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ABSTRACT

Pseudo random sequences, that are used for stream ciphers, are required to have

the properties of unpredictability and randomness. An important tool for measuring

these features is the linear complexity profile of the sequence in use.

In this thesis we present a survey of some recent results obtained on linear

complexity and linear complexity profile of pseudo random sequences. The relation

between the polynomial degree and the linear complexity of a function over a finite

field is given, bounds for linear complexity of the “power generator” and “the self-

shrinking generator” are presented and a new method of construction of sequences

of high linear complexity profile is illustrated.
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ÖZET

Dizi şifreleyicilerde kullanılan yarı rasgele dizilerin rasgelelik ve öngörülememezlik

özelliklerine sahip olmaları gerekir. Doğrusal karmaşıklık profili bu özellikleri ölçmede

kullanılan önemli bir araçtır.

Bu tezde dizilerin doğrusal karmaşıklığı ve doğrusal karmaşıklık profili üzerinde

son yıllarda elde edilen bazı önemli sonuçlar sunulmaktadır. Özellike, Bir sonlu

cisim üzerinde verilen bir fonksiyonun polinomsal derecesiyle doğrusal karmaşıklığı

arasındaki bağlantı, “üstsel” ve “kendini küçülten” üreteçlerin doğrusal karmaşıklık

sınırları ve doğrusal karmaşıklığı yüksek dizilerin oluşturulma yöntemleri üzerindeki

çalışmalar incelenmiştir.

Anahtar kelimeler : Doğrusal indirgemeli diziler, doğrusal karmaşıklık, doğrusal

karmaşıklık profili.
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ÖZET
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course, to Alev TOPUZOĞLU, my thesis advisor.

I would like to thank my family for their unfailing support and influence in my

life.

I would like to thank to my colleagues at UEKAE ( National Electronic and Cryp-

tography Research Institute ) and also thanks to my manager Alparslan BABAOĞLU
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CHAPTER 1

INTRODUCTION

Main methods used in conventional cryptography are “block ciphers” and “stream

ciphers”. In general, while block ciphers encrypt blocks of data at a time, stream

ciphers encrypt one bit a time via XOR operation. In stream ciphers, the security

of the encryption is based on the key stream, which is XORed with the plain text

to produce encrypted text.

To achieve secure transmission, the first aim is to protect the original key. Once

the key is unveiled, the original message is easily obtained. Second aim, especially

for stream ciphers, is to protect the key stream, or formally making the key stream

unpredictable from the known part of it. This can be achieved by using sequences

of high linear complexity. In other words, controlling the linear complexity enables

controlling the security of the stream cipher. Linear complexity profile goes one step

further, gives the behavior of the linear complexity of the key stream, or equivalently,

of the sequence which is generated by the encryption algorithm with the relevant

encryption key.

These concepts will be made precise in section 1.2.

1.1 Preliminaries

Throughout this thesis we will basically follow the famaous book of Lidl and Nei-

derreiter [8] for notation and terminology. Now we give definitions and theorems

which will be used in the rest of the thesis.

Fq denotes a finite field with q elements where q is a prime or a prime power.

F ∗
q is the multiplicative group of Fq − {0}. As it well known F ∗

q is cyclic and has

order q − 1.

Definition 1.1. A generator of the cyclic group F ∗
q is called a primitive element of

Fq.

Firstly, we recall some facts from the theory of finite fields. We refer to the
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books of Lidl and Neiderreiter [8], D. Jungnickel [7] and T.W Cusick, C. Ding and

A. Renvall [4] for the proof of the results we list in the first two sections of this

chapter.

Theorem 1.2. (Lagrange Interpolation Formula) For n ≥ 0 , let a0, a1, . . . , an be

n + 1 distinct elements of F . Let b0, b1, . . . , bn arbitrary elements of F . Then there

exists exactly one polynomial f ∈ F [x] of degree ≥ n such that f(ai) = bi, for

i = 1, . . . , n. This polynomial given by

f(x) =
n∑

i=0

bi

n∏
k=0,k 6=i

(ai − ak)
−1(x− ak). (1.1)

Proof. See [8, Theoren 1.71].

Proposition 1.3. Let k be a non-negative integer. Then

∑
c∈Fq

ck =

 0 if k = 0 or k is not divisible by q − 1,

−1 if k is divisible by q − 1.

Proof. See [8, Theorem 6.3].

Definition 1.4. For α ∈ F = Fqm and K = Fq then the trace TrF/K(α) of α over

K is defined by

TrF/K(α) = α + αq + . . . + αqm−1

.

If K is the prime subfield of F , then TrF/K(α) is called absolute trace of α and it is

simply denoted by TrF (α).

Theorem 1.5. Let K = Fq and F = Fqm. Then the trace function TrF/K satisfies

the following properties:

1. TrF/K(α + β) = TrF/K(α) + TrF/K(β) for all α, β ∈ F ,

2. TrF/K(cα) = cTrF/K(α) for all α ∈ F , c ∈ K,

3. TrF/K is a linear transformation from F onto K, where both F and K are

viewed as a vector spaces over K,

4. TrF/K(a) = ma for all a ∈ K,

2



5. TrF/K(αq) = TrF/K(α) for all α ∈ F .

Proof. See [8, Theorem 2.23].

If F = F2n and K = F2 then the trace map satisfies the following identity, which

is a special form of the Theorem 1.5, property (5) when m = 2,

TrF/K(α) = TrF/K(α2), for all x ∈ F. (1.2)

For this special case we say that trace is invariant under the squaring automor-

phisms.

Theorem 1.6. Let F be a finite extension of the field K. If T : F → K is any K-

linear function, then there exists a unique c ∈ F with the property that T (x) = Tr(cx)

for all x ∈ F . In particular the element c is non-zero if and only if T is onto.

Proof. See [8].

Definition 1.7. Let K be a finite field and F be a finite extension of K. Let

{δ1, . . . , δr} be a basis of F over K. The basis {β1, . . . , βr} of F over K is called the

dual basis of {δ1, . . . , δr} if for 1 ≤ i, j ≤ r we have

TrF/K(δiβj) =

 0 for i 6= j,

1 for i = j
(1.3)

If not otherwise stated, in this thesis K is always the prime subfield of F . Thus,

we will simply use Tr(α) instead of TrF (α).

1.2 Sequences and Linear Complexity

Let k be a positive integer and a, a0, a1, . . . , ak−1 be elements of a finite field Fq. A

sequence σ0, σ1, . . . of elements of Fq satisfying the relation

σn+k = ak−1σn+k−1 + ak−2σn+k−2 + · · ·+ a0σn + a for n = 0, 1, . . . (1.4)

is called a (kth− order) linear recurrence sequence in Fq. The terms σ0, . . . , σk−1,

which determine the rest of the sequence are called initial values. The vector formed
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by initial values (σ0, σ1, . . . , σk−1) is called the initial vector. A relation of the form

(1.4) is called (kth− order) linear recurrence relation. If a = 0 then the we call the

relation homogeneous linear recurrence relation otherwise we call it inhomogeneous

linear recurrence relation. The coefficients ai are called feedback coefficients.

For the homogenous case of the linear recurrence relation (1.4), it can be written

as

σn =
k∑

i=1

ak−iσn−i for n ≥ k,

with the convention ak = −1 we have,

0 =
k∑

i=0

ak−iσn−i for n ≥ k.

The well known property of linear recurrence relations is that they can be im-

plemented in hardware with almost no cost. This implementation is called LFSR

(Linear Feedback Shift Register).

If not otherwise stated we always consider the homogeneous case of the linear

recurrence relations.

There are several mathematical objects that can serve for the description of

linear recurrence relations (or, equivalently, LFSR’s). For instance, one defines the

feedback polynomial of the linear recurrence relation (1.4) by

f(x) := −ak − ak−1x− . . .− a0x
k; (1.5)

we note that f is a polynomial of degree ≤ k with constant term +1. Let us call

the vector σ(t) := (σt, σt+1, . . . , σn+k−1) the tth state vector of the linear recurrence

relation (t ≥ 0). Then we may rewrite the Equation (1.4) as

σ(t+1) = σ(t)A for t ≥ 0,

4



where the feedback matrix A is defined by

A :=



0 0 0 a0

1 0 0 a1

0 1
. . .

...
...

... 0
. . . . . .

...
...

...
...

. . . 0 ak−2

0 0 1 ak−1


kxk

.

In general, we have

σ(t) = σ(0)At for t ≥ 1.

Here we note that A is the companion matrix of the reciprocal polynomial

f ∗(x) = xk − ak−1x
k−1 − . . .− a1x− a0

of f , the feedback polynomial. In the view of the following lemma, f ∗ is usually

called the characteristic polynomial of the linear recurrence relation (1.4).

Lemma 1.8. Let f be the feedback polynomial of an LFSR of length n over the field

F. Then the feedback matrix A satisfies

χA = f ∗,

where χA denotes the characteristic polynomial of A.

Proof. See Hoffman and Kunze [6].

A linear recurrence relation (or equally, LFSR) can therefore be described in

terms of each of the three objects f, f∗ and A. We emphasize that the initial values

has no effect on the feedback polynomial f and hence there is always a family of

shift register sequences correspond to the same f, f∗ and A.

Definition 1.9. Let S be an arbitrary non-empty set, and let σ0, σ1, . . . be a se-

quence of elements of S. If there exist integers r > 0 and n0 ≥ 0 such that σn+r = σn

for all n ≥ n0, then the sequence is called ultimately periodic and r is called a period

of the sequence. The smallest number among all the possible periods of an ultimately

periodic sequence is called the least period of the sequence.
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Definition 1.10. An ultimately periodic sequence σ0, σ1, . . . with least period r is

called purely periodic if σn+r = σn holds for all n = 0, 1, . . . .

When the set S is a finite field it turns out that every kth-order linear recurrence

relation is ultimately periodic, which is given in the next theorem.

Theorem 1.11. Let Fq be any finite field and k any positive integer. Then every

kth-order linear recurrence sequence in Fq is ultimately periodic with least period r

satisfying r ≤ qk, and r ≤ qk − 1 if the sequence is homogeneous.

Proof. See [8, Theorem 8.7].

If a homogeneous linear recurrence relation of order k generates a maximal pe-

riodic sequence of period qk−1 over the field Fq, then the corresponding sequence is

called an m-sequence.

We note here that there is a family of linear recurrence relations that produce

the same sequence. Hence, we have a family of characteristic polynomials related

to each of the linear recurrence relation that produces the same sequence. It can be

easily shown that the set of all characteristic polynomials of a given linear recurrence

sequence σ, together with the zero polynomial forms an non-zero ideal I in F [x] (see

[7]). Since F [x] is a principal ideal domain the following definition makes sense.

Definition 1.12. The unique monic generator m of I, the ideal of the characteristic

polynomials of a linear recurrence sequence σ is called the minimal polynomial of σ.

Theorem 1.13. Let σ be a sequence in Fq satisfying a kth-order homogeneous linear

recurrence relation with characteristic polynomial f(x) ∈ Fq[x]. Then f(x) is the

minimal polynomial of the sequence if and only if the state vectors σ0, σ1, . . . , σk−1

are linearly independent over Fq.

Proof. See [8, Theorem 8.51].

Since the minimal polynomial is unique then the following definition make sense.

Definition 1.14. The linear complexity Lσ of a sequence σ is defined to be the

degree of the minimal polynomial m of σ.
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When a sequence σ is purely periodic with period t then xt +1 is a characteristic

polynomial for this sequence. Hence the linear complexity of a σ does not exceed t.

One can also define the linear complexity of a linear recurrence sequence σ as the

order of the linear recurrence relation of least order or equivalently, as the length of

the shortest linear feedback shift register generating the sequence σ.

Alternatively, we can take a finite sequence σ = (σ1, σ2, . . . , σn) and consider

consider the homogeneous linear recurrence relation of order k

σn+k = ak−1σn+k−1 + ak−2σn+k−2 + · · ·+ a0σn + a (1.6)

for n = 0, 1, . . . , n − k, and a0, . . . , ak ∈ Fq. The linear complexity of the se-

quence σ1, . . . , σn is defined as the least k for which equation (1.6) holds for some

a0, . . . , ak−1 ∈ Fq.

Definition 1.15. Let Lσ(i) be the linear complexity of the first i terms of the

sequence σ, for i = 1, 2, . . . . Then the sequence (Lσ(i)) = (Lσ(1), Lσ(2), . . .) is

called the linear complexity profile of σ.

The following algorithm is the basic tool for calculating the linear complexity

profile of arbitrary sequences.

Algorithm 1.16. (The Berlekamp-Massey Algorithm) Let σ be a sequence of finite

length n over Fq. The following algorithm computes integers Lk and polynomials

fk(x) = 1− c
(k)
1 x− c

(k)
2 x2 − . . .− c

(k)
Lk

xLk (1.7)

for all k ≥ n.

L0 := 0, L1 := −1, f0 := 1, f1 := 1 + x.

for k = 1 to N − 1 do

δk := −ak +
∑Lk

i=1 c
(k)
i ak−i

if δk = 0 then

fk+1 := fk, Lk+1 := Lk

else m := max{i : Li < Li+1},

Lk+1 := max(Lk, k + 1− Lk),

fk+1 := fk − δkδ
−1
m xk−mfm(x).

7



Proof. See [7, Algorithm 6.7.5].

Theorem 1.17. Let σ = (σ1, . . . , σn) be a sequence of finite length n over Fq. Then

the Berklamp-Massey algorithm computes the linear complexity profile (Lσ(1), . . . ,

Lσ(n)) of σ and feedback polynomials f1, . . . , fn for LFSR’s lk of length Lσ(k) gen-

erating the first k elements of σ ( for all k = 1, . . . , n).

Proof. See [7, Theorem 6.7.6].

We remark here that the polynomials fk appearing in the above algorithm are

the feedback polynomials corresponding to each sequence (σ1, . . . , σk).

Theorem 1.18. If σ = σ0, σ1, . . . is a maximal periodic sequence, with period 2n−1,

in F2 with minimal polynomial m. Let ζ be a root of m in the extension field F2n .

Then there exists a uniquely determined c ∈ F2 such that

σi = Tr(cζ i),

for all non-negative integers i.

Proof. See [8, Theorem 8.24].

Definition 1.19. The formal power series or the generating function of an infinite

sequence σ is defined by

σn(x) =
∞∑
i=0

σix
i. (1.8)

Proposition 1.20. The generating function of each periodic sequence σ can be

expressed as

σ(x) =
g(x)

f(x)

with f(0) 6= 0 and deg(g(x)) < deg(f(x)).

Proof. First we assume that r is a period for σ, say σk+r = σk for all k ≥ N . Using

this we can write the formal power series σ(x) of σ as follows

σ(x) = (σ0+. . .+σN−1x
N−1)+xN(σN +σN+1x+. . .+σN+r−1x

N+r−1)(1+xr+x2r+. . .)

8



Using the identity

1 + xr + x2r + . . . = (1− xr)−1,

we get

(1−xr)σ(x) = (σ0 + . . .+σN−1x
N−1)(1−xr)+ (σN +σN+1x+ . . .+σN+r−1x

N+r−1).

Thus (1− xr)σ(x) ∈ F [x]. Call this g. Then σ(x) = g(x)/(1− xr) which proves the

proposition.

Proposition 1.21. Let σ be a periodic sequence over Fq and

σ(x) = r(x)/f(x), f(0) = 1,

a rational form of the generating function of σ. Then f(x) is the minimal polynomial

of the sequence if and only if gcd(f(x), r(x)) = 1.

Proof. See [4, Propostion 2.3.2].

With the help of the linear complexity profile we can categorize sequences using

the following definition.

Definition 1.22. If d is a positive integer, than a sequence σ of elements in Fq is

called d-perfect if

|2Lσ(i)− i| ≤ d for all i ≥ 1.

Where Lσ(i) denotes the linear complexity of the first i elements of σ

A 1-perfect sequence is also called perfect. A sequence is called almost perfect if

it is d-perfect for some d.

Theorem 1.23. In order to establish that a sequence σ, with irrational generating

function, is d-perfect, it is suffices to prove that

Lσ(i) ≤ i + d

2
for all i ≥ 1,

or, similarly

Lσ(i) ≥ i + 1− d

2
for all i ≥ 1.

Proof. See [13, Chapter 7].

9



1.3 Algebraic Function Fields

Here we give the basic facts about algebraic function fields. The reader is referred

to the book of Stichtenoth [16] for proofs and further results on function fields.

Definition 1.24. An algebraic function field F/K of one variable over an arbitrary

field K is an extension field F ⊇ K such that F is a finite algebraic extension of

K(x) for some element x ∈ F , which is transcendental over K. Elements of F/K

are called functions.

We’ll simply refer to F/K as a function field.

Definition 1.25. The set K̃ := {z ∈ F | z is algebraic over K} is called the

constant field of F/K. If K̃ = K, then K is called the full constant field of F/K.

Elements of F/K that are in K̃ are called constants functions. We note that, in

general, K̃ is a finite, hence algebraic extension of K.

Definition 1.26. A valuation ring of the function field F/K is a ring O ⊆ F with

the following properties :

1. K  O  F and

2. for any z ∈ F , z ∈ O or z−1 ∈ O.

Proposition 1.27. Let O be a valuation ring of the function field F/K. Then

1. O is local ring, i.e. O has a unique maximal ideal P = O\O∗, where O∗ is

the group of units of O.

2. For 0 6= x ∈ F , x ∈ P ⇔ x−1 6∈ O.

Proof. See [16, Theorem I.1.5]

Theorem 1.28. Let O be a valuation ring of the function field F/K and P be its

unique maximal ideal. Then

1. P is a principal ideal.

10



2. If P = tO then any 0 6= z ∈ F has a unique representation of the form z = tnu

for some n ∈ Z, u ∈ O∗.

Proof. See [16, Theorem I.1.6]

Definition 1.29. A place P of the function field F/K is the maximal ideal of some

valuation ring O of F/K. An element t ∈ P such that P = tO is called a local

parameter.

We denote the valuation ring containing the place P by OP . The set of places

of F/K is denoted by PF . It can be shown that PF is a non-empty set, in fact, PF

is an infinite set, i.e. any function field F/K has has infinitely many places (see [16,

Corollary I.1.19] and [16, Corollary I.3.2]).

Definition 1.30. A discrete valuation of F/K is a function v : F ← Z∪ {∞} with

the following properties :

1. v(x) =∞ ⇔ x = 0.

2. v(xy) = v(x) + v(y) for any x, y ∈ F.

3. v(x + y) ≥ min {v(x), v(y)} for any x, y ∈ F .

4. There exist an element z ∈ F with v(z) = 1.

5. v(a) = 0 for any 0 6= a ∈ K.

Property (3) is called The Triangle Inequality.

Lemma 1.31. (Strict Triangle Inequality) Let v be a discrete valuation of F/K

and x, y ∈ F with v(x) 6= v(y). Then v(x + y) = min{v(x), v(y)}.

Proof. See [16, Lemma I.1.10].

To any place P of F/K, we can associate a function vP : F → Z∪{∞} as follows

: let t be a local parameter of P . For any 0 6= z ∈ F , write z = tnu for some n ∈ Z

and u ∈ O∗
P . Then define vP (z) to be n. If z = 0, then we set vP (0) = ∞. It can

be shown that vP is independent of the choice of the local parameter t and it is a

discrete valuation of F/K.
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Theorem 1.32. 1. Let P be a place of F/K, and vP be the corresponding discrete

valuation. Then

OP ={z ∈ F | vP (z) ≥ 0}

P ={z ∈ F | vP (z) > 0}

O∗
P ={z ∈ F | vP (z) = 0}

An element t ∈ F is a local parameter of P if and only if vP (t) = 1.

2. Let v be discrete valuation of F/K. Then O = {z ∈ F | v(z) ≥ 0} is a

valuation ring of F/K with the associated place P = {z ∈ F | v(z) > 0}

Proof. See [16, Theorem I.1.12].

Since P is a maximal ideal in OP , OP /P is a field which is denoted by FP . FP

is called the residue class field of P . When z ∈ OP , we denote z +P in FP by z(P ).

If z 6∈ OP , then z(P ) is defined to be ∞ ( note that the symbol ∞ is used in a

different sense here, compared to Definition 1.30). The map

z :

{
F → FP ∪ {∞}
z 7→ z(P ).

(1.9)

is called the residue class map with respect to P . Note that K̃, and K, are embedded

into FP under this map, since K̃ ∩ P = {0}. Hence, we can view FP /K as a field

extension.

Definition 1.33. For P ∈ PF , define the degree of P as degP = [FP : K]

It can be shown that degP is a finite number. Hence, one knows why K̃ is a

finite extension of K as K ⊂ K̃ ⊂ FP and degP = [FP : K] <∞.

Remark 1.34. Degree one places of a function field F/K are of special interest.

They are called the rational places of F/K. Note that if F/K has a rational place

then K̃ = K, i.e. the full constant field of F/K is K. Furthermore, the residue

class map with respect to a rational place takes values in K ∪ {∞}. In particular,

12



if K is algebraically closed field so that all places of F/K are of degree 1, then one

can view elements of F as functions as follows

z :

 PF → K ∪ {∞}

P 7→ z(P ).

Note that, this is the case when K = C for instance. This is why we call F/K a

function field and elements a function.

Definition 1.35. Let z ∈ F and P ∈ PF . P is a zero of z if vP (z) > 0 and P

is a pole of z if vP (z) < 0. If vP (z) = m > 0, P is called a zero of order m; if

vP (z) = −m < 0, P is a pole of order m.

Theorem 1.36. Let F/K be a function field, z ∈ F be transcendental over K. Then

z has at least one zero and one pole. For any z ∈ F , the number of zeroes and poles

is finite.

Proof. See [16, Corollary I.1.19 and Corollary I.3.4]

The simplest of all function fields is K(x)/K, the rational function field. We

know investigate its places (or equivalently valuation rings or discrete valuations).

Given an arbitrary monic, irreducible polynomial p(x) ∈ K[x] consider the val-

uation ring,

Op(x) :=

{
f(x)

g(x)

∣∣∣∣ f(x), g(x) ∈ K[x], p(x) 6 |g(x)

}
(1.10)

of K(x)/K with the maximal ideal

PP (x) :=

{
f(x)

g(x)

∣∣∣∣ f(x), g(x) ∈ K[x], p(x)|f(x), p(x) 6 |g(x)

}
(1.11)

In particular case when p(x) is linear, i.e. p(x) = x− α with α ∈ K, we abbreviate

and write

Pα := Px−α ∈ PK(x). (1.12)

There is another valuation ring of K(x)/K

O∞ :=

{
f(x)

g(x)

∣∣∣∣ f(x), g(x) ∈ K[x], deg(f(x)) ≤ deg(g(x))

}
(1.13)
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with the maximal ideal

P∞ :=

{
f(x)

g(x)

∣∣∣∣ f(x), g(x) ∈ K[x], deg(f(x)) < deg(g(x))

}
. (1.14)

P∞ is called the infinite place of K(x)/K.

Proposition 1.37. Let F/K(x) be the rational function field.

1. Let P = Pp(x) ∈ PK(x) be the place defined by Equation (1.11), where p(x) ∈

K[x] is an irreducible polynomial. Then p(x) is local parameter for P , and the

corresponding discrete valuation vP can be described as follows: if z ∈ K(x)\0

is written in the form z = p(x)n · (f(x)/g(x)) with n ∈ Z and f(x)6 |g(x),

p(x)6 |g(x), then vP (x) = n. The residue class field K(x)P = OP /P is isomor-

phic to K[x]/(p(x)); an isomorphism is give by

φ :

 K[x]/(p(x)) → K[x]P ,

f(x) mod p(x) 7→ f(x)(P ).

Consequently, degP = deg(p(x)).

2. In special case p(x) = x − α with α ∈ K, the degree of P = Pα is one, and

the residue class map is given by

z(P ) = z(α) for z ∈ K(x),

where z(α) is defined as follows: write z = f(x)/g(x) with relatively prime

polynomials f(x), g(x) ∈ K[x]. Then

z(α) =

 f(α)/g(α) if g(α) 6= 0,

∞ if g(α) = 0.

3. Finally, P = P∞ be the infinite place of K(x)/K defined by Equation (1.13).

Then degP = 1. A local parameter for P∞ is t = 1/x. The corresponding

discrete valuation v∞ is given by

v∞(f(x)/g(x)) = deg(g(x))− deg(f(x)),
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where f(x), g(x) ∈ K(x). The residue class map corresponding to P∞ is de-

termined by z(P∞) = z(∞) for z ∈ K[x], where z(∞) is defined as usual:

if

z =
anx

n + · · ·+ a0

bmxm + · · ·+ b0

with an, bm 6= 0,

then

z(∞) =


an/bn if n = m,

0 if n < m.

∞ if n > m.

4. K is the full constant field of K(x)/K.

Proof. See [16, Theorem I.2.2.]

From here on F/K will always denote an algebraic function field of one variable

such that K is the full constant field of F.

Definition 1.38. The (additively written) free abelian groupDF , which is generated

by the places of F/K is called the divisor group of F/K. The elements of DF are

called divisors of F/K. In other words a divisor is a formal sum

D =
∑

P∈PF

nP , where nP ∈ Z, and nP = 0 for almost all P ∈ PF .

For Q ∈ PF and D =
∑

nP P ∈ DF we define vQ(D) := nQ.

The set Supp(D) := {P ∈ PF ; np 6= 0} is called the support of D ∈ DF .

Definition 1.39. The degree of a divisor is defined by

deg(D) :=
∑

P∈PF

vP (D) · degP. (1.15)

A partial ordering on DF is given by

D1 ≤ D2 ⇔ vP (D1) ≤ vP (D2) for all P ∈ PF .

A divisor D ∈ DF which satisfies D ≥ 0 is called a positive (effective) divisor. It

is easy see that for two divisors E and D with E ≥ D, we have deg(E) ≥ deg(D).

Since any x ∈ F has finitely many zeroes or poles (Theorem (1.36)) the following

definition makes sense.
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Definition 1.40. Let 0 6= x ∈ F and denote by Z ( respectively N) the set of zeros

(respectively poles) of x in PF . Then define

(x)0 :=
∑
P∈Z

vP (x)P : the zero divisor ofx,

(x)∞ :=
∑
P∈Z

−vP (x)P : the pole divisor of x,

(x) := (x)0 − (x)∞ : the principal divisor of x.

Remark 1.41. The zero (respectively pole) divisor of any 0 6= x ∈ is an effective

divisor. One can represent the principal divisor of x as

(x) =
∑

P∈PF

vP (x)P.

Non-zero elements of K are characterized by

x ∈ K ⇔ (x) = 0.

Theorem 1.42. Any principal divisor has degree 0. More precisely, for x ∈ F\K,

we have

deg(x)0 = deg(x)0 = [F : K(x)] <∞.

Proof. See [16, Theorem I.4.11]

Note that the above Theorem essentially says that there are as many zeros as

poles for any z ∈ F provided that they are counted properly, i.e. taking the orders

of zeros and poles into account.

Let F/K be a function field and P be a degree 1 place of F/K with local

parameter t. Then for f ∈ F we can find an integer v such that vP (f) ≥ v. Hence

vP

(
f

tv

)
= vP (f)− vP (tv) ≥ 0.

Put

av :=

(
f

tv

)
(P ) ∈ FP .

Since degP = 1, av ∈ K . Calculate(
f

tv
− av

)
(P ) =

(
f

tv

)
(P )− av(P ) = av − av = 0.
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Then f/tv − av has zero at PPF
which implies that

vP

(
f

tv
− av

)
≥ 1 or vP (f − tvav) ≥ v + 1.

Then

vP

(
f − avt

v

tv+1

)
= vP (f − avt

v)− vP (tv) ≥ 0

Let

av+1 :=

(
f − avt

v

tv+1

)
(P ) ∈ FP = K.

Then(
f − avt

v

tv+1
− av+1

)
(P ) =

(
f − avt

v

tv+1

)
(P )− av+1(P ) = av+1 − av+1 = 0.

Hence, P is a zero of
(

f−avtv

tv+1 − av+1

)
. This, again, means that

vP

(
f − avt

v

tv+1
− av+1

)
≥ 1

or equivalently

vP (f − avt
v − av+1t

v+1) ≥ v + 2.

Continuing this way one gets a sequence (an)∞n=v of elements of K such that

vP

(
f −

m∑
n=v

ant
n

)
≥ m + 1

for all m ≥ v.

We summarize this construction in the formal expansion

f =
∞∑

n=v

ant
n.

This is called the local expansion of f at P with respect to t. One can show that

this representation of f is unique, i.e. ai’s are uniquely determined (see [16, Thereom

IV.2.6]).

Example 1.43. Consider the rational function field F2(x)/F2. The rational places

are P1, P0 and P∞, which are zeroes of x, x + 1 and 1/x, respectively. Denote the

corresponding discrete valuations by v0, v1 and v∞. Let t = x2+x = x(x+1) ∈ F2(x).
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Then t is a local parameter at P0, since v(t) = 1. Note that v1(t) = 1, v∞(t) = −2

and vQ(t) = 0 for any Q ∈ PF2(x) − {P0, P1, P∞}. Hence, the principal divisor of t

(t) = P0 + P1 − 2P∞.

Now we look at the local expansion of some elements of F2(x)/F2 at P0 with respect

to the local parameter t.

1. x = (x2 + x) + (x4 + x2) + (x8 + x4) + (x16 + x8) + . . . = t + t2 + t4 + t8 + . . .

=
∞∑
i=0

t2
i

=
∞∑

m=1

t2
m−1

.

2. x2 = (x4 + x2) + (x8 + x4) + (x16 + x8) + . . . = t2 + t4 + t8 + . . .

=
∞∑

m=1

t2
m

.

3.
x

x + 1
= x

(
1

x + 1

)
=

1

t
x2 =

1

t

∞∑
m=1

t2
m

=
∞∑

m=1

t2
m−1.

4. Using (3), (
x

x + 1

)2

=
∞∑

m=1

t2
m+1−2.

5.

x3 = (x2+x)x2+x4 = tx2+x4 = t =
∞∑

m=1

t2
m

+
∞∑

m=1

t2
m+1

=
∞∑

m=1

t2
m+1+

∞∑
m=1

t2
m+1

,

where the expansion of x4 at P0 with respect to t obtained in an obvious way.

Theorem 1.44. Let P ∈ PF be a rational place and t ∈ F be a local parameter at

P . Then any element z ∈ F has a unique representation of the form

z =
∞∑

i=n

ait
i with n ∈ Z and ai ∈ K. (1.16)

Furthermore we have

vP (z) = vP

(
∞∑

i=n

ait
i

)
= min{i| ai 6= 0}.

Proof. See [16, Theorem IV.2.6]
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CHAPTER 2

POLYNOMIAL DEGREE AND LINEAR COMPLEXITY

In this chapter we will compare the complexities of the polynomial representation

and the periodic sequence representation of a function over a finite field in the

complexity measures degree and linear complexity, based on the joint work of A.

Winterhof and W. Meidel [10].

2.1 The Main Result

Here we fix an ordering Fq = {ξ0, ξ1, . . . , ξq−1} of the elements of the finite field Fq

where q is a prime power. Let σ be a q-periodic sequence of elements of Fq. We can

identify each σ by a polynomial f ∈ Fq[x] in the light of the following lemma.

Lemma 2.1. Every q-periodic sequence σ of elements of Fq can be represented by

a uniquely determined polynomial f(x) ∈ Fq[x] of degree at most q− 1. Conversely,

every polynomial f(x) ∈ Fq[x] of degree at most q − 1 defines a unique q-periodic

sequence over Fq. In other words, we have

σ = f(ξn) ∈ Fq for 0 ≤ n < q and σn+q = σn for n ≥ 0. (2.1)

Proof. Apply the Lagrange Interpolation formula (Theorem 1.2) for f(ξi) = σi,

where i = 0, 1, . . . , q−1. This results in unique f ∈ Fq[x]. Conversely,let f, g ∈ F [x]

be any to polynomials of degree ≤ q−1. Assume that produce same sequence. That

is f(ξ) = g(ξ) for every ξ ∈ Fq. On the other hand the Lagrange Interpolation For-

mula produce a unique polynomial from inputs, which contradicts our assumptions.

Therefore, every f ∈ Fq[x] produces a unique sequence.

When q = p where p is a prime we have a simple relation between the linear

complexity of σ and the degree of its representing polynomial f ∈ Fq[x], which is

given by next theorem.
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Theorem 2.2. If q=p is a prime, Fp = {0, 1, . . . , p − 1} and deg(f) < p then we

have

Lσ = deg(f) + 1. (2.2)

Proof. Let deg(f) = k. We define g1(x), . . . , gk+1(x) ∈ Fq[x] such that

g1(x) = f(x + 1)− f(x) =⇒ deg(g1) = deg(f)− 1

g2(x) = g1(x + 1)− g1(x) =⇒ deg(g2) = deg(g1)− 1

...

gk(x) = gk−1(x + 1)− gk−1(x) =⇒ deg(gk) = deg(gk−1)− 1

gk+1 = 0.

Using the functions we get

0 = gk+1 = gk(n + 1)− gk(n)

= gk−1(n + 2)− gk−1(n + 1)− gk−1(n + 1)− gk−1(n)

...

=
i+1∑
j=0

(−1)j

(
i− 1

j

)
gk−i(n + j).

When we put i = k − 1 we get a relation between σi’s of order k + 1 = deg(f) + 1.

The smallest degree comes from Lemma 2.1.

When q = pr, r > 0, power of a prime p the situation is different. For example we

consider the case F4 = F2(ρ) = {0, 1, ρ, ρ + 1} where ρ is the zero of the polynomial

g(x) = x2 + x + 1 ∈ F2[x]. Let σ be the sequence σ = (0, ρ + 1, 0, ρ + 1, 0, . . .)

defined by the polynomial f(x) = ρx+x2 ∈ F4[x]. This sequence satisfies the linear

recurrence relation σn−2 = σn for n ≥ 2. And this is the linear relation of the

smallest order. Therefore we have Lσ = deg(f). On the other hand the sequence

σ = (0, 1, ρ, ρ + 1, 0, . . .) defined by the polynomial f(x) = x does not satisfy any

linear recurrence relation of order ≤ 2 and we have Lσ ≥ 3 = deg(f) + 2. Indeed

the sequence σ satisfies relation σn = σn−1 + σn−2 + σn−3 for n ≥ 3, implying

Lσ = deg(f) + 2.
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For the rest of the this chapter we study the relation between Lσ and deg(f)

in the case q = pr. We consider a fixed basis {β1, . . . , βr} of Fq over Fp. Then for

0 ≤ n < q, the element ξi ∈ Fq is defined by

ξn = n1β1 + n2β2 + . . . + nrβr, (2.3)

where

n = n1 + n2p + . . . + nrp
r with 0 ≤ nk < q for 1 ≤ k ≤ r.

It is clear that Fq = {ξ0, ξ1, . . . , ξq−1}.

Let us define the polynomial Sq(x) ∈ Fq[x] by

Sq(x) :=

q−1∑
n=0

σnx
n. (2.4)

Lemma 2.3. The linear complexity of Lσ of σ is given by

Lσ = q − deg(gcd(xq − 1, Sq(x))) = q − v, (2.5)

where v denotes the multiplicity of 1 as zero of Sq(x) and v is defined to be 0 if

sq(1) 6= 0.

Proof. Let r(x) ∈ Fq[x] and defined as r(x) := (xn− 1)/Sq(x). By Proposition 1.20

we can write the generating function σ(x) of σ as

σ(x) =
r(x)

f(x)
, where f(x) = (xn − 1)/gcd(xn − 1, Sq(x)).

Since f(1) = 1 and gcd(f(x), r(x)) = 1 then by Proposition 1.21 implies f(x) is the

minimal polynomial of σ. Since the linear complexity of sequence is defined to the

degree of the its minimal polynomial then the result follows.

Remark 2.4. Using the Lemma 2.3 one can easily verify the following

Lσ = q if and only if Sq(1) 6= 0.

Lemma 2.5. Let f be in the form

f(x) =

q−1∑
j=0

αjx
j. (2.6)
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Then we have

Sq(1) = −αq−1

and in particular

Lσ = q if and only if deg(f) = q − 1. (2.7)

Proof. By the construction of σ, we have

Sq(1) =

q−1∑
n=0

σn =
∑
ξ∈Fq

f(ξ).

Using the definition of f, we get

∑
ξ∈Fq

f(ξ) =
∑
ξ∈Fq

q−1∑
j=0

αjξ
j,

and by changing the order of summation, we have

q−1∑
j=0

∑
ξ∈Fq

αjξ
j =

q−1∑
j=0

αj

∑
ξ∈Fq

ξj.

Proposition 1.3 yields that when j = q − 1 inner sum is equal to -1 or otherwise it

is zero. With the help of this, we have

q−1∑
j=0

αj

∑
ξ∈Fq

ξj = −αq−1.

Now if Lσ = q then v = 0 that is Sq(1) 6= 0 and we found that Sq(1) = −αq−1 this

implies deg(f) = q − 1. Conversely, if deg(f) = q − 1 then Sq(1) 6= 0. By Remark

2.4 we have Lσ = q, which completes the proof.

Theorem 2.6. (Lucas Congruence) For every prime p,(
n

k

)
≡
(

n0

k0

)(
n1

k1

)(
n2

k2

)
· · ·
(

nr

kr

)
, (2.8)

where base p expansion of n and k are n = n0 + n1p + . . . + nrp
r, ni ≤ p − 1, and

k = k0 + k1p + . . . + krp
r, ki ≤ p− 1 respectively.

Proof. See [9].
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Remark 2.7. To estimate the multiplicity v of 1 we will use the following expression,

Sq(x)(t) =

q−1∑
n=0

(
n

t

)
σnx

n−t, (2.9)

evaluated at x=1.

Let {δ1, . . . , δr} be the dual basis of the basis {β1, . . . , βr}, i.e.

Tr(δiβj) =

{
0, for i 6= j,

1 for i = j.

Using the trace map and equation (2.3) we can calculate ni’s, that is

ni = Tr(δiξn), for i = 1, . . . , r, (2.10)

therefore, for 0 ≤ n < q we have

n =
r∑

k=1

Tr(δkξn)pk−1. (2.11)

Applying Lucas’s Congruence (Theorem 2.6) to the equation (2.11), where

t = t1 + . . . + trp
r−1, 0 ≤ ti < p, we get(

n

t

)
≡
(

Tr(δ1ξn)

t1

)
· · ·
(

Tr(δrξn)

tr

)
mod p. (2.12)

Now we can calculate Sq(1)(t)

Sq(1)(t) =

q−1∑
n=0

(
n

t

)
σn

=

q−1∑
n=0

(
Tr(δ1ξn)

t1

)
· · ·
(

Tr(δrξn)

tr

)
σn

=

q−1∑
n=0

(
Tr(δ1ξn)

t1

)
· · ·
(

Tr(δrξn)

tr

)
f(ξn),

thus we get get

Sq(1)(t) =
∑
ξ∈Fq

(
Tr(δ1ξ)

t1

)
· · ·
(

Tr(δrξ)

tr

)
f(ξ) (2.13)

We will use equation (2.13) in our estimation of Sq(1)(t).
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Proposition 2.8. Let p0(x), p1(x), . . . , ps(x) ∈ Fq[x] and be defined as p0(x) = 1

and

pt(x) =
1

t!
x(x− 1) · · · (x− t− 1) ∈ Fq[x], 1 ≤ t ≤ s < p.

Then p0(x), . . . , ps(x) forms a basis of the linear space of polynomials of degree at

most s.

Proof. Let a0, . . . , as ∈ Fq such that

a0p0(x) + a1p1(x) + . . . + asps(x) = 0. (2.14)

Note that deg(ps) > deg(ps−1) > · · · > deg(p0) with deg(pi(x)) = i for 0 ≤ i ≤ s.

Expanding equation (2.14) one has as as the coefficient ps(x)/s!, implying as = 0.

Similarly the rest of ai’s, 0 ≤ i ≤ s− 1 becomes 0, which proves the assertion.

Lemma 2.9. let f(x) =
∑q−2

j=0 αjx
j ∈ Fq[x]. If Lσ = q−s with 0 ≤ s < p then some

coefficients αq−1−pm1−pm2−···−pms of f(x) with 0 ≤ m1, . . . ,ms < r are non-zero

Proof. For 0 ≤ t < s we have Sq(1)(t) = 0 and Sq(1)(s) 6= 1 by Lemma 2.3. By the

Proposition 2.8 the polynomials p0(x) and

pt(x) =
1

t!
x(x− 1) · · · (x− t− 1) ∈ Fq[x], 1 ≤ t ≤ s < p

form a basis of the linear space of the polynomials of degree at most s, then one can

write xs/s! as a linear combination of the polynomials p0(x), . . . , ps(x), namely

xs

s!
=

s∑
t=0

ctpt(x) with cs = 1. (2.15)

Using our estimation on Sq(1)(t) (Equation (2.13)), where t = s, we have

Sq(1)(s) =
∑
ξ∈Fq

(
Tr(δ1ξ)

s1

)
· · ·
(

Tr(δrξ)

sr

)
f(ξ).

Since s < p then s = s1 and si = 0 for 1 < i ≤ r. So we can write Sq(1)(s) as

Sq(1)(s) =
∑
ξ∈Fq

(
Tr(δ1ξ)

s1

)
f(ξ). (2.16)
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Using the properties of pt(x) we have

Sq(1)(s) =
∑
ξ∈Fq

ps(Tr(δ1ξ))f(ξ).

We can write the equation (2.16) by calculating ps(x) from the equation (2.15), that

is

Sq(1)(s) =
∑
ξ∈Fq

(
(Tr(δiξ))

s

s!
−

s−1∑
t=0

ctpt(Tr(δ1ξ))

)
f(ξ).

our estimation on Sq(1)(t) (equation (2.13)) implies

Sq(1)(s) =
∑
ξ∈Fq

(Tr(δiξ))
s

s!
f(ξ)−

s−1∑
t=0

ctS
q(1)(t).

In the beginning of the proof we stated that Sq(1)(t) = 0 for 1 ≤ t ≤ s− 1, then we

have

Sq(1)(s) =
∑
ξ∈Fq

(Tr(δiξ))
s

s!
f(ξ)

In this equation we replace f by its expression

Sq(1)(s) =
1

s!

q−2∑
j=0

αj

∑
ξ∈Fq

(Tr(δ1ξ))
sξj,

and by writing the trace function explicitly we get

Sq(1)(s) =
1

s!

q−2∑
j=0

αj

∑
ξ∈Fq

(
r−1∑
m=0

(δ1ξ)
pm

)s

ξj

Expanding the power s, we have

Sq(1)(s) =
1

s!

r−1∑
m1,...,ms=0

δpm1+...+pms

q−2∑
j=0

αj

∑
ξ∈Fq

ξpm1+...+pms+j,

using Proposition 1.3 on the inner sum we get

Sq(1)(s) = − 1

s!

r−1∑
m1,...,ms=0

δpm1+...+pms
αq−1−(pm1+...+pms ) 6= 0 (2.17)

which proves the lemma.

25



Lemma 2.10. Let 0 ≤ s < p and f(x) =
∑q−2

j=0 αjx
j ∈ Fq[x] with

αq−1−(pm1+...+pms ) 6= 0, for some 0 ≤ mi < r, 1 ≤ i ≤ s.

Then

Lσ ≥ q − sq/p.

Proof. Assume that Lσ < q− sq/p. By Lemma 2.3 we have Sq(1)(t) = 0 for 0 ≤ t ≤

sq/p.

Now as in the proof of pervious lemma we will calculate Sq(1)(t). By equation

(2.13), where t = t1 + . . . + trp
r−1 with 0 ≤ ti < p for 0 ≤ i < r, we have

Sq(1)(t) =
∑
ξ∈Fq

(
Tr(δ1ξ)

t1

)
· · ·
(

Tr(δrξ)

tr

)
f(ξ),

using properties of pt(x) we rewrite as

Sq(1)(t) =
∑
ξ∈Fq

pt1(Tr(δ1ξ)) · · · ptr(Tr(δrξ))f(ξ). (2.18)

Now for each pti , 1 ≤ i ≤ r, write xti/ti! as a linear combination of pi’s as in the

previous lemma, that is

Tr(δ1ξ)
ti

ti!
=

ti∑
t=0

ctpt(Tr(δiξ)), with cti = 1,

calculating pti(Tr(δiξ))’s we have

pti(Tr(δiξ)) =
Tr(δ1ξ)

ti

ti!
−

ti−1∑
t=0

ctpt(Tr(δtξ))

using pti(Tr(δiξ))’s we rewrite Equation (2.18) as

Sq(1)(t) =
∑
ξ∈Fq

(
Tr(δ1ξ)

t1

t1!
−

t1−1∑
t=0

ctpt(Tr(δtξ))

)
· · ·

(
Tr(δ1ξ)

tr

tr!
−

tr−1∑
t=0

ctpt(Tr(δtξ))

)
f(ξ),

by distributing all parenthesis and then multiplying by f then using using properties

of pt(x) and our estimate on Sq(1)(t) we get

Sq(1)(t) =
∑
ξ∈Fq

[(
Tr(δ1ξ)

tr

tr!

)
· · ·
(

Tr(δrξ)
tr

tr!

)]
f(ξ)− · · · −

[
· · ·

(
ti−1∑
t=0

ctS
q(1)(t)

)
· · ·

]
f(ξ)− · · · −[(

t1−1∑
t=0

ctS
q(1)(t)

)
· · ·

(
tr−1∑
t=0

ctS
q(1)(t)

)]
f(ξ), (2.19)
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by the assumption that we made in the beginning of lemma all Sq(1)(t)’s are zero,

whose appear as a term element in the above equation. Then we have

Sq(1)(t) =
∑
ξ∈Fq

(
Tr(δ1ξ)

tr

tr!

)
· · ·
(

Tr(δrξ)
tr

tr!

)
f(ξ) = 0 (2.20)

For every α ∈ Fq we have α =
∑r

k=1 αkδk where αk ∈ Fp. Now we want to calculate∑
ξ∈Fq

Tr(αξ)sf(ξ). By linearity of the trace map (Theorem 1.5) we have,

∑
ξ∈Fq

Tr(δξ)sf(ξ) =
∑
ξ∈Fq

(
r∑

k=1

αkTr(δkξ)

)s

f(ξ),

expanding the inner sum, we have,∑
ξ∈Fq

Tr(δξ)sf(ξ) =
∑
ξ∈Fq

r∑
k1,...,ks=1

αk1 · · ·αksTr(δk1ξ) · · ·Tr(δksξ)f(ξ) =

=
r∑

k1,...,ks=1

αk1 · · ·αks

∑
ξ∈Fq

Tr(δk1ξ) · · ·Tr(δksξ)f(ξ) (2.21)

Now we define a polynomial

Hs(x) :=
∑
ξ∈Fq

Tr(ξx)sf(ξ) (2.22)

By equation (2.20) and 1 < ki ≤ r, Hs(x) has q zeroes, namely all α ∈ Fq. Since

deg(Hs(x)) ≤ sq/p < q we have Hs(x) ≡ 0. On the other hand analogously to the

proof of previous lemma we get

Hs(x) =

q−2∑
j=0

∑
ξ∈Fq

Tr(ξx)jξs,

=

q−2∑
j=0

∑
ξ∈Fq

(
r−1∑
m=0

(ξx)pm

)s

ξj,

=
r−1∑

m1,...,ms=0

q−2∑
j=0

αj

∑
ξ∈Fq

ξpm1+...+pms+jxpm1+...+pms
,

=−
r−1∑

m1,...,ms=0

αq−1−(pm1+...+pms )x
pm1+...+pms

,

=−
q−1∑
j=0

kq−1−jαjx
j ≡ 0
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with

kj =

 0 if j1 + . . . + jr 6= s,(
s
j1

)(
s−j1
j2

)
· · ·
(

s−j1−...−jr−1

jr

)
if j1 + . . . + jr = s,

where j = j1 + . . . + jrp
r−1 with 0 ≤ ji < p for 0 ≤ i ≤ r. Since kj 6= 0 if and only

if j1 + . . . + jr = s we get αq−1−(pm1+...+pms ) = 0 for all 0 ≤ m1, . . . ,ms < r which

contradicts our assumption. Then result follows.

Theorem 2.11. Let f(x) ∈ Fq[x] be a polynomial of degree at most q − 1 and σ be

a sequence defined by (2.1) and (2.3). Then we have

(deg(f(x) + 1 + p− q)
q

p
≤ Lσ ≤ (deg(f(x) + 1)

p

q
+ q − p

or equivalently,

(Lσ + p− q)
p

q
− 1 ≤ deg(f(x)) ≤ Lσ

p

q
+ q − p− 1.

Proof. If the linear complexity Lσ ≤ q − p then the upper bound is satisfied. Then

we may suppose that

Lσ ≤ q − s, with 0 ≤ s < p.

By calculating the smallest possible degree of f by Lemma 2.9, that is mi’s are equal

to r − 1, we have

deg(f) ≥ q − 1− s
q

p
,

and then we can calculate

q − 1− sq

p
≤ deg(f)

pq − sq ≤ (deg(f) + 1)p

p− s + q − q ≤ (deg(f) + 1)
p

q

Lσ ≤ (deg(f) + 1)
p

q
+ q − s.

If deg(f) ≤ q − 1− p the lower bound is satisfied. Then we may suppose that

deg(f) = q − 1− s, 0 ≤ s < p.
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By Lemma 2.10 we have

Lσ ≥ q − s
q

p

and then

Lσ ≥ (deg(f) + 1 + p− q)
q

p
.

To prove the second inequality we will use the first one. To prove the upper

bound we will calculate

Lσ ≤ (deg(f) + 1)
p

q
+ q − p

Lσ − p + q ≤ (deg(f) + 1)
p

q

(Lσ − p + q)
q

p
≤ deg(f) + 1

(Lσ − p + q)
q

p
− 1 ≤ deg(f)

to prove the upper bound we calculate

(deg(f) + 1 + p− q)
q

p
≤ Lσ

(deg(f) + 1 + p− q) ≤ Lσ
p

q

feg(f) ≤ Lσ
p

q
+ q − p− 1,

which prove the theorem.

2.2 Consequences

Corollary 2.12. If deg(f) ≥ q − 2p + 1 then we have

Lσ ≥
q

p
.

Proof. Using the upper bound for f(x), which is proved in previous theorem ( The-

orem 2.11), we have

q − 2p + 1 ≤ deg(f) ≤ Lσ
p

q
+ q − p− 1

2q − qp

p
≤ Lσ

q

p
≤ Lσ.
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Example 2.13. Consider F9 = F3(α) with α2 + 1 = 0 and the basis {β1, β2} =

{1, α}. The sequence σ defined by the polynomial f(x) = x3 + x satisfies σn =

−σn−1 − σn−2, n ≥ 2, and we have Lσ = 2.

Corollary 2.14. Lσ = q − sq/p with 0 ≤ s ≤ 1 then we have

Lσ = (deg(f) + 1 + p− q)
q

p
.

Proof. For s = 0 the result equivalent to Remark 2.4. For s = 1 Remark 2.4 yields

that deg(f) ≤ q−2. Since the Equation (2.20) is valid for 0 ≤ t < q, from Equation

(2.20) and Equation (2.20) we know that

H1(x) = −
r−1∑
m=0

αq−1−pmxpm

has q/p distinct zeroes, namely all the elements of the form α =
∑r

k=1 αkδ
k with

αr = 0. Since deg(f) ≤ q/p all the zeroes have multiplicity 1. Hence the first

derivative of H1(x) is not zero polynomial, i.e.

H1(x)(1) = −
r−1∑
m=0

αq−1−pmpmxpm−1 = −αq−2 6= 0

and this simply imply deg(f) ≥ q − 2, therefore deg(f) = q − 1. Now we have

deg(f(x)) = q − 2 = Lσ
q

p
+ q − p− 1.

Corollary 2.15. If deg(f) = q − 1− sq/p with 0 ≤ s < p then we have

Lσ = (deg(f) + 1)
p

q
+ q − p.

Proof. For s = 0 the result equivalent to Remark 2.4. For s ≥ 1 the assumption

Lσ = q − st with 0 ≤ s < p would imply deg(f) ≥ q − 1 − stq/p > q − 1 − sq/p,

as in the proof of Theorem 2.11 and by Lemma 2.9. Applying the bounds on the

Theorem 2.11 to deg(f) we have Lσ ≤ q− s. By equation (2.17) with degree of f we

have

Sq(1)(s) = − 1

s!
δs/p αq−1−sq/p 6= 0.
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The two corollaries above show that the upper and lower bounds on the Theorem

2.11 are sharp.
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CHAPTER 3

BOUNDS FOR LINEAR COMPLEXITY

3.1 The Power Generator

In this section we will deal with the linear complexity of the Power Generator. The

exposition in this section follows the work of Igor Shparlinski ( see [15]).

Let v,m and e be integers with gcd(v, m) = 1. Then one can define a sequence

σ by the recurrence relation

σn ≡ σe
n−1 (mod m), 0 ≤ σn ≤ m− 1, n = 1, 2, . . . , (3.1)

with the initial value σ0 = v.

Definition 3.1. The sequence defined by equation (3.1) is called the power gen-

erator. In the special cases, gcd(e, ϕ(m)) = 1, where ϕ(m) is the Euler function,

and e = 2, this sequence is called the RSA generator and as the Blum-Blum-Shub

generator (see [3]), respectively.

m is called a Blum integer if m = pl, for some distinct primes p, l.

Lemma 3.2. The sequence given by (3.1) is ultimately periodic with some period

t ≤ ϕ(ϕ(m)). In particular, if gcd(e, ϕ(m)) = 1 then the sequence is purely periodic.

Proof. Eventually, we will have σn ≡ σk (mod m) for some n, k since all the powers

of v cannot have different values to modulo m. Then we have

ven ≡ vek

(mod m) ⇒

en ≡ vek

(mod ϕ(m)) ⇒

n ≤ k (mod ϕ(ϕ(m)))

then the sequence will be ultimately periodic with period t ≤ ϕ(ϕ(m))). If

gcd(e, ϕ(m)) = 1 then we have a generator of the multiplicative group Zϕ(m), that

e have order ϕ(m) and so σ has zero length pre-period this implies sequence is

periodic.
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Throughout this section we assume that the sequence given by (3.1) is purely

periodic, that is σn = σn+t beginning with n = 0, otherwise one can consider a shift

of the original sequence.

Lemma 3.3. Let q ≥ 2 and g be integers, let τ be the largest positive integer for

which the powers gx, x = 1, . . . , τ are distinct modulo q. Then for any H ≤ τ and

1 ≤ h ≤ q, there exists an integer a, 0 ≤ a ≤ q − 1, such that the congruence

gx ≡ a + y (mod q), 0 ≤ x ≤ H − 1, 0 ≤ y ≤ h− 1

has

Ta(H, h) ≥ Hh

q

solutions (x, y).

Proof. Proof can be found in [12].

Lemma 3.4. Let σ be a homogeneous linear recurrence sequence over a finite field

F with linear complexity Lσ. Then for any T > Lσ +1 pairwise distinct non negative

integers j1, . . . , jT there exist c1, . . . , cT ∈ F , not all are equal to zero, such that

T∑
i=1

ciσn+ji
= 0, n = 1, 2, . . . .

Proof. If any two of the σn+ji
’s are equal then the results follows due to periodicity.

So we assume that all σn+ji
’s are distinct.

Since σ has linear complexity Lσ then it satisfies a linear recurrence relation of order

Lσ, i.e.

0 =
Lσ∑

m=0

bmσk−m, for k ≤ Lσ.

Note that using this relation one can write as σj, j ≥ Lσ as a linear combination of

the first Lσ terms. That is

σn+ji
=

Lσ−1∑
m=0

amji
σk−m.
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Now we want to look at

0 =
T∑

i=1

ciσn+ji

=
T∑

i=1

ci

Lσ−1∑
m=0

amji
σk−m

=
Lσ−1∑
m=0

σk−m

T∑
i=1

ciamji
.

Since {σ0, . . . , σT−1} are linearly independent ( Theorem 1.13), the inner sums are

equal to zero. Since we have T > Lσ the system

T∑
i=1

ciamji
= 0

for m = 0, 1, . . . , Lσ − 1, has a non-trivial solution, which proves the lemma.

Theorem 3.5. Let m = p be a prime. Assume that the sequence σ, given by (3.1)

with m = p, is purely periodic with period t. Then, for the linear complexity Lσ of

this sequence the bound

Lσ ≥
t2

p− 1
(3.2)

holds.

Proof. Let τ be the largest positive integer for which the powers ex for x = 1, . . . , τ ,

are pairwise distinct modulo p − 1. Since the sequence can also be written as

σ = (v, ve, ve2
, ve3

, . . . , ven
, . . .) the number of distinct powers of e is less then or

equal to the period of the sequence, i.e. τ ≥ t. From Lemma 3.3 there exists

a, 0 ≤ a ≤ p− 1, such that the number of solutions of T of the congruence

ex ≡ a + y (mod p− 1), 0 ≤ x ≤ τ, 0 ≤ y ≤ t− 1

satisfies

T ≥ tτ

p− 1
≥ t2

p− 1
(3.3)

Let (j1, k1), . . . , (jr, kr) be the corresponding solutions.

Now assume that Lσ ≤ T − 1. Since

σn+ji
≡ ven+ji ≡ σeji

n ≡ σa+ki
n (mod p), n = 1, 2, . . . , i = 1, . . . , T,
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by using Lemma 3.4 on σa+ki
n (where Lσ < T ) we have integers c1, . . . , cT , not all

zero modulo p, such that

T∑
i=1

ciσ
a+ki
n ≡ σa

T∑
i=1

ciσ
ki
n ≡ 0 (mod p), n = 1, 2, . . . .

σn 6≡ 0 (mod p) for n = 1, 2, . . . since v, the initial value, is not zero. Then we can

conclude that the non zero polynomial

f(x) =
T∑

i=1

cix
ki

has t distinct zeroes, namely un, n = 1, . . . , t modulo p, which is impossible since

deg(f) ≤ max{ki | 1 ≤ i ≤ T} ≤ t− 1.

Hence our assumption is false. So Lσ ≥ T .

Theorem 3.6. Let m = pl, where p and l are two distinct primes. Assume that

the sequence σ, given by (3.1), is purely periodic with period t. Then for the linear

complexity Lσ of this sequence the bound

Lσ ≥ tϕ(m)−1/2 (3.4)

holds.

Proof. Let tp be the period of the sequence σ modulo p and let tl be the period of

the sequence σ modulo l. We have the inequality t ≤ tptl. Therefore

t2pt
2
l

(p− 1)(l − 1)
≥ t2

ϕ(m)
.

Without loss of generality we may assume that

t2p
p− 1

≥ tϕ(m)−1/2.

Using the fact that Lσ is not smaller than the linear complexity modulo p from

previous theorem we derive the desired result.
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3.2 The Self-Shrinking Generator

In 1994, Meier and Staffbelbach proposed the “self-shrinking generator” ([11]), a

stream cipher based on irregular decimation of the output of a maximal periodic

sequence.

Let (sn) = (s0, s1, . . .) be the output of a maximal periodic sequence of period

2n − 1. At time k, consider the pairs (s2k, s2k+1) of the terms of (sn). If (s2k) = 1,

then the next term (s2k+1) is the output of the self-shrinking generator. If (s2k) = 0,

no term is output.

One can define the self-shrinking generator in a different way, for all non-negative

integers i let τ(i) be the unique non-negative integers with the property that sτ(i) = 1

and that there are precisely i+1 ones in the sequence s0, s2, . . . , s2τ(i). Then output

of the self-shrinking generator is the binary sequence (z) = (s2τ(0)+1, s2τ(1)+1, . . .).

To understand better we look the following example, suppose that (sn)

100000100001100010100111101000111001001011011101100110101011111 . . .

is a maximal periodic sequence of period 26 − 1. Then the self-shrinking generator

bases on this maximal periodic sequence will be the output sequence

(z) = 0000010010011000011111100101111 . . .

of period 25.

Meier and Staffbelbach showed that the linear complexity L(z) of (z) is always

such that 2bn/2c−1 ≤ L(z) ≤ 2n−1− 1. Meier and Staffbelbach also remarked that, in

their experiments, the linear complexity of (z) never exceeds 2n−1− (n− 2). In this

section we prove that the experiments of Meier and Staffbelbach is correct and this

is the work of Simon R. Blackburn (see [2]). Moreover, the expected value of the

linear complexity of randomly chosen binary sequence of period 2n−1 is greater than

2n−1 − 1 (see [14, Proposition 4.6]). Hence the output of a self-shrinking generator

exhibits non-random behavior with respect to linear complexity.

If σ is a sequence of period dividing 2n−1 over a finite field F of characteristic 2,

Then (x2n−1
+ 1) = (x + 1)2n−1

is a characteristic polynomial for σ. Moreover, since
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the minimal polynomial m is the generator of the ideal of characteristic polynomials

of σ then m = (x+1)Lσ , 0 ≤ Lσ ≤ 2n−1, where Lσ is the linear complexity of σ. And

also note that, Lσ ≤ 2n−1− (n− 2) if and only if (x+1)2n−1−(n−2) is a characteristic

polynomial for σ. This condition is equivalent to the statement

2n−1−(n−2)∑
i=0

(
2n−1 − (n− 2)

i

)
σi+e = 0

for all non-negative integers e. Since
(
2n−1−(n−2)

i

)
is defined to be the zero for all i

such that 2n−1 − (n− 2) < i < 2n−1, we may rephrase this condition as

2n−1−1∑
i=0

(
2n−1 − (n− 2)

i

)
σi+e = 0 (3.5)

for all non-negative integers e.

Lemma 3.7. Let σ be a sequence of period dividing 2n − 1 over a finite field F

of characteristic 2, where n is a fixed integer such that n ≥ 3. Then σ has linear

complexity Lσ ≤ 2n−1 − (n− 2) if and only if∑
i

σi+e = 0, (3.6)

for all non-negative integers e, where sum is taken over all integers

i ∈ {0, 1, . . . , 2n−1 − 1} such that the binary expansion of i contains a zero as digit

whenever the corresponding digits of n− 3 is a one.

Before the proof we look at the integers i, for example take n = 5 then i is in

the set {0, 1, . . . , 15}. Now we will compare this set and n − 3 = 2 in their binary
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representations.

i = 0 = 0000 0010 ∗ i = 1 = 0001 0010 ∗

2 = 0010 0010 3 = 0011 0010

4 = 0100 0010 ∗ 5 = 0101 0010 ∗

6 = 0110 0010 7 = 0111 0010

8 = 1000 0010 ∗ 9 = 1001 0010 ∗

10 = 1010 0010 11 = 1011 0010

12 = 1100 0010 ∗ 13 = 1101 0010 ∗

14 = 1110 0010 15 = 1111 0010,

so i ranges over {0, 1, 4, 5, 8, 9, 12, 13}. Here we also note that, one can easily find

the sets by j is in the set if j ∧ (n− 3) = 0 , where ∧ is the binary and operator.

With similar calculations, one can see that, i ranges over the sets

{0, 1, 2, 3},

{0, 2, 4, 6},

{0, 1, 4, 5, 8, 9, 12, 13},

{0, 4, 8, 12, 16, 20, 24, 28},

when n = 3, 4, 5 and 6 respectively.

Proof. (of Lemma 3.7) By the Equation (3.5), to prove the lemma it is sufficient

to prove that for all i ∈ {0, 1, . . . , 2n−1 − 1}, we have
(
2n−1−(n−2)

i

)
= 1 if and only if

the binary digits of i are zero whenever the corresponding digits of n− 3 are one.

Now Lucas’s theorem states (see [1, Theorem 4.71])that for all b0, b1, . . . , bn−2

and c0, c1, . . . , cn−2 in {0, 1},(∑n−2
j=0 bi2

i∑n−2
j=0 ci2i

)
= 1 if and only if ci ≤ bi for all i.

Moreover, when n > 3, (2n−1− (n− 2)) + (n− 3) = 2n−1− 1 = (111 . . . 111)2, where

the result has n−1 digits ( in binary representation). Since 2n−1− (n−2) is a n−1
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digit binary integer then the least n−1 significant binary digits of 2n−1− (n−2) are

the complement of the n−1 least significant binary digits of n−3. Hence, whenever

n− 3 has a one in a digit then i has a zero in that digit. Hence lemma follows.

Let R be the ring F2n [x]/(x2n−x). Every element of R may be written uniquely

in the form
2n−1∑
i=0

aix
i, where a0, a1, . . . , a2n−1 ∈ F2n . (3.7)

Since all the elements β ∈ F2n are roots of (x2n−x), the evaluation f(β) of an element

f ∈ R at point β ∈ F2n is well defined, so every f ∈ R induces a function φ from

F2n → F2n , and we say that f represents φ. Indeed, every function φ : F2n → F2n is

represented by a unique element of R.

With the weight wt(i) of a positive integer i we define the number of ones in

its binary representation. For example wt(5) = wt((101)2) = 2 and wt(63) =

wt((111111)2) = 6. Also ,this weight is called the Hamming weight. This weight wt

has some favorable properties, namely wt(i) = 0 if and only if i = 0 and wt(i+ j) ≤

w(i) + wt(j) where i, j ∈ Z.

For all non-negative integers k, let Pk and P ∗
k ⊆ R be defined by

Pk =

{
2n−1∑
i=0

aix
i ∈ R : ai = 0 for all i such that wt(i) > k

}
, (3.8)

P ∗
k =

{
2n−1∑
i=0

aix
i ∈ Pk : a0 = 0

}
. (3.9)

One can easily verify that P0 ⊆ P1 ⊆ · · · ⊆ Pn = Pn+1 = · · · = R. And also we

note that P ∗
k consists of those elements of Pk that represents functions that map 0

to 0. Now we want to investigate some properties of Pk and P ∗
k .

Lemma 3.8. Let T : F2n → F2 be any F2− linear function. Then T is represented

by an element in P ∗
1 .

Proof. There exist c ∈ F2n such that T (x) = Tr(cx) for all x ∈ F2n by Theorem

1.18, where c ≥ 0. Then T is represented by the polynomial

f(x) =
n−1∑
j=0

c2j

x2j

=
2n−1∑
i=0

aix
i,
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where ai = 0 if wt(i) > 1. Hence f(x) is an element of P ∗
1 .

Lemma 3.9. Let f ∈ Pk1, and g ∈ Pk2. Then fg ∈ Pk1+k2. If in addition f ∈ P ∗
k1

then fg ∈ P ∗
k1+k2

Proof. Let i1, i2 ∈ {0, 1, . . . , 2n − 1} be integers such that wt(i1) ≤ k1 and wt(i2) ≤

k2. Then in the ring R we have that

xi1xi2 =

 xi1+i2 if i1 + i2 < 2n and,

xi1+i2−2n+1 if i1 + i2 ≥ 2n.

In the first case wt(i1 + i2) ≤ wt(i1) + wt(i2) = k1 + k2. In the second case, since

the binary digit corresponding to 2n in the binary representation of i1 + i2 is one,

then we have wt(i1 + i2 − 2n + 1) ≤ wt(i1 + i2 − 2n) + 1 = wt(i1 + i2) − 1 + 1 ≤

wt(i1) + wt(i2) = k1 + k2. So in either case we have that xi1xi2 ∈ Pk1+k2 . Since the

product of two arbitrary polynomial f ∈ Pk1 and g ∈ Pk2 is a linear combinations

of the terms of the form xi1xi2 , we have the first result of the lemma holds.

The second statement of the lemma follows from the first statement together

with the fact that fg(0) = f(0)g(0) = 0 · g(0) = 0.

Lemma 3.10. Let ζ ∈ F2n be a primitive element. Let f ∈ P ∗
k . Then there exists

an element g ∈ Pk such that for all i ∈ {0, 1, . . . , 2n − 2},

g(ζ i) =
i∑

j=0

f(ζ i).

Proof. When k ≥ n, Pk = R and the Lagrange Interpolation Formula (Theorem

1.2) gives the solution. Now assume that k < n. We know the following identity

i∑
j=0

xj =
xi+1 − 1

x− 1
,

now by putting ζr, 1 ≤ r ≤ 2n − 2 instead of x, we get the following identity which

holds for all i ∈ {0, 1, . . . 2n−2}

1 + ζr + . . . + ζ ir =
ζr

ζr − 1
ζ ir − 1

ζr − 1
.
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Suppose that f is in the form f =
∑2n−1

r=0 arx
r for some elements a0, a1, . . . , a2n−1 ∈

F2n . Since f ∈ P ∗
k we have a0 = 0 and k < n then a2n−1 = 0 too. Let g be the

polynomial defined by

g =

(
2n−2∑
r=1

ar
ζr

ζr − 1
xr

)
−

2n−2∑
r=1

ar
1

ζr − 1
.

Since g is formed by using the coefficients of f , which is in P ∗
k then g ∈ Pk (indeed

g ∈ P ∗
k , since g(0) = 0 ). Moreover, for all i ∈ {0, 1, . . . 2n − 2} we have that

g(ζ i) =
2n−2∑
r=1

ar

(
ζr

ζr − 1
ζ ir − 1

ζr − 1

)

=
2n−2∑
r=1

ar

i∑
j=0

(ζj)r

=
i∑

j=0

2n−2∑
r=1

ar(ζ
j)r

=
i∑

j=0

f(ζj).

Hence the lemma follows.

Lemma 3.11. Let f ∈ P ∗
k , where k < n. Then∑

x∈F2n\{0}

f(x) = 0. (3.10)

Proof. Since f ∈ P ∗
k then f(0) = 0. So we have∑

x∈F2n\{0}

f(x) =
∑

x∈F2n

f(x). (3.11)

Since wt(2n − 1) = n and k < n then we can write f in the form

f =
2n−2∑
r=1

arx
r (3.12)

for some elements ar ∈ F2n . By Lemma 1.3 we have∑
x∈F2n

xr = 0 where 1 ≤ r ≤ 2n − 2 (3.13)
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Hence ∑
x∈F2n

f(x) =
∑

x∈F2n

2n−2∑
r=1

arx
r

=
2n−2∑
r=1

ar

∑
x∈F2n

xr

=0,

as required.

Let n be a positive integer and let ζ ∈ F2n be a primitive root. Let T : F2n → F2

be a non-zero F2 − linear map. We define a sequence σ = (σ0, σ2, . . .) of period

2n−1 with elements in F2n by setting σi to be the (i+1)st element x in the sequence

1, ζ, ζ2, . . . having the property that T (x) = 1.

To understand this construction let us look at the following example:

Example 3.12. Suppose n = 6, and let ζ ∈ F2n be a primitive root of x6 + x + 1.

Let T be map taking
∑5

i=0 aiζ
i to a0. The sequence 1, ζ, ζ2, . . . has period 26 − 1;

writing the field element
∑5

i=0 aiζ
i as the binary string a5a4a3a2a1a0, the first 26−1

elements of this sequence are (reading left to right):

000001 000010 000100 001000 010000 100000 000011 000110

001100 011000 110000 100011 000101 001010 010100 101000

010011 100110 001111 011110 111100 111011 110101 101001

010001 100010 000111 001110 011100 111000 110011 100101

001001 010010 100100 001011 010110 101100 011011 110110

101111 011101 111010 110111 101101 011001 110010 100111

001101 011010 110100 101011 010101 101010 010111 101110

011111 111110 111111 111101 111001 110001 100001

The sequence σ is then formed by removing all the terms x of the sequence such
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that T (x) = 0:

000001 000011 100011 000101 010011 001111 111011 110101

101001 010001 000111 110011 100101 001001 001011 011011

101111 011101 110111 101101 011001 100111 001101 101011

010101 010111 011111 111111 111101 111001 110001 100001

Here we note that σ has always period precisely 2n−1 as it consists of 2n−1 distinct

elements x ∈ F2n such that T (x) = 1 written in some order.

Let define the kth clocking function κk : F2n → F2 for all k ∈ {0, 1, . . . , n− 2} by

κk(x) =

{
1 if x = σi where 2k divides i,

0 otherwise,
(3.14)

where σ is constructed as above via T .

Lemma 3.13. κk(ζ
i) = 1 if and only if κk−1(ζ

i) = 1 and there are an even number

of ones in the sequence κk−1(1), κk−1(ζ
0), . . . , κk−1(ζ

i).

Proof. If κk(ζ
i) = 1 then ζ i = σi such that 2k|i. Hence, κk−1(ζ

i) = 1 since

2k−1 | 2k | i, where ζ i = σi. Since 2k = 2 · 2k−1 there are even number of ones

in the sequence κk−1(1), κk−1(ζ
0), . . . , κk−1(ζ

i).

Conversely, since we have even number of ones in the sequence κk−1(1), ..., κk−1(ζ
i)

then 2k|i also and hence, κ(ζ i) = 1 as required.

Lemma 3.14. κk can be represented by an element f ∈ P ∗
2k

Proof. We will show this assertion by induction on k. If k = 0, then κ0 = T since,

κ0(x) = 1 only if x = σi ( and because 1 divides every number), result follows by

Lemma 3.8. Now suppose that k > 0 and that κk−1 may be represented by an

element fk−1 ∈ P ∗
k−1. Let g ∈ P2k−1 be an element such that g(ζ i) =

∑i
j=0 fk−1(ζ

j)

for all i ∈ {0, 1, . . . , 22 − 2}; such an element exist by Lemma 3.10. Now we define

fk = fk−1(1 + g). By Lemma 3.9, fk ∈ P ∗
k . Consider fk(ζ

i) = fk−1(ζ
i)(1 + g(ζ i)), if

fk−1(ζ
i) = 0 then fk(ζ

i) = 0 as required. If fk−1(ζ
i) = 1 then fk(ζ) = 1 if there is

even number of ones in the sequence κk−1(1), κk−1(ζ
0), . . . , κk−1(ζ

i) by Lemma 3.13.

Moreover κk(0) = fk(0) = 0 hence fk represents κk.
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Let D : F2n\{0} → Z/2n−1Z be defined by setting D(ζj) to be one less than the

number of elements x such that T (x) = 1 in the sequence 1, ζ, ζ2, . . . , ζj. Hence,

if ζj = σe for some e ∈ {0, 1, . . . , 2n−1} then D(ζ i) = e. For k ∈ {0, 1, . . . , n − 2}

we define the kth digit function δk : F2n\{0} → F2 to be the function mapping x

to the digit corresponding to 2k in the binary expansion of D(x). So if D(x) =∑n−2
j=0 dj2

j mod 2n−1 where dj ∈ {0, 1} then δk(x) = dk.

Lemma 3.15. The digit functions δk can be expressed in terms of clocking functions

by

δk(ζ
i) = 1 +

i∑
j=0

κk(ζ
j), (3.15)

where k ∈ {0, 1, . . . , n− 2} and i ∈ {0, 1, . . . , 2n − 2}.

Proof. Note that the digit of D(ζ i) corresponding to 2k differs from the correspond-

ing digit in D(ζ i−1) if and only if ζ i = σe where 2k divides e. Hence, by Lemma

3.10, there is an element hk ∈ P2k that represents a function that agrees with δk on

F2n\{0}.

Theorem 3.16. Let n be a positive integer, let ζ ∈ F2n be a primitive element and

let T : F2n → F2 be a non-zero F2 − linear map. Let σ be the sequence over F2n of

period 2n−1 defined above. Then Lσ ≤ 2n−1 − (n− 2).

Proof. The theorem is trivial when n = 1 or n = 2, so from now on we assume that

n ≥ 3.

By Lemma 3.7, it is sufficient to show that for all j ∈ {0, 1, . . . , 2n−1 − 1} we

have that ∑
i

σi+j = 0, (3.16)

where sum is over all i ∈ {0, 1, . . . , 2n−1 − 1} such that the kth binary digit of i is

zero whenever the kth binary digit of n− 3 is one.

Firstly, we will show that it is sufficient to consider case j = 0 only. For this,

Let J ∈ {0, 1, . . . , 2n−1 − 1} be given. Let β ∈ F2n be the (J + 1)st element x

in the sequence 1, ζ, ζ2, . . . such that T (x) = 1. We define another linear map
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T ′ : F2n → F2 to be composition of the map x 7→ βx and the map T . Define another

sequence σ′
n = (σ′

0, σ
′
1, . . .) using the map T ′ instead of map T . The new sequence

is nothing but the rotated version of the original sequence σ in its period intervals.

This implies σ′
i = σi+J for all non-negative integers i. Hence the Equation (3.16) in

the case j = 0 for (σ′
n) implies the equation (3.16) in the case j = J for σ. Thus to

prove the theorem it is sufficient to establish the identity∑
i

σi = 0 (3.17)

where the sum is over all i ∈ {0, 1, . . . , 2n−1 − 1} such that the kth binary digit of i

is zero whenever the kth binary digit of n− 3 is one.

We may rephrase this problem slightly, as follows. Let φ : F2n → F2n be the

function that

φ(x) =

 x if x occurs as a summand in equation (3.17)

0 otherwise.

Then equation (3.17) is equivalent to asserting that∑
x∈F2n\{0}

φ(x) = 0. (3.18)

We claim that φ may be represented by an element in P ∗
n−1. By Lemma 3.11, this

claim is sufficient to prove the identity (3.18). Now we prove this with the following

lines.

Define elements b0, b1, . . . , bn−2 ∈ {0, 1} by n − 3 =
∑n−2

j=0 bj2
j (here we note that

n− 3 < 2n−1 when n ≥ 3, and so this definition makes sense). let p be the element

defined by

p = xf0

∏
(hk + 1),

where the product is over those integers k such that 0 ≤ k ≤ n − 2, bk = 1,

f0 is the function that represent κ0 ( by lemma 3.14 )and hk the function that

represents δn (by lemma 3.15). Since x, f0 ∈ P ∗
1 and hk + 1 ∈ P2k , we have that

p ∈ P2+
∑n−2

k=0 bk2k = P ∗
n−1 by Lemma 3.9. We claim that p represents the function φ.

Clearly, p(0) = φ(0) = 0. Let ζ i ∈ F2n . Now, since the polynomial f0 and hk +1 take
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their values in F2, either p(ζ i) = ζ i or p(ζ i) = 0.Furthermore, p(ζ i) = ζ i if and only

if f0(ζ
i) = 1 and hk(ζ

j) = 0 for all k such that bk = 1. But, using the definitions of

f0 and the element hk, this is exactly the same as the condition T (ζ i) = 1 and that

a binary digit of D(ζ i) is zero whenever the corresponding digits of n − 3 are one.

Hence, p ∈ P ∗
n−1 represents φ as required.

This establishes the identity (3.18), and hence the theorem follows.

Now are ready to establish that fact that the linear complexity of the output

sequence of a self-shrinking generator based on a is a maximal periodic sequence of

period 2n − 1 is at most 2n−1 − (n− 2)

Let s0, s1, . . . be the output of a maximal periodic sequence of period 2n − 1.

Then by Theorem 1.18 there exists a primitive element ζ ∈ F2n and an element

c ∈ F2n such that

(z) = Tr(cζ i)

for all non-negative integers i.

Let z0, z1, . . . be the output of the self-shrinking generator based on the sequence

s0, s1, . . . . So

σi = s2τ(i)+1

where τ(i) is the unique non-negative integers such that s2τ(i) = 1 and there are

precisely i + 1 ones in the sequence s0, s2, . . . , s2τ(i). We may rewrite this condition

in terms of the trace map and the sequence σ defined previously, as follows. Let

T : F2n → F2 be defined by T (x) = Tr(c2n−1
x). Here we note that

T (ζ i) = Tr(cζ2i) = s2j,

as the trace map is invariant under the squaring automorphism. Define T ′ : F2n →

F2 by T ′(x) = Tr((cζ)2n−1
x). Then

T ′(ζ) = Tr(cζζ2i) = s2j+1.

Now, for all non-negative integers i,

zi = T ′(σi)
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where σ0, σ1, . . . is the sequence defined using ζ and T as in previously.

By Theorem 3.16 the sequence σ0, σ1, . . . satisfies a linear recurrence relation

2n−1−(n−2)∑
i=0

ciσi+j

for all non-negative integers j, where the coefficients are all binomial coefficients in

F2. But by the F2-linearity of T ′ we have that

2n−1−(n−2)∑
i=0

cizi+j =

2n−1−(n−2)∑
i=0

ciT
′(σi+j) = T ′

2n−1−(n−2)∑
i=0

ciσi+j

 = T ′(0) = 0.

Hence the linear complexity of the sequence z0, z1, . . . of the self-shrinking generator

is at most 2n−1 − (n− 2), as required.
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CHAPTER 4

CONSTRUCTION OF D-PERFECT SEQUENCES USING

FUNCTION FIELDS

In this chapter we present constructions of d-perfect sequences based on algebraic

function field. More on this approach can be found in [17] and [18].

Let F/Fq be an algebraic function field . The following notations will be used

throughout the chapter: let P ∈ PF be a rational (degree 1) place and t be a local

parameter of P . Suppose that the principal divisor (t) of t satisfies

(t) = P + Q−D (4.1)

where Q is a rational place other than P and D is a positive divisor of degree two.

The divisor D with its degree will play an important role in constructions. Note

that (t)∞ = D and hence deg((t)∞) = degD = 2.

4.1 The Main Construction

Lemma 4.1. Let f be an element in F − Fq(t) and suppose that it has

f =
∞∑

j=0

ajt
j, aj ∈ Fq

as its local expansion at P with respect to t. Suppose there exist λ0, λ1, . . . , λs ∈ Fq,

where λs 6= 0, such that

λsai+s + λs−1ai+s−1 + · · ·+ λ1ai+1 + λ0ai = 0, i = 1, 2, 3, . . . , n− s. (4.2)

If L is defined as

L :=(λ0t
s + λ1t

s−1 + · · ·+ λs)f

− [λsa0 + (λsa1 + λs−1a0)t

+ · · ·+ (λsas + . . . + λ0a0)t
s]

then vP (L) ≥ n + 1.
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Proof. Being a local parameter at P , hence transcendental over Fq, {1, t, . . . , ts} are

linearly independent over Fq. If we use the assumption λs 6= 0, then the coefficient

of f in L is non-zero. If L = 0, then f is a rational function of t which contradicts

the assumption f ∈ F − Fq(t). Hence L 6= 0.

Use the local expansion of f to write L as follows:

L =(λsa0 − λsa0) + (λsa1 + λs−1a0 − λsa1 − λs−1a0)t + . . .

+ (λ0a0 + λ1a1 + . . . + λsas − λ0a0 − λ1a1 − . . .− λsas)t
s+

+ (λsas+1 + λs−1as + . . . + λ0a1)t
s+1 + (λsas+2 + λs−1as+1 + . . . + λ0a2)t

s+2+

+ . . . (λsan + λs−1an−1 + . . . + λ0an−s)t
n+

+
∞∑

j=n+1

bjt
j,

where bj ∈ Fq. The coefficients of t0, t1, . . . , ts are zero obviously by cancellations

and the coefficients of ts+1, ts+2, . . . , tn are zero by the relation between λi’s and ai’s

(4.2). Hence

L =
∞∑

j=n+1

bjt
j

and by Theorem 1.44, vP (L) ≥ n + 1.

Lemma 4.2. Let f and L be as in Lemma 4.1 then

(L)∞ ≤ (f)∞ + (ts)∞ (4.3)

Proof. We start by defining two functions g1, g2 ∈ F defined as

g1 := (λsas + (λsa1 + λs−1a0)t + · · ·+ (λsas + . . . + λ0a0)t
s),

g2 := λ0t
s + λ1t

s−1 + · · ·+ λs.

Note that L = g2f − g1. Also note that g2f 6= 0 since λs 6= 0 and {1, t, . . . , ts}

are linearly independent over Fq. Let R ∈ PF be a pole of L, i.e. vR(L) = −r < 0

and hence vR((L)∞) = r. We claim that vR((L)∞) = r ≤ vR((f)∞ +(ts)∞). We will

prove this claim in two cases;
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Case 1: R 6∈ supp(D)

This means t doesn’t have a pole at R, hence vR(t) ≥ 0 and vR((ts)∞) = 0. By the

triangle inequality, we have vR(g1) ≥ 0 and hence

−r = vR(L) ≥ min{vR(g2f), vR(g1)} = vR(g2f) = vR(g2) + vR(f). (4.4)

If g1 = 0 then vR(g1) = ∞ and since g2f 6= 0 then min{vR(g2f), vR(g1)} =

vR(g2) + vR(f)

Since vR(t) ≥ 0, then we have vR(g2) = i ≥ 0, by triangle inequality. By equation

(4.4) −r ≥ i + vR(f) ⇒ vR(f) ≤ −r − i ≤ r . Hence r = vR((L)∞) ≤ vR((f)∞).

Remembering that vR((ts)∞) = 0, one gets

vR((L)∞) ≤ vR((f)∞) + vR((ts)∞).

Now suppose that g1 6= 0. Then vR(g1) ≥ {vR(λsa0), vR(λsa1 + λs−1a0)t, . . . } ≥ 0.

By equation (4.4),

−r ≥ min{vR(g2) + vR(f), vR(g1)}, vR(f) ≤ −r − i,

where i = vR(g1) as in above. Hence,

vR((L)∞) = r ≤vR((f)∞)

=vR((f)∞) + vR((g2)∞)

=vR((f)∞) + vR((ts)∞).

Combining g1 = 0 and g1 6= 0 we have vR((L)∞) ≤ vR((f)∞) + vR((ts)∞) and this

is true for any R with R ∈ PF where R is a pole of L and R 6∈ supp(D). So in case

one we have (L)∞ ≤ (f)∞ + (ts)∞.

Case 2: R ∈ supp(D).

This means t has a pole at R and vR(t) < 0. Then we have −r ≥ min{vR(g2) +

vR(f), vR(g1)}

If g1 = 0 we have

min{vR(g2) + vR(f), vR(g1)} = vR(g2) + vR(f)
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vR(g2) = vR(ti) ≥ vR(ts), for the largest i ∈ {0, 1, . . . , s} with λi 6= 0

then

−r ≥ vR(ts) + vR(f)⇒ vR((L)∞) ≤ vR((f)∞) + vR((ts)∞).

If g1 6= 0

1. If min{vR(g2) + vR(f), vR(g1)} = vR(g2) + vR(f) then follows as above.

2. If min{vR(g2) + vR(f), vR(g1)} = vR(g1) then

vR(g1) = vR(ti) ≥ vR(ts),

for the largest i ∈ {0, 1, . . . , s}with coefficients of ti 6= 0. Then

−r ≥ vR(ts)⇒ vR((L)∞) ≤ vR((ts)∞) ≤ vR((ts)∞) + vR((f)∞).

Combining g1 = 0 and g1 6= 0 we have vR((L)∞) ≤ vR((f)∞) + vR((ts)∞) and

this is true for any R with R 6∈ PF where R is a pole of L and R 6∈ supp(D). So in

case two we have (L)∞ ≤ (f)∞ + (ts)∞.

Combining Case 1 and Case 2, the inequality holds.

Theorem 4.3. (Construction 1) Let P and Q be two distinct rational places

of the function field F/Fq. Suppose t is a local parameter at P such that (t) =

P + Q − D, where D is a positive divisor of degree 2. Let f ∈ F − Fq(t) with

d ≥ deg((f)0) = deg((f)∞) and vP (f) ≥ 0. Suppose f has the local expansion

f =
∞∑

j=0

ajt
j, aj ∈ Fq, at P. (4.5)

Define a sequence

a1(f) = (a1, a2, a3, . . .).

Then a1(f) is d−perfect, i.e.

n + 1− d

n
≤ La1(f)(n) ≤ n + d

2
, for all n ≥ 1.
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Proof. Since f 6∈ F − Fq(t) we have d ≥ deg((f)0) ≥ 1. The Berklam-Massey

Algorithm (Algorithm 1.16) for n = 1 results la(f)(1) = 1. Hence

2− d

2
≤ 1 ≤ d + 1

2

and the result holds for n = 1.

For n > 1, it is sufficient to prove that the linear complexity s of a1, a2, a3, . . . is

at least n+1−d
2

. By the Berlekamp-Massey Algorithm (Algorithm 1.16) we can find

s + 1 elements λ0, λ1, . . . , λs of Fq with λs 6= 0 such that

λsai+s + λs−1ai+s−1 + · · ·+ λ1ai+1 + λ0ai = 0 (4.6)

for i = 1, 2, . . . , n− s.

Consider the function

L :=(λ0t
s + λ1t

s−1 + · · ·+ λs)f

− (λsa0 + (λsa1 + λs−1a0)t

+ · · ·+ (λsas + . . . + λ0a0)t
s)

Then by Lemma 4.1 and 4.2, we have

vP (L) ≥ n + 1,

and

(L)∞ ≤ (f)∞ + (ts)∞.

Since (t)∞ = D, we have (ts)∞ = sD.

Since 0 < n + 1 ≤ vP (L), L has a zero at P and vP (L) ≤ deg((L)0). Combining

these observations together, we get

n + 1 ≤ vP (L) ≤ deg((L)0) = deg((L)∞) ≤ deg((f)∞ + sD) = d + 2s.

Therefore

s ≥ n + 1− d

2
,

and a1(f) is d-perfect.
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Remarks 4.4.

1. The most important condition for this construction is the existence of the local

parameter t at P with pole divisor of degree 2. After successfully finding such

t, d-perfect sequences can be constructed for any given d by choosing function

f with pole divisor of degree d.

2. There can be some curves that doesn’t contain such a local parameter t. For

instance, elliptic curves of divisor class number one have only one rational point

over the finite base field (see [16, Proposition VI.1.6]). Hence one cannot find

such a local parameter t.

Example 4.5. We will consider the local expansions of the functions from the

Example 1.43. Namely, the function field is the rational function field F2(x)/F2

and the local parameter is t = x2 + x for the place P0 of F(x)/F2. Note that

(t) = P0 + P1 − 2P∞ hence the hypothesis of the Theorem are satisfied.

1. Consider the local expansion of x at P0.

x =
∞∑

m=1

t2
m−1

.

Now construct a sequence at(x) = (1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, . . .) us-

ing the coefficients of the local expansion of x, expect the first coefficient. Since

x 6∈ F2(t) = F2(x
2 + x) and deg((x)∞) = 1, the sequence at(x) is 1-perfect by

Theorem 4.3.

2. Consider the local expansion of x2 at P0.

x2 =
∞∑

m=1

t2
m

.

Now construct a sequence at(x
2) = (0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, . . .)

using the coefficients of the local expansion of x2, expect the first coefficient.

Since x2 6∈ F2(t) = F2(x
2 + x) and deg((x2)∞) = 2, the sequence at(x

2) is

2-perfect by Theorem 4.3
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3. Consider the local expansion of x/(x + 1) at P0.

x

x + 1
=

∞∑
m=1

t2
m−1.

Now construct a sequence at(x/(x + 1)) = (1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, . . .)

using the coefficients of the local expansion of x/(x + 1), expect the first

coefficient. Since x/(x + 1) 6∈ F2(t) = F2(x
2 + x) and deg((x/(x + 1))∞) = 1,

the sequence at(x/(x + 1)) is 1-perfect by Theorem 4.3

4.2 The Extensions of the Main Construction

We list some further constructions of d-perfect sequences. The proofs, are with

minor changes, similar to that Theorem 4.3. Therefore we omit them and refer the

reader to the related source; namely [18].

The following theorem vP (f) < 0, that is the reverse case of Theorem 4.3.

Theorem 4.6. (Construction 2) Let P and Q be two distinct rational places

of the function field F/Fq. Suppose t is a local parameter at P such that (t) =

P + Q − D, where D is a positive divisor of degree 2. Let f ∈ F − Fq(t) with

d ≥ deg((f)0) = deg((f)∞) and vP (f) < 0. Let v = −vP (f) > 0. Suppose f has the

local expansion

f = t−v

∞∑
j=0

ajt
j, aj ∈ Fq, at P. (4.7)

Define a sequence

a2(f) = (a0, a1, a2, . . .).

Then a2(f) is (d+v)−perfect,

From now on, constructions does not omit the first element in the local expansion

to construct the sequence.

The following construction deals with the case vP (f) = v > 0.

Theorem 4.7. (Construction 3) Let P and Q be two distinct rational places

of the function field F/Fq. Suppose t is a local parameter at P such that (t) =
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P + Q − D, where D is a positive divisor of degree 2. Let f ∈ F − Fq(t) with

d ≥ deg((f)0) = deg((f)∞) and vP (f) = v ≥ 0. Suppose f has the local expansion

f = tv
∞∑

j=0

ajt
j, aj ∈ Fq, at P. (4.8)

Define a sequence

a3(f) = (a0, a1, a2, . . .).

Then a3(f) is (d+v-1)−perfect.

Example 4.8. Let q = 3, F be the rational function field F3(x)/F3, and P be the

zero of x. We choose t = x2 − x and f = x. Then we have the local expansion

x = −t + t2 + t3 − t4 + t5 + 0 · t6 + . . . .

Then the sequence at(x) = (−1, 1, 1,−1, 1, 0, . . .) is perfect by Theorem 4.7.

The following construction deals with the case vP (f) = −v ≤ 0.

Theorem 4.9. (Construction 4) Let P and Q be two distinct rational places

of the function field F/Fq. Suppose t is a local parameter at P such that (t) =

P + Q − D, where D is a positive divisor of degree 2. Let f ∈ F − Fq(t) with

d ≥ deg((f)0) = deg((f)∞) and vP (f) = −v ≤ 0. Suppose f has the local expansion

f = t−v

∞∑
j=0

ajt
j, aj ∈ Fq, at P. (4.9)

Define a sequence

a4(f) = (a0, a1, a2, . . .).

Then a4(f) is (d+v+1)−perfect.

Theorem 4.10. (Construction 5) Let P and Q be two distinct rational places

of the function field F/Fq. Suppose t is a local parameter at P such that (t) =

P + Q − D, where D is a positive divisor of degree 2. Let f ∈ F − Fq(t) with

d ≥ deg((f)0) = deg((f)∞) and vP (f) = −v ≤ 0. Suppose f has the local expansion

f =
v∑

j=1

bjt
j−v−1 +

∞∑
n=0

ant
n, bj, an ∈ Fq. (4.10)
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Define a sequence

a5(f) = (a0, a1, a2, . . .).

Then a5(f) is d−perfect.

Example 4.11. Let q = 3, F be the rational function field F3(x)/F3, and P be the

zero of x. We choose t = x2 − x and f = 1/x. Then we have the local expansion

1/x = −t−1 − 1 + t + t2 − t3 + t4+) · t5 + 0 · t6 + . . . .

Then the sequence at(1/x) = (1, 1,−1, 1, 0, 0, 0, 0, . . .) is perfect by Theorem 4.10.

4.3 Consequences of The Constructions

In this section we will give some consequences of the constructions.

For two sequence a = (a1, a2, a3, . . .) and b = (b1, b2, b3, . . .) of elements of Fq, we

define

a + b := (a1 + b1, a2 + b2, a3 + b3, . . .)

and

a ∗ b := (0, a1b1, a1b2 + a2b1, a1b3 + a2b2 + a3b1, . . .).

Proposition 4.12. Let f, g ∈ F/K with vP (f) ≥ 0 and vP (g) ≥ 0. Construct two

sequences a1(f) and b1(f) as in the statement of the Theorem 4.3, then a1(f)+b1(f)

is d-perfect or ultimately periodic, where d = deg((f+g)∞) ≤ deg((f)∞)+deg((g)∞).

Proof. If a1(f) and b1(g) in special form, that is

an + bn = an+k + bn+k

for some k ∈ Z and ∀n > m for some m > 0 then a1(f) + b1(g) will be ultimately

periodic with period k. Assume that the sequence a1(f) + b1(g) is not ultimately

periodic. Now, observe that a1(f + g) is nothing but a1(f) + b1(g). Then Theorem

4.3 implies that a1(f) + b1(f) is d-perfect.

Proposition 4.13. Let f, g ∈ F/K with vP (f) ≥ 0 and vP (g) ≥ 0. Construct two

sequences a1(f) and b1(f) as in the statement of the Theorem 4.3, then a1(f)∗ b1(f)

is d-perfect or ultimately periodic, where d = deg((fg)∞) ≤ deg((f)∞) + deg((g)∞).
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Proof. If a1(f) and b1(g) in special form then a1(f)∗b1(g) will be ultimately periodic

with period k. Assume that the sequence a1(f) ∗ b1(g) is not ultimately periodic.

Now, observe that a1(f ∗ g) is nothing but a1(f) ∗ b1(g). Then Theorem 4.3 implies

that a1(f) ∗ b1(f) is d-perfect.
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