f(z) divides 27" — x.

O

Proposition 2.1.2 (Chang, Truong, Reed and Mullen) Let f(x) € F,[z] be a
monic irreducible polynomial of degree d, with d|m. Then

(i) f(z) divides g (x), if Tr(f) = 0.

(i1) f(x) divides g,(x) if and only if p divides m/d, provided Tr(f) # 0.

Proof. See [4].
O
Proposition 2.1.2 shows that every monic, trace zero, irreducible polynomial

with degree, a divisor of m, is a factor of g,,(x), though its converse is not true.

Corollary 2.1.3 (i) If m is relatively prime to p, then every irreducible factor of
gm(x) has trace zero.

(ii) Every m-th degree irreducible factor of g, (z) has trace zero.

Consider; r € Fy,

I;(m) = the product of all monic, trace-r, irreducible polynomials in F,z] of
degree m,

and

Nj(m) = the number of all monic, trace-r, irreducible polynomials in Fy[z] of
degree m,

We have the following properties of N7 (m), which we give without proof and refer

the reader to [4].

Proposition 2.1.4 (Chang, Truong, Reed and Mullen) For any positive integer m

and for any nonzero r € Iy one has

Nim) = Ny (m).

q



Moreover, if m is relatively prime to p, then one has

NJ(m) = N, (m) = 7711 > u(d)g™ T,

dlm

1 ifn=1,
p(d) =3 (=1)F if d is the product of k distinct primes.
0 if d is divisible by the square of a prime.

called Moebius function.

If m is a multiple of p, then for any r € F,, one has

r 1 m/d— m
Ny(m) = — > p(d)(g™ " = bdorq™™),
m d|m
(d,p)=1

where 0 is the Kronecker delta function.
Now, we can state and prove the main theorem.

Theorem 2.1.5 (Chang, Truong, Reed 2001) Let q be a power of a prime p and
m a positive integer. If every m-th degree irreducible polynomial of nonzero trace is
normal over Fy, then m is either a power of p or a prime number different from p

that has q as a primitive root.

Proof.
Let m = p“k with ged(p,k) = 1. Suppose the contrary that m is neither a power of
p nor a prime number different from p that has ¢ as one of its primitive roots; i.e.,
m is not a positive integer as assumed in Theorem 2.1.5. Then we show that there
exist m-th degree irreducible polynomials of nonzero traces which are not normal
over Fy.

Under the above conditions on m, let h(x) be an irreducible factor of ™ — 1

other than x — 1 but with the smallest degree d. Then 1 < d <m — 1, and
M(z) = («" = 1)/h(z)

is a maximal factor of 2 — 1 and deg(M (x)) = m —d. Let g(x) denote the greatest
common factor of M(x) and M;(z) = 2™ '+ ...+ 2+ 1. Then

g(x) = (2™ = 1)/((x = Dh(2)),



and the degree of g(x) is m — (d + 1). Because g(x) divides M(z), L,(g) divides
L,(M). Let

M*(z) = Lqy(M)/Lq(g)-
Then M*(xz) and L,(g) are relatively prime as both L,(M) and L,(g) have no
repeated factors.

The following lemmas will be used in the proof of Theorem 2.1.5.

Lemma 2.1.6 (Chang, Reed, Truong) (i) M*(x) has no irreducible factor of trace
zero.

(i1) Any mth degree irreducible factor of M*(x) of nonzero trace is not normal.
(iit) deg(M*(x)) = (q — 1)g" """

Proof. (i) When f(x) is an irreducible factor of M*(x), f(z) divides L,(M),
and the degree of f(z) is a divisor of m by Proposition 2.1.1. When the trace of
f(x) is zero, f(x) divides g,,(x) by Proposition 2.1.2 and so f(z) is a factor of
P(x) =gcd(Ly(M), gm(x)) which is a ¢ polynomial. Therefore, L¢(P) divides both
M (x) and L{(gm) = Mi(x). This means Lg(P) divides ged(M (x), My(x)) = g(x).
This implies that P(z) divides L,(g). Hence, f(x) is a factor of L,(g) and so a
common factor of M*(z) and L,(g), which is a contradiction.

(ii) As M*(x) divides L,(M), every factor of M*(x) has a ¢ polynomial multiple
L,(M), which is not normal.
(i) deg(M*(2)) = deg(Ly(M))-deg(Ly(g)) = g™ — g™ = (g — 1)gm".

O

Lemma 2.1.7 (Chang, Reed, Truong) (i) If m is not a prime and 0 is the smallest
prime factor of m different from p, then
deg(M*(z)) = (¢ = 1)g" "
(i1) If m is a prime number different from p and q not a primitive root of m, then
deg(M*(x)) > (¢ — 1)¢".

Proof. We want to remember the the concept of cyclotomic polynomial. The

polynomial

Qn(x) = H (x - fs)
gcdsz,ln):1



is called the nth cyclotomic polynomial over the field F' where £ is a primitive n-th
root, of unity over F' and the characteristic of F' does not divide n. Then we have
Qn(z) = [lgpm Qal(r) = 2™ — 1 by Theorem 2.45 in [20].
(i) Qo(x) divides 2™ — 1 as O8|m. Therefore, d = deg(h(z)) < deg(Qp(x)) < 6 — 1.
Hence, deg(M*(x)) > (¢ — 1)g™".
(ii) h(z) is a factor of @, (x) and @,, () can be factored into (m—1)/d distinct monic
irreducible polynomials of the same degree d by Theorem 2.47 in [20]. Since ¢ is not
a primitive root of m, r = (m — 1)/d > 2. Hence, deg(M*(z))=(q — 1)g™ V4 =
(@=1)g" V"= (¢—1)d.
O

Therefore, Theorem 2.1.5 will be proved once we show that M*(x) has some
mth degree irreducible factors of nonzero trace; by Lemma 2.1.6 (ii) those factors
are not normal.

. m
Note that, we can factorize ¢ — x as

o = (Hfsw)- I Hf;<d>)

d|m djm reFy

= (H fg(d)) NI RAGIE (H fé"(m)) -
dlm d|m TGF; T’EF;
(d;p)=1

= (I)- (I1) - (1)

Since by Lemma 2.1.6(i) each irreducible factor of M*(z) has a nonzero trace,
such a factor must appear in either (II) or (IIT). If the number of distinct irreducible
factors of M*(x) is more than that in (II), then M*(z) has at least one factor
coming from (III). Since 29" — x has no repeated factor, M*(z) also has no repeated
factor. Hence, to prove that M*(z) has more irreducible factors than product (II)
is equivalent to showing that the degree of M*(z), i.e., (¢ — 1)g™ %7}, is greater
than the degree of (II). In this case, then M*(x) has at least one factor coming from
(III), i.e., an m-th degree irreducible factor f(x) of nonzero trace. According to the
Lemma 2.1.6(ii), f(x) is not normal. Hence, we must show deg(Il) < deg(M*(z)),
and indeed by Lemma 2.1.7 show deg(II) < (¢ — 1)¢™ %, where 6 is the smallest

prime divisor of m.



Observe that, the degree of (III),
deg ( H ];(m)) = Z deg(]g(m)) =m- Z Ng(m)
reky reky rely
can be simplified. Since by Proposition 2.1.4, the degree of (III) becomes
m- Y Nj(m)=m-(qg—1)-N,(m).
rekly

Therefore, we can obtain
deg(IT) = ¢™ — deg(I) — m(q — 1)N, (m).

Obviously, we must determine the degree of (I) and the value of N (m), with
both numbers depending on the whether m is relatively prime to p or not.
If m is relatively prime to p, then by Proposition 2.1.2 and Corollary 2.1.3, (I)
= gm(z), and the degree of (I) is ¢"!. Indeed, by Proposition 2.1.4
JWM=;;MMWW

Therefore,
deg(Il) = ¢™ — deg(I) —m(q —1)N,(m)

b (qm — Zu(d)qm/d) :

q dlm
Using an unpublished result of Chang (see [4]), we can conclude that

1
deg(IT) < L= 2. gm0 < (g — 1) - g™,
q

where 6 is the smallest prime factor of m.

If m # 6, then m — 0 > %, and so
deg(IT) < (g —1)-¢™°.

If m = 0 then deg(Il) = ¢ — 1 and deg(M*(z)) > ¢— 1, so, deg(Il) < deg(M*(z)).
If m is a multiple of p, e.g., m = p"k, u > 1, then deg(I) can be determined in

the manner shown next. Since

<nznwwzﬁ(ﬂmmﬂ,

dlm i=0 \d|k



deg(I) ZZdeg Iopd :ZZpZd Nopd

i=0 d|k i=0 d|k
It follows that
deg(1I) —> > p'd- N)(p'd) — m(q — 1)N, (m).
=0 d|k

To determine the numbers NJ(m) and N;(m), we can use the Proposition 2.1.4.
The upper bounds for the degree of (II) are obtained in [3]:
If 0 is the smallest divisor of k, then

—-1
(i) deg(II) < 2-¢q™%+1—= p 2. g™/, (2.1)

(i1) deg(IT) < 4-¢™% where 6" = min{p,0}. (2.2)

Therefore, we should only treat the cases p = 2 and p > 3. If p = 2, then one
has 8 > 2 and m > 20. When m = 260, use Lemma 2.1.7

deg(M*(2)) = (2 — 1)2-0 = 2,
and using Lemma 2.1.4, we can obtain
deg(IT) < 2771 4 3.

This means that deg(M*(x)) — deg(Il) > 2°~! — 3, so it follows that deg(M*(z)) >
deg(II) since # > 3. Otherwise, m > 26 and thus m > 6. Then by Lemma 2.1(i),

one has deg(IT) < 2™/2*!. Since m > 20 and m is even, m — 6 > 2 4 1. Hence,
deg(IT) < 2m/2t1 < 9m=0 — (2 — 1)2m~?

as required.

If p > 3, one has by Lemma 2.1(ii) that
deg(IT) < 4 -p™/?" < 2. pm/O+1,
Since (m — ) — g+ > 1 for either 0" = p or #, one has finally that
deg(Il) < 2- qm/9*+1 <2 que <(g—1)- qua

which proves the Theorem 2.1.5. O



2.2 Arithmetic in Finite Fields and Normal Bases

Let us look at how the addition and multiplication in Fy» can be done in general.
We view Fyn as a vector space of dimension n over Fy. Let ag, ay, ..., a,—1 € Fyn be

linearly independent over Fj,. Then every element A € F» can be represented as

n—1

A= Z a;, a; € Iy,

i=0
Recalling that Fj» can be regarded as a vector space over Fy, so, it can be identified
as F,", the set of all n-tuples over F, and A can be written as A = (ag, a1, ..., @p—1).
Let B = (bg, b1, ..., by—1) be another element in Fj». Then addition is component-
wise and is easy to implement. Multiplication is more complicated. Let A.B = C =
(co, 1,y cn1). We wish to express the ¢;’s as simply as possible in terms of the

a;’s and b;’s. Suppose

n—1
vy =y tgf)ozk,tl(-f) € F,. (2.3)
k=0

Then it is easy to see that

ij

Cp = Zaibjt(k) =AT,B',0<k<n-1,
i?j

where T}, = (tgf)) is an n X n matrix over F, and B’ is the transpose of B. The
collection of matrices {T}} is called multiplication table for Fy over F.

Observe that the matrices {T;} are independent of A and B. If n is big then
this scheme is impractical. Fortunately, there are many available bases of Fi» over
F,. For some bases the corresponding multiplication tables {7} } are simpler than
others in the sense that they may have fewer non-zero entries or they may have
more regularities so that one may judiciously choose some multiplication algorithm
to make a hardware or software design of a finite field for large n. For instance, gen-
eralizations [15, 22, 31, 36] of bit-serial multiplication scheme using dual bases are
used. However, we give the Massey Omura Scheme [21] which uses the symmetry
of normal bases.

At this point, we will see the advantage of using normal basis representation. Let
{a, a1, ..., a5,_1} be a normal basis of Fy» over Fj, where a? = q;. Then a;4" = itk
for any integer k, where indices of o are reduced modulo n. Let us first consider

the operation of exponentiation by q.



n—1 q n—1
(Z ai%) = Z A%+
=0 i=0

and

q”l
a, =al! = qp.

The element A? has coordinate vector (a,_1,ag,ay,...,a,—2). That is, the co-
ordinates of A? are just a cyclic shift of the coordinates of A, and so the cost of
computing A7 is negligible. Computing ¢-th roots is a cyclic shift in the reverse
direction. Consequently, exponentiation using the repeated square and multiply
method can be speeded up, especially if ¢ = 2. This is very important in the im-
plementation of cryptosystems as the ElGamal cryptosystem [6] and Diffie-Hellman
key exchange [5] where one needs to compute large powers of elements in finite
fields.

Let the tz(f) terms be defined by (2.1). Raising both sides of equation to the

¢ 'th power, one finds that

@ _ 40
tij = tu—ij-

forany 0 <4,7,0 <n—1.
Thus each term of C'is successively generated by shifting the A and B vectors, and
thus C' is calculated in n clock cycles. The number of required gates equals the
number of non-zero entries in the matrix 7. Clearly, to aid in implementation, one
should select a normal basis such that the number of non-zero entries in 7T is the
smallest possible.
Let
n—1
aq; =Y toy,0<i<n—1t;€F, (2.4)
j=0

Let n x n matrix (¢;;) be denoted by T'. It is easy to prove that

k
ty =t s,
for all 7, 7, k. Therefore, the number of non-zero entries in 7T is equal to the number
of non-zero entries in 7T". Since the matrices {7}, } are uniquely determined by 7', we

call T' the multiplication table of the normal basis N.



Definition 2.2.1 The number of non-zero entries in T is called the complexity of

the normal basis N, denoted by cy .
The following theorem gives us a lower bound for cy.

Theorem 2.2.2 (Mullin, Onyszchuk, Vanstone 1988) For any normal basis N of

Fyp over Iy, ey > 2n —1

Proof. Let N = {ag,a1,...,a,—1} be a normal basis of Fj» over F,. Then
n—1
b=> o, =Tr(a) € F,
k=0
Let
n—1
ao; = Z tijOéj.
j=0
Summing up these equations and comparing the coefficient of oy we find

nftz‘j e
i=0 0, 1<57<n—-1.
Since «a is nonzero and {aq; : 0 < i < n — 1} is also a basis of Fyn over [, the
matrix T = (t;;) is invertible. Thus for each j there is at least one nonzero t;;. For
each j # 0, in order for each column j of T to sum to zero there must be at least
two nonzero t;;’s. So there are at least 2n — 1 nonzero terms in 7', with equality
if and only if the element o occurs with a nonzero coefficient in exactly one cross
product term acy; (with coefficient b) and every other member of N occurs exactly
two such products, with coefficients that are additive inverses.
O
Let us look at the dual of the normal basis to use the multiplication of the field

elements. That is, we want to understand whether there is an advantage of using

the dual basis of a normal basis for multiplication or not.

2.3 Complexity of Multiplication with Dual Normal Bases

In this section, the role of dual bases in normal basis multiplication in Fj. is ex-
plored. The structure of normal basis multipliers can be made more precise by this
approach. In particular, the explicit use of dual normal bases or self dual normal

bases do not reduce the complexity of normal basis multiplication [11, 12, 13].



Lemma 2.3.1 (Geiselmann, Gollmann, 1991) Let A = {g, a1, ..., n—1} and {Bo,
Bry oy Bu-1} be dual bases of Fyn. Then we have for any u € Fyn

n—1 n—1
u=">Y Tr(Bu)a; =Y Tr(au)b;.
i=0 J=0

Proof. Let u be a represented with respect to the basis A by

n—1
u = Z U; 0.
=0

Then

n—1
Tr(Bru) = Z w; Tr(Bray) = .
i=0
O
Weakly self dual bases can be characterized by a (pseudo)-symmetry of the

representations of the products of basis elements.

Theorem 2.3.2 (Geiselmann, Gollmann 1991) Let A = {ag,aq,...,an_1} be a
basis of Fyn. The following propositions are equivalent:
(i) The basis A is weakly self dual.

(i1) There exists a permutation 7 of indices {0,1,....,n — 1} so that
(k) = (antn()),;
foralli,j,k, 0<1i,75,k<n.

Proof. Let {f, 1, ..., Bn_1} be dual basis of A. Assume that A is weakly self
dual. Then, by Lemma 2.3.1,

(@) ; = Tr(wom B;) = Tr(akanyom()) = Tr(akan) fi) = (araxg)),;
for all 4, j,k,0 <4, j,k < n. So (ii) holds. Conversely, we get from (ii) for i = 0 and
for all j,k,0 < j, k < n, Tr(owor0)5;) = tr(awaxjB). Hence
tr(a(arobj — an(b)) = 0,

for all k£, 0 < k < n.
Then from fact that the number of elements in v € Fi» such that Tr(y) = a for

every a € Fy, is ¢" ' implies a(0)5; = or(5y00 and B; = vy with v = Bo/ax(0).



O

Multiplication is more difficult as the products a;«; are, in general, not elements

of the normal basis. We know from previous section that, in Fb», the cost of normal
basis multiplication is measured by apa; in the normal basis. Various architectures
for normal basis multipliers have been suggested. Multipliers with serial output are

derived from the following observations. We get for u € Fyn

{u'}, ) = tn1,

0<i<n.
To obtain w = u.v we thus only require a mapping £’ : Fin X Fyn — Fj, with

F(u,v) = w,_1. The remaining coefficients of w follow with

Wp_1—; = (wqi)n_1 = Fu,v?).

For F,n, this architecture has become known by the name of its inventors, as the

Massey-Omura multiplier. We have

n—1 n—1 n—1 n—1
Wp—1 = (Z Uz‘%‘) Z v = Z ui p_vjlasag), .
i=0 j=0 '

n—1

Using the symbol F' also for the symmetric n x n matrix F' = (;;) over F,, given by

Pij = (Oéz‘aj)n,p (2-5)

we can write F'(u,v) as F(u,v) = 4.F.vt, with
U ::(Uo,ul,.“./un,1>@ ::(vg,vl,.“.,vn,l) (2.6)

where the vector vt is the transpose of v.

Multipliers with parallel output are based on the following transformations of the

n—1 ) n—1 )

g J

TR <§ uiaq> E vt
i=0 j=0

i

n—1 n—1 o a
J—1i
= Y ufa X v
1=0 j=0

product u.v



i
n—1 n—1 ) q
¢
= D w| .y via
1=0 7=0
n—1—t

n—1 n—1 ) a
_ q’
= D Up_i| @Y v
t=0 =0

In both equations, the outer index counts time steps while the inner sum repre-
sents a power of v that will be replaced at the next time step by its ¢g-th power or
its g-th root. At each time step a coeflicient of u is read in, the current power of v
is multiplied by a and the current coefficient of u. The resulting value is added to
the intermediate result. Multiplication is again reduced to computing g-th powers
and roots, and multiplication by .. The multiplication a..v can be written as vTaf,

where T = (t;;),t;; € Fy, t;j was defined in the equation 2.4 and
a = (Oz07 A,y ..., Oén_l).
We now examine the multiplication matrices F' and 7. Lemma 2.3.1 gives

F(u,v) =w,—1 = Tr(G,_1.u.v)
wij = Tr(Bh1ciay)

tij = Tl"(ﬂjOéoOéi)

Theorem 1.0.2(v) implies

n—i

Tr(Bp-10ucy) = Tr((Bp1cuy)? ) = Tr(Bu_i—1000-4),
and thus

Lemma 2.3.3 The matriz F' = (y;;) of the Massey-Omura multiplier and the ma-
triz T' = (t;;) are related by
Pij = tj—in—i-1

where indices are computed modulo n.

Let o define a normal basis of Fj;». We know from Theorem 1.0.7 and Theorem
1.0.10 that every normal basis has a dual basis and the dual basis of a normal basis
is again a normal basis, generated by some element 3. Using this result, we proceed

to give a new interpretation of the matrix F' of the Massey-Omura multiplier.



Lemma 2.3.4 (Geiselmann, Gollmann 1991) Let o and B generate a pair of dual
normal bases of Fyn. Let the vector u and the matriz F be defined (with respect
to a) as in equations 2.5 and 2.6 Then the multiplication u.F gives the dual basis

coefficients of B,_1.u.

Proof.  The dual basis coefficients of f,1.u are (8,-1.u); = Tr(a;B,-1u),

hence

n—1 n—1 n—1
(ﬂn—l-u)j =Tr (%ﬂn—l Z uz’%‘) = Z UiTT(Oéjﬂn—lai) = Z Ui Pij-
i=0 i=0 i=0

The computation of @.F' can be seen as the transformation © — 3, _;u with a change
of basis representation. The subsequent multiplication (@.F).vt is the computation
of Tr(B,_1uv), where 3, ju and v are given in dual bases.

O
Next we apply Theorem 2.3.2 to normal bases and obtain a simplified proof and

extension of a theorem on self-dual normal bases.

Theorem 2.3.5 (Geiselmann, Gollmann 1991) Let « generate a normal basis N
of Fyn. Let the matriz T is the multiplication matriz. Then N is self-dual if and

only if T is symmetric and Tr(a?) = 1.
Proof. We have t;; = Tr(f;apc;). Assume first that N is self-dual. Then
tij = Tr(ﬂj()éoOéi) = TI'(CYJ'O(()CI{I') = Tr(ﬁiozoaj) = tjz'a

and

Tr(a®) = Tr(af) = 1.
Conversely, assume that 7" is symmetric. Then
bn—in—it1 = In—it1n—i

and

thoim—it1 = Tr(Bniricoon—i) = Tr(asa0f1)

thoivin—i = Tr(Bn_icon_iy1) = Tr(a0q )



imply, as in the proof of Theorem 2.3.2, apf3; = a1, and hence 3/a = (3/a)’.
Therefore 3 = v.a with v € F,. Finally, v.tr(a?) = 1 so v = 1 if and only if
Tr(a?) = 1.

O
Theorem 2.3.6 (Geiselmann, Gollmann 1991) Let N be a normal basis of Fan.
The following statements are equivalent:
(i) N is self-dual.
(i) The matriz T is symmetric.

(111) For all i > 0 the number of nonzero entries in the i-th row of T is even.

Proof. We only prove the equivalence of the first and third condition. Consider

that Tr(agay) is just the i-th coefficient of the representation of ag in the dual basis.

Therefore
n—1 n—1
TI‘(O./()OQ') = Z tl‘jTI‘(O[j) = Z tij = |{]|tl] 7é 0}| mod 2.
j=0 J=0

I{jlt;j # 0} = 0 mod 2 for all i > 0 implies & = . Conversely, for a self-dual

normal basis we have
0 = Tr(apy) = |{j|ti; # 0}| mod 2.

O

Finally, we investigate the potential benefits of employing dual normal basis

in a multiplier for F», defining the complexity of normal basis multiplication in
previous section.

Let oo € F;» generate a normal basis and 3 the respective dual normal basis.

Represent u with respect to o and v and w = u.v with respect to 5. We get
wWp—1 = Tr(o,—1.u.v)

To take advantage of duality of the bases in computing Tr(a,_1.u.v), we write
a,_1.u.v as the product of two elements represented in dual bases. The two options
are (a,_1u).v or (Q,_1v).u

In the first case, a,,_1u has to be given in the basis generated by a and we require

the coefficients

(anlaj% = Tr(ﬁianfloéj) = Pn—i—2,j—i—1-



In the second case, «,,_1v has to be given in the basis generated by  and we require

(an—lﬁj)i = TI‘(O[Z'Oén_lﬁj) = Pp—j—2i—j—1-

In both cases we return to the main problem of normal basis multiplication, i.e.
the representation of the elements aga; in the normal basis. If the complexity of
multiplication with a pair of dual normal bases is again defined as the number of

nonzero coefficients in (cay,—1c;), or (a,—103;),, then the following theorem holds.

Theorem 2.3.7 (Geiselmann, Gollmann 1991) The complexity of multiplication

with a pair of dual normal bases is the same as the complexity of standard normal

basis multiplication.

2.4 Complexity of Normal Basis for Fom. over Fj

In what follows, we give the relation between the complexities of normal bases for
extensions of Fj.

In particular, we study multiplication in fields of the form Fymn» where n and m
are relatively prime, m > 2, n > 2 also. Specifically, we show that normal bases
of Fym and Fyn of respective complexities ¢); and ¢y can be combined to give a

normal bases for Fymn of complexity cprcpn.

Lemma 2.4.1 Letm > 1,n > 1 be two relatively prime integers. Let By = {a;|0 <
i <m—1} and By = {(3;]0 < j < m — 1} be bases, respectively, for Fom and Fon
over Fy. Then B = {a;3;]0 <i<m —1,0 < j <m—1} is a basis for Fomn over

FE5. Moreover, if By and By are normal bases, then so is B.

Proof. Let
A= {Z Zaij&iﬁj\azj € Iy},
i
then A is a subring of Fymn, hence automatically a subfield, say Fyx. Since Fon C Fyr
and Fym C Fye, it follows that m|k and n|k, hence mn|k and so k = mn. Since
dimension of Fymn over Fy is mn, the result follows.
Next suppose o; = a2 and B = 7 0<j<n-—10<i<m-1, then

(@B)? = a® 3" where k in a®" may be reduced modulo m and & in 52 may be



reduced modulo n. Hence, (aﬂ)Qk is of the form a2’ 3% ,0 < j <n—1,0<i < m—1.
To complete the proof, we need only show that the smallest positive integer k for
which (aﬁ)2k = aff is mn.

If (af)% = af, then o' = (371)2"~! € F, since intersections of Fym and Fyn
is Fy. Hence o2~! = #2~! implies that 42°~! = 1 and so if M is the order of a,
then M|2*F — 1. But the smallest positive integer [ such that M|2! — 1 is m and so

mlk. Similarly, we can show n|k and so mn|k and then we are done.

Corollary 2.4.2 (Seguin [28], Semaev [29], Jungnickel [18])Let mn > 1,
ged(m,n)=1, {a*]0 < i <m—1} , {¥|0 < j < n—1} be normal bases, respectively
for Fom and Fyn. Then a3 generates a normal basis for Fomn over Fy with complexity

cun(af) = eu(@)en(B).

Proof. Let
5% = Zv )%

2t 97 (k) ok
a”a” =3 Aja

k

and let Ay = ()\Z(-?), I, = (7). Multiplying left hand sides of the equations and

7,8

equating the products, we obtain

u(%,r) v(g,s) i r j s k l
(@B (@f)*"" = o®pTa?pT = ZZ/\” iha® B2
. 24:(k 1)
- Z Z )\z ,J 77“ s

where (a3)2"“"” = a2 3" etc. Look at the number of ones in the A* ) %fg that occur
as ¢ rrunover 0,1,....m —1 and j, s runs over 0, 1,...,n — 1. But this is the clearly
the product of the matrices Ay and I';, hence cyrn(af) = ey(a)en(F). In fact the

elements )\z(fj-)fy(l) define an mn x mn matrix, which is the usual tensor product of

Ak and Fl.



CHAPTER 3

OPTIMAL NORMAL BASES

We recall here that ¢y > 2n — 1 for any normal basis N for Fi» over F,. (Theorem
2.2.2) In view of this fact, normal bases with the smallest complexity are called

optimal. In other words,

Definition 3.0.3 A normal basis N is optimal if cy = 2n — 1.

3.1 Constructions

Theorem 3.1.1 (Mullin, Onyszchuk, Vanstone 1988) Suppose that Fyn contains
(n 4 1)st roots of unity. If the n nonunit roots of unity are linearly independent,

then Fyn contains an optimal normal basis.

Proof. Let 8 denote a primitive (n + 1)st root of unity in Fpn. Then the
conjugates of 3 are 32,3, .. """ Since N = {3,467, ,....,3"" '} is linearly

independent , it is a normal basis for Fj,». But N is the set of zeros of

that is N is the of n nonunit roots of unity in F,». Let By = 3, and 3; = i
1 = 1,2,...,n — 1. Recall that the number of nonzero terms in the bilinear form

for ¢p is also the number of nonzero terms in the expansion of the set {Gyf; : i =

0,1,..,n — 1} in the basis N. But if 8; # 85" , then Bo3; = B; for some exponent j



(depending on i) whereas
n—1
BolBy ' = > B
i=0
Hence there are 2n — 1 nonzero terms in the expansion, and N is optimal.

|

Theorem 3.1.2 (Mullin, Onyszchuk, Vanstone, Wilson, 1988, [24] ) The field Fyn
contains an optimal normal basis consisting of the nonunit (n + 1)st roots of unity

if and only if n+ 1 is a prime and p is primitive in Z,1.

Proof. If n+1isa prime, then n+1 divides p” —1 and F)» contains a primitive
(n + 1)st root of unity . Since p is primitive in 7,1, the minimal polynomial of
0 is
"t —1
r—1
and the nonunit (n + 1)st roots are linearly independent. Conversely if these roots

are independent in Fy» then p has order n modulo n + 1 and n + 1 is prime.

Theorem 3.1.3 (Mullin, Onyszchuk, Vanstone, Wilson, 1988, [24]) If either

(1) 2 is primitive in Zopy1 , OT

(2) 2n + 1 is a prime congruent to 8 modulo 4 and 2 generates the quadratic
residues in Lopi1,

then there exists an optimal normal basis in Fon.

Proof. Since 2n + 122" — 1, there exists a primitive 2n + 1st root of unity, 3
in Fon. Let v =3+ 3L
Since 2" = 41 mod (2n + 1), either 37! = 32" or B = 3*". Now

=B+ ="+ =0+8" =1

Hence, v is an element of Fy.. Our claim is:

(n—1)
N={y,7* ... '}

is an optimal normal basis of Fon. If



then
n—1 ) .
SNBF+B)=0
i=0
Now since either 2 is a generator of the multiplicative group of Z(s,, 1) or 2 generates

the quadratic residues of Z(3,41) with 2n +1 = 3 mod 4

n—1 ) . n—1 . n—1 _ 2n
Z N(B+ B = (Z )‘iﬂT) + (Z /\zﬂQl) = Zujﬁj
=0 1=0 =0 j=1

where each \; occurs in {uy,us, ..., us, }. Therefore (3 is the zero of the polynomial

2n—1

fX)=3% uja X"
i=0

Since f(#)=0, the minimal polynomial of 3, mg(X), divides f(X). If hypothesis
(1) holds then
mp(X) =1+ X+ X*+ ...+ X"

Since mg(X)|f(X) we conclude that f(X) = 0 and all \; = 0. If hypothesis (2)

holds then mg(X) has degree n as does mg_;(X) and
X2 1 = (X = D)mg(X)mg-1(X).

But mg(X)|f(X) since f(8) = 0 and mg-1(X)|f(X) since f(57') = 0 and hence,
1+ X+ X%+...+X?*|f(X) implying that f(X) = 0 and that all A\; = 0. Therefore,

N is a normal basis for Fy.. The cross product terms are

FR = )E )

_ (ﬁ2i+2j+5_(2i+2j))+(5(2i_2j)+5_(2i+2j))-

Now 2 is primitive modulo 2n + 1 then each nonzero residue has the form 2% for
some integer k satisfying 0 < k < 2n — 1, whereas if 2 generates the quadratic
residues modulo 2n + 1 and 2n + 1 is congruent to 3 modulo 4, then each nonzero
residue has the form of either 2¥ or —2* for some integer k satisfying 0 < k < n—1.

Therefore if 2° # 27 mod(2n + 1) then there exist integers k; and ky such that
2 +2/ = 42h

and

9l _ 9J — 4ok



for at least one choice of the + or - sign in each case. In this event,
P =+

But, if 2! = 427, then one of 2! + 27 is not zero modulo 2n + 1, and so there exists

a k such that at least one of the equations

20+2 = 2%
2042 = 2k
20 -2 = 2K
20— 21 = _9F

is satisfied. In this case, since we are in the field of characteristic 2,

72i 72J’ _ 72’@ '

Let v; = 'yQi for i =1,...,n — 1. Then, since 72 = =, there at most 2n — 1 terms in
the expansion of the set {7p,7;} in terms of the basis N, and so there are precisely
2n — 1 such terms and NV is an optimal normal basis.

O

Definition 3.1.4 Let N = {a, a4, ..., aqnfl} be a normal basis of Fyn. Let oy = ad'
fori=1,...,n—1. The basis N will be said to be type-1 if with the exception of one
value of i, there exists an integer k; satisfying 0 < k; < n —1 such that apo; = a,.
The basis N is said to be of type-1I if, for every i satisfying 1 < 1 < n — 1, there

exists integers k; and m; such that
Qo0 = Q, + Qi

Therefore, every optimal basis obtained from using Theorem 3.1.1 is a type-I basis,
and every optimal normal basis constructed by the methods of Theorem 3.1.3 is a

type-1I basis.

Lemma 3.1.5 (Ash, Vanstone, Blake, 1989, [1] ) Let k and n be integers such
that nk + 1 is a prime, and let the order of ¢ modulo nk + 1 be e. Suppose that
ged(nk/e,n) = 1. Let T be a primitive k-th root of unity in Z,ky1. Then every
nonzero element v in Z,.+1 can be written uniquely in the form

r=71¢,0<i<k-1,0<j<n-1.



Proof. Let e; = nk/e. There is a primitive element ¢ in Z},,, such that
q = g°*. As the order of g is nk and the order of 7 is k, there is an integer a such

that

T=9"" ged (a, k) = 1.

Suppose that there are 0 <i,s <k —1,0 < j,t <n —1, such that
¢’ = 7°¢'(mod nk + 1),

ie.,

\]
Il

=% = ¢ (mod nk + 1)
g% = ga1=I) (mod nk + 1).

Then

na(i — s) = ey (t — j)(mod nk).

As ged(n,eq)=1, the last equation implies that n|(¢ — j). Hence t = j. Thus,
a(i — s) = 0(mod k).
But ged(a, k)=1, so k|(i — s). Therefore i = s. This proves that
7'¢’(mod nk +1), i=0,1,...,k—1; j=0,1,..,n—1

are all distinct. As 7'¢ not congruent to 0 modulo nk + 1, every nonzero element
in Z,,+1 can be expressed uniquely in the required form.

O

Theorem 3.1.6 (Wassermann 1989, [37] ) Let q be a prime or prime power, and
n and k be positive integers such that nk + 1 is a prime not dividing q. Let 3 be a
primitive nk 4 1th root of unity in Fyr. Suppose that ged(nk/e,n)=1 where e is the
order of ¢ modulo nk + 1. Then, for any primitive k-th root of unity T in Zpki1,

k=1

a= Z 67

i=0

generates a normal basis of Fyn over F, with complexity at most (k + 1)n — k, and

at most kn — 1 if k =0 (mod p), where p is the characteristic of F,.



Proof. We first prove that a € Fyu. Since ¢"* =1 (mod nk + 1), ¢" is a k-th

root of unity in Z,;,1. Thus there is an integer m such that ¢ = 7. Then

k-1 k—1 v k=1
n 1 ,m i+m i
aq = E /BT q —= E ﬁ’l’ —= E ﬁT = (X

Therefore o is in Fiyn.
We next prove that a,ad, ..., a?" are linearly independent over F,. Suppose

that
n—1
Z/\oﬂ —Z)\ Zﬁ” =0, \ € F,.

Note that there exist unique u; € Fy, @ = 1,2, ..., kn such that the following holds

for all 2n 4 1-th roots v of unity:

n—1k—1 nk—1
)DL —Zuﬂ —vZujm,
=0 5=0

since, by Lemma 3.1.5, 7°¢ modulo nk + 1 runs through Z%, , for j =0,1,...,k—1

and 1 =0,1,....,n— 1. Let
nk—1

= Z u]‘+1$‘j.
j=0
For any 1 < r < nk, there exist integers v and v such that r = 7%¢". As (" is also

a nk + 1-th primitive root of unity,

v

BrBT) = i Z ()" nZA(ZﬁT“W) ,

i=0
n—1 k-1  \?
= [T Ay
i=0  j=0
0.

Therefore 5" is a root of f(x) for r = 1,2, ..., nk, hence

v

nk xnk-{—l _ )
— r = = n 1
TI;II($ B — ™4+ T+

divides f(x). But f(x) has degree at most nk — 1, and so this is impossible. Thus

n—1 . . .
a,09, ...,a?  must be linearly independent over [, and thus form a normal basis

of Fin over Fy.
Next we compute the multiplication table of this basis. Note that for 0 < i <

n—1,

k—1k-1 k—1k-1

Oé'Oéqi _ Z Z/STU—"_TUQi _ Z ZﬂTU(H_TU_u q) Z (Z ﬁT (1+71vq¢ ) )

u=0 v=0 u=0 v=0 v=0



There is a unique pair (v, ip), 0 <wvg <k —1, 0 <ig < n — 1 such that

1+ 7%¢" = 0(mod nk + 1).

If (v,4) # (vg,4p), then 1 +7%¢* = 7¥¢’ (mod nk +1), for some 0 <w <k —1, 0 <

7 <n-—1,and

k—1 , k-1 , k-1 @ ,
Z ﬁr"(l-l-'r”qz) — Z ﬁTu+qu _ (Z ﬁv’“) _ aqj.
u=0 u=0 u=0
If (v,1) = (vo, 7p), then
k—1
Z ﬁ’r“(l-}-f”qi) _ ]{7,
u=0
which is 0 if £ =0 (mod p). So for all i # iy, the sum
k=1 /k—1 ,
Z <Z BT“(Hﬂr”qz))
v=0 \u=0
is a sum of at most k£ basis elements. Therefore the complexity of the basis is at
most (n — 1)k+n=(k+1)n—k. If k=0 (mod p) and i = iy, then
k=1 /k—1 ,
Z <Z BT”(l-&-T”ql))
v=0 \u=0
is a sum of at most £ — 1 basis elements. Therefore if & = 0 (mod p) then the
complexity of the basis is at most (n —1)k+k —1 = kn— 1. The proof is complete.
(]
As special cases of Theorem 3.1.6, when k£ = 1 we obtain Theorem 3.1.1, and
when k£ = 2 and ¢ = 2 we have Theorem 3.1.3. When ¢ is odd, £ = 2, it is easy to
see that the complexity of the normal basis generated by the o in Theorem 3.1.6
is exactly 3n — 2. The exact complexity is in general difficult to determine. Some

special cases are treated in the following theorem ([1]) which we give without proof.

Theorem 3.1.7 (Ash, Blake, Vanstone, 1989, [1]) Let ¢ = 2. Then the normal

basis generated by the o of Theorem 2.2.5 has complexity

(a) 4n — 7 if k =3,4 and n > 1;
(b) 6n —21 ifk=5,n>2o0rk=6n>12;
(c) 8 —43 if k=7, n > 6.



3.2 Determination of Optimal Normal Bases

We have seen two constructions of optimal normal bases. A natural question to ask
is whether there are any other optimal normal bases. Lenstra [19] proved that if n
does not satisfy the criteria for Theorem 3.1.1 or Theorem 3.1.3, then Fy» does not
contain an optimal normal basis.

If the ground field F} is not F, we do have other optimal normal bases; suppose
N is an optimal normal basis of Fy» over F, and a € F,. Then aN = {aa: o € N}
is also an optimal normal basis of F» over Fj,. In fact, the bases N and alN are
said to be equivalent.

Another way of obtaining optimal normal bases is given by, Lemma 3.2.1 below.
For any positive integer s with ged(n, s) = 1, N remains to be a basis of Fyns over
F,s. Therefore N is an optimal normal basis of Fyns over Fis provided that ged(s,
n) = 1. The problem now is whether there are any other optimal normal bases.
Mullin proved that if the distribution of the nonzero elements of the multiplication
table of an optimal normal basis is similar to a type I or type II optimal normal
basis then the basis must be either of type I or type II [23]. Later Gao proved that
any optimal normal basis of a finite field must be equivalent to a type I or type II
optimal normal basis [8]. Finally, Gao and Lenstra extended the result to a any

finite Galois extension of an arbitrary field [9].

Lemma 3.2.1 (Gao, Lenstra 1992, [9]) Let s and n be relatively primes. If B =

{ag, a1, ...;an_1} is a basis for Fyn over F,, then B is also a basis for Fyn over Fs.

Proof. We should prove that g, a1, ..., o, are linearly independent over Fi.

Suppose there are a; € Fis,1 <7 < n, such that

n—1
Z a; 0 = 0
=0

Note that for any integer 7,

n—1 qu n—1 o n—1
_ q Sj sj
(Z amu) =Y al g =) aaig.
i=0 i=0 i=0

Since ged(s, n)=1, when j runs through 0,1,...,t — 1 modulo ¢, sj also runs

through 0,1, ...,t — 1 modulo n. As a; € Fyn, we have af = a; and so af = af"



n—

whenever r = m mod n.Therefore, by using 37" a;a; = 0, we have

n—1 ;
> el =0,
i=0

for each 7,0 < 7 <n — 1, that is,

(&%) (05} e Q1 Qo
q q q
N Qi Q1 ai
=0 (3.1)
qnfl qnfl qnfl
o) Qg Op1 ap—1

Since g, o, ..., ,—1 are linearly independent over [y, the coefficient matrix of 3.1
is nonsingular. Thus, ag,aq,...,a,_; must be 0. This proves «g,aq,...,,_1 are

linearly independent over Fis.

We first prove some properties that hold for any normal basis.
Let as usual N = {ag, a1, ..., 5,1} be a normal basis of Fin over F, with o; =
o', Let
n—1
ad; = Ztij()éj,o S 1 S n — 1, tij € Fq.
5=0

and T' = (t;;). Raising the last equation to the ¢~*-th power, we find that
tij = t—ij—i

forall0<i<n-—1.

From Theorem 1.0.10, we know that the dual of a normal basis is also a normal
basis. Let B = {f, (1, --., Bn_1} be the dual basis of N with 3; = BT.0<i<n-1.
Suppose that )

aﬁi:Zdijﬁj,ogign_la dijEFQ'

§=0
We show that
dij = tji,
forall0 <4,5 <n-—1,

i.e, the matrix D = (d;;) is the transpose of T' = (t;;). The reason is as follows. By



definition of a dual basis, we have

0 fori#j
TI‘(Oéiﬂj) =
1 fori=j

Consider the quantity Tr(af;a4). On the one hand,

n—1 n—1
Tr(OéﬂiOék) = TI'((O(BZ)O%) =Tr (Z dijﬁjak) = Z dijTI'(ﬁjOék) = dzk
j=0 J=0

On the other hand,
n—1 n—1
Tr(aﬁiozk) = Tr((aak)ﬁz) = Tr Z tkjajﬁi = Z tijI'(CYjﬁi) = t]m
° =0

So this proves d;; = t;;, for all 0 <4,5 <n —1.

Theorem 3.2.2 (Gao, Lenstra, 1992, [9]) Let N = {a,aq,...,aqnfl} be an opti-

mal normal basis of Fyn over Fy. Letb = Trenjq(v), the trace of o in Fy. Then either

(i) n+ 1 is a prime, q is primitive in Zny1 and —a/b is a primitive (n + 1)-th
root of unity; or

(i1) (a) ¢ = 2" for some integer v such that ged(v, n) = 1,

(b) 2n + 1 is a prime, 2 and -1 generate the multiplicative group Z3, . |, and

(c) a/b =+ ¢ for some primitive 2n + 1-th root ¢ of unity.

Proof. Let a; = 9,0 <i <n-—1, and {Bo, B1s .-y Bn_1} be the dual basis of
N with 3; = 87, We assume (4, j)- entry of D denoted by d(i,j) where D = d,;.
Then, we can write

d(i, j) = d(i = j, =J),
forall 0 <i,7 <n-—1.

We saw from the proof of Theorem 2.2.2 that each row of D (or column of T") has
exactly two nonzero entries which are additive inverses, except the first row which
has exactly nonzero entry with value b. This is equivalent to saying that for each
© # 0,a0; is of the form af; — af; for some a € F, and integers 0 < k,l <n —1,
and afy = b, for some integer 0 < m < n — 1. Replacing o by —a/b and (3 by

—bf3 we may, without loss of generality, assume that Tr(a) = —1. Then we have

0460 = _6m



Also, from
Tr(a)Tr(8) = > aif; =>_ Tr(af) =1
irj k

we see that we have Tr(3) = —1.

If m = 0 then from oy = bf3,, we see that & = —1, so that n = 1, a trivial case.
Let it henceforth be assumed that m # 0.

We first deal with the case that 2m = 0 (modn). Raising afy = bf,, to ¢"-th

power we see that
amﬁm = _BQm - _ﬁO = ﬁm/OC

Therefore, we have
n—1

aa, =1=-Tr(a) = > —ao.
i=0
This shows that d(i,m) = —1 for all i = 0,1,...,n — 1. This implies that for each

t # 0 there is a unique ¢* # m such that

If © # j then af; # af;, so i* # j.. Therefore i — i* is a bijective map from
{0,1,..,n—1} — {0} to {0,1,...,n — 1} — {m}. Hence each i* # m occurs exactly
once, and so

aay = a; for i £ m,
oo, = 1.

It follows that the set {1} U{eu]i =0,1,...,n — 1} is closed under multiplication by
a. Since it is also closed under the Frobenius map, it is a multiplicative group of
order n + 1. This implies that o™ = 1, and we also have a # 1. Hence « is a zero
of " + ... +x + 1. Since o has degree n over F,, the polynomial 2" + ... +  + 1 is
irreducible over Fj,. Therefore n + 1 is a prime number. This shows that we are in
case (i) of Theorem 3.2.2.

For the remainder of the proof we assume that 2m is not congruent to 0 modulo
n. By afy = —fmn, we have d(0,i) = —1 or 0 according as ¢ = m or i # m. Hence
from d(i,j) = d(i — j,—j), for all 0 < i,5 < n — 1 we find that

—1 fori=—m

d(i,i) =
0 fori#—m



Therefore a3_,, has a term —f3_,,. As —m # 0, there exists 0 < k < n — 1 such

that
afm =Pk — Pom, k 7é —m.

We next prove that the characteristic of Fj, is 2. Note that

am(afy) = am(B-m) = _(O‘ﬁo)qm = _(_ﬂm)qm = Bom.

On the other hand,

a(@mﬁo) = a(aﬁfmy]m = Oé(ﬁk - ﬂfm)qm = O‘ﬁker - 0550 = O46k+m + ﬂm

Since am,(afy) = a(amfy) we obtain

Oéﬁker = 62m - ﬁm

Now we compute cvay_,,, in two ways. To this purpose, note that d(—m—k, —k) =
d(—m, k), by af_,, = Bk — B—m, k # —m. Since k # —m implies that —m — k # 0,
we may assume that

af_mt = Bk — B;

for some j is not in the set {—k, —m — k}, hence j + k # 0, —m. On the one hand,

on(0fm) = ar(Bi — fom)
= (afo — Bm)”
= (B — Bk + )"
= —Brtm — Bo + Bjtk

On the other hand,

A Bm) = A(@Bmi)” = (BiB;)" = fo — ABjsr = —Bm — Bjsx.

We have
aBjir = —Bjtk + Bo + Btk — Bm.
As j + k # —m, ;4 does not appear in af;; by the definition of d(i,4). Thus
—Bj4+r must cancel against one of the last two terms.
If =Bk + Bmyr = 0 then j +k = m + k and thus af,,4r = By — Bn. But by

SBkrm = Pom — Bm, Bo = Pam and 2m = 0 (mod n), contradicting the assumption.



Consequently, =B+ — B = 0 and af1; = Btk + 5. The first relation implies
that j + k& = m and -2 = 0. Therefore the characteristic of F, is 2, and

aﬁm = ﬁm+k + ﬂO‘

From now on we assume that ¢ = 2 for some integer v. The equations afy = —[3,,

and af_,, = Br — B_m, k # —m can be written as

O‘ﬁ = Bm, aﬁ—m = ﬂk‘ + ﬁ—m-

Raising af3_,, = Br + B_,n to the ¢"-th power and comparing the result to af,, =

Bmar + Bo, we find o, = af3,,, which is the same as

a_%n_<a>q
B~ Bm \B

Multiplying the last equation and a3 = 3,, we find that o® = a,,, = a?". By

m

induction on r one deduces from this that a4™" = a?" for every nonnegative integer
r. Let r = n/ged(m,n). Then o* = «, which means that « is in Fy- and thus of
degree at most r < n over the prime field F5 of F,. As o has degree n over Fy, it
has degree at least n over Fy. Hence r must equal to n, and thus ged(m, n) = 1.
Also from the fact that o has the same degree over F, and F, for ¢ = 2, we see
immediately that ged(v, n) = 1 and the conjugates of « over F; are the same as
those over Fy, namely a, a2, ...,a2" .

Let m; be a positive integer such that mm; =1 (mod n). Then by repeatedly

raising /3 to ¢™-th power we have

! a\ a\?

(-

( Note that (/3)" = a/f. ) This implies that /3 € F,, and since Tr(a) =
Tr(f) = —1 we have in fact o = . Thus by d;; = t;;, for all 0 < 4,7 <n—1 we
see that d(7,5) = d(j,1).

Let now ¢ be a zero of 2% — ax + 1 in an extension Fn of Fy, so that ( + (™ = a.
The multiplicative order of ¢ is a factor of ¢*» —1 and is thus odd; let it be 2¢+1. For
each integer i, write v; = (*+( 7, so that 79 = 0 and 7; = a. It can be seen directly

that v; = 7, if and only if ¢ = 5 (mod 2¢ + 1). Hence there are exactly ¢ different



nonzero elements among the ~;, namely 7, ys, ..., ;. Each of the n conjugates of «
is of the form o = (% + (27 = 4, for some integer 7, and therefore occurs among
the ;. This implies that n < t. We show that n = ¢ by proving that, conversely,
every nonzero -; is a conjugate of a. This is done by induction on i. We have

v = a and v, = a?, so it suffices to take 3 < i < t. We have

Yy = [+ ¢+ =yt + imss

where by induction hypothesis each of v;_s,v;_1 is conjugate to «, and ~;_3 is either
conjugate to a or equal to zero. Thus when a~;_s is expressed in the normal basis
{a2i|7§ =0,1,...,n — 1}, then v;_y occurs with a coefficient 1. By d;; = t;;, for all
0 <1i,5 <n—1implies that when a-y;_; is expressed in the same basis, 7;_o likewise
occurs with a coefficient 1. Hence from the fact that § = « and v;,_1 # a we see
that a~;_; is equal to the sum of 7;_5 and some other conjugate of a. But since we
have a - v;,_1 = 7v;_2 + 74, that other conjugate of @ must be ~;. This completes the
inductive proof that all nonzero ~; are conjugate to o and that n = ¢.

From the fact that each nonzero ~; equals a conjugate o of « it follows that
for each integer ¢ that is not divisible by 2n + 1, there is an integer j such that
i =427 ( mod 2n + 1). In particular, every integer 4 that is not divisible by 2n + 1
is relatively prime to 2n + 1, so 2n + 1 is a prime number, and Z,, 1™ is generated

by 2 and -1. Thus the conditions (a) and (b) of the Theorem 3.2.2 are satisfied. All

assertions of (ii) have been proved.



CHAPTER 4

MULTIPLICATION AND INVERSION IN
FINITE FIELDS USING NORMAL AND
OPTIMAL NORMAL BASES

There are many applications of optimal normal bases. For example, in the paper
[32] a new parallel multiplier for Fym whose elements are represented using the
optimal normal basis of type Il is presented. As it will be shown below the proposed
multiplier requires 1,5(m? —m) XOR gates, as compared to 2(m? —m) XOR gates
required by the Massey-Omura multiplier.

Let us recall here the conditions of the Theorem 3.1.3: We assume that p =
2m + 1 is a prime and either of the following two conditions also holds:
i) 2 is a primitive root modulo p.
ii)p = 7 (mod8) and the multiplicative order of 2 modulo p is m.
Then, we have an optimal normal basis of type II in Fom based on the normal
element o = v 4+ ~~!, where v is the primitive pth root of unity. The basis is given
as

M = {a,a? a?, .., oz2m71}.

We can show that there exists another basis N which is obtained by a simple
permutation of the basis elements in M and construct a new parallel multiplication

algorithm in the new basis N. We examine both cases below:



i) If 2 is a primitive root modulo p, then the set of powers of 2 modulo p
Py ={2,2% 2% ..., 21 2™} mod p

is equivalent to

Q1 ={1,2,3,4,...,2m}.

Therefore, a basis element of the form 7% +~2~" can be written as 17 +~77 for j €
[1,2m]. Moreover, we can rewrite 77 4y~ as y2mTD=7 4 4=Cm+D4.if § > m 4 1,
then the power of v becomes in the range [1, m].

ii) If the multiplicative order of 2 modulo p is m, then the set of powers of 2 modulo

p
Py ={2,2% 2% .., 2*"1 2™} mod p

consists of m distinct integers in the range [1,2m]. If 2° (modp) is in the range
[1,m],then leave as it is. If 2¢ (modp) is in the range [m + 1,2m], we write in its
place the number (2m + 1) — (2‘mod p) to bring it to the range [1,m]. Since these

numbers are all distinct, the set Ps is equivalent to
Q2 ={1,2,3,4,...,2m}.

As a result, a basis element of the form +2 +~2" for i € [1,m] can be written
uniquely as v/ +~~7 with j € [1,m].
Consequently, the bases M and N are given as
_ _ 2 _92 (m—1) _9(m-1)
M = {7+ 522 2y T T T

N = {v+7v Y+ 27 +97% o+

are the same. The basis N is obtained from the basis M using a simple permutation.

Let A be expressed in the basis M as
A=djo+ dea® + d3a® + ...+ apa®
where o = v + 7. The representation of A in the basis N is given as

A = a1aq + asis + azas + ... + Ay,

where a; = 7 + v, We can express the permutation between the coefficients

a; = a; as



k if ke [1,m],
@m+1)—k ifk€[m+1,2m]

] =

where k = 27'mod(2m + 1) for i = 1,2,...,m. This permutation is the vital part
of the algorithm.

The basis N is not a normal basis, it is a shifted form of the canonical basis.
Note that the exponents of basis elements of the shifted canonical basis is one more
than the ones of the canonical basis. It is constructed an efficient parallel multiplier

in the following section using this new basis.

4.1 New Multiplication Algorithm

Using the terminology we introduced in the beginning of this chapter, we present

the following algorithm:

1. Convert the elements represented in the basis M to the basis N using the

permutation.
2. Multiply the elements in the basis V.

3. Convert the result back to the basis M using the inverse permutation.

The first and third steps are implemented without any gates since the permutation
operation requires a simple rewiring. The second step is a multiplication operation
in the basis N, which are presented below. Let A, B € Fom be represented in the

basis N as

A= ZCLZ'OQ‘ = Zaz(vl + ’Y_i>,
i=1

i=1
i=1 i=1
The product of these two numbers C' = A.B is written as
C=AB= (Z a; (7' + “W)) (Z bi( + Vj))-
i=1 j=1
This product can be transformed to the following form:

C =" ab;(v 7+ I £ 37N a4 (v 47y = O+ Co.

i=1j=1 i=1j=1



The term C) has the property that the exponent (i — j) of 7 is already with in the
proper range, i.e., —m < (i — j7) < m for all 4,5 € [1,m]. Furthermore, if i = j,

then "7 44~ = 40 4 4% = 0. Thus, we can write C; as

ZZ e ARl U J)) Z aibj(Vi_j + 7—(@’—]‘)).
=1j=1 1<i,j<m
i#]
If k = |i — j|, then the product a;b; contributes to the basis element ay = v* +~7F
For example, the coefficients of a; are the sum of all a;b; for which |i — j| = 1.

Furthermore, the term Cj is transformed in to the following:

ab; (v + ,Yf(iﬂ'))

o
s

02:

1

.
Il
—

B
Il

—1

3

aib; (v 4 7)) Z > aibi(y" )

=1 j=m—i+1

I
Hor
N

Il
—
<.

Il

[\')@H

- D1+

The exponents of the basis elements in D; are in the proper range i.e., 1 <
(t+7)<mfori=1,2,...,mand j=1,2,...,m—i. If k =i+ j, then the product
a;b; contributes to the basis element «y, as ¢ and j take these values.

But, the basis elements of D, are all out of range. Use the identity +*™*! =1 to

bring them to the proper range:

D, = i i ab; (' 4y (i+)) i i aibj<72m+lf(i+j) oy A=)y
i=1 j=m—i+1 i=1 j=m—i+1

Hence, if £ =i+ j > m, replace oy by asg;i1-k. The constructions of Cy, D,

and D, are given below:



The Construction of C;:

Am—1 bm + &mbm—l

(@3] (D) Qm—2 Qm—1 70
albg + (lzbl a1b3 + a3b1 (llbm_l —+ am_1b1 albm + Clmbl
asbs + agby asby + asby asby, + @by

The Construction of Dq:

[0S D) a3 oo Op—9 Am—1 [67%%
aiby  aiby ... aibp—3 aibp_o  aiby,g
asbr ... agbp_y  agbp_3  agby_o
Am—3b1  Qp—3by Q303
Am—2b1  Qp—2bo
Ap—1b1
The Construction of Ds:
aq (0] Q3 e Op—2 Am—1 (67
Ambr  Am—1bm Q_2bm, ... asb,, asby, a1b,
Ambm—1  Qp1bpm_1 ... agbp_1 azby,_1 agby
Ay D2 o Asbpm_o  A4bp_o  aszby_o
amflbll am72b4 am73b4
b3 Um—1b3  Ap_2b3
b2 Ap—1b2
amb1




4.1.1 Details of Multiplication and Complexity Analysis

If these three arrays C, Dy and Dy are inspected closely, the following observations

can be made:

1. All three arrays are composed of the elements of the form a;b; for i, j € [1,m)]

2. The height of the ith column in the array Cy is 2(m — i) for i = 1,2, ...,m.
This is the number of the terms of the form a;b; to be summed in the ith

column.

3. The height of the ¢th column in the array D; is ¢ — 1.

4. The height of the 7th column in the array D, is 1.

5. Therefore, the height of the ith column in the entire array representing the

total sum C'is found as 2(m —i) +i— 147 =2m — 1.

6. If there is an element a;b; is present in a column, then the element a;b; is also

present in the same column. This is true for all arrays C, D; and Ds.

7. An element of the form a;b; is present only once in a column of either Dy or Ds.

8. A column of the entire array representing the total sum C' contains a single
element of the form a;b; and 2m — 2 elements of the form a;b;, where a;b; is

also present.

The proposed multiplication algorithm first computes the terms a;b; for i, j €

[1,m] using exactly m? two-input AND gates. Let t;; = a;bj+a;b; fori =1,2,...,m—



land j =14+ 1,i42,...,m. Compute the terms ¢;; using
m—1)+(m—-2)+...+2+1=m(m—1)/2

two input XOR gates. The ith column of the entire array contains exactly (2m —
2)/2 = m—1 terms of the form ¢;; and also a single element of the form a;b;. These
m numbers are summed using a binary XOR tree, which requires m —1 XOR gates.
Due to the parallelism, all m columns require m(m — 1) XOR gates. Hence, the
construction of the product C' requires

# AND Gates = m? ,

# XOR Gates = m(m — 1)/2+m(m — 1) = 3/2m(m — 1),

But, the parallel Massey-Omura algorithm uses m? AND gates and 2m(m—1) XOR
gates. Therefore, the proposed algorithm requires 25 % fewer XOR gates than the

Massey-Omura algorithm.

4.2 Fast Operation Method in Fy. Using a Modified Opti-

mal Normal Basis

In this section, we show how to construct an optimal normal basis over finite field
of high degree. We have two methods for fast operations in some finite field Fin.
The first method is to use an optimal normal basis of Fy» over F5. On the other
hand, the second method which regards the finite field Fy» as an extension field of
F5s and Fy is to use an optimal normal basis of Fy: over Fy when n = st where
s and t are relatively primes. Using a polynomial basis, the multiplication of two
elements in Fy. is a product of two polynomials modulo an irreducible polynomial.
The inverse of an element is easily computed using the Euclid algorithm.

Moreover, another fast operation method is suggested [25]. In case of n = st
where s and t are relatively primes, Fy» is regarded as a vector space of dimension
t over Fys. FEach element of Fyn is represented by a polynomial basis which is
generated by an irreducible polynomial of degree ¢ over Fys. It is called a modi fied
polynomial basis.

Let f(z) be a monic irreducible polynomial of degree n over F; denoted by

f@)=do+dix+ ... +dp 12" + 2",



where dy, dy, ...,d,_1 € F5.

Then we construct the finite field Fyn as Fylz]/(f(x)). Let B = {70, V1, Yn1}
be a basis for Fyn over F,. Every element A of F,. is identified with the vector
A= (ag,a1,....,an,_1) €.8.

n—1

A= Z a;v;, a; € FQ.

i=0
Now we investigate an addition and multiplication of two elements of Fy. for

polynomial (canonical) basis. Let a be a root of an irreducible polynomial f(z).

Then C = {1,a,0?, ...,a" 1} forms a basis for Fyn. Let A be the same above and
n—1
B = Z biOéi = (bo, bl, ceey bn—l)'
i=0

Then

n—1

A + B = Z(al —+ bi)Oéi,

=0
A+ B = (ag+ by, a1 + b1, ...; ap1 + bp1).

Using the fact that « is a root of f(x), i.e.
do + dla + ngéz + ...+ dn_la"_l = O,

we can obtain
n—1 n—1 n—1
A.B = (Z aiai> Z bja | = Z CrO;.
i=0 j=0 k=0
Observe that addition has the same complexity as an optimal normal basis, because
in both cases there is a component-wise addition. However, multiplication using
polynomial basis is much more complex than using optimal normal basis.

In case that s and t are relatively prime, we may consider the field Fy» as an

extension field of two subfields Fys and Fie.

Theorem 4.2.1 (Gao 1994) Let s and t be relatively prime. If N = {a, a2, ...,
aQt_l} is a normal basis for Fy over Fy, then N is also a normal basis for Fays over

Fys.

Proof. Follows by the Lemma 3.2.1.

Let N be an optimal normal basis of the form N = {«,a?,...,02 '},

Since every multiplication group Foe is cyclic, there exists a generator £ of Fi:



(since s is practically small, it is very simple to find a £). So every element of Fi,
is represented by £* for some integer 0 < a; < 2°. Let us denote the zero element

of Fy: as -1. Thus any element A of Fye is represented with respect to N by
t—1 _
A= z%a", 2z €{0,1}, 0 < q; <2°
i=0

We denote it by A = (ao, ay, ..., a;—1). If 2; is zero, put -1 in the i-th coordinate.
(—=1,—1,...,—1) is the zero element of Fyst over Fys. So addition of two elements
in Fys is reduced to the addition of 2t elements of F,s. Thus we need the table
of addition of elements of Fys. Using an irreducible polynomial which defines Fjs,
each element £% can be represented by a polynomial basis. We denote £* by the
extended vector representation (pg, p1, ..., Ps—_1, a;) which consists of the polynomial
representation and its exponent a;. So the addition table is composed of 2° rows
and (s + 1) columns. In order to add two elements of Fjs, first find elements of
table for two elements, add to use a polynomial basis and find the exponent of an
element of the table matching its result. Using ¢2° = ¢ and o' = a, we obtain

—1. 2%
AT = (a4 26907 + 2820 + .+ 564102

25+2 25+t71

— zofa(’QQS + zlf‘”aQSH + 226"« + ..+ 2z 1"

— (at—su At —s41y -+ at—l—s)-

It is just the cyclic shifts of the original A. Let C'= AB = (cg, ¢1,...,¢—1). Then

t—1t—1
k=Y tijaiskbjik, k=0,5,2s,...,(t —1)s mod ¢t
i=0 j=0
where ¢;; € F, and subscripts on a and b are taken modulo ¢. Since s and ¢ are

relatively prime, k varies from 0 to t — 1. So all ¢;’s are obtained by s times cyclic

shifts of A and B.

Results of implementation

In this section, we will compare the complexity of Fyiois with that of Fheos =
Fysais. According to the Theorem 3.1.1 (type I), Fpiois has an optimal normal basis.
This optimal normal basis is generated by a root a of f(z) = 1 +x+ 2% +... + 21018

Since Fhio1s has an optimal normal basis, the matrix of multiplication has two

I’s for each row except for the last row(the last row has one 1). Using the matrix,



we compute the multiplication of two elements of Fhios and an exponentiation of
one element of Fhios.

Let n =904 = 8.113,s = 8 and ¢t = 113. Then Fyoos is regarded as an extension
field of Fys and Fyis. Take a primitive polynomial p(z) = 1+ + 2%+ 2% + 28, then
its root £ generates Fys™. By the Theorem 3.1.3, Fyuis has an optimal normal basis.
Let f(x) =1+ a2+ 2%+ ...+ 2% If 3 is its root then o = B + 7! generates an
optimal normal basis of Fyi1s. This normal basis is also a self-dual normal basis.

Table [25] shows the comparison of operation speed of the above two cases. It
is shown that an operation speed using a modified optimal normal basis is faster
than that using an optimal normal basis. The memory size is almost the same as
in the case of a modified optimal normal basis and an optimal normal basis. The
time required for making matrix of Fhes is huge. Since it is a preparation step, it

can be ignorable for an operation speed.

operation speed

operation speed

memory size

memory size

for Fyios for Fioo4 for Fhios for Fhooa
making 9.66 sec 3 hour 18 min | 2 x 1018- 1 2x 113 -1
matrix 22.37 sec byte byte
one element 1018 byte 113 byte
making add- 0.02 sec 255x9
ition table byte
multiplication 4.4 sec 0.01 sec
exponent- 57.3 sec 0.36 sec
iation (exponent is (exponent is
about 2%) about 2%Y)
4.3 Orders of Optimal Normal Basis Generators

In several cryptographic systems (such as, Diffie Hellmann [5]), a fixed element of a
group needs to be repeatedly raised to many different large powers. To make such
system secure, the fixed element must have high order. In any implementation of
these systems, there should be an efficient algorithm for computing large powers of

the fixed element. Therefore, Gao and Vanstone [10] show by experimental results



that the optimal normal basis generators given in Type II Construction have exactly
this desired property: They have very high multiplicative orders, and large powers

of them can be computed efficiently, as indicated by the following result.

Theorem 4.3.1 (Gao, Vanstone 1995) Let a be an optimal normal basis generator
in type II construction. Then, for any integer e, a° can be computed in O(n.w(e))
bit operations, where w(e) is the number of 1’s in the binary representation of e

which is called the Hamming weight of the element e.

As w(e) < nfor 0 <e < 2" —1, a® can be computed in O(n?) bit operations.
To compare, we should mention that for an arbitrary 8 € Fyn, if Fyn is represented
by an optimal normal basis, Stinson [30] and Von Zur Gathen [34] showed that 3¢
can be computed in about O(n?/logan) bit operations in Fyn,

In the following, we assume the conditions in Construction II are satisfied. Our
goal is to determine the multiplicative order of a@ = v + v~ L.

Here, the standard algorithm for the determining the multiplicative order of
elements in finite fields is used. To apply this algorithm for computing the multi-
plicative order of an element in Fy», one needs to know the complete factorization
of the integer 2™ — 1.

The optimal normal basis generated by « is {a, a2, ...,a2" ' }. Here, we arrange
the elements of the basis in a different order. For an integer 7, define v; = v* + 7.

We recall that (Section 4.1),

2

n—1
{a7& 7"'7a2 } = {717’727 "'77”}'

To facilitate multiplication of elements represented under this basis, we define a new
function from the set of integers to the set {0,1,...,n}. For any integer i, define

s(i) to be the unique integer such that
0 <s(i) <n,and 7= s(i)mod 2n + lor i = —s(i)mod 2n + 1.
Obviously, s(0) =0, s(i) = —s(i) and

Vi = Vs(i)> 0521 = Vs(29)



for all 7.

As

Yi-Vj

for all i, j, we have

1<4,j<n.

Yi-Yy

= Yitj t Vi-j

= Vs(i+j) T Vs(i—3)

Next we show how to compute the product ~v;.A, where 1 <7 < n and A is an

arbitrary element in Fyn. Suppose that A = >"}_, arvyk, where a; € F,. Then

Note that

n

Vi A = Z agi- Ve = Z ak(%(k+i) + %(k—z'))-

k=1 k=1

n n—i
Z AkYs(k+i) = Z Ak Yi+i T Z OkY2n41—(k+6)
k=1 k=1 k= n+1 [
= Z k—iVk + Z A2n+1—(k+i) Vk
k=i+1 k= n+1—z

I
M:

s (k—

k=i+1

7

Z aKYs(k—i) =
k=1

ik + Z

s(k+1) Vi
k=n+1—1

Zak% kT Z Ak Vk—i

k= z—i—l

= Z i—kYk + Z O+ Yk

n—1i

= Z As(k—i)Vk + Z Qs(k+i) Vks

We assume that ay = 0 everywhere. We see that

7 A

where ¢ =min{i,n —

n

Z(aS(kfi) + as(kﬂ‘))%
k=1

[

k=1 k=c+1

fk) =

Af—; + Qg

D (g + aive) e+ Y, f(k)

Qi+ A2n41—(k+i)

Vi + Z (Ak—i + Q21— (kta)) Ves

k=d+1

i}, d =max{i,n —i} =n —cand

ifi>n—1i,

iti<n—1.

This shows that 7;.A can be computed in O(n) bit operations.



Now, to compute a® we can assume that 0 < e < 2" — 1, as a®"~! = 1. Write
e = Y725 e, where e, € {0,1}. Then

0 =25 (0%)™ = 55 (ager) ™
This suggests that a® can be computed iteratively as follows:

Algorithm:

Input: An integer e with 0 <e < 2" — 1.

Output: aof represented in the basis (71, ..., Vn)-

Step 1. Set A :=1 = Y1 ;v and compute the binary representation: e =
Srzo en2b;

Step 2. For k from 0 to n — 1, if e, = 1 then set A 1= 7,(ox). 4;

Step 3. Return A;

End.

The correctness of the algorithm is obvious. The major cost is incurred at Step2
where w(e) products of the form 7;.A are computed. Since we have shown that each
such product can be computed in O(n) bit operations, the total cost is O(n.w(e)) bit
operations. Therefore, a® can be computed in O(n.w(e)) bit operations as claimed
by the Theorem 4.3.1

O

By using the algorithm described above, S. Gao and S. Vanstone [10] have
computed the multiplicative order of o for n < 1200 where the conditions of Con-
struction II are satisfied and complete factorization of 2" — 1 is known.

Experiments indicate that the multiplicative order of « is at least O((2" —1)/n).
This means that « always has very high multiplicative order. Besides, one can check

that if n is prime, then « is primitive.

4.4 A Fast Algorithm for Multiplicative Inversion Using
Normal Basis
It is known that multiplicative inversion is much more time-consuming than mul-

tiplication. Several algorithms have been proposed for multiplicative inversion in

Fym. N. Takagi, J. Yoshiki and K. Takagi [33] proposed a new fast algorithm for



multiplicative inversion in F(2™) using normal basis. The new method is an im-
provement of the algorithm proposed by Chang [2] et al.
From Fermat‘s theorem, for any nonzero element 3 € Fym, f~! = 32”2 holds.

But 2m —2 =21 +22 4+ . 4+ 9271 and

Bl=p""2=p5" x 0% x .. x 7.

Wang et al.[35] proposed an algorithm using this expression. This algorithm
requires m — 2 multiplications as well as taking m — 1 squares.

As we mentioned before, squaring is just cyclic shift by using normal basis and,
so is much faster than multiplication. Hence, it is important to reduce the number
of multiplications for accelerating the exponentiation.

Itoh and Tsujii [16], [17] decreased the number of required multiplications to
O(logm). We can call this algorithm Algorithm|[IT]. Algorithm[IT] requires I(m —
1) +w(m — 1) — 2 multiplications and [(m — 1) + w(m — 1) — 1 (multiple-bit) cyclic
shifts, where I(m—1) = ¢ is the number of bits of the binary representation of m—1
and w(m — 1) is the number of 1‘s in the representation which is defined before.

Feng [7] proposed a similar algorithm, which requires the same number of mul-
tiplications and cyclic shifts as Algorithm[IT].

Chang [2] improved the Algorithm[IT]. Hereafter, we call the algorithm proposed
by Chang as the Algorithm[Chang]. Algorithm|[Chang] requires (I(s) +w(s) —2) +
(I(t)+w(t) —2) multiplications and (I(s)+w(s) —1)+ (I(t) +w(t) —2) (multiple-bit)
cyclic shifts where m — 1 = s x t and [ and w defined above.

Algorithm|[Chang] is efficient, but it is not applicable if m — 1 is a prime num-
ber. N. Takagi, J. Yoshiki and K. Takagi [33] proposed a new algorithm which is
applicable to the case where m — 1 is prime.

Since
2m—2 = mTlyomTl g =gmtlpomm2y qomthoygmth o
BT o= BT = ) B L x B g

42" can be calculated by i-bit cyclic shift. Therefore, 57! can be found from
3¥" "2 by h multiplications. Indeed, 32" "2 can be calculated by Algorithm[IT]

or Algorithm|Chang] by replacing m by m — h.



By this method, the number of multiplications required is reduced for some
integers m. Moreover, it is decreased by factorizing m — 1 into more than two
factors. Thus, this method is adopted when m — h — 1 can be factorized into more
than two factors. Hence, the principle that decomposing m — 1 into several factors
and a small remainder A can be recursively applied to one of the factors of m—h—1.

When m — 1 is decomposed as m — 1 = H§:1 sj + h and s; is not decomposed,
the number of multiplications required is Zle(l(sj) + w(s;) — 2) + h. This is
because the number of multiplications required corresponding to the factor s; is
l(s;) +w(s;) — 2. When the first factor s; is decomposed further, we can calculate
the number of multiplications required by using this formula iteratively.

The number of multiplications required depends on the way of decomposition.
There may exist several decompositions which minimize the number of multiplica-
tions. We call the decomposition which minimizes the number of multiplications
required and consists of the fewest factors as the optimal decomposition. More
than one optimal decompositions may exist.

The following propositions can be used for finding optimal decomposition(s) of

m — 1.

Proposition 4.4.1 When m — 1 = 2", the optimal decomposition is m — 1 itself

(nondecomposition) and the number of required multiplications is n.

Proposition 4.4.2 When m — 1 = 2"s + h, where s is odd, the smallest number
of required multiplications by a decomposition of m — 1 as H§:1 s; + h (either sy is
decomposed further or not) is n+h+ M R(s) where M R(s) is the number of required

multiplications by the optimal decomposition of s.

When s; = 2" §;, the number of required multiplications corresponding to s;
and that corresponding to 2" x §; are identical, i.e., I(s;)+w(s;) —2+n. Therefore,
the optimal decomposition of m — 1 does not include a power of 2 as a factor unless
it is in the form S x 2" +h and S is a decomposition of s with a nonzero remainder,
where m — 1 = 2%s + h.

When m — 1 = 2"+ ¢ (0 < ¢ < 2"), the decomposition of m — 1 as 2" + ¢

does not decrease the number of required multiplications because the number of



multiplications becomes n+-c, that is, not less than [(m—1)4+w(n—1)—2 = n+w(c).
Hence, in the optimal decomposition of m — 1, the remainder A must be smaller
than ¢ and, so,

(m—h—1)=1(m—1)=n+1.

When m — 1 is decomposed as Hle s; + h and s; is not decomposed further, the
number of required multiplications is at least

f:l(sj)+h >Il(m—1)+h

j=1
because w(s;) > 2. When the first factor s; is decomposed further, the number
of required multiplications corresponding to the optimal decomposition of sy is
at least [(s1) and, hence, the number of required multiplications by the optimal

decomposition of m — 1 is also at least I(m — 1) + h. Therefore, we have the

following propositions also.

Proposition 4.4.3 In the optimal decomposition of m — 1, the remainder h must

be smaller than w(m — 1) — 2.

Proposition 4.4.4 When m — 1 = 2" + 2% where n > 7, i.e., w(m — 1) = 2, the
optimal decomposition is m — 1 itself and the number of required multiplications is

n+1.

In practical applications, m is usually chosen as a power of 2. When m =
2"m—1=2"—1and I{(m—1) = wim —1) = n. If we do not decompose
m — 1, Algorithm[IT] requires 2n — 2 multiplications. If n is even, then 2" — 1
can be factorized as (2"/2 + 1) x (22 — 1) and, when n/2 is even again, 2"/? — 1
can be factorized further. The number of multiplications is decreased in this case.
However, 2" — 1 can be a prime number. In this case, as n is odd, we can always
decompose 2" — 1 as 2(2""1/2 1 1) x (2»=1/2 — 1) + 1 and reduce the number of
multiplications by Takagi‘s algorithm.

In conclusion, the proposed algorithm reduces the number of required multipli-

cations by decomposing m — 1 into several factors and a small remainder.



CHAPTER 5

CONCLUSION

In many cryptographic and coding techniques, it is necessary to implement finite
field arithmetic such as addition, squaring and multiplication of two elements. Es-
pecially, multiplication of two field elements is difficult and time consuming. The
actualization of these arithmetic operations can be done more efficiently by a suit-
able choice of field representation. For instance, using normal basis, the squaring of
an element is just a cyclic shift operation of itself. In my thesis, first we gave some
basic definitions, theorems and results related with the normal basis in some finite
field. After that, we mentioned the advantages of using normal basis representation.
Moreover, we gave whether there is an advantage of using the pair of dual bases in

the multiplication operation.

However, Mullin, Onyszchuk and Vanstone proved that there is a lower bound
for the complexity of the normal basis. Hence, the concept of optimal normal bases
was introduced. Next, we gave the answers of questions that how we can construct
the optimal normal bases and what the ways of determination of optimal normal

bases.

There are many applications of optimal normal bases. Therefore, we studied
a multiplication algorithm by using optimal normal basis. DBesides, we gave the
concept of modified optimal normal bases which also produce efficiency in multipli-
cation. Next, it was shown that large powers of the generators of optimal normal

bases, which have high multiplicative order, can be computed efficiently. Con-



sequently, we presented an algorithm finding the multiplicative inverse of a field
element efficiently.

Eventually, we point out some some problems related with my thesis. By our
classification, not all finite fields have optimal normal bases. For fields without
optimal normal bases, it is desirable to have a normal basis of low complexity.
Therefore, the following question is of interest: What is the minimal complexity of
normal bases in Fiy» over Fj, and how to construct a normal basis of minimal com-
plexity when there is no optimal normal basis in Fiy» over F,? For cryptographic
purposes it is important to have either a primitive element or an element of high
multiplicative order in Fy». Another interesting problem is the following: Let n be
a positive integer and v a 2n + 1-th primitive root of unity in some extension of F5.
Determine the multiplicative order of o = v + 1.

The following problem is the converse of the above problem.
Let a be an element in an extension field of F,. Given the multiplicative order of

«, determine the order of 7, where o =y + L.
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