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ABSTRACT

This thesis presents the design, implementation, verification and synthesis of a
digital hardware, which performs OFDM symbol synchronization using short training
symbols (STS) defined in European Telecommunications Standards Institute (ETSI)
HiperLan/2 Physical Layer specifications. Designed ETSI OFDM Symbol Synchronizer
IP was synthesized in CMOS 0.13um technology using Virtual Silicon Technology
(VST) Standard Cell Libraries.

In this thesis, we first explain OFDM and OFDM systems in detail.
Synchronization problems occurring in OFDM systems are classified and techniques
used to overcome these problems are presented. Then a digital ETSI OFDM Symbol
Synchronizer IP, which performs OFDM symbol synchronization task based on the
correlation of the received symbols, is proposed. Proposed architecture has been
designed using VHDL (VHSIC Hardware Description Language) in the implementation
part of the thesis. Designed IP has been verified functionally first, then synthesized in
CMOS 0.13um technology. Gate-level verification has been also performed after
synthesis of the IP.

Like other communication systems, synchronization is a critical problem to be
solved in OFDM systems. One of the arguments against OFDM is that it is highly
sensitive to synchronization errors. Before an OFDM receiver can demodulate the sub-
carriers, it has to perform at least two synchronization tasks: First, it has to find out
where the symbol boundaries are. Second, it has to estimate and correct the carrier
frequency offset of the received signal and clock offset between transmitter and receiver
because any offset introduces Inter-carrier interference (ICI) and Inter-symbol
interference (ISI). This work aims to review OFDM and synchronization issues in
OFDM systems and to design a digital symbol synchronizer hardware that performs the

detection of OFDM symbols, which is the first synchronization task mentioned above.
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ETSI HiperLAN/2 standard has been used in this work as the reference for all
parameters needed and used in the hardware implementation of ETSI OFDM Symbol
Synchronizer. Although the needed sampling frequency of OFDM receiver is 20 MHz
in the ETSI standards, the designed IP can be run up to 50 MHz. It can be easily
adapted to any changes in the standard, such as the increase in speed.

The generically designed ETSI OFDM STS Symbol Synchronizer IP can be
integrated to other modules easily and used as part of the whole synchronizer block in

ETSI OFDM receivers.



OZET

Bu tez Avrupa Telekomiinikasyon Standartlar1 Enstitiisii (ETSI), Fiziksel Katman
tarifinde aciklanan STS (Short Training Symbols - STS) sembollerini kullanarak OFDM
sembol senkronizasyonunu gercekleyen bir sayisal devrenin tasarimi, uygulanmasi,
sinanmasi ve sentezlenmesi asamalarindan olusmustur. Tasarlanan ETSI OFDM
(Orthogonal Frequency Division Multiplexing) Sembol Senkronizasyon devresi, Virtual
Silicon Technology (VST) Standart Hiicre Kiitiiphaneleri kullanilarak 0.13 pm sayisal
CMOS teknolojisinde sentezlenmistir.

Bu tezde, oncelikle OFDM ve OFDM sistemleri detayli olarak aciklanmuistir.
OFDM sistemlerinde karsilasilan senkronizasyon problemleri siniflandirilarak, bu
problemlerin ¢6ziimiinde kullanilan senkronizasyon teknikleri sunulmustur. Bunlarin
ardindan, alictya gelen sembollerin korelasyonuna dayali OFDM senkronizasyon
islemini gerceklestiren ETSI OFDM Sembol Senkronizasyon devresi Onerilmistir.
Onerilen mimari, tezin uygulama béliimiinde VHDL (Cok Yiiksek Hizl1 Entegre Devre
Donanim Tanimlama Dili) kullanilarak ger¢eklenmistir. Bu devre ilk once islevsel
olarak smmanmig, ardindan 0.13 pm sayisal CMOS teknolojisinde sentezlenmistir.
Devrenin sentezi sonrasinda ,kap1 diizeyinde islevselligi yeniden test edilmistir.

Diger haberlesme sistemlerinde oldugu gibi, senkronizasyon, OFDM
sistemlerinde de c¢oziimlenmesi gereken kritik bir sorundur. OFDM senkronizasyon
hatalarima ¢ok duyarli bir yapiya sahiptir. Bir OFDM alicisi, OFDM alt-tasiyicilarini
demodiile etmeden Once, en azindan iki senkronizasyon islevini yerine getirmek
zorundadir: ilki, alictya gelen OFDM sembol sinirlarmi, bir baska deyimle OFDM
semboliiniin ne zaman basladigini tespit etmek zorundadir. Ikincisi, alinan sinyaldeki
tasiyict frekans ofsetini ve alici ve verici arasi saat ofsetini tahmin etmeli ve
diizeltmelidir. Zira, herhangi bir ofset tastyicilar arasi ve semboller arasi girisime neden

olmaktadir.
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Bu calisma, OFDM ve OFDM sistemlerindeki senkronizasyon olgularini ele
almay1 ve yukarida bahsedilen ilk senkronizasyon islevi olan, alicida OFDM
sembollerinin saptamasini gergekleyen bir sayisal sembol senkronizasyon devresi
tasarlamay1 hedeflemektedir.

ETSI OFDM Sembol Senkronizasyon devresinin uygulamasinda ETSI
HiperLAN/2 Standardi, tiim parametreler i¢in referans olarak alinmigtir. ETSI
standardinda, OFDM alicisinin 6rnekleme frekansi 20 MHz olmasina karsin, tasarlanan
devre 50 MHz hiza kadar calisabilmektedir. Devre, ETSI standardinda o6rnekleme
frekansinda ileride meydana gelebilecek degisikligi, 50 MHz hiza kadar destekleyebilir.

Jenerik olarak tasarlanan ETSI OFDM STS Sembol Senkronizasyon devresi, diger
modiillerle kolaylikla birlestirilip, ETSI OFDM alicilarinda tiim senkronizasyonu

saglayan blogun bir pargasi olarak kullanilabilir.
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1. INTRODUCTION

1.1. Motivation

Over the last decade, the market for wireless service has grown at an
unprecedented rate. The industry has grown from cellular phones and pagers to
broadband and ultra-broadband wireless services that can provide voice, data, and full-
motion video in real time. Wireless communications systems are playing currently a
major role and expected to play a more important role in providing portable access to
future information services.

Within the wide variety of wireless communication systems, there are many
modulation techniques in current use. A very important modulation technique, OFDM,
is currently of great interest by the researchers in the Universities and research
laboratories all over the world since it provides data transmission in a bandwidth-
efficient way. Multi-carrier or Orthogonal frequency-division multiplexing (OFDM)
systems have gained an increased attention during the last years. It is used in the
European digital broadcast radio system. OFDM has already been accepted for the new
wireless local area network standards from IEEE 802.11, High Performance Local Area
Network type 2 (HIPERLAN/2) and Mobile Multimedia Access Communication
(MMAC) Systems.

Like other communication systems, synchronization is a critical problem to be
solved in OFDM systems. One of the arguments against OFDM is that it is highly
sensitive to synchronization errors. Before an OFDM receiver can demodulate the sub-
carriers, it has to perform at least two synchronization tasks. First, it has to find out
where the symbol boundaries are and what the optimal timing instants are to minimize
the effects of inter-carrier interference (ICI) and inter-symbol interference (ISI). Second,
it has to estimate and correct the carrier frequency offset of the received signal because
any offset introduces ISI. This work aims to review OFDM and synchronization issues

and implement a synchronizer hardware that realizes the first synchronization task



based on sliding correlation. During the course of study, ETSI standards are considered
for the design.

This work analyzes OFDM and the synchronization problems in OFDM systems;
implements a European Telecommunications Standards Institute (ETSI) OFDM Short
Training Symbols (STS) Symbol Synchronizer. This work can be taken as a basis of a

doctoral research for implementing a complete OFDM receiver.



1.2.  Thesis Organization

The goal of this thesis is to research OFDM and synchronization problems
existing in OFDM systems and design and implement the OFDM STS Symbol
Synchronization system based on ETSI standards.

The thesis is organized as follows:

Chapter 2 gives an overview of OFDM. This chapter considers the basic OFDM
receiver and transmitter structure and mathematical modeling of the blocks.

Chapter 3 contains synchronization issues in OFDM systems. Symbol and
frequency synchronization problems are mentioned in detail followed by the
descriptions of the sensitivity of OFDM to synchronization errors and different
synchronization techniques.

Chapter 4 covers the design of ETSI OFDM STS Symbol Synchronizer IP
including the design pre-study before the implementation, simulation and synthesis.
First preamble and correlation characteristics are explained, and then the general
information of STS is given with the generated reference OFDM preamble example.
Sliding and cross correlation techniques are explained and compared with each other,
followed by a discussion on why sliding correlation method is more useful than the
cross one for ETSI STS synchronizer. After a short description of the LTS part of
preamble, the pre-study section is completed. The proposed architecture for the symbol
synchronizer is explained in detail then the achieved results at the end of
implementation of ETSI OFDM STS Symbol Synchronizer are presented with
simulation and synthesis. Amplitude and phase outputs of the designed symbol
synchronizer are compared to the reference matlab model graphically. Results of two
syntheses realized with CMOS 0.13um for 20 MHz and 50 MHz operation frequencies
are compared to each other in terms of area and power consumption estimations.

Finally, conclusions are drawn for the study and based on these assessments some

possible future research topics are suggested in chapter 5.



2. INTRODUCTION TO OFDM (Orthogonal Frequency Division
Multiplexing)

Multi-carrier transmission is the principle of transmitting data by dividing the data
stream into several parallel bit streams, each of which has a much lower bit rate [4].
Orthogonal Frequency Division Multiplexing (OFDM) with densely spaced subcarriers
and overlapping spectra is a special form of multi-carrier transmission. To obtain a high
spectral efficiency, the sub-carrier center frequencies are selected to have minimum
values to maintain orthogonality; hence the name OFDM is used.

OFDM is a special case of multi-carrier transmission, where a single data stream
is transmitted over a number of lower rate sub-carriers. One of the main advantages to
use OFDM is to increase the robustness against distortion caused by frequency selective
channel or narrowband interference. In a single carrier system, a single fade or interferer
can cause the entire link to fail, but in a multi-carrier system, only a small percentage of
the sub-carriers will be affected. Error correction coding can then be used to correct for
the few erroneous sub-carriers.

The concept of using parallel data transmission and frequency division
multiplexing was published in the mid-1960s [1, 2]. The history of OFDM dates back to
the mid 60’s, when R. W. Chang published his paper on the synthesis of band-limited
signals for multi-channel transmission [1]. He presented a principle for transmitting
messages simultaneously through a linear band-limited channel without inter-channel
(ICI) and inter-symbol (ISI) interference.

In a classical parallel data system, the total signal frequency band is divided into
N non-overlapping frequency sub-channels. Each sub-channel is modulated with a
separate symbol and then the N sub-channels are frequency-multiplexed. It is good to
avoid spectral overlap of channels to eliminate inter-channel interference. However, this
leads to inefficient use of the available spectrum. To cope with the inefficiency, the
ideas proposed from mid-1960s were to use parallel data and Frequency Division
Multiplexing (FDM) with overlapping sub-channels. Figure 2.1 illustrates the difference

between the conventional non-overlapping multi-carrier technique and overlapping



multi-carrier modulation technique. As shown in Figure 2.1, by using the over-lapping
multi-carrier modulation technique, we save almost 50 % of bandwidth. To realize the
overlapping multi-carrier technique, however we need to reduce crosstalk between sub-
carriers, which means that we want orthogonality between the different modulation
carriers.

The main idea behind OFDM is to split the data stream to be transmitted into N
parallel streams of reduced data rate and to transmit each of them on a separate sub-
carrier. These carriers are made orthogonal by appropriately choosing the frequency
spacing between them to obtain a high spectral efficiency. Therefore, spectral
overlapping among sub-carriers is allowed, since the orthogonality ensure that the
receiver can separate the OFDM sub-carriers and a better spectral efficiency can be
achieved than by using simple frequency division multiplex. The word orthogonality
here indicates that there is a precise mathematical relationship between the frequencies
of the carriers in the system. In a normal frequency-division multiplex system, many
carriers are spaced apart in such a way that the signals can be received using
demodulators. In such receivers, guard bands are introduced between the different
carriers and in the frequency domain, resulting in a lowering of spectrum efficiency. It
is possible, however, to arrange the carriers in an OFDM signal so that the sidebands of
the individual carriers overlap and the signals are still received without adjacent carrier
interference. To do this the carriers must be mathematically orthogonal. Figure 2.2

shows spectra of orthogonal OFDM sub-carriers.
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The general block diagram of an OFDM transceiver is illustrated in Figure 2.3. In
the transmitter path, binary input data is encoded. After interleaving, the binary values
are converted into QAM values: Each n-bit group is assigned to an appropriate complex
symbol having a signal constellation according to the used digital modulation technique
(QAM). The bits in each group determine the constellation point according to the
selected sub-carrier modulation. At this point we have a complex data. After QAM
mapping, pilot insertion is realized to facilitate coherent reception. To make the system
robust to multi-path propagation, a cyclic prefix is added. Further, windowing is applied
to attain a narrower output spectrum. After this step, the digital output signals can be
converted to analog signals, which are then up-converted to broadcasting band,
amplified and transmitted through an antenna.

The OFDM receiver basically performs the reverse operations of the transmitter,
together with additional training tasks. First, the receiver has to estimate symbol timing
and frequency offset, using special training symbols in the preamble. Then it can do an
FFT for every symbol to recover the QAM values of all sub-carriers. The training
symbols and pilot sub-carriers are used to correct the channel response as well as
remaining phase drift. The QAM values are then demapped into binary values, after

which a Viterbi decoder can decode the information bits.

Binary input

data Y <- — <_

RF Tx
Coding Interleaving QAM Pilot S/P

_’ -’ mapping " insert. P/S I Add cyclic
extension

and
windowing

IFFT
(TX)

Remove

FFT 41_ S/P 4_ cyclic

Decoding (RX) extension

Channel ‘_ P/S
Correction
L. Frequency
Symbol timing | .orrected
signal
QAM
Deinterleaving 4_ demapping Timing and
RF Rx |'>| ADC |'> frequency
synchronization
Binary
output data

Figure 2.3 Basic OFDM communication system



2.1. OFDM Signal

2.1.1. Generation of Sub-carriers Using IFFT

As illustrated in Figure 2.4, an OFDM signal consists of a sum of sub-carriers that
are modulated by using quadrature amplitude modulation (QAM) or phase shift keying
(PSK). In its most general form, the low-past equivalent OFDM signal can be written as

a set of modulated carriers transmitted in parallel, as follows [5]:

o) N-1
sy = {ch,kgk(t—nn )} 2.1)

k=0

n=—0

o2t te[0,T;)
with g ()= (2.2)
0 otherwise
k
and fk:fo+? ,k=0...N-1 (2.3)
S

where
o C,; is the QAM modulated data (symbol transmitted on the k™ sub-

th

carrier in the n™ signaling interval, each of duration is T} ).

e N is the number of OFDM sub-carriers
o f; is the k™ sub-carrier frequency, with f, being the lowest frequency
to be used.

The n” OFDM frame can be defined as the transmitted signal for the n'"

signaling interval of duration equal to one symbol period 7, and denote it by F, (¢) in

Equation (2.1) instead of the term in parenthesis which corresponds to the n™ OFDM

frame, the relation can be rewritten as



s()= D F,(0 24)
n=—o
and thus, F), (#) corresponds to the set of symbols C, ;, k = 0...N-1, each transmitted

on the corresponding sub-carriers f} .

Demodulation is based on the orthogonality of the carriers g K (¢), namely:
[ (t)dt =T, 50k~ 1) (2.5)
R

where 0 is kronecker delta function and R indicates data rate.
Therefore, by assuming no interference and noise in the channel, the demodulator will

produce transmitted symbol as:

1 (n+1)T,
Cot =7 | s(O)g ()t (2.6)
TS‘ }’ITS

The block diagram of an OFDM modulator is given in Figure 2.4, while the
demodulator is shown in Figure 2.5, where, for simplicity, the impulse response of

communications systems has been ignored.

Figure 2.4 OFDM modulator
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Figure 2.5 OFDM Demodulator

As an example, Figure 2.6 shows four sub-carriers from one OFDM signal in time
domain. In this example, all sub-carriers have the same phase and amplitude. But in
practice the amplitudes and phases may be modulated differently for each sub-carrier.

Each sub-carrier has exactly an integer number of cycles in the interval 7, and the

number of cycles between adjacent sub-carriers differs by exactly one. This property

accounts for the orthogonality between the sub-carriers.

Sub-carrierl
— — = =Sub-carrier2
............ Sub-carrier3
— . — Sub-carrier4

Time domain >

Figure 2.6 Example of four sub-carriers within one OFDM symbol
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The orthogonality of the different OFDM sub-carriers can also be demonstrated in
another way. According to Equations (2.1), (2.2) and (2.3), each OFDM symbol

contains sub-carriers that are nonzero over a T -second interval. Hence, the spectrum of

a single symbol is a convolution of a group of dirac pulses located at the sub-carrier

frequencies with the spectrum of the square pulse that is one for a 7} -second period and

zero otherwise. The amplitude spectrum of the square pulse is equal to sinc(#f7}),

which has zeros for all frequencies f'that are an integer multiple of % . This effect is
N

shown in Figure 2.2, which shows the overlapping sinc spectra of individual sub-
carriers. At the maximum of each sub-carrier spectrum, all other sub-carrier spectra are
zero. Because an OFDM receiver essentially calculates the spectrum values at those
points that correspond to the maximum of individual sub-carriers, it can demodulate
each sub-carrier free from any interference from the other sub-carriers if
synchronization is perfect and no channel distortion and noise exist.

The complex base-band OFDM signal as defined by Equation (2.4) is in fact
nothing more than the inverse Fourier transform of N QAM input symbols. The time
discrete equivalent is the inverse discrete Fourier (IDFT), which is given by Equation

(2.8). By sampling the low pass equivalent signal of Equation (2.1) and Equation (2.4)

at a rate N times higher than the symbol rate % , and assuming f, =0 (that is the
S

carrier frequency is equal to the lowest sub-carrier frequency), the OFDM frame can be

expressed as:

N-1
F,(m)y= Y C, g (t—nT,) o »,m=0..N-1 (2.7)
k=0 t:(n-i——jTS
which yields
AT | N2 A
Fymy=¢ N[ YC,e N |=NIDFT{C, ] (2.8)

k=0

In practice, this transform can be implemented very efficiently by the inverse fast

fourier transform (IFFT).
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To point out the difference between OFDM and (Frequency Division
Multiplexing) FDM, the power spectrum density for the two systems with binary phase
shift keying (BPSK) data on all carriers is considered in Figure 2.7, illustrating the two
spectra indicating the occupied bandwidth # as function of the number of carriers N.

Note that here R indicates data rate.

-2R/4 F/4 B/4 3R#M

W=4R/3

-ZR3 B3 RIS RAE

Figure 2.7 OFDM versus FDM power spectrum density

From Figure 2.7, one can see that the OFDM signal requires less bandwidth as the

number of carriers is increased, and in the limit we have:

lim W = lim 2 gop=Y (2.9)
N—>x© Noo N TS

This is possible since there is spectral overlapping, which is resolved making use
of the orthogonality of the sub-carriers.

By performing the sampling as indicated, the OFDM signal is subject to no loss
since the two-sided bandwidth of the low-pass equivalent OFDM signal (neglecting

side-lobes due to the outer sub-carriers) is W = N /T . Then, the sampling rate of N /T

12



is exactly the corresponding Nyquist rate, and hence there will be no frequency domain

aliasing.

2.1.2. Guard Time and Cyclic Extension

One of the most important reasons to use OFDM is the efficient way to deal with
interference due to multi-path. By dividing the input data-stream in N sub-carriers, the
symbol duration is made N times smaller, which also reduces the relative multi-path
delay spread, relative to the symbol time, by the same factor. An OFDM signal retains
its sub-carrier orthogonality property when transmitted through a non-dispersive
channel. Most channels of interest, however, contain significant time and/or frequency
dispersion. These impairments introduce inter symbol interference (ISI) and inter carrier
interference (ICI), and can destroy the orthogonality of the sub-carriers. A major
advantage of OFDM, mentioned before, is the ability to enhance the basic signal in
ways that overcome channel impairments.

There are two aspects of the multi-path channel that need attention:

e The delay spread, which produces an impulse response extended in time
e The arrival at the receiver of delayed versions of the transmitted signal

causing interference manifests itself as frequency-selective fading.

To protect against time dispersions including multi-path, a guard interval equal to
the length of the channel impulse response is introduced between successive OFDM
symbols. The guard interval is commonly implemented by the cyclic extension of the
IFFT output [36]. The problem of ICI is illustrated in Figure 2.8. In this figure, a sub-
carrierl and a delayed sub-carrier2 are shown. When an OFDM receiver tries to
demodulate the first sub-carrier, it will encounter some interference from the second
sub-carrier, because within the FFT interval, there is no integer number of cycle
difference between sub-carrier 1 and 2. At the same time, there will be cross talk from

the first to the second sub-carrier for the same reason.

13



Part of sub-carrier #2 causing
ICI on sub-carrier #1

Sub-carrier #1

e

Delayed sub-carrier #2

. Sy

Guard time FFT integration time = 1/Carrier spacing

v

OFDM symbol time

Figure 2.8 Effect of multi-path with zero signal in the guard time

To eliminate ICI, the OFDM symbol is cyclically extended in the guard time, as
shown in Figure 2.9 [36]. This ensures that delayed replicas of the OFDM symbol
always have an integer number of cycles within the FFT interval, as long as the delay is
smaller than the guard time. As a result, multi-path signals with delays smaller than the

guard time don’t cause ICI.

S:}ub-carrier #1

$ub-carrier #2

éub-carrier #3

¢ S »
“ Lo »

Guard time / cyclic prefix FFT integration time = llczzrrier spacing

+ >

OFDM symbeol time

Figure 2.9 OFDM symbol with cyclic extension
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Figure 2.10 illustrates how multi-path affects OFDM symbol [36]. This figure
shows received signals for the channel as solid lines; the dotted curve is a delayed
replica of the solid curve. Three separate sub-carriers are shown during three symbol
intervals. In reality, an OFDM receiver only sees the sum of all these signals, but
showing the separate components facilitates to see clearly what the effects of multi-path
are. From the figure, it can be seen that the OFDM sub-carriers are BPSK modulated,
which means that there can be 180-degree phase jumps at the symbol boundaries. For
the dotted curve, these phase jumps occur at a certain delay after the first path. In this
particular example, this multi-path delay is smaller than the guard time, which means
there are no phase transitions during the FFT interval. Hence, an OFDM receiver "sees"
the sum of pure sine waves with some phase offsets. This summation does not destroy
the orthogonality between the sub-carriers; it only introduces a different phase shift for
each sub-carrier. The orthogonality will be lost if the multi-path delay becomes larger
than the guard time. In that case, the phase transitions of the delayed path fall within the
FFT interval of the receiver. The summation of the sine waves of the first path added
with the phase modulated waves of the delayed path no longer gives a set of orthogonal

pure sine waves, resulting in a certain level of interference.

First arriving path
\ Reflection OFDM symbol time

— « 4 > \‘\:
Reflection delay Guard time  FFT integration time

Phase transitions

Figure 2.10 Example of an OFDM signal with three sub-carriers in a channel; the
dashed line represents a delayed multi-path component.

The ratio of the guard interval to useful symbol duration is application dependent.
Since the insertion of guard interval will reduce data throughput, the guard (cyclic

prefix) interval Tg,,,.; is usually less than 7'/4 (see Table D.6. T,

quard 18 represented by

Tcp). T represents here the FFT integration time.
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When a signal s(¢), which is sent over a channel with impulse response #4(¢), the

received signal is given by the convolution:

r(t) = h(t)* s(f) (2.10)

and if the channel is not ideal, i.e. A(?) = o(t), there will be inter symbol interference
(ISI). It is convenient to view the OFDM signal in terms of data frames, so we can
anticipate that the channel will produce ISI within the frame, and will also produce inter
frame interference (IFI) among adjacent frames [5]. Considering the discrete-time

equivalent signal and the channel 4;, 1=0,.....,L, with L being the delay spread of the

channel, equation (2.10) becomes

L L
l’m :Zhi'sm—i :hO.Sm+Zhi.Sm_l‘ (2.11)
ISIT

Figure 2.11 shows this convolution sum for the particular case of L=2. Here, s, x.;
represents the OFDM signal carried by (N-/ )th sub-carrier in the n” frame. From this
graphical representation it can be seen that the introduction of a guard interval of length
equal to the delay spread L of the channel between two adjacent frames will "absorb"

the channel delay and hence remove IFI.
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Figure 2.11 Inter Frame Interference in OFDM systems.

This may be accomplished by inserting L leading zeros in each frame at the
transmitter and removing them at the receiver. However, in order to also eliminate ISI
from within the frame, it is better to use a cyclic prefix instead of an all zero guard
interval. In this case, after dumping the prefix at the receiver, one would get the periodic
(cyclic) convolution of the transmitted data frame and the channel. The cyclically

extended frame can then be written as [5]

F,(N +m), m=—L..—1

Fl(m)= 2.12
n () F,(m), m=0..N-1 @12)
where
N-1 2™
Fym)=Y Cpre’ N om=0...N-1 2.13)
k=0
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After discarding the prefix, the received frame becomes

N-1
F,(m)= "> F,(m—i)y.h (2.14)
i=0

where (m —i), represents the modulo N subtraction. After DFT demodulation we get

n 1 N-1 n _Jzﬂ-kﬁ
Cn,k —W. Fn(m)e N :Cn,k'Hk (215)
m=0
where k=0........ N-—-1 and H, is the channel's transfer function at the sub-carrier

frequency f, from Equation (2.3). Therefore, by using a cyclic prefix, the effect of the

channel is transformed into a complex multiplication of the data symbols with the

channel coefficients H , and all ISI and IFI is removed.

2.1.3. Useful Symbol Duration

The useful symbol duration 7 (FFT integration period) affects the carrier spacing
and coding latency. To maintain the data throughput, longer useful symbol duration
results in an increase of the number of carriers and the size of FFT (assuming that the
signal constellation is fixed). The number of carriers corresponds to the number of
complex points being processed in FFT. In practice the carrier offset and phase stability

may affect spacing between carriers.

2.1.4.Number of Carriers

"Less than one quarter" rule of thumb and the use of an FFT algorithm in turn
drive the selection of the number of carriers, and hence the transform size for a

particular application [6]. The first-order design of an OFDM scheme for an application
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using this approach begins by considering the channel delay-spread, which dictates the
duration of the guard interval. The number of sub-carriers that both maintains the
information rate needed for the application (also satisfies the channel bandwidth
constraints) and meets the "less than 1/4 symbol" rule of thumb can be determined. The
carriers are spaced by the reciprocal of the useful symbol duration. The number of

carriers corresponds to the number of complex points being processed in FFT.

2.2.  Properties of OFDM

After introducing the OFDM signaling scheme, we can list its major advantages

and disadvantages as follows:

e OFDM makes efficient use of the spectrum by allowing overlap.

e By dividing the channel into narrowband flat fading sub-channels, OFDM
is more resistant to frequency selective fading than single carrier systems
are.

e [ISI and IFI are eliminated through via cyclic prefix.

e Using adequate channel coding and interleaving, one can recover symbols
lost due to the frequency selectivity of the channel

e Channel is simpler than using adaptive equalization techniques with single
carrier systems.

e OFDM is computationally efficient by using FFT techniques to implement
the modulation and demodulation functions. Also, for multiple
communication channels, as is the case in digital audio broadcasting
(DAB) systems, partial FFT algorithms can be used in order to implement

program selection and decimation.

The disadvantages can be listed as follows:
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e The OFDM signal has a noise like amplitude with a very large dynamic
range, therefore it requires RF power amplifiers with a high peak to
average power ratio.

e OFDM is more sensitive to carrier frequency offset and phase offsets than

single carrier systems are.

2.3. Choice of OFDM Parameters

The choice of various OFDM parameters is a tradeoff between various, often

conflicting requirements. Usually, there are three main requirements as follows:

e Bandwidth
e Bitrate

e Delay spread

The delay spread directly dictates the guard time. As a rule, the guard time should
be about two to four times the root-mean-squared delay spread (see chapter 2.1.2). This
value depends on the type of coding and QAM modulation. Higher order QAM (like 64-
QAM) is more sensitive to ICI and ISI; while heavier coding obviously reduces the
sensitivity to such interference.

Since the guard time has been set, the symbol duration can be fixed. To minimize
the signal-to-noise ratio (SNR) loss caused by the guard time, it is desirable to have the
symbol duration much larger than the guard time. It cannot be arbitrarily large,
however, because larger symbol duration means more sub-carriers with a smaller sub-
carrier spacing, a larger implementation complexity, and more sensitivity phase offset
and frequency offset [11], as well as an increased peak-to-average power ratio.

After the symbol duration and guard time are fixed, the number of sub-carriers
can be determined by inverse of the useful symbol duration (symbol duration-guard
time). Alternatively, the number of sub-carriers may be also determined by the required
bit rate divided by the bit rate per sub-carrier. The bit rate per sub-carrier is defined by
the modulation type (e.g. 64-QAM), coding rate and symbol rate. An additional
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requirement that can affect the chosen parameters is the demand for an integer number
of samples both within the FFT/IFFT interval and in the symbol interval.
To see the relation between these three requirements mentioned above, let’s

assume we want to design a system with the following requirements:

e Bitrate: 24 Mbps
e Tolerable delay spread: 200 ns
e Bandwidth: <16 MHz

First, we can set the guard time to a safe value using the given value for the delay-
spread requirement: Delay spread should be smaller than guard time (see 2.1.2). Let’s
take the guard time 800 ns, which is four times delay-spread. By choosing the OFDM
symbol duration 5 times (4.0 us = guard time (0.8 ps) + useful symbol part duration (3.2
us)) the guard time according to ETSI HiperLan/2 standard (see Table D.6), we are now
ready to find the number of sub-carriers and sub-carrier spacing. The sub-carrier
spacing is the inverse of 4.0 — 0.8 = 3.2 pus, which gives 312.5 kHz. To determine the
number of sub-carriers needed, we can look at the ratio of the required bit rate and the
OFDM symbol rate. To achieve 24 Mbps, each OFDM symbol has to carry 96 bits of
information (96/4.0 us = 24 Mbps). To do this, there are several options. One is to use
16-QAM together with 2 coding rate to get 2 bits per carrier in a symbol. In this case,
48 sub-carriers are needed to get the required 96 bits per symbol. Another option is to
use QPSK with rate % coding rate, which gives 1.5 bits per sub-carrier in a symbol. In
this case, 64 sub-carriers are needed to reach the 96 bits per symbol. However, 64 sub-
carriers means a bandwidth of 64 * 312.5 kHz = 20 MHz, which is larger than the target
bandwidth. To achieve a bandwidth smaller than 16 MHz, the number of sub-carriers
needed to be equal to or smaller than 50. Hence, the first option with 48 sub-carriers and
16-QAM fulfills all the requirements.

In this section, we reviewed the OFDM, compared it to FDM in terms of
advantages and drawbacks. We saw how the basic OFDM signal is formed using IFFT
and adding a cyclic extension. We explained how OFDM avoids the problem of inter-
symbol interference by transmitting a number of narrowband sub-carriers together with
using a guard time. We gave an example to a basic OFDM communication system and
summarized the functionality of its sub-blocks. Choice of OFDM parameters for

communication system was explained with an example. We mentioned an important
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term for OFDM, i.e. orthogonality. After this introduction, we will see the
synchronization issues that should be taken care of in OFDM receivers in the next

chapter.
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3. SYNCHRONIZATION

One of the arguments against OFDM is that it is highly sensitive to
synchronization errors, in particular, to frequency errors. Before an OFDM receiver can

demodulate the sub-carriers, it has to perform at least two synchronization tasks:

e Symbol (frame) timing synchronization
e Carrier frequency synchronization (carrier frequency offset) and sampling

frequency synchronization (clock offset)

An OFDM receiver first, has to find out where the symbol boundaries are and
what the optimal timing instants are to minimize the effects of inter-carrier interference
(ICI) and inter-symbol interference (ISI). Symbol (Frame) timing synchronization
means finding an estimate where the symbol starts. Second, it has to estimate and
correct for the carrier frequency offset of the received signal, because any offset
introduces ICI. Notice that these two synchronization tasks are not the only training
required in an OFDM receiver. For coherent receivers, except for the frequency, the
carrier phase also needs to be synchronized. Further, a coherent QAM receiver needs to
learn the amplitudes and phases of all sub-carriers to find out the decision boundaries

for the QAM constellation of each sub-carrier [9, 14, 16, 17, 19].

3.1. Introduction

In an OFDM link, the sub-carriers are perfectly orthogonal only if transmitter and
receiver use exactly the same frequencies. Any frequency offset immediately results in
ICI. A related problem is the phase noise; a practical oscillator does not produce a

carrier at exactly one frequency, but rather a carrier that is phase modulated by random
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phase jitter. As a result, the frequency, which is the time derivative of the phase, is
never perfectly constant, thereby causing ICI in an OFDM receiver. For single-carrier
systems, phase noise and frequency offsets only give degradation in the received signal-
to-noise ratio (SNR) rather than introducing interference. This is the reason that the
sensitivity to phase noise and frequency offset are often mentioned as disadvantages of

OFDM in respect to single-carrier systems.

3.2.  Symbol Synchronization

3.2.1.Sensitivity To Timing Errors

In OFDM systems, a great deal of attention is given to symbol synchronization.
Finding the symbol timing for OFDM systems means finding an estimate of the symbol
start point. So the objective is to detect the start point of OFDM symbol. However, by
using a cyclic prefix, the timing requirements are relaxed somewhat. There is usually
some tolerance for symbol timing errors since a cyclic prefix is used to extend the
symbol. A timing offset gives rise to a phase rotation of the sub-carriers. This phase
rotation is largest on the edges of the frequency band. If a timing error is small enough
to keep the channel impulse response within the cyclic prefix, the orthogonality is
maintained. In this case a symbol timing delay can be viewed as a phase shift
introduced by the channel. Then the phase rotations can be estimated by a channel
estimator. If a time shift is larger than the cyclic prefix and the receiver's FFT interval
extends over a symbol boundary, ISI will occur. Hence, OFDM demodulation should be

quite insensitive to timing offsets. To achieve the best possible multi-path robustness,
however, there exists an optimal timing instant. Any deviation from this timing instant

means that the sensitivity to delay spread increases, so the system can handle less delay
spread than the value it was designed for. To minimize this loss of robustness, the
system should be designed such that the timing error is small compared with the guard

interval.
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Latest possible timing
Earliest possible timing

OFDM symbol time

* > >
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Reflection delay Guard time  FFT integration time

Figure 3.1 Example of an OFDM signal with three sub-carriers, showing the earliest and
latest possible symbol timing instants that do not cause ISI or ICI.

An interesting relationship exists between symbol timing and the demodulated
sub-carrier phases [20]. Looking at Figure 3.1, it can be seen that as the timing changes,
the phases of the sub-carriers change. The relation between the phase, ¢; of sub-carrier,

i, and the timing offset, 7, is given by

@, =2nf;T (3.1)

where, f; is the frequency of the i™ sub-carrier before sampling. For an OFDM system
with N sub-carriers and a sub-carrier spacing of 1/7, a timing delay of one sampling
interval of 7/N causes a significant phase shift of 27(1-1/N) between the first and last
sub-carrier. T represents here useful symbol duration. These phase shifts add to any

phase shifts that are already present because of multi-path propagation. In a coherent

OFDM receiver, channel estimation is performed to estimate these phase shifts for all

sub-carriers [9, 14, 16, 19, 21].
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3.2.2.Sensitivity To Phase Noise

Carrier phase noise is caused by imperfections in the transmitter and receiver
oscillators. Phase noise basically has two effects. First, it introduces a random phase
variation that is common to all sub-carriers. If the oscillator line width is much smaller
than the OFDM symbol rate, which is usually the case, then the common phase error is
strongly correlated from symbol to symbol; so tracking techniques or differential
detection can be used to minimize the effects of this common phase error. The second
and more disturbing effect of phase noise is that it introduces ICI, because the sub-
carriers are no longer spaced at exactly 1/7 in the frequency domain. The amount of ICI

is calculated and translated into a degradation in SNR that is given as [11]

11 B\E
= |4anE | Zs 3.2
phase 6ln10( WjN (3-2)

o

where, £ is the -3 dB one-sided bandwidth of the power density spectrum of the
carrier, W is the bandwidth and £/ N, is the symbol energy per noise spectral density.

Note that the degradation increases with the number of sub-carriers and the phase noise

degradation is proportional to A.T, which is the ratio of the line-width and sub-carrier

spacing 1/T.
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3.3.  Frequency Synchronization

3.3.1.Sampling Frequency Synchronization

The received continuous-time signal is sampled at instants determined by the
receiver clock. There are two types of methods of dealing with the mismatch in
sampling frequency. In synchronized-sampling systems a timing algorithm controls a
voltage-controlled crystal oscillator in order to align the receiver clock with the
transmitter clock. The other method is non-synchronized sampling, where the sampling
rate remains fixed, requiring post-processing in the digital domain. The effect of a clock
frequency offset is that the useful signal component is rotated, attenuated and, also ICI
is introduced. The bit-error rate performance of a non-synchronized sampling systems
are much more sensitive to a frequency offset, compared with a synchronized-sampling
system [11]. For non-synchronized sampling systems, it was shown that the degradation
(in dB) due to a frequency sampling offset depends on the square of the carrier index

and the square of relative frequency offset.

3.3.2.Carrier Frequency Synchronization

Frequency offsets are created by differences in oscillators in transmitter and
receiver, Doppler shifts or phase noise introduced by non-linear channels. There are two

destructive effects caused by a carrier frequency offset in OFDM systems:
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e One is the reduction of signal amplitude (the sinc functions are shifted and
no longer sampled at the peak) and the other is the introduction of ICI
from the other carriers, as illustrated in Figure 3.2 and Figure 3.3.

e The latter is caused by the loss of orthogonality between the sub-channels.
Pollet analytically evaluates the degradation of the BER caused by the
presence of carrier frequency offset and carrier phase noise for an AWGN
channel [11]. It is found that a multi-carrier system is much more sensitive

than a single-carrier system. If we denote the normalized relative
frequency offset, by the sub-carrier spacing with Af :W (AF i1s the

frequency offset and N the number of sub-carriers), the degradation D in

SNR (in dB) can then be approximated by

10

bB) >0

10 ( N-AFT E
T

2 Es _ s
(mAf) N v (3.3)

. 3In10

Note that the degradation (in dB) increases with the square of the number of sub-
carriers, if AF and W are fixed.

Moose derives the signal-to-interference-ratio (SIR) on a fading and dispersive
channel [12]. The SIR is defined as the ratio of the power of the useful signal to the

power of the interference signal (ICI and additive noise).
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Figure 3.2 Effects of a frequency offset AF: reduction in signal amplitude (o) and inter-
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Figure 3.3 Sub-carrier spacing
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He assumed that all channel attenuations /4; have the same power, E ih,g‘} An upper

bound on the degradation is [12]

1+ o.5947}€ssm2 A

D(dB) < 10log 0 (3.4)
(a5) 10 sin c2Af

where sincx= (sin zx)/(zx). The factor 0.5947 is found from a lower bound of the

summation of all interfering sub-carriers. In Figure 3.4 the degradation is plotted as a

function of the normalized frequency offset Af, i.e. relative to the sub-carrier spacing

[12].
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Relative frequency offset

Figure 3.4 Degradation in SNR due to a frequency offset (normalized to the sub-carrier
spacing). Analytical expression for AWGN (dashed) and fading channels (solid).
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3.4.  Synchronization Techniques

3.4.1.Synchronization Using The Cyclic Extension

Because of the cyclic prefix, the first 7 (guard time) seconds part of each OFDM
symbol is identical to the last part. This property can be exploited for both timing and
frequency synchronization by using a synchronization system like depicted in Figure
3.5. Basically, this device correlates a T long part of the signal with a part that is T

seconds delayed [18, 19]. The correlator output can be written as

e
xX(t)= [rt=oy(t—r=T)dr (3.5)
0
r Estimate
delay ]  Conjugation phase of | Frequency
maximum offset
OFDM 4
signal J‘ dt Find
| maximum P Timing
Ts correlation

Figure 3.5 Synchronization using the cyclic prefix
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Two examples of the correlation output are shown in Figure 3.6 and Figure 3.7 for
eight OFDM symbols with 192 and 48 sub-carriers, respectively [19, 36]. These figures
illustrate a few interesting characteristics of the cyclic extension correlation method.
First, both figures clearly show eight peaks for the eight different symbols but the peak
amplitudes show a significant variation. The reason for this is that although the average
power for a T seconds interval of each OFDM symbol is constant, the power in the
guard time can substantially vary from this average power level. Another effect is the
level of the undesired correlation side-lobes between the main correlation peaks. These
side-lobes reflect the correlation between two pieces of the OFDM signal that belong
partly or totally to two different OFDM symbols. Because different OFDM symbols
contain independent data values, the correlation output is a random variable, which may
reach a value that is larger than the desired correlation peak. The standard deviation of
the random correlation magnitude is related to the number of independent samples over
which the correlation is performed. The larger the number of independent samples
means the smaller the standard deviation. In the extreme case, where the correlation is
performed over only one sample, the output magnitude is proportional to the signal
power, and there is no distinct correlation peak in this case. In the other extreme case,
where the correlation is performed over a very large number of samples, the ratio of
side-lobes-to-peak amplitude will go to zero. Because the number of independent
samples is proportional to the number of sub-carriers, the cyclic extension correlation
technique is only effective when a large number of sub-carriers are used, preferably
more than 100. An exception to this is the case where instead of random data symbols,
specially designed training symbols are used [13]. In this case, the integration can be
done over the entire symbol duration instead of the guard time only. The level of
undesired correlation side-lobes could be minimized by a proper selection of the

training symbols.
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Figure 3.6 Example of correlation output amplitude for eight OFDM symbol with 192
sub-carriers and a 20% guard time
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Figure 3.7 Example of correlation output amplitude for eight OFDM symbols with 48
sub carriers and a 20%guard time
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We know that the undesired correlation side-lobes only create a problem for
symbol timing. But they do not play a role for frequency offset estimation. Once symbol
timing is known, the cyclic extension correlation output can be used to estimate the
frequency offset. The phase of the correlation output is equal to the phase drift between
samples that are 7 seconds apart. Hence, the frequency offset can simply be found as the
correlation phase divided by2z7 . This method works up to a maximum absolute
frequency offset of half the sub-carrier spacing. To increase this maximum range,
shorter symbols can be used, or special training symbols with different PN sequences on
odd and even sub-carriers frequencies to identify a frequency offset of an integer
number of sub-carrier spacing [9].

The noise performance of the frequency offset estimator is now determined for an
input signal r(¢) that consists of an OFDM signal s(#) with power P and additive
Gaussian noise n(z) with a one — sided noise power spectral density of N, within the

bandwidth of the OFDM signal:

r(t) = s(f) + n(t) (3.6)

The frequency-offset estimator multiplies the signal by a delayed and conjugated

version of the input to produce an intermediate signal y(?) given by [9, 36]

20 = 1" (= T) = |52 |exp(ig) + n(0)s™ (=) + 1" (¢ = T)s(0) + (e’ (¢ = T)

(3.7

The first term in the right — hand side of Equation (3.7) is the desired output
component with a phase equal to the phase drift over a 7' — second interval and a power
equal to the squared signal power. The next two terms are products of the signal and the
Gaussian noise. Because the signal and noise are uncorrelated and because noise
samples separated by 7 seconds are uncorrelated, the power of the two terms is equal to
twice the product of signal power and noise power. Finally, the power of the last term of
Equation (3.7) is equal to the squared noise power. If the input SNR is much larger than
one, the power of the squared noise component becomes negligible compared with the
power of the other two noise terms. For practical OFDM systems, the minimum input
SNR is about 6 dB, so the signal power is four times smaller than the power of the two

signal — noise product terms.
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The frequency offset is estimated by averaging y(¢) over an interval equal to the
guard time 7 and then the phase of y(f) is estimated. Because the desired output
component of Equation (3.7) is a constant vector, averaging reduces the noise that is
added to this vector. Assuming that the squared noise component may be neglected, the

output SNR 1is approximated as [36, 37]

P? PT

SNR, = =
"7 2PN,/T; 2N,

(3.8)

Figure 3.8 shows a vector representation of the phase estimation, where the noise
is divided into in phase and quadrature components, both having a noise power of

N,/T,.

n,o =4/(Ny/Tg)

Phase error ¢

Signal component P n;

Figure 3.8 Vector representation of phase drift estimation
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The phase error 6 is given by Equation (3.9), where the approximation has been
made that »; and n, are small compared with the signal amplitude\/ﬁ [37].

q

n )~ I’lq
TP =P

0= tan_l(

(3.9)

Because the frequency offset estimation error is equal to the phase error 4 divided

by 2nT, the standard deviation of the frequency error is given by [36, 37]

N, T,
o= ! 0o 1 L To (3.10)
22T\ PT; 24T\ E, /Ny Ty

where, T is the symbol interval and Eg / Ny is the symbol - to - noise energy ratio,

defined as
ﬂz PTy (3.11)
No Ny

E¢/Ny is equal to the bit energy - to — noise density E,/Ny multiplied by the number of
bits per symbol. Because OFDM typically has a large number of bits per symbol and
Ew/Ny is larger than 1 for successful communications, typical E¢/Ny values are much
larger than 1. For instance, with 48 sub-carriers using 16-QAM and rate ) coding,
there are 96 bits per OFDM symbol. In this case, E/Nj is about 20 dB larger than Ey/N.
Typical Ey/Nj value is about 10 dB, typical E¢/Ny value is about 30 dB.

If the required E¢/N, value for an acceptable frequency error level is too large,
then averaging the vector y(t) in Equation (3.7) over multiple OFDM symbols can be
used to increase the effective signal - to - noise ratio. For averaging over K symbols, the

frequency error standard deviation becomes

1 1 T
o= —_ch (3.12)
22T\ KE,/ Ny T,
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3.4.2.Synchronization Using Special Training Symbols

The synchronization technique based on the cyclic extension is particularly suited
to tracking or to blind synchronization in a circuit-switched connection, where no
special training signals are available. For packet transmission, however, there is a
drawback because an accurate synchronization needs an averaging over a large (>10)
number of OFDM symbols to attain a distinct correlation peak and a reasonable SNR.
For high-rate packet transmission, the synchronization time needs to be as short as
possible, preferably a few OFDM symbols only. To achieve this, special OFDM
training symbols can be used for which the data content is known to the receiver [9, 12,
14]. In this way, the entire received training signal can be used to achieve
synchronization, whereas the cyclic extension method only uses a fraction of each
symbol.

Figure 3.9 shows a block diagram of a matched filter that can be used to correlate
the input signal with the known OFDM training signal. Here, 7 is the sampling interval
and C; are the matched filter coefficients, which are the complex conjugates of the
known training signal. From the correlation peaks in the matched filter output signal,
both symbol timing and frequency offset can be estimated. The matched filter correlates

with the OFDM time signal before performing a FFT in the receiver.

Input

> 7 YT

Co%(é) Ci %(é) --------- (GNS

Symbol
4E< : ) ) Find timing
maximum —>

Figure 3.9 Matched filter that is matched to a special OFDM training symbol
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3.4.3.Optimal Timing In The Presence Of Multi-path

The task of OFDM symbol timing is to minimize the amount of ISI and ICI. This
type of interference is absent when the FFT is taken over the flat part of the signaling
window, which is shown in Figure 3.10. This window is the envelope of the transmitted
OFDM symbols. Within the flat part of the window, all sub-channels maintain perfect
orthogonality. In the presence of multi-path, however, orthogonality is lost if the multi-
path delays exceed the effective guard time, which is equal to the duration of the flat

window part minus the FFT period.

1.2
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Figure 3.10 Raised cosine window
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The effect of multi-path propagation on ISI and ICI is illustrated in Figure 3.11. It
shows the windowing envelopes of three OFDM symbols. The radio channel consists of
two paths with a relative delay of almost half of a symbol and relative amplitude of 0.5.
The receiver selects the FFT timing such that the FFT is taken over the flat envelope
part of the strongest path. Because the multi-path delay is larger than the guard time,
however, the FFT period cannot at the same time cover a totally flat envelope part of the
weaker signal. As a result, the non-flat part of the symbol envelope causes ICI. At the
same time, the partial overlap of the previous OFDM symbol in the FFT period causes
ISL.

The solution to the timing problem is to find the delay window with a width equal
to the guard time. This contains maximum signal power. The optimal FFT starting time,
then, is equal to the following equation:

The starting delay of the found delay window, plus the delay that occurs between
a matched filter peak output from a single OFDM pulse and the delay of the last sample
on the flat part of the OFDM signal envelope, minus the length of the FFT interval.

FFT period
D EE—

First path
Second path

ISI ICI

Figure 3.11 ISI/ICI caused by multi-path signals
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Figure 3.12 shows the OFDM symbol structure, where 7 is the time needed by the
FFT. If a multi-path signal is introduced with a relative delay (relative to the delay of
the shown reference OFDM signal) exceeding Ty, it will cause ISI and ICI. Similarly,
multi-path signals with relative delays less than -7, cause ISI and ICI. The timing
problem is now to choose T,; and T, such that the amount of ICI and ISI after the FFT

1s minimized.

— g ! > 2 >
«—>
BT

Figure 3.12 OFDM symbol structure

It is clear in Figure 3.12 that ISI and ICI are caused by all multi-path signals,
which delays fall outside a window of T, = Tg; + Tgo. All multi-path signals within this
delay window contribute to the effectively used signal power. Hence, the optimal timing

circuit maximizes the signal - to - (ISI + ICI) ratio (SIR), given by [36]

Ty+T,

SIR=—"u__ 5, = [ l@|dz. s, = [ dz (3.13)
St - Su T
0 —00
where, T = -T,, is the timing offset of the guard time window T,. S; denotes the total

received signal power and S, is the useful signal power. Because only S, depends on the
timing offset 7), the SIR is maximized by maximizing S,; that is, choosing the 7)) value
that contains the largest power of /(7) in the interval {7}, Ty + T,}.

In this chapter, we reviewed and classified synchronization problems existing in
OFDM systems and we provided general overview about synchronization techniques
used in OFDM receivers. In Chapter 4, the implementation part of our thesis can be
seen. We proposed and designed a digital synchronizer hardware, which realizes the
timing synchronization of ETSI OFDM symbol (frame) using sliding correlation

method. OFDM symbol synchronizer that we designed uses the preambles defined in
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ETSI HiperLan / 2 standard to detect the OFDM symbol (please see Appendix D for
detailed information about ETSI standard). We can remember from previous chapter,
timing synchronization means to find out where the OFDM symbol boundaries are.
Notice that, in our implementation we assumed a perfect media. That means CO, CFO,
AWGN and phase offset do not exist. Hence these issues were not considered by our

synchronizer.
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4. SYNCHRONIZATION PRACTICE: SYNCHRONIZATION DETECTION
USING SHORT TRAINING SYMBOLS (STS)

In the previous chapters, we reviewed OFDM, generation of OFDM signal. We
analyzed synchronization issues that should be solved in OFDM receivers. This chapter
presents digital design and hardware implementation of ETSI OFDM symbol
synchronizer, which detects ETSI OFDM symbols at the receiver using sliding
correlation method. The goal of this implementation is not to design a whole OFDM
synchronizer that realizes all synchronization tasks including CFO and CO
compensations. The first synchronization task that a receiver should perform is to find
out where OFDM symbols starts. Our aim in this implementation is to design a generic
digital hardware that can be used in OFDM receivers, which performs the detection of
ETSI OFDM symbols referenced in Appendix D. In the first part of this chapter, we
have analyzed preambles and correlation characteristics to be used in our
implementation. We have given the assumptions and parameters used in the
implementation. First sliding and cross correlation methods wused to solve
synchronization problems have been described, then they have been compared to each
other according to matlab OFDM model’s correlation outputs to determine the suitable
one for our implementation. In the second part, we have explained the details of the
OFDM symbol synchronizer that we proposed and designed, followed by simulation

and synthesis results achieved in the implementation.

4.1. Preamble and Correlation Characteristics

One of the purposes of the preamble preceding every OFDM packet is to allow
start-of-symbol detection. Using the fact that it is based on well-known patterns, which
the receiver can recognize. The beginning of the preamble is based on Short Training

Symbols (“STS”, 16 samples long instead of 64) while the end is based on Long
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Training Symbols (“LTS”, having the normal length of 64 samples). The reason why
the short training symbols are only 16 samples long is due to the frequency domain
sequence on which they are based, where every fourth carrier carries data while all the
others do not. The result of the IFFT of such a sequence is that the 64 time domain
samples can be split in 4 identical sub-symbols or 4 STS’s. Figure 4.1 illustrates an
example of the ETSI UP LONG preamble, where the short training symbols are the

consecutive B’s and the IB, while the long training symbols are both final C’s:

tpreamBLE = 16,0 ps

< >
STS LTS
< 10*0,8us = 8,0us ><2"‘0,8us = 8,0us+2*3,2us=8,0g
(B[B[B|[B|[B[B[B[B|B[B|]cP] ¢ | ci 7
Copy

Figure 4.1 ETSI UP LONG preamble

Here, IB short OFDM symbol is sign-inverted copy of B short OFDM symbol
(please see Appendix D).

In this thesis, we refer to Appendix D.1.5 for a complete description of all the
available preamble structures in the HiperLAN/2 physical layer standards. We consider

numerical values seen in Table D.6.

4.1.1.Short Training Symbols (STS)

We consider the preambles defined by ETSI, which contain an IB symbol at the
end of the STS section. Since the ETSI preambles are based upon defined symbols, it
makes sense to compute a sliding correlation over 16 samples of successive received
STS with each other (see the example in Figure 4.2) in order to find the ending point of
the STS section and the start of the LTS part. The main idea behind sliding correlation
is to correlate the successive received OFDM samples to each other within a proper
correlation window. In our implementation, the correlation window length is 16 because

received STS has 16 samples length each, which means at each clock cycle, two 16 bits-
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long digital inputs are correlated each other. The received complex OFDM symbols are
sampled at receiver and converted to digital samples, so that real and imaginary parts
are separated. The digital samples are shifted through a shift register block to
synchronizer module. This performs correlation process. Figure 4.2 illustrates this
sliding correlation process of received digital samples. Since the received samples are
shifted through shift registers and delayed at each clock cycle, it is possible to compute
a sliding correlation over 16-samples correlation window, which means the newest 16
samples are correlated to the previous 16 samples. The zoomed view of sliding
correlation process of two successively received symbols is depicted in Figure 4.3.

Figure 4.4 illustrates the shape of the amplitude and phase of the 16 samples
sliding correlation process of the short training symbols contained inside the ETSI
BROADCAST. The schematic of the ETSI BROADCAST Preamble and reference STS
data for ETSI BROADCAST Preamble dumped from matlab simulink model is shown
in Figure 4.5. The goal for the synchronizer is to detect the IB section based upon the
sequence SB to find out where the OFDM symbol starts. In the ETSI BROADCAST
case, the correlation amplitude is the same for both SA and SB based section (please see
D.1.5.4.7.1 for details of SA and SB). However the correlation phase transition (from
high to low or from low to high) allows us to distinguish one from the other.

Figure 4.4 reflects the ideal conditions, meaning that there is no AWGN (Additive
White Gaussian Noise) injected, no perturbation induced by the channel (the channel
impulse response is a single tap in the time domain), no CFO (Carrier Frequency Offset)

and no CO (Clock Offset) exist.

81 8 [ 8 T 8 [ B ] )

Successively received
[ B | B [ B | B [ 1B ] OFDM STS symbols

are shifted through the
Newest 16 complex synchronizer shift
samples are correlated B | B | B | B [ 1B | > register and sliding
to the previous 16 ones correlation is

computed in a

[ B | B [ B [ B [ 1B ] correlation window of
16 samples.
[ B8 [ B [ B [ B [ B | .
>

Figure 4.2 Illustration of Sliding Correlation of Received STS
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Figure 4.3 Sliding correlation of two received STS symbols over a 16 samples
correlation window
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Figure 4.4 Sliding Correlation of the ETSI BROADCAST Preamble: (a) Correlation
Amplitude. (b) Correlation Phase

45



SHORT TRAINING
SYMBOL (STS)

LONG TRAINING
SYMBOL (LTS)

A
l
v

? Copy

ETSI BROADCAST PREAMBLE

} SIGN-INVERTED COPY OF
PRECEDING SHORT SYMBOL

& - (5]

B } SIGN-INVERTED COPY OF B
PRECEDING SHORT SYMBOL

SHORT OFDM SYMBOLS
(EACH 16 SAMPLES)
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STS part of Broadcast preamble together.
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0.0785 + 0.0135i
0.0127 - 0.1428i
-0.0000 - 0.0920i
0.0127 - 0.1428i
0.0785 + 0.0135i

-0.0023 + 0.1324i

model.
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Instead of a sliding correlation, we could also compute the cross correlation, i.e.

correlate the received data with the ideal transmitted symbol (which is not altered by

noise, channel etc.). The principle is sketched in Figure 4.6. First difference between the

sliding correlation and the cross correlation is that cross correlation is realized between

the received STS and the ideal transmitted symbol while sliding correlation occurs

between consecutive received STS symbols. Second difference is that two inputs of

sliding correlator changes at each clock cycle while just one input of cross correlator

changes at each clock cycle. This is because the transmitted ideal symbol is correlated

with the newest received 16 samples. The zoomed view of cross correlation process of

the successively received symbols with the ideal transmitted symbol is depicted in

Figure 4.7.

| B | B | B

B B |

III Ideal svmbol

[ B B | B B B |
[ B |
[ B8 [ B | B | B | 1B |
[ B |
B B | B | B | 1B |

Successively received
OFDM STS symbols
(i.e. B and IB) are
shifted through the
synchronizer shift
register sample-by-
sample and correlated
with the ideal
transmitted symbol in
a correlation window
of 16 samples.

t>

Figure 4.6 Example of Cross Correlation of Received STS

47



STS (i.e. B)

Samplg ’_f Transmitted ideal B symbol
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Shift
register Register
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shift)
Complex multiplication sample

*CrossRLength is determined ﬂ
by the length of STS. by sample

Addition of all values

Figure 4.7 Cross correlation of the received STS symbols with the transmitted ideal
symbol in a 16 samples correlation window

Figure 4.8 represents the amplitude and the phase of the ideal cross correlation
(without any perturbation-no channel effect) of the transmitted symbol with the received
data. As seen in cross correlation phase graph, the phase of the cross correlation does
not presents consecutive stable values. The phase jump therefore is not easily
detectable. The 4 peaks seen in cross correlation amplitude graph correspond to the
match between received and ideal B symbols, while the last one is due to the correlation
between the received IB and the ideal B. Synchronization on ETSI preambles is best
performed by using a sliding correlation of the received samples so that the pattern is
more easily detectable. This is the main reason why sliding correlation method is used

for synchronization of ETSI preambles in this thesis.
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Figure 4.8 ETSI Ideal Cross Correlation: (a) Correlation Amplitude. (b) Correlation
Phase

All the previous figures assume perfect conditions. In realistic situations, various
effects have to be taken into account that impairs the previous results. Since we assume

the ideal conditions, we will not analyze these effects.

4.1.2.Long Training Symbols (LTS)

All the Physical Layer burst structures (please see D.1.5.4.7) have a preamble
containing two specific OFDM symbols (C) of normal length (64 samples, hence called
‘long training symbols’), preceded by a cyclic prefix of the symbols copying the last 32
samples of the C symbols. One might compute the sliding correlation over 32 samples

of the LTS.
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4.2.  Digital Design and Hardware Implementation of ETSI OFDM STS
Synchronizer Using Sliding Correlator

4.2.1. Top-level Architecture

As mentioned before, the synchronization in OFDM systems is accomplished
using correlation methods. Since the synchronization pattern of sliding correlation is
more easily detectable than the one of cross correlation, we have selected the sliding
correlation method for our synchronization application. The top-level block

representation of the STS synchronizer is depicted in Figure 4.9.

Digital RxSamples
RealPartOfRxSamples (Coming from ADC) ImaginerPartOfRxSamples

8 8

SlidingShifRegister

SampletRe_Out Sampletim_Out Sample2Re_Out Sample2Iim _Out
8 8 8 8

SlidingCorrelator

SRCorreRe_Out SRCorrelm_Out

X X

CORDIC (C O rdinate R otation D |gita| Com puter)

W W
AmplitudeCorrelatorOut PhaseCorrelatorOut

STSSynchronizer

Figure 4.9 Top-level Block Diagram of ETSI OFDM STS Synchronizer
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In our hardware implementation we assume the followings:

e Transmitted OFDM symbols are received successively by the antenna at
the OFDM receiver and sampled at 20 MHz sampling clock frequency.

e The received complex analog OFDM samples (sub-carriers which carries
QAM modulated complex data) are already converted to digital data; real
and imaginary parts are separated each other

e Our synchronizer takes these digital samples; real and imaginary parts are
coming separately.

STS Synchronizer design consists of 3 sub-modules:

1. Sliding Shift Register module: It gets digital samples coming from the
previous module (Analog to Digital Converter (ADC) Shifter) and stores
the newest 16 samples. It provides the next block with correct data
(Samplel and Sample 2) to be correlated.

2. Sliding Correlator module: This module realizes sliding correlation process
of the inputs provided by Sliding Shift Register module.

3. CORDIC module: This module outputs the amplitude and phase
characteristics of the correlated OFDM data.

All sub-blocks are handled in more details in the next sections.

In our implementation, we consider numerical values seen in Table D.6. In the
simulink OFDM model that we used, the modulation type was selected as 64QAM,
preamble type was chosen as ETSI BROADCAST, CO was set to 0 Hz, CFO was set to
0 ppm and SNR was set to 210 dB that provided perfect conditions. Transmitted
complex OFDM data was dumped from this model and used as the input stimuli of our
hardware implementation. Real and imaginary parts of the generated input stimuli were

separated each other and converted to 8-bits digital samples each.
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4.2.1.1.Sliding Correlator Shift Register Unit (SlidingShiftRegister)

The function of the Sliding Correlator Shift Register Unit is to store the newest 16
samples and to provide SlidingCorrelator block with correct data to be correlated. At
rising edge of clock, new sample is registered and oldest sample is discarded.

In SlidingShiftRegister Block there are 17x8x2-Bit shift register to store the most
recent 16 samples. Each sample consists of real and imaginary parts, stored in 8-Bit
precision.

The detailed architecture of SlidingShiftRegister block is depicted in Figure 4.10.
It simply gets the digital real and imaginary parts of received OFDM samples and it
stores newest 16 samples. Then it outputs newest sample and 16-clock cycles delayed
sample to Sliding Correlator module, next block. The reason of this functionality is that
the length of correlation window is for 16 samples (STS i.e. B, A, IA and IB each
consists of 16 samples to be correlated). The correct data to be correlated by the next

block should be the newest one and the 16-clock cycles delayed one.

RealPartOfRxSamples(7:0)
Sample2Re_Out(7:0) Sample1Re_Out(7:0)

D a D a b— o apb— — — — — a b—»o a b— o a b— o ab—bo a

w [ il Ml el el

ImaginerPartOfRxSamples(7:0)

Sample2lm_Out(7:0) Sample1lm_Out(7:0)

[ [ =T

Figure 4.10 Architecture of SlidingShiftRegister Block
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4.2.1.2.Sliding Correlator Unit

The general operation of a correlator is multiplying its input signals “sample-by-
sample” and adding the product of each multiplication. If the signals to be correlated are
of complex samples, i.e. at+jb and c+jd, then the multiplication occurs between one
input signal and the “conjugate” of the other input signal. For instance, (atjb) is
multiplied by (c-jd), the conjugate of c+jd.

The implementation of “Sliding Correlator” depends on a serial approach, which
means at each clock cycle, it’s enough to multiply 2 samples with each other and add
the product to previous one to take the correlation of two successively received STS
symbols. This structure requires just one “complex multiplier”. Instead of this, all 16
samples of two received STS can be multiplied each other in parallel, then all
multiplication products can be accumulated to perform the sliding correlation of two
successive received OFDM symbols. This approach requires (# of samples in a STS)
complex multiplier units. This increases the area.

Sliding Correlator consists of 2 sub-blocks as shown in Figure 4.11:

1. SRCorrComplexMultiplier: Complex Multiplier Block

2. SRCorrAccumulator: Accumulator Block

Sliding Correlator basically receives real and imaginary samples from Sliding
Correlator Shift Register and Complex Multiplier Sub-block in Sliding Correlator
multiplies each new sample with the conjugate of a sample that has been received 16
samples before. At each clock cycle, new product of input samples is added to the
previous sum and the oldest product of samples is subtracted from this sum in

Accumulator Block. The output of this accumulator is the output of SlidingCorrelator

block.
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SRCorreRe_Out(x:0)
Sample2Re_Out(7:0) CorrMultRe_Out(16:0)
_>

Sample2im_Out(7:0)
SRCorrComplexMultiplier SRCorrAccumulator

Sample1Re_Out(7:0) CorrMultim_Out(16:0) SRCorrelm_Out(y:0)
—] N ’
NS
Sample1im_Out(7:0)

Figure 4.11 The top-level block diagram of Sliding Correlator

A complex multiplier seen in Figure 4.12 is used in SlidingCorrelator block. This
complex multiplier works on the simple principle of 4 multiplications as explained
below:

Let two complex numbers that are going to be multiplied be (A + jB) and (C + jD) and
the product (P +jQ). We have,

P=(AxC)-(BxD)and
Q=(AxD)+(BxC(C) 4.1

Each of the inputs of the complex multiplier is 8 bits wide. The width of the both

real and imaginer output is 17.
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A(7:0)

AD(15:0)
D(7:0)
B(7:0)
BC(15:0)
A+iB C(7:0)
A(7:0)
C+D
AC(15:0)
C(7:0)
B(7:0)
BD(15:0)
D(7:0)
As seen in Figure 4.13,

SRCorrComplexMultiplier are the inputs of the SRCorrAccumulator. There are two
separate shift registers for both real and imaginary parts. At each clock cycle, a new
multiplied value for both real and imaginary parts are sent into these internal shift

registers, which are 16 samples long.

ADplusBC(16:0) = Q(16:0)

ACminusBD(16:0) = P(16:0)

Figure 4.12 Complex Multiplier Structure

real and

Real and imaginary shift registers are both 17 bits long.
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The methodology of our sliding correlation implementation can be simply

explained as follows:

The first rule of correlation implementation is to multiply the first complex
sample (a+jb) with the conjugate of the second complex sample (c-jd). This is
done by SRCorrComplexMultiplier.

The second rule is to accumulate every new product of the
SRCorrComplexMultiplier and to subtract the 16 clock cycles delayed product
from this accumulation. To understand this explained process let’s imagine 17
clock cycles later from the beginning of STS sliding correlation process. At this
time the first sample of first B symbol shown in Figure 4.2 is at the output of
17" flip flop of sliding shift register in Figure 4.10 and the first sample of
second B symbol is at the output of first flip flop of sliding correlator in Figure
4.10. This is the critical time for the correlation process because the meaningful
data begins from this point. The first sample of first B is multiplied by the first
sample of second B and the product is sent into SRCorrAccumulator. 16 clock
cycles later, all samples of both first B and second B are multiplied each other
and the accumulation is done. At each new clock cycle, a new product of
complex multiplier should be added to the accumulation while the oldest product
is subtracted. This is needed because our STS symbols have 16 samples each so

the “correlation window” width is just for 16 samples.

The outputs of sliding correlator are registered at the rising edge of Clk. The reset

signal is not shown in all figures for clarity.

Figure 4.11, Figure 4.12 and Figure 4.13 show the detailed diagrams of the

SlidingCorrelator block with the widths of input, internal and output signals. As seen in

these figures, the input samples of SlidingCorrelator are 8 bits for real or imaginary

parts but the internal samples are of 23 bits for real or imaginary parts. This is because

inside the correlator a much bigger precision than 8§ bits is needed in order not to loose

precision during the computations.

56



L,

CorrMultRe Out(16:0) "'000000" & CorrMultRe_Out(16:0) = Reallnternal(22:0)

——
SRCorreRe_Out(22:0)

CorrMultim_Out(16:0)

—
SRCorrelm_Out(22:0)

Figure 4.13 Detailed architecture of SRCorrAccumulator block

4.2.1.3.CORDIC (COrdinate Rotation DIgital Computer) Unit

In Figure 4.9, at the output of SlidingCorrelator block, we have real and imaginary
samples of correlated OFDM symbols. But we still need to find out the amplitude and
the phase values of correlated OFDM samples to implement the OFDM synchronizer.
Amplitude and phase characteristics should be analyzed to detect the OFDM symbol at
the receiver. An algorithm called “CORDIC” has been developed for such kind of
operations, i.e. computing trigonometric functions that are based on vector rotations.
The CORDIC algorithm provides an iterative method of performing vector rotations by
arbitrary angles using only shifts and adds which facilitates the digital design of this
[28]. This is why the CORDIC algorithm was chosen in our thesis.
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4.2.1.3.1. Functional Description: Cordic Theory

CORDIC is a hardware-efficient algorithm that brings an iterative solution for
trigonometric functions and uses only shifts and adds to perform.

All of the trigonometric functions can be computed or derived from functions
using vector rotations. Vector rotation can also be used for polar to rectangular and
rectangular to polar conversions.

The CORDIC algorithm provides an iterative method of performing vector
rotations (see Figure 4.14) by arbitrary angles using only shifts and adds. The rotation is

derived from the general rotation transform as follows:

Vector
Rotation

Figure 4.14 Vector Rotation

U =Xxcos¢g— ysing 42)
V= ycos¢+ xsing .

which rotates a vector in a Cartesian plane by the angle ¢. These can be rearranged so

that:

U = cos ¢.[x — ytan ¢]

v =cos@y + xtan ¢] *3)
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So far, nothing is simplified. However, if the rotation angles are restricted so that
tan Ag; = +27" i =0.....N , the multiplication by the tangent term is reduced to simple

shift operation. Arbitrary angles of rotation are obtainable by performing a series of
successively smaller elementary rotations. If the decision at each iteration, i, is which
direction to rotate rather than whether or not to rotate, then the cos(d;) term becomes a

constant (because cos(di) = cos(-0;)). The iterative rotation can now be expressed as:

Ag =140

712

A:l Il Aﬂl:,zﬁslav .
vipe!r s A¢0’:45 tanAg, =27, i=0....N.
Ug =X,Vg =V

ui+1 :Kl[ul _Vl'.di.z_i:l

—i
Vl'+1 :Kl Vl'"l‘ui.dl'.z ]

> Zin :Zi_di tan_l(Z_i) (4.4)

where

. K. = cos(tan_l 2_i) = 1 :
i 0 1 2 3 i o2

tam' 27 | 45° | 26.56° |14.03¢ |7.12¢ |, _ 44

1

Figure 4.15 Iterative Rotation Solution

Removing the scale constant from the iterative equations yields a shift-add
algorithm for vector rotation. The product of the K;’s can be applied elsewhere in the
system or treated as part of a system processing gain. That product approaches 0.60725
as the number of iterations goes to infinity. Therefore, the rotation algorithm has a gain,

A, of approximately 1.647. The exact gain depends on the number of iterations and the

relation
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Ay =[]V1+27% (4.5)
N

The angle of a composite rotation is uniquely defined by the sequence of the
directions of the elementary rotations. That sequence can be represented by a decision
vector. The set of all possible decision vectors is an angular measurement system based
on binary arctangents. Conversions between this angular system and any other can be
accomplished using a look-up table. A better conversion method uses an additional
adder-subtractor that accumulates the elementary rotation angles at each iteration. The
elementary angles can be expressed in any convenient angular unit. Those angular
values are supplied by a small lookup table (one entry per iteration) or are hardwired,
depending on the implementation. The angle accumulator adds a third difference

equation to the CORDIC algorithm:
zig =z —d;.tan”' (27) (4.6)

Obviously, in cases where the angle is useful in the arctangent base, this extra
element is not needed.

The CORDIC rotator is normally operated in one of two modes. The first, called
rotation rotates the input vector by a specified angle (given as an argument). The second
mode, called vectoring, rotates the input vector to the x-axis while recording the angle

required to make that rotation.
Rotation Mode:

In rotation mode, the angle accumulator is initialized with the desired rotation
angle. The rotation decision at each iteration is made to diminish the magnitude of the
residual angle in the angle accumulator. The decision at each iteration is therefore based
on the sign of the residual angle after each step. Naturally, if the input angle is already
expressed in the binary arctangent base, the angle accumulator may be eliminated. For

rotation mode, the CORDIC equations are:
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ziy =2z —d;.tan”' (27) 4.7)
where
d; =—-1if z; <0, +1otherwise

After N iterations,

MN:KN.L;N:KN[XOcOSZO—y()SinZO]
VN:KN.\’}N:KN[y0COSZO+xOSinZO]
2y =0 4.8)

where

Ky = H1/\/1+2‘2"
N

Vectoring Mode:

In the vectoring mode, the CORDIC rotator rotates the input vector through the
angle necessary to align the result vector with the x-axis. The result of the vectoring
operation is a rotation angle and the scaled magnitude of the original vector (the x
component of the result). The vectoring function works by seeking to minimize the y
component of the residual vector at each rotation. The sign of the residual y component
is used to determine which direction to rotate next. If the angle accumulator is
initialized with zero, it will contain the traversed angle at the end of the iterations. In the

vectoring mode, the CORDIC equations are [28]:

z =z, —d;.tan (277 (4.9)

d; =+1if v; <0,—1otherwise
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After N iterations,

~ [ 2, 2
uy =Kyuy =Kyyxg+g

zy =z +tan " (v /x) (4.10)
where

Ky = Hl/\/l+2_2i
N

The CORDIC rotation and vectoring algorithms as stated are limited to rotation
angles between -7/2 and /2. This limitation is due to the use of 2° for the tangent in the
first iteration. For composite rotation angles larger than m/2, an additional rotation
shown in Equation (4.11) is required. An initial rotation of either m or 0 can be made
avoiding reassignment of the x and y components to the rotator elements. This gives the

correction iteration. There is no growth due to this initial rotation.

x'=dx
r=r _ 4.11)
z=zifd=1,orzr-zif d =-1

d =-1if x <0, + 1 otherwise

This reduction forms a modulo 27 representation of the input angle. In our
implementation we take this initial rotation into consideration. The CORDIC rotator
described is usable to compute several trigonometric functions directly and others
indirectly. Judicious choice of initial values and modes permits direct computation of
sine, cosine, arctangent, vector magnitude and transformations between polar and
Cartesian coordinates. In this thesis since we need to find just the vector magnitude
(amplitude of the sliding correlator output) and the arctangent (phase of the sliding
correlator output) of the complex output vector of sliding correlator block, only these
two direct computations of CORDIC rotator are explained in detail below. Note that
Cartesian to Polar coordinate transformation also consists of finding the magnitude and
phase angle of the input vector provided by the vectoring mode CORDIC rotator.

Arctangent:
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The arctangent, ¢ = Atan(y/x), is directly computed using the vectoring mode

CORDIC rotator if the angle accumulator is initialized with zero. The argument must be
provided as a ratio has the advantage of being able to represent infinity (by setting x =
0). Since the arctangent result is taken from the angle accumulator, the CORDIC rotator

growth does not affect the result.

ZIN =2 +tan_1(y0/x0) (412)

Vector Magnitude:

The vectoring mode CORDIC rotator produces the magnitude of the input vector
as a byproduct of computing the arctangent. After the vectoring mode rotation, the
vector is aligned with the x-axis. The magnitude of the vector is therefore the same as
the x component of the rotated vector. This result is apparent in the result equations for

the vector mode rotator:

uy = Kyiiy = Kyyxd +v8 (4.13)

where Ky = Hl/ V1+272" | The magnitude result is compensated by multiplying with
N

Ky. Note that this product approaches 0.60725 as the number of iterations goes to
infinity.
4.2.1.3.2. Structure Overview

In our ETSI STS synchronizer digital design, the CORDIC algorithm is limited to
rotation angles between -m/2 and m/2. CORDIC outputs must be compensated by

multiplying with K=0.60725 (excluding the angle).
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CORDIC module we designed consists of three blocks seen in Figure 4.16:

1. PRE_CORDIC
2. CORDIC_CORE
3. POST_CORDIC

PRE CORDIC receives real and imaginary parts of correlator data and produces
the initial values of CORDIC_CORE.

CORDIC_CORE evaluates the algorithm for Cartesian to Polar conversion
(namely vectoring mode CORDIC rotator) and outputs the results of desired iteration.
These results are led to POST CORDIC.

Finally, POST_CORDIC compensates the amplitude and corrects the phase and

then gives them out.

Clk  Rst  Niterations InReal In Imag In

PRE_CORDIC

X0 YO Z0

CORDIC_CORE

XOUT Z0UT

POST CORDIC

Amplitude Out Phase Out

Figure 4.16 Top-level block representation of CORDIC
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In our design, CORDIC algorithm works only at [-/2, ©/2] interval, so a glue
logic is required in case there is a data out off this region at the input. PRE_ CORDIC is
designed to represent this data in the region CORDIC algorithm works. Phase
information is represented in [0, 27] interval, and this is evaluated in POST CORDIC
block. Amplitude is compensated in this block as well.

In PRE_CORDIC block (see Figure 4.17), after Real In and Imag In enter the
CORDIC module, the region of coming data is checked. If Real In is less than zero, X0
is fed by the inverse signed of Real In. Imag In feeds YO and ZO0 (initial phase) is set to
0. These operations are performed to allocate the data in the region CORDIC CORE
works.

If Real In is greater than zero, this means that the coming data is already in the
region CORDIC_CORE works. So, Real In and Imag_In are led directly to X0 and YO,
respectively. And, initial phase is set to zero.

XOut output of CORDIC _CORE represents the amplitude of the data coming to
CORDIC module, but differs from exact amplitude by a constant. To compensate this
difference XOut is multiplied by this constant (K=0.60725) and divided by SQRT (2)
for normalization to [0,1] region in POST CORDIC block depicted in Figure 4.18. Also
in this block, a switching operation is applied to phase information in order to provide
that phase is between 0 and 27 at the output. Outputs are registered. These registers are
updated at rising edge of clock, Clk, and reset with asynchronous active low signal, Rst.

In CORDIC CORE, depicted in Figure 4.19, N=10 fold ADD/SUB + SHIFTER
(The shifters are each a fixed shift, which means that they can be implemented in the
wiring) level is put cascaded in order to perform the CORDIC Algorithm. Outputs of
each level are led to a mux controlled by Nlterations signal (see Figure 4.19). So that, it
is available to take the outputs of desired iteration step which is Nlterations (NIterations
< 10). During the implementation of CORDIC block, it has been seen that 10 iteration
for the CORDIC Algorithm is quite satisfactory to get the desired result and more
iteration step requires more logic in terms of preserving accuracy in arithmetic
operations; more iteration is done more hardware is required. Shifter is performing
arithmetic shifting to right. The most important point here is to determine all constants
to be used for the calculation of z;’s. Constants in CORDIC Algorithm can be calculated

as follows:
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If we remember that we use vectoring mode CORDIC rotator, our equations are

Zl'+1 = Zl' _dl.tan_l(z_l)
where

d; =+1if v; <0,—1otherwise

Constants seen in Figure 4.18 to be calculated are determined by

tan”' (27)

where1=0, 1, ...... , N-1 and N = 10 in our exercise.

So, constants needed are calculated and inserted in Table 4.1.

i.e. Constant0 = tan™ (2°) = 45°.

(4.14)

(4.15)

Constant = tan™' (2')
i Constant i Degree Radian
0 Constant 0 45 0.78539
1 Constant 1 26.356° 0.46364
2 Constant 2 14.036° 0.24497
3 Constant 3 7.125° 0.12435
4 Constant 4 3.576° 0.06241
5 Constant 5 1.789° 0.03123
6 Constant 6 0.895° 0.01562
7 Constant 7 0.447 0.05549
8 Constant 8 0.223° 0.00390
9 Constant 9 0.1119° 0.00195

Table 4.1 Constants used in CORDIC CORE block
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Figure 4.17 PRE_CORDIC Structure
Clk XOoUuT LeftHandPlaneFlag ZOoUT Rst
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L @
Compensation
n - ZOut
| - 10
b AMP REG r> PHASE_REG
[
v Amplitude Out v Phase Out

Figure 4.18 POST_CORDIC Structure
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Figure 4.19 CORDIC_CORE Structure
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4.3. Hardware Design of Generic ETSI OFDM STS Synchronizer

4.3.1.Coding of ETSI OFDM STS Synchronizer

ETSI OFDM STS Synchronizer seen in Figure 4.9 is coded using VHDL digital
hardware description language.

Three sub-modules of ETSI OFDM STS Synchronizer are coded separately.
These modules are connected to each other in STSSynchronizer, which is the top-level
module. The SRCorrComplexMultiplier block is located inside the SlidingCorrelator
module.

All modules are coded generically so that ETSI OFDM STS Synchronizer gains
flexibility, which will allow us in the future to use it in a whole synchronizer block of
an OFDM receiver.

VHDL codes of ETSI OFDM STS Synchronizer can be seen in Appendix B and
Appendix C.

4.3.2.Simulation of ETSI OFDM STS Synchronizer

ETSI OFDM STS Synchronizer seen in Figure 4.9 was tested and simulated using
Cadence Affirma NC VHDL Simulation Tool.

For each of the three sub-modules, separate functional simulations were
performed. Simulation sections of each module can be seen in Figure 4.23, Figure 4.24,
Figure 4.25 and Figure 4.26 respectively. After sub-modules were tested and verified
individually, the following step, which is the top-level verification plan was realized for
whole system.

Before giving a start to top-level functional verification, verification environment

was constructed as follows:

1. Forming of input stimuli to be forced to ETSI OFDM STS Synchronizer:

An OFDM input stimulus was dumped to a matlab file from simulink

OFDM model. The dumped OFDM stimuli have the characteristics summarized
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in Table 4.2. As seen in this table, the dumped data is under perfect conditions.

The STS part of this stimuli can be seen in Figure 4.5.

OFDM Stimuli Characteristics

Modulation type 64QAM

Preamble type ETSI BROADCAST
SNR 210.0 dB

CO 0 ppm

CFO 0 Hz

Table 4.2 Input stimuli characteristics

2. Writing matlab scripts to convert the data from real-complex format to

binary format:

As seen in Figure 4.5, the dumped OFDM data consists of real-complex
numbers. This data had to be converted to binary format. Real and imaginary parts
also had to be separated from each other in order to be ready for being forced to
ETSI OFDM STS Synchronizer.

Separation of real and imaginary parts of OFDM stimuli was realized in
matlab environment without using a script. The conversion of real data to binary
format was realized with a simple matlab script so that real and imaginary parts
were stored separately. OFDM input stimuli were written into a file. Since the
only STS part of all OFDM stimuli was enough for testing the ETSI OFDM STS
Synchronizer, the stimuli other than STS and some part of LTS samples was

deleted from file. Input stimuli consist of 250 real and imaginary digital samples.

3. Writing top-level test-bench

In order to test ETSI OFDM STS Synchronizer, a top-level test-bench was

written. It reads the input stimuli from a file, then applies these stimuli to ETSI

OFDM STS Synchronizer and writes the outputs of the system into an output file.
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4. Writing simple matlab script which plots amplitude and phase graphs of
ETSI OFDM STS Synchronizer in matlab environment

In order to transfer outputs of the top-level simulations, a simple script was
written. This script reads the outputs from the output file generated by top-level
test-bench and then plots the amplitude and phase graphs of ETSI OFDM STS

Synchronizer.

4.3.2.1.Top-level Functional Simulation Results of ETSI OFDM STS Synchronizer

At the end of top-level functional simulations, we could get the desired results in
terms of amplitude and phase characteristics in comparison with the graphs seen in
Figure 4.4. Owing to the fact that the generated OFDM stimuli change each time the
OFDM simulink model runs (a random data generator generates all data), it is observed
that the dumped stimuli used for hardware simulations were different from the matlab
model data. Because of this reason, there have been small differences between the
graphs of our results and the matlab model.

As explained in chapter 4.1.1, the goal is to detect the IB short OFDM symbol at
the end of the preamble section based upon the sequence SB. In the ETSI
BROADCAST case (see chapter D.1.5.4.7.1 and Figure 4.4), the correlation amplitude
is the same for both SA and SB based section. However the correlation phase transition
(from high to low or from low to high) allows distinguishing them.

Figure 4.20 represents the results achieved in our hardware implementation when
the number of iterations realized in CORDIC block is equal to 10. When it’s compared
to Figure 4.4, it can be easily seen that the desired results for both amplitude and phase
characteristics could be achieved. The first plateau and then first peak seen in Figure
4.20 a, correspond to SA based section while the second ones are related to SB based
section respectively. As the first plateau seen in Figure 4.20 a continues, the phase also
preserves its value (see Figure 4.20 b). Whenever the first plateau finishes, the phase of
ETSI OFDM STS Synchronizer makes a sharp transition from high-to-low, which is
what we expect (see Figure 4.4). Then, after the first peak seen in Figure 4.20 a, the

second plateau begins; while the phase characteristic again preserves its value. The
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phase jump is realized this time from low-to-high whenever the second plateau finishes.
This is also same as what we expect (see Figure 4.4). These phase transitions allow us
to distinguish SA and SB based sections from each other. So amplitude and phase
characteristics should be processed and analyzed together to detect the short IB symbol
at the end of STS section.

First ~180 output OFDM samples are the outputs for the ETSI BROADCAST
STS input samples while first ~18 output samples are zero since the meaningful
correlation begins after 17 clock cycles later from the beginning of STS sliding
correlation process (see 4.2.1.2). After ~180™ sample, ETSI OFDM STS Synchronizer
begins to output the LTS part related results, which we are not interested in. Note that
the amplitude and phase outputs for LTS part of preamble section are not so meaningful
since the correlation window width of ETSI OFDM STS Synchronizer is only for 16
samples. Anyway the LTS part is not used to detect where the OFDM symbol
boundaries are.

As mentioned before, CORDIC block runs basically a combinational iterative
algorithm to implement the needed vector rotations. As the number of iterations realized
in CORDIC block increases, the achieved results go better in comparison with the
previous iteration. For instance, Figure 4.21 represents the amplitude and phase
characteristics at the output of ETSI OFDM STS Synchronizer for NRIterations = 2,
while Figure 4.22 represents the ones for NRlterations = 5. Since the results achieved
for 10 iterations were quite satisfactory, the number of iterations was limited to 10 in
CORDIC block of our implementation. Note that our design does not support more than
10 iterations and it’s needed to add more logic for this.

Figure 4.23, Figure 4.24, Figure 4.25, Figure 4.26 and Figure 4.27 show the
simulation sections of each block and the top-level of ETSI OFDM STS Synchronizer.
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Figure 4.27 Top-level simulation section of STSSynchronizer

4.3.3.Synthesis of ETSI OFDM STS Synchronizer IP and Gate-level Simulations

4.3.3.1.Synthesis

As mentioned before, ETSI OFDM STS Synchronizer was not manufactured and
resulted as a generic “IP”, which means it’s ready to be synthesized, adapted and used
in an OFDM receiver. But although it was not manufactured, it was necessary to
synthesize it to see whether it exists any problems or not in terms of static timing

analysis and also to see its maximum processing speed and the area which it covers.
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Synthesis was realized with Synopsys Design Analyzer Synthesis tool in CMOS
0.13pum technology using Virtual Silicon Technology (VST) library cells. It was written
a synthesis script, which included all necessary constraints for the synthesis. In order to
get more efficient results in terms of high-level optimization of both timing and area,
“Synopsys DesignWare Foundation Synthetic Library” components that are a collection
of reusable intellectual property blocks were used by adding necessary constraints into
the synthesis script.

As a synthesis methodology, “top-down” synthesis way was used since it provides
a push-button approach and our design is not so large. All constraints were applied to
STSSynchronizer, which is the top-level block.

Since it was run a preliminary synthesis, it was not constrained a wire load model
and used the default one that was assigned by the synthesis tool. Top-level schematic
view of synthesized ETSI OFDM STS Synchronizer IP is shown in Figure 4.28 and
schematic views of each of sub-modules can be seen in Figure 4.29, Figure 4.30, Figure

4.31, Figure 4.32, Figure 4.33 respectively.
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Figure 4.28 Top-level schematic view of synthesized ETSI OFDM STS Synchronizer
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Figure 4.29 Schematic view of synthesized SlidingShiftRegister block
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Figure 4.30 Schematic view of synthesized SRCorrComplexMultiplier block
instantiated in SlidingCorrelator block
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Figure 4.31 Schematic view of a DesignWare multiplier component instantiated in
SRCorrComplexMultiplier block
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Figure 4.32 Schematic view of synthesized SlidingCorrelator block
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Figure 4.33 Schematic view of synthesized CORDIC block

&5



Since the ETSI Hiperlan/2 PHY layer standards requires a 20 MHz sampling
frequency at receiver (please see Table D.6), synthesis was run first setting the system
operation frequency to 20 MHz. It was seen that the system had not any problem at this
operation frequency in terms of critical timing issues and we did not get any violations.
Area results achieved for this synthesis can be seen in Table 4.3. Then, as the second
step, it was aimed to catch the maximum operation frequency of this IP. After several
synthesis trials with “low effort” constraint, at the end of static timing analysis, it was
seen that the maximum operation speed for our IP was 50 MHz and CORDIC block was
at the critical path since its algorithm was implemented using mostly combinational
logic. After this clock frequency, system begins to produce setup time violations. This
result is exactly same as what we expect. To reach speeder frequencies than 50 MHz,
it’s necessary to implement a pipelined architecture inside the CORDIC block, which
increases both latency and throughput of the system. This is not aimed to reach the
possible maximum speeds in our implementation since we accept ETSI Hiperlan/2
OFDM standard and parameters. But IP is ready to run up to 50 MHz speed, maybe
more after a serious synthesis trials with correct constraints. Synthesis results for 50
MHz in terms of area are in Table 4.4. Power estimation reports given by Synopsys
Design Analyzer for 20MHz and 50MHz-operating frequencies are in Table 4.5 and in
Table 4.6 respectively. Equation to calculate the approximate power consumption in the

CMOS 0.13um technology-VST77000 databook is given by

2
Pdiss = (Erise + Efall + (Cfanout V ))'stitching + Psmtic (416)

where:
e P 1s the power dissipation of the gate (in pW).
o FE,. 1s the energy for the rising transition (in pJ).
e Ly is the energy for the falling transition (in pJ).
®  Cpunow 1s the output load capacitance (in pF); the number of loads multiplied by
the value for a standard load.
e Vis the supply voltage.
®  Fliching 1s the switching frequency of the transition (in mHz).

o Py 1s the static power dissipation of the library cell (in pW).
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Block SlidingShiftRegister | SlidingCorrelator | CORDIC STSSynchronizer
(Total)

Combinational p? 177.984009 14020.992188 23499.062500 | 37706.683594

Area Gates | 34 2707 4533 7273

Noncombinational p? 12690.431641 27527.037109 933.119995 41150.585938

Area Gates | 2173 5310 180 7938

Total Cell Area T 12868.416016 41548.031250 24432.181641 | 78857.265625
Gates | 2207 8017 4713 15211

Number of Flip-Flops 272 590 20 882

Table 4.3 Area results of synthesis of ETSI OFDM STS Synchronizer for 20MHz
operation frequency

Block SlidingShiftRegister | SlidingCorrelator | CORDIC STSSynchronizer
(Total)

Combinational uz 177.984009 14033.087891 53122.183594 | 67341.890625

e Gates | 34 2707 10247 12990

Noncombinational T 12690.431641 27359.132812 933.119995 41162.683594

SATCE] Gates | 2173 5278 180 7940

Total Cell Area uz 12868.416016 41572.218750 54055.304688 | 108504.578125
Gates | 2207 7985 10427 20930

Number of Flip-Flops 272 590 20 882

Table 4.4 Area results of synthesis of ETSI OFDM STS Synchronizer for SOMHz
operation frequency
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Operating Conditions

we_1.08V_125C

Global Operating Voltage (V)

1.08

Library

VST77000 we_1.08V_125C

Power Consumption Estimation

Block SlidingShiftRegister SlidingCorrelator CORDIC STSSynchronizer
(Total)

Cell Internal Power %Y 99.1853 209.6462 10.8812 319.7526

Net %Y 6.9607 20.1876 2.9840 73.8889

Switching Power

Total %Y 106.1460 229.8338 13.8652 393.6414

Dynamic

Power = CIP + NSP

Cell Leakage Power | uW 14.0214 61.3368 52.4857 127.8588

(Static Power)

Table 4.5 Power consumption estimation for 20MHz operation frequency

Operating Conditions

we_1.08V_125C

Global Operating Voltage (V)

1.08

Library

VST77000_we_1.08V_125C

Power Consumption Estimation

Block SlidingShiftRegister SlidingCorrelator CORDIC STSSynchronizer
(Total)

Cell Internal Power pw 248.4968 523.9656 28.2263 800.7877

Net %Y 17.4481 50.3458 7.3146 184.5302

Switching Power

Total %Y 265.9449 5743114 35.5408 985.3179

Dynamic

Power = CIP + NSP

Cell Leakage Power | pW 14.0473 60.8577 109.4740 184.3936

(Static Power)

Table 4.6 Power consumption estimation for SOMHz operation frequency
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4.3.3.2.Gate-level Simulations

After synthesis of the IP, the net-list of the synthesized design was saved in
verilog format; then it was generated the sdf (standard delay file) file needed for the
gate-level simulations. As mentioned before, our design was resulted as an IP and no
back-end activities were done such place-and-route process. This is why we did not
have a real sdf file, which is normally produced after the place-and-route operation. So
gate-level simulations were realized using the sdf file generated by Synopsys Design
Analyzer, which included the estimated timings for each of library elements.

Gate-level simulation results seen in Figure 4.35 a and Figure 4.35 b are same as the
ones we got during functional simulations (see Figure 4.20). A section of gate-level

simulations of STSSynchronizer is shown in Figure 4.34.
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Timed = 12, 525(0) ns Cursorl = 10, 877, 259786 ns
Sim End = 12,525 ns :
url = -10, 877, 259786 ns
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Figure 4.34 Gate-level simulation section of STSSynchronizer
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Figure 4.35 ETSI OFDM STS Synchronizer output graphs (gate-level) for ETSI BROADCAST
Preamble for NRIterations=10 in CORDIC block: (a) Amplitude (b) Phase
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S. CONCLUSIONS

This thesis has presented the design, digital implementation, functional and gate-
level verification and synthesis of ETSI OFDM STS Synchronizer IP in digital CMOS
0.13um technology using VST libraries. Physical realization of the Symbol
Synchronizer has not been performed, but it is ready to be integrated as a part of whole
synchronizer, which implements all needed synchronization tasks in an ETSI OFDM
receiver.

The architecture of the ETSI OFDM STS Synchronizer is based on sliding
correlation methodology. A serial approach is reflected to whole design instead of
parallel, which decreases the total area reducing the number of arithmetic functional
blocks used in the design like multipliers.

The design consists of three main blocks: Sliding Shift Register block, which
provides the Sliding Correlator block with the correct data to be correlated; Sliding
Correlator block, which realizes the main functionality of the IP, sliding correlation of
OFDM samples and includes the Complex Multiplier block; CORDIC block, which
provides the amplitude and phase values of correlated OFDM samples.

At the end of functional and gate-level verifications of symbol synchronizer we
designed, we could achieve very satisfactory results: Amplitude and phase
characteristics of the slightly correlated received samples were very similar to simulink
matlab model’s ones. At the output of designed synchronizer, amplitude and phase
characteristics of the correlated received samples allowed us to detect the OFDM
symbol. Amplitude and phase transitions of the correlated received STS symbols were
the same as what we expected. As a result, ETSI OFDM symbols can be easily
detectable by the hardware we proposed and designed in this thesis.

Although the current standard requires 20 MHz operation frequency, ETSI OFDM
STS Synchronizer IP is capable to work up to 50 MHz. This means that it can be easily
adapted to the future designs up to this speed. The CORDIC block is at the critical path
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in terms of design timing since it has a huge combinational logic to implement the
iterative CORDIC algorithm. CORDIC block should be redesigned with a pipelined
architecture in order to increase the operation frequency higher than 50 MHz.

To summarize, the proposed and digitally designed ETSI OFDM STS Symbol
Synchronizer IP is capable to correlate received ETSI OFDM symbols correctly and to
find out where ETSI OFDM symbol boundaries are. The achieved results are

satisfactory and can be used as a starting point for possible future works.

Based on the finding of this thesis, for future works, the following issues may be

proposed:

e In our work, we made our design considering a perfect media and we did
not consider impairments caused by CFO (Carrier Frequency Offset), CO
(Clock Offset), AWGN, phase errors and channel effects. First, our design
can be tested under these effects, then taking these effects into account, it
can be developed and designed a whole ETSI OFDM Synchronizer that
deals with all of these impairments, including the ETSI OFDM STS
Symbol Synchronizer IP as well.

e A complete digital OFDM receiver can be designed, implemented and

produced including the whole synchronizer block.
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APPENDIX A: SCHEMATICS OF WHOLE IP
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Figure A.1 Top-level schematic view of synthesized ETSI OFDM STS Synchronizer
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Figure A.2 Schematic view of synthesized SlidingShiftRegister block
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Figure A.3 Schematic view of synthesized SRCorrComplexMultiplier block instantiated
in SlidingCorrelator block
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Figure A.4 Schematic view of a DesignWare multiplier component instantiated in
SRCorrComplexMultiplier block
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Figure A.5 Schematic view of synthesized SlidingCorrelator block
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Figure A.6 Schematic view of synthesized CORDIC block
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1.  STSSynchronizerConstants.Package.vhd

library IEEE;

APPENDIX B: FUNCTIONAL VHDL CODES

use IEEE.std logic 1164.all;
use IEEE.std logic _arith.all;

package STSSynchronizerConstants is

--SlidingShiftRegConstants

constant
constant
constant

SR _SHIFTREG LENGTH
SAMPLE_WIDTH
NR_BITS

--SRCorrelatorConstants

constant
constant
constant
constant
constant
constant

m

n

CORRELATION LENGTH
SAMPLE_IN WIDTH
SAMPLE_INTERN WIDTH
SAMPLE_OUT WIDTH

—-—-CordicRPConstants

constant
constant
constant
constant

constant
constant
constant

D _CORDIC_SIGNED wl

D CORDIC UNSIGNED wl
D CORDIC_INTERN wl

D CORDIC_ INTERN iwl

WIDTH
WIDTH INTERN
IWIDTH INTERN

end STSSynchronizerConstants;
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integer
integer
integer

integer
integer
integer
integer
integer
integer

integer
integer
integer
integer

integer
integer
integer

87
8;
16;
m; --8
m+n+7; --23
10;

10;
NR_BITS
NR BITS
3;

+ +
o N

D CORDIC_SIGNED wl;
D CORDIC_ INTERN wl;
D CORDIC_ INTERN iwl;



2. SRShiftRegComponent.Package.vhd

library IEEE;

use IEEE.std logic 1164.all;
use IEEE.std logic arith.all;

library 1lib sts;

use lib sts.STSSynchronizerConstants.all;

package SRShiftRegComponent is

component SRShiftReg

port (

Clk20M

Rst N
SampleRe In
SampleIm In
SamplelRe Out
SamplelIm Out
Sample2Re Out
Sample2Im Out

)7

end component;

in
in
in
in
out
out
out
out

end SRShiftRegComponent;

std logic;

std logic;

std logic vector (SAMPLE WIDTH-1 downto 0);
std logic vector (SAMPLE WIDTH-1 downto 0);
std logic vector (SAMPLE WIDTH-1 downto O
std logic vector (SAMPLE WIDTH-1 downto 0
std logic vector (SAMPLE WIDTH-1 downto O
std logic vector (SAMPLE WIDTH-1 downto O

3.  SRShiftReg.Entity.vhd

library IEEE;

use IEEE.std logic 1164.all;
use IEEE.std logic arith.all;

library 1lib sts;

use lib sts.STSSynchronizerConstants.all;

entity SRShiftReg is

port (
Clk20M
Rst N
SampleRe In
SampleIm In
SamplelRe Out
SamplelIm Out
Sample2Re Out
Sample2Im Out

end SRShiftReg;

in
in
in
in
out
out
out
out

std logic;

std logic;

std logic vector (SAMPLE WIDTH-1 downto 0);
std logic vector (SAMPLE WIDTH-1 downto 0);
std logic vector (SAMPLE WIDTH-1 downto O
std logic vector (SAMPLE WIDTH-1 downto O
std logic vector (SAMPLE WIDTH-1 downto 0
std logic vector (SAMPLE WIDTH-1 downto O
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4.  SRShiftReg.rtl.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic arith.all;

library lib_ sts;
use lib sts.STSSynchronizerConstants.all;

architecture rtl of SRShiftReg is

type t SamplesShiftReg is array(SR_SHIFTREG LENGTH-1 downto 0) of
std logic vector (SAMPLE WIDTH-1 downto 0);

signal SampleRe r : t SamplesShiftReg;
signal SampleIm r : t SamplesShiftReg;
begin

p_SRShiftRegister: process(Clk20M, Rst N, SampleRe In, SampleIm In,
SampleRe r, SampleIm r)
begin
if (Rst N = '0'") then
SampleRe r <= (others=> (others => '0'"));
SampleIm r <= (others=> (others => '0'));
elsif (Clk20M'event and Clk20M = '1l') then
SampleRe r <= SampleRe r (SR _SHIFTREG LENGTH-2 downto 0) &
SampleRe In;
SampleIm r <= SampleIm r (SR _SHIFTREG LENGTH-2 downto 0) &
SampleIm In;
end if ;
end process p SRShiftRegister;

SamplelRe Out <= SampleRe r (SR _SHIFTREG LENGTH-1);
SamplelIm Out <= SamplelIm r (SR_SHIFTREG LENGTH-1);
Sample2Re Out <= SampleRe r (0);
Sample2Im Out <= SamplelIm r(0);

end rtl;
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5.  CmplxMultiplierComponent.Package.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic arith.all;

library lib_ sts;
use lib sts.STSSynchronizerConstants.all;

package CmplxMultiplierComponent is

component CmplxMultiplier

port (
InputXI : in std logic _vector (m-1 downto 0);
InputXQ : in std logic vector (m-1 downto 0);
InputYI : in std logic _vector (n-1 downto 0);
Input¥YQ : in std logic vector(n-1 downto 0);
OutputI : out std logic_ vector (m+n downto 0);
OutputQ : out std logic_vector (m+n downto 0)

)7

end component;

end CmplxMultiplierComponent;

6.  CmplxMultiplier.Entity.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic_arith.all;

library lib_ sts;
use lib sts.STSSynchronizerConstants.all;

entity CmplxMultiplier is

port (

InputXI : in std logic vector (m-1 downto 0);

InputXQ : in std logic vector (m-1 downto 0);

InputYI : in std logic vector(n-1 downto 0);

Input¥YQ : in std logic vector(n-1 downto 0);

OutputI : out std logic vector (m+n downto 0);
OutputQ : out std logic vector (m+tn downto 0)

)
end CmplxMultiplier;
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7.  CmplxMultiplier.rtl.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic arith.all;

library lib_ sts;

use lib sts.STSSynchronizerConstants.all;

-- Two complex numbers are multiplied: InputX = A+3jB, InputY = C+3jD
-- Output = P + jQ where P = A*C - B*D, Q = A*D + B*C.
architecture rtl of CmplxMultiplier is

signal AD,BC,AC,BD : std logic_vector (m+tn-1 downto 0);
-— AD=A*D, BC=B*C, AC=A*C, BD=B*D

begin
AD <= CONV_STD LOGIC VECTOR (signed(InputXI) * signed(Input¥Q),m+n
BC <= CONV_STD LOGIC VECTOR (signed(InputXQ) * signed(InputYI),m+n
AC <= CONV_STD LOGIC VECTOR (signed(InputXI) * signed(Input¥YI),m+n
BD <= CONV_STD LOGIC VECTOR (signed(InputXQ) * signed(InputYQ),m+n

OutputI <= CONV_STD LOGIC VECTOR((signed (AC (m+n-1) & AC) -
signed (BD (m+n-1) & BD)) ,m+n+1);
OutputQ <= CONV_STD LOGIC VECTOR((signed (AD(m+n-1) & AD) +

signed (BC (m+n-1) & BC)) ,m+n+1);

end rtl;
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8.  SRCorrelatorComponent.Package.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic arith.all;

library lib_ sts;
use lib sts.STSSynchronizerConstants.all;

package SRCorrelatorComponent is

component SRCorrelator

port (

Clk20M : in std _logic;

Rst N : in std logic;

SamplelRe In : in std logic vector (SAMPLE IN WIDTH-1 downto 0);
SamplelIm In : in std logic vector (SAMPLE IN WIDTH-1 downto 0);
Sample2Re In : in std logic vector (SAMPLE IN WIDTH-1 downto 0);
Sample2Im In : in std logic vector (SAMPLE IN WIDTH-1 downto 0);
SRRe Out out std logic vector (SAMPLE OUT WIDTH-1 downto O0);
SRIm Out out std logic vector (SAMPLE OUT WIDTH-1 downto 0)

)7

end component;

end SRCorrelatorComponent;

9.  SRCorrelator.Entity.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic arith.all;

library lib_ sts;
use lib sts.STSSynchronizerConstants.all;

entity SRCorrelator is

port (

Clk20M : in std logic;

Rst N : in std logic;

SamplelRe In : in std logic vector (SAMPLE IN WIDTH-1 downto 0);
SamplelIm In : in std logic vector (SAMPLE IN WIDTH-1 downto 0);
Sample2Re In : in std logic vector (SAMPLE IN WIDTH-1 downto 0);
Sample2Im In : in std logic vector (SAMPLE IN WIDTH-1 downto 0);
SRRe Out out std logic vector (SAMPLE OUT WIDTH-1 downto 0);
SRIm Out out std logic vector (SAMPLE OUT WIDTH-1 downto 0));

end SRCorrelator;
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10. SRCorrelator.rtl.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic arith.all;

library lib_ sts;
use lib sts.STSSynchronizerConstants.all;
use lib sts.CmplxMultiplierComponent.all;

architecture rtl of SRCorrelator is

type t CorrRegRe is array (CORRELATION LENGTH-1 downto 0) of
std logic vector (m+n downto O0);

type t CorrRegIm is array (CORRELATION LENGTH-1 downto 0) of
std logic vector (m+n downto 0);

signal CorrRegRe r : t CorrRegRe;
signal CorrRegIm r : t CorrReglIm;
signal ProductRe Intern : std logic_vector (m+n downto 0);
signal ProductIm Intern : std logic_vector (m+n downto 0);
signal ToBeSubtractedRegRe Intern : std logic vector (m+n downto 0);
signal ToBeSubtractedRegIm Intern : std logic vector (m+n downto 0);
signal SubtractRe Intermediate : std logic vector (mtn+l downto 0);
signal SubtractRe Intermediate Signed : signed(m+n+l downto 0);
signal SubtractIm Intermediate : std logic_vector (m+n+l downto 0);
signal SubtractIm Intermediate Signed : signed(m+n+l downto 0);
signal I MSB :

std logic vector (SAMPLE INTERN WIDTH- (m+n+2)-2 downto 0); -- 4 bits
signal Q MSB :

std logic vector (SAMPLE INTERN WIDTH- (m+n+2)-2 downto 0); -- 4 bits

signal Samplel Inverted

std logic vector (SAMPLE IN WIDTH-1 downto 0);
signal Samplel Inverted Slgned : s1gned(SAMPLE _IN WIDTH-1 downto 0);
signal SubtractRe Intern

std logic - vector(SAMPLE INTERN WIDTH-1 downto 0);
signal SubtractIm Intern

std logic - vector(SAMPLE INTERN WIDTH-1 downto 0);
signal SumRe Intern

std logic vector(SAMPLE INTERN WIDTH-1 downto 0);
signal SumRe Intern Signed : 31gned(SAMPLE _INTERN WIDTH-1 downto 0);
signal SumIm Intern

std logic - vector(SAMPLE INTERN WIDTH-1 downto 0);
signal SumIm Intern Signed : signed(SAMPLE INTERN WIDTH-1 downto 0);
signal SRRe r : std logic vector (SAMPLE INTERN WIDTH-1 downto 0);
signal SRIm r : std logic vector (SAMPLE INTERN WIDTH-1 downto 0);

begin

I ComplexMultiplier : CmplxMultiplier port map (

InputXI => Sample2Re In,
InputXQ => Sample2Im In,
InputYI => SamplelRe In,
Input¥YQ => Samplel Inverted,
OutputI => ProductRe Intern,
OutputQ => ProductIm Intern);
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Samplel Inverted Signed <= - signed(SamplelIm In);
Samplel Inverted <=
CONV_STD LOGIC VECTOR (Samplel Inverted Signed, SAMPLE IN WIDTH) ;

ToBeSubtractedRegRe Intern <= CorrRegRe r (CORRELATION LENGTH-1);
-—CORRELATION LENGTH-1=15
ToBeSubtractedRegIm Intern <= CorrRegIm r (CORRELATION LENGTH-1) ;
-—CORRELATION LENGTH-1=15

SubtractRe Intermediate Signed <= signed(ProductRe Intern (m+n) &

ProductRe Intern) - signed(ToBeSubtractedRegRe Intern (m+n) &
ToBeSubtractedRegRe Intern);
-—-SubtractRe Intermediate is 18-bits-wide ((m+n+l) = (m+n) + (m+n))

SubtractRe Intermediate <=

CONV_STD LOGIC VECTOR (SubtractRe Intermediate Signed, (m+n+2));
I MSB <= (others => SubtractRe Intermediate (m+n+l));

--I MSB is 4-bits-wide

SubtractRe Intern <= I MSB & SubtractRe Intermediate & '0';
--SubtractRe Intern is 23-bits-wide

SubtractIm Intermediate Signed <= signed(ProductIm Intern(m+n) &

ProductIm Intern) - signed(ToBeSubtractedRegIm Intern (m+n) &
ToBeSubtractedRegIm Intern) ;
--SubtractIm Intermediate is 18-bits-wide ((m+n+l) = (m+n) + (m+n))

SubtractIm Intermediate <=

CONV_STD LOGIC VECTOR (SubtractIm Intermediate Signed, (m+n+2));
Q MSB <= (others => SubtractIm Intermediate (m+n+1l));

--Q MSB is 4-bits-wide

SubtractIm Intern <= Q MSB & SubtractIm Intermediate & '0';
--SubtractIm Intern is 23-bits-wide

SumRe Intern Signed <= signed(SRRe r) + signed(SubtractRe Intern);
SumRe Intern <= CONV_STD_LOGIC_VECTOR(SumRe_Intern_Signed, (m+n+7));

SumIm Intern Signed <= signed(SRIm_r) + signed(SubtractIm Intern);

SumIm Intern <= CONV_STD LOGIC VECTOR(SumIm Intern Signed, (m+n+7));

SRRe_Out <= SRRe_ r (20 downto 11);
SRIm Out <= SRIm r (20 downto 11);

p_CorrelatorRegister: process (Clk20M, Rst N, CorrRegRe r, CorrRegIm r,
ProductRe Intern, ProductIm Intern)

begin
-- Input Samples are being shifted.
if (Rst N = '0') then

CorrRegRe r <= (others => (others => '0'));
CorrRegIm r <= (others => (others => '0'));
elsif (Clk20M'event and Clk20M = '1'") then
CorrRegRe r <= CorrRegRe r (CORRELATION LENGTH-2 downto 0) &
ProductRe Intern ;
CorrRegIm r <= CorrRegIm r (CORRELATION LENGTH-2 downto 0) &
ProductIm Intern ;
end if;
end process p CorrelatorRegister;
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p_Accumulator: process (Clk20M, Rst N)
begin
if (Rst N = '0'") then
SRRe r <= (others => '0");
SRIm r <= (others => '0");
elsif (Clk20M'event and Clk20M = 'l1') then
SRRe r <= SumRe Intern;
SRIm r <= SumIm Intern;
end if ; --Clk
end process p_ Accumulator;

end rtl;

11. CordicRPComponent.Package.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic arith.all;

library 1lib sts;
use lib sts.STSSynchronizerConstants.all;

package CordicRPComponent is

component CordicRP

port (

Clk20M : in std logic;

Rst N : in std logic;

NRIterations In : in std logic vector (3 downto 0);

RReal In : in std logic vector (WIDTH-1 downto 0);
RImag In : in std logic vector (WIDTH-1 downto 0);
RAmp Out : out std logic vector (WIDTH-1 downto O0);
RPh Out : out std logic vector (WIDTH-1 downto 0)

)7

end component;

end CordicRPComponent;
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12. CordicRP.Entity.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic arith.all;

library lib_ sts;
use lib sts.STSSynchronizerConstants.all;

entity CordicRP is

port (
Clk20M : in std logic;
Rst N : in std logic;
NRIterations In : in std logic vector (3 downto 0);
RReal In : in std logic_vector (WIDTH-1 downto 0);
RImag In : in std logic_vector (WIDTH-1 downto 0);
RAmp Out : out std logic vector (WIDTH-1 downto 0);
RPh Out : out std logic vector (WIDTH-1 downto O0)

)7

end CordicRP;

13. CordicRP.rtl.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic arith.all;

library lib_ sts;
use lib sts.STSSynchronizerConstants.all;

architecture rtl of CordicRP is

signal RReal Ext : std logic vector (WIDTH INTERN-1 downto 0);
signal RImag Ext : std logic vector (WIDTH INTERN-1 downto 0);

signal X 0 ,Y¥ 0, Z 0, Xshft 0, Yshft O : signed (WIDTH INTERN-1
downto 0);
signal X 1 ,Y 1, Z 1, Xshft 1, ¥Yshft 1 : signed (WIDTH INTERN-1
downto 0);
signal X 2 ,Y 2, Z 2, Xshft 2, Yshft 2 : signed (WIDTH INTERN-1
downto 0);
signal X 3 ,Y 3, Z 3, Xshft 3, Yshft 3 : signed (WIDTH INTERN-1
downto 0);
signal X 4 ,Y 4, Z 4, Xshft 4, Yshft 4 : signed (WIDTH INTERN-1
downto 0);
signal X 5 ,Y¥ 5, Z 5, Xshft 5, ¥Yshft 5 : signed (WIDTH INTERN-1
downto 0);
signal X 6 ,Y 6, Z 6, Xshft 6, Yshft 6 : signed (WIDTH INTERN-1
downto 0);
signal X 7 ,Y 7, Z_ 7, Xshft 7, Yshft 7 : signed (WIDTH INTERN-1
downto 0);
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signal X 8 ,Y 8, Z 8, Xshft 8, Yshft 8 signed (WIDTH INTERN-1
downto 0);
signal X 9 ,Y 9, Z 9, Xshft 9, Yshft 9 signed (WIDTH INTERN-1
downto 0);
signal X 10 ,Y 10, z 10 signed (WIDTH INTERN-1
downto 0);

signal LeftHalfPlaneFlag
signal RRealSigned

signal RImagSigned

signal NRIterationsUnsigned
signal NRIterationsint

std logic;

signed (WIDTH INTERN-1 downto O0);
signed (WIDTH INTERN-1 downto O0);
unsigned (3 downto O0);

integer range 0 to 15;

signal XO signed (WIDTH INTERN-1 downto 0);
signal YO signed (WIDTH INTERN-1 downto 0);
signal ZzO0 signed (WIDTH INTERN-1 downto 0);
signal Xout signed (WIDTH INTERN-1 downto 0);

signal Zout

signal compen

downto 0);

signal RPh nxt

signal RPh nxt left
signal RPhUnsigned
constant ZERO
"0000000000000000";
constant ONE
"0010000000000000";
constant TWO
"0100000000000000";
constant FOUR
"1000000000000000";
constant COMPENSATION
"0001001101101110"

-- 0.607253321089875 --0.607177734375

constant COMPENSATION SQRT2 unsigned (WIDTH INTERN-1+1 downto 0) :=

signed (WIDTH INTERN-1 downto 0);
std logic vector (2*WIDTH INTERN-1+1

signed (WIDTH INTERN-1 downto 0);
unsigned (WIDTH-1 downto O0);

unsigned (WIDTH INTERN-1 downto 0);
signed (WIDTH INTERN-1 downto O0)

I~

signed (WIDTH INTERN-1 downto O0)

signed (WIDTH INTERN-1 downto 0) :=
signed (WIDTH INTERN-1 downto 0) :=

signed (WIDTH INTERN-1 downto 0) :=

"11011011110100101" ; -- 0.607253321089875 / SQRT (2)

--constant StepPhasel integer := 4096; -- "000100000000000Q"
--constant StepPhasel integer := 2418; -- "0000100101110010"
--constant StepPhase?2 integer := 1277; -- "0000010011111101"
--constant StepPhase3 integer := 648; -- "0000001010001000"
--constant StepPhase4 integer := 325; -- "0000000101000101"
--constant StepPhaseb integer := 162; -- "0000000010100010"
--constant StepPhase6 integer := 81; -- "0000000001010001"
--constant StepPhase? integer := 40; -- "0000000000101000"
--constant StepPhase8 integer := 20; -- "0000000000010100"
--constant StepPhase9 integer := 10; -- "0000000000001010"
constant StepPhasel signed (WIDTH INTERN-1 downto 0) :=
"0001000000000000";

constant StepPhasel signed (WIDTH INTERN-1 downto 0) :=
"0000100101110010";

constant StepPhase? signed (WIDTH INTERN-1 downto 0) :=
"0000010011111101";

constant StepPhase3 signed (WIDTH INTERN-1 downto 0) :=
"0000001010001000";

constant StepPhased signed (WIDTH INTERN-1 downto 0) :=
"0000000101000101";

constant StepPhaseb signed (WIDTH INTERN-1 downto 0) :=
"0000000010100010";

constant StepPhase6 signed (WIDTH INTERN-1 downto 0) :=

"0000000001010001";
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constant StepPhase?

"0000000000101000™;
constant StepPhaseS8
"0000000000010100";
constant StepPhase9
"0000000000001010™;
procedure CordicCore ( X pre
Y pre
Z pre
X shift
Y shift
signal X
O)I

signal Y: out signed (WIDTH INTERN-1 downto 0);

in
in
in
in
in

out signed (WIDTH INTERN-1 downto

signed (WIDTH INTERN-1 downto 0) :=
signed (WIDTH INTERN-1 downto 0) :=

signed (WIDTH INTERN-1 downto 0) :=

signed (WIDTH INTERN-1 downto
signed (WIDTH INTERN-1 downto
signed (WIDTH INTERN-1 downto
signed (WIDTH INTERN-1 downto
signed (WIDTH INTERN-1 downto

O O O oo

Ne Ne Ne N

~e

signal Z: out signed(WIDTH INTERN-1 downto O0);

in signed(WIDTH INTERN-1 downto 0)

if Y pre < 0 then

X pre-Y shift;

Y pre+X shift;

Z pre-StepPhase;

StepPhase
) is
begin
X <=
Y <=
7 <=
else
X <=
Y <=
7 <=
end if;
end CordicCore;
procedure ShiftRight ( X : in
Y : in
iteration:

downto 0);

= X pre+Y shift;

Y pre-X shift;

= 7Z pre+StepPhase;

signed (WIDTH INTERN-1 downto 0);

signed (WIDTH INTERN-1 downto 0);
in integer;

signal X shift: out signed(WIDTH INTERN-1

signal Y shift: out signed(WIDTH INTERN-1

downto 0)
) is

variable X int : signed(WIDTH INTERN-1 downto 0);
variable Y int : signed(WIDTH INTERN-1 downto 0);

begin

X int := X;

for I in 1 to iteration loop
X int (WIDTH INTERN-I) := X (WIDTH INTERN-1);

end loop;

X int (WIDTH INTERN-iteration-1 downto 0) :=
X (WIDTH INTERN-1 downto iteration);
X shift <= X int;

Y int :=Y;

for I in 1 to iteration loop
Y_int(WIDTH_INTERN—I) t= Y(WIDTH_INTERN—l);

end loop;

Y int (WIDTH INTERN-iteration-1 downto 0) :=
Y (WIDTH INTERN-1 downto iteration);
Y shift <= Y int;

end ShiftRight;
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begin

RReal Ext <= RReal In(WIDTH-1) & RReal In(WIDTH-1) & RReal In &
"0000"; a a a
RImag Ext <= RImag In(WIDTH-1) & RImag In(WIDTH-1) & RImag In &
"00o00";

RRealSigned <= signed(RReal Ext);
RImagSigned <= signed(RImag Ext);

NRIterationsUnsigned <= unsigned (NRIterations In);
NRIterationsint <= conv_integer (NRIterationsUnsigned) ;

PreCordicR2PProcess PROC:process (RRealSigned, RImagSigned)

begin
if RRealSigned < 0 then
X0 <= ZERO - RRealSigned;
LeftHalfPlaneFlag <= '1';
else
X0 <= RRealSigned;
LeftHalfPlaneFlag <= '0';
end 1if;
Y0 <= RImagSigned;
720 <= ZERO;
end process;

X 0 <= X0;
Y 0 <= YO0;
Z 0 <= z0;

Xshft 0 <= X
Yshft 0 <=Y

CordicCore ( X 0, Y 0, Z 0, Xshft 0, Yshft 0, X 1, Y 1, z 1,
StepPhasel ) ;
ShiftRight (X 1, Y 1, 1, Xshft 1, ¥Yshft 1 );

CordicCore ( X 1, Y 1, Z 1, Xshft 1, Yshft 1, X 2, Y 2, 2 2,
StepPhasel );
ShiftRight (X 2, Y 2, 2, Xshft 2, Yshft 2 );

CordicCore ( X 2, Y 2, 7Z 2, Xshft 2, Yshft 2, X 3, Y 3, Z2 3,
StepPhase2 );
ShiftRight (X 3, Y 3, 3, Xshft 3, Yshft 3 );

CordicCore ( X 3, Y 3, Z 3, Xshft 3, Yshft 3, X 4, Y 4, 7 4,

StepPhase3 );
ShiftRight (X 4, Y 4, 4, Xshft 4, Yshft 4 );

CordicCore ( X 4, Y 4, 7Z 4, Xshft 4, Yshft 4, X 5, Y 5, Z 5,

StepPhased );
SshiftRight (X 5, Y 5, 5, Xshft 5, Yshft 5 );

CordicCore ( X 5, Y 5, Z 5, Xshft 5, Yshft 5, X 6, Y 6, Z 6,

StepPhaseb );
ShiftRight (X 6, Y 6, 6, Xshft 6, Yshft 6 );
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CordicCore ( X 6, Y 6, Z 6, Xshft 6, ¥Yshft 6, X 7, Y 7, 2 7,

StepPhaseb );
ShiftRight (X 7, Y 7, 7, Xshft 7, ¥Yshft 7 );

CordicCore ( X 7, Y 7, Z2 7, Xshft 7, ¥Yshft 7, X 8, Y 8, Z 8,
StepPhase? );
ShiftRight (X 8, Y 8, 8, Xshft 8, Yshft 8 );

CordicCore ( X 8, Y 8, Z 8, Xshft 8, ¥Yshft 8, X 9, Y 9, Zz 9,
StepPhase8 );
ShiftRight (X 9, Y 9, 9, Xshft 9, ¥Yshft 9 );

CordicCore ( X 9, Y 9, Z 9, Xshft 9, ¥Yshft 9, X 10, Y 10, z 10,

StepPhase9 );

SelectIteration PROC:
process (RRealSigned, RImagSigned,NRIterationsint, X
2,X 3,72 3,Xx 4,2 4,X 5,2 5,X 6,2 6,X 7,2 7,X 8,7 8

begin

if RRealSigned = 0 and RImagSigned = 0 then
Xout <= ZERO;
Zzout <= ZERO;
else
case NRIterationsint is

when 0 =>
Xout <
zZout <

when 1 =>
Xout <
zZout <

when 2 =>
Xout <
zZout
when 3 =>
Xout
Zout <

when 4 =>
Xout <
Zout
when 5 =>
Xout
Zout <

when 6 =>
Xout <
zZout <

when 7 =>
Xout <
Zout <

when 8 =>
Xout <
Zout <

when 9 =>
Xout <
zout <

when 10 =>
Xout <= X 10;
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Zout <= 7 10;
when others =>
Xout <= ZERO;
Zzout <= ZERO;
end case;
end 1if;
end process;

PostCordicCom PROC: process (Zout, LeftHalfPlaneFlag)
begin
if LeftHalfPlaneFlag = 'l' then
RPh nxt <= TWO - Zout;
elsif Zout < 0 then
RPh nxt <= FOUR + Zout;
else
RPh nxt <= Zout;
end 1if;
end process;

RPhUnsigned <= conv_unsigned(RPh nxt, WIDTH INTERN) ;
RPh_nxt left <= RPhUnsigned(WIDTH_INTERN—2 downto WIDTH_INTERN—2—

WIDTH+1) ; -- RPh nxt / 4

compen <= conv_unsigned(Xout, WIDTH INTERN) * COMPENSATION SQRT2;

PostCordicSeqg PROC: process (Rst N, Clk20M)
begin
if Rst N = '0' then
RAmp Out <= (others => '0");
RPh Out <= (others => '0");
elsif Clk20M'event and Clk20M='1l' then

RAmp Out <= compen ((2*WIDTH INTERN-IWIDTH INTERN+1l) downto

(2*WIDTH INTERN-IWIDTH INTERN-WIDTH+1+1)); -- (29 downto 20)
RPh Out <= std logic_vector (RPh nxt left);
end if;

end process;

end rtl;
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14. STSSynchronizerComponent.Package.vhd

library IEEE;

use IEEE.std logic 1164.all;
use IEEE.std logic arith.all;

library lib_ sts;

use lib sts.STSSynchronizerConstants.all;

package STSSynchronizerComponent is

component STSSynchronizer

port (

Clk20M

Rst N
NRIterations In
SampleRe In
SampleIm In
RAmp Out

RPh Out

end component;

in std logic;

in std logic;

in std logic_vector (3 downto 0);

in std logic_ vector (SAMPLE WIDTH-1 downto 0);
in std logic vector (SAMPLE WIDTH-1 downto 0);
out std logic vector (WIDTH-1 downto 0);

out std logic_vector (WIDTH-1 downto 0));

end STSSynchronizerComponent;

15. STSSynchronizer.Entity.vhd

library IEEE;

use IEEE.std logic 1164.all;
use IEEE.std logic _arith.all;

library lib sts;

use lib sts.STSSynchronizerConstants.all;

entity STSSynchronizer is

port (

Clk20M

Rst N
NRIterations In
SampleRe In
SampleIm In
RAmp Out

RPh Out

end STSSynchronizer;

in
in
in
in
in
ou
ou

std logic;
std logic;
std logic vector (3 downto 0);
std logic vector (SAMPLE WIDTH-1 downto 0);
std logic vector (SAMPLE WIDTH-1 downto 0);
t std logic_vector (WIDTH-1 downto 0);
t std logic_vector (WIDTH-1 downto 0));
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16. STSSynchronizer.rtl.vhd

library lib_ sts;

use lib sts.STSSynchronizerConstants.all;
use lib sts.SRShiftRegComponent.all;
use lib sts.SRCorrelatorComponent.all;
use lib sts.CordicRPComponent.all;

architecture rtl of STSSynchronizer is

signal SamplelRe:
signal SamplelIm:
signal SampleZ2Re:
signal Sample2Im:
signal Rreal
signal Rimag

begin

I SRShiftReg
Clk20M
Rst N
SampleRe In
SampleIm In
SamplelRe Out
SamplelIm Out
Sample2Re Out
Sample2Im Out

I SRCorrelator
Clk20M
Rst N
SamplelRe In
SamplelIm In
Sample2Re In
Sample2Im In
SRRe Out
SRIm Out

I CordicRP

Clk20M => Clk20M,
Rst N => Rst N,
NRIterations In => NRIterations In,
RReal In => RReal,
RImag In => RImag,
RAmp Out => RAmp Out,
RPh Out => RPh Out);
end rtl;

std logic vector
std logic vector
std logic vector
std logic vector
std logic vector
std logic vector

—~ o~ o~~~ o~

SRShiftReg port map (

=> Clk20M,
=> Rst N,

SAMPLE WIDTH-1 downto
SAMPLE WIDTH-1 downto
SAMPLE WIDTH-1 downto
SAMPLE WIDTH-1 downto
SAMPLE OUT WIDTH-1 downto O0);
SAMPLE OUT WIDTH-1 downto O0);

=> SampleRe In,
=> SamplelIm In,

=> SamplelRe,
=> SamplellIm,
=> SampleZ2Re,
=> Sample2Im)

SRCorrelator port
=> Clk20M,
=> Rst N,

=> SamplelRe,
=> SamplellIm,
=> SampleZ2Re,
=> Sample2Im,
=> RReal,

=> RImagqg) ;

CordicRP port map (
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17. TB_STSSynchronizer.rtl.vhd

library IEEE;

use IEEE.Std Logic 1164.all;
use IEEE.std logic arith.all;
use std.textio.all;

use ieee.std logic textio.all;

library lib_ sts;
use lib sts.STSSynchronizerConstants.all;

use lib sts.STSSynchronizerComponent.all;

entity TBE STSSynchronizer rtl is
end TBE STSSynchronizer rtl;

architecture TBA STSSynchronizer rtl of TBE STSSynchronizer rtl is

signal C1lk20M : std logic:='0";

signal Rst N : std logic:='0";

signal NRIterations In : std logic vector (3 downto 0):="1010";
--N = 10

signal SampleRe In : std logic vector (SAMPLE WIDTH-1 downto
0) :="00000000";

signal SampleIm In : std logic vector (SAMPLE WIDTH-1 downto
0) :="00000000";

signal RAmp Out : std logic_vector (9 downto 0);

signal RPh Out : std logic_vector (9 downto 0);

signal FirstChar : string(l to 1);

signal SimEnd : boolean := false;

constant c_Period20Mhz : time:= 50 ns;

begin

I STSSynchronizer : STSSynchronizer port map (

Clk20M => Clk20M,

Rst N => Rst N,
NRIterations In => NRIterations In,
SampleRe In => SampleRe In,
SampleIm In => SampleIm In,
RAmp Out => RAmp Out,

RPh Out => RPh Out

);

Rst N <= '1' after 10 ns;

p_ClkGenerator: process
begin
Clk20M <= '0';
wait for c_Period20Mhz/2;
while not SimEnd loop
Clk20M <= '1"';
wait for c Period20Mhz/2;
Clk20M <= '0';
wait for c_Period20Mhz/2;
end loop;
end process p_ClkGenerator;
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p _apply stimuli : process (Clk20M, Rst N)
file InputFile : text is in "./Test Data Dir/ETSIStimuli.txt";

variable InputVector : line;
variable Command Col : string(l to 1);
variable Temp In : std logic vector (7 downto 0);
begin
if (Rst N = '0") then
--Do nothing
elsif (Clk20M'event and Clk20M = '1') then

-- Stimuli on the positive edge
if not endfile(InputFile) then

readline (InputFile, InputVector);

-—-SampleRe In
read (InputVector, Temp In);
SampleRe In <= Temp In;

-—-SampleIm In
read (InputVector, Temp In);
SampleIm In <= Temp In;

else
SimEnd <= true;
assert false report " End of Simulation"
severity failure;
end 1if;

end if;
end process p_ apply stimuli;

-- writing on falling edge

p_write outputs: process(Clk20M, Rst N)

file OutputFilel: text is out “./Test Data Dir/RAmp Out thesis.txt";
file OutputFile2: text is out "./Test Data Dir/RPh Out thesis.txt";

variable OutVectorl : line;
variable OutVector?2 : line;
begin

if (Rst N = '0") then

-- Do nothing
elsif Clk20M'event and Clk20M='0O' then
write (OutVectorl, RAmp Out) ;
write (OutVector2, real (conv_integer (signed(RPh Out))) /

512.0 );
writeline (OutputFilel, OutVectorl);

writeline (OutputFile2,OutVector?2) ;
end if;

end process p write outputs;

end TBA STSSynchronizer rtl;
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C. APPENDIX C: GATE-LEVEL VHDL CODES

1.  STSSynchronizer.Shell.vhd

library IEEE;
use IEEE.std logic 1164.all;
use IEEE.std logic arith.all;

library 1lib sts;
use lib sts.STSSynchronizerConstants.all;

entity STSSynchronizer is

port (
Clk20M : in std logic;
Rst N : in std logic;
NRIterations In : in std logic vector (3 downto 0);
SampleRe In : in std logic vector (SAMPLE WIDTH-1 downto O0);
SampleIm In : in std logic vector (SAMPLE WIDTH-1 downto O0);
RAmp Out : out std logic vector (WIDTH-1 downto O0);
RPh Out : out std logic vector (WIDTH-1 downto 0));

end STSSynchronizer;
architecture verilog of STSSynchronizer is
attribute foreign of verilog: architecture is "VERILOG (event)
lib sts.STSSynchronizer:v";
begin
end;

2.  TB_STSSynchronizer GAT.rtl.vhd

It is same as TB_STSSynchronizer.rtl.vhd.
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APPENDIX D: ETSI BRAN HIPERLAN TYPE 2 STANDARD

The increasing demand for "anywhere, anytime" communications and the merging

of voice, video and data communications create a demand for broadband wireless

networks. ETSI has created the BRAN project to develop standards and specifications

for broadband radio access networks that cover a wide range of applications and are

intended for different frequency bands. This range of applications covers systems for

licensed and license exempt use.

The categories of systems covered by the BRAN project are summarized as

follows:

HIPERLAN/1 provides high-speed (20 Mbit/s typical gross data rate)
radio local area network communications that are compatible with wired
LANs based on Ethernet and Token Ring standards. Restricted user
mobility is supported within the local service area only. The technical
specification for HIPERLAN/1, ETS 300 652, was published by ETSI in
1996 (last revised version published as EN 300 652). HIPERLAN/1
systems are intended to be operated in the 5 GHz band.

HIPERLAN]/2 is a standard for a high-speed radio communication system
with typical data rates from 6 Mbit/s to 54 Mbit/s. It connects portable
devices with broadband networks that are based on IP, ATM and other
technologies. Centralized mode is used to operate HIPERLAN/2 as an
access network via a fixed access point. In addition a capability for direct
link communication is provided. This mode is used to operate
HIPERLANY/2 as an ad-hoc network without relying on a cellular network
infrastructure. In this case a central controller (CC), which is dynamically
selected among the portable devices, provides the same level of QoS

support as the fixed access point. HIPERLAN/2 is capable of supporting
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multi-media applications by providing mechanisms to handle QoS.
Restricted user mobility is supported within the local service area; wide
area mobility (e.g. roaming) may be supported by standards outside the
scope of the BRAN project. HIPERLAN/2 systems are intended to be
operated in the 5 GHz band.

e HIPERLINK provides very high-speed (up to 155 Mbit/s data rate) radio
links for static interconnections and 1is capable of multi-media
applications; a typical use is the interconnection of HIPERACCESS
networks and/or HIPERLAN access points into a fully wireless network. It
should be noted that for HIPERLINK the intended operation frequency is
17 GHz - this in view of the very limited EIRP allowed in CEPT/ERC
TR/22-06.

Since HIPERLAN/2 is used as the standard for the implementation part (ETSI
OFDM STS Synchronizer Hardware Design) of this thesis, only HIPERLAN/2's

parameters and specifications are mentioned below.

D.1. HIPERLAN/2 Services and Functions

D.1.1. Introduction

A HIPERLANY/2 network for business environment consists typically of a number
of APs (access point) each of them covers a certain geographic area. Together they form
a radio access network with full or partial coverage of an area of almost any size. The
coverage areas may or may not overlap each other, thus simplifying roaming of
terminals inside the radio access network. Each AP serves a number of MTs, which
have to be associated to it. In the case where the quality of the radio link degrades to an
unacceptable level, the terminal may move to another AP by performing a handover.
For home environment, HIPERLAN/2 network is operated as an ad-hoc LAN, which
can be put into operation in a plug-and-play manner. The HIPERLAN/2 home system
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share the same basic features with the HIPERLAN/2 business system by defining the

following equivalence between both systems:

e A subnet in the ad-hoc LAN configuration is equivalent to a cell in the
cellular access network configuration.

e A central controller in the ad-hoc LAN configuration is equivalent to the
access point in the cellular access network configuration. However, the
central controller is dynamically selected from HIPERLAN/2 portable
devices and can be handed over to another portable device, if the old one
leaves the network.

e Multiple subnets in a home are made possible by having multiple CCs

(central controller) operating at different frequencies.

HIPERLAN;/2 supports two basic modes of operation:

e Centralized mode: In this mode, an AP is connected to a core network,
which serves the MTs (mobile terminal) associated to it. All traffic has to
pass the AP, regardless of whether the data exchange is between an MT
and a terminal elsewhere in the core network or between MTs belonging to
this AP. The basic assumption is that a major share of the traffic is
exchanged with terminals elsewhere in the network. This feature is
mandatory for all MTs and APs.

e Direct mode: In this mode, the medium access is still managed in a
centralized manner by a CC. However, user data traffic is exchanged
between terminals without going through the CC. It is expected that in
some applications (especially, in home environment), a large portion of
user data traffic is exchanged between terminals associated with a single
CC. This feature is intended for use within home environment, and hence,

is mandatory in DLC (data link control)-home extensions.

NOTE 1: A central controller may also be connected to a core network and, thus, shall

be able to operate in both direct and centralized mode.
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The HIPERLAN/2 basic protocol stack on the AP/CC side and its functions are
shown in Figure D.1. The convergence layer (CL) offers service to the higher layers that
are out of the scope of this document.

The physical layer delivers a basic data transport function by providing means of
a base-band modem and a RF part. The base-band modem will also contain a forward
error correction function.

The DLC layer consists of the Error Control (EC) function, the Medium Access
Control (MAC) function and the Radio Link Control (RLC) function. It is divided in the
user data transport functions and the control functions, located mainly on the right hand
side and on the left-hand side of Figure D.1, respectively.

The user data transport function is fed with user data packets from higher layers
via the User Service Access Point (USAP). This part contains the EC that performs an
ARQ (Automatic Repeat Request) protocol. The DLC protocol operates connection
oriented, which is shown by multiple connection end points in the USAP. One EC
instance is created for each DLC connection. In case the higher layer is connection
oriented, DLC connections can be created and released dynamically. In case the higher
layer is connectionless, at least one DLC connection has to be set up which handles all
user data.

The left part contains the RLC Sub-layer, which delivers a transport service to the
DLC Connection Control (DCC), the Radio Resource Control (RRC) and the
Association Control Function (ACF).

NOTE 2: Only the RLC is standardized which defines implicitly the behavior of the
DCC, ACF and RRC. One RLC instance needs to be created per MT.

The CL on top is also separated in a data transport and a control part. The data
transport part provides the adaptation of the user data format to the message format of
the DLC layer (DLC SDU). In case of higher layer networks other than ATM, it
contains a segmentation and re-assembly (SAR) function. The control part can make use
of the control functions in the DLC, e.g. when negotiating CL parameters at association

time.
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Figure D.1 HIPERLANY/2 Protocol Stack and Functions

D.1.2. HIPERLAN/2 DLC Functions

The HIPERLAN/2 DLC functions are divided in data transport and data link

control functions and will be described in two sub-clauses in the following.

D.1.2.1. Medium Access Control

The medium access control is a centrally scheduled TDMA/TDD scheme.
Centrally scheduled means that the AP/CC controls all transmissions over the air. This
concerns uplink, downlink and direct mode phase equally.

The basic structure on the air interface generated by the MAC is shown in Figure
D.2. It consists of a sequence of MAC frames of equal length with 2 ms duration. Each
MAC frame consists of several phases:

e Broadcast (BC) phase: The BC phase carries the BCCH (broadcast control
channel) and the FCCH (frame control channel). The BCCH contains
general announcements and some status bits announcing the appearance of

more detailed broadcast information in the downlink phase (DL). The
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FCCH carries the information about the structure of the ongoing frame,
containing the exact position of all following emissions, their usage and
content type. The messages in the FCCH are called resource grants (RG).

e Downlink (DL) phase: The DL phase carries user specific control
information and user data, transmitted from AP/CC to MTs. Additionally,
the DL phase may contain further broadcast information which does not fit

in the fixed BCCH field.

MAC Frame MAC Frame MAC Frame MAC Frame

\.

BC-Phase || DL-Phase DiL-Phase UL-Phase RA-Phase

flexible flexible flexible flexible

Figure D.2 MAC Frame Format for Sectored Antennas

e Uplink (UL) phase: The UL phase carries control and user data from the
MTs to the AP/CC. The MTs have to request capacity for one of the
following frames in order to get resources granted by the AP/CC.

e Direct Link (DiL) phase: The DiL phase carries user data traffic between
MTs without direct involvement of the AP/CC. However, for control
traffic, the AP/CC is indirectly involved by receiving Resource Requests
from MTs for these connections and transmitting Resource Grants in the

FCCH.

NOTE 1: The DiL phase is mandatory in home environments.

e Random access (RA) phase: The RA phase carriers a number of RCH

(random access channels). MTs to which no capacity has been allocated in

the UL phase use this phase for the transmission of control information.
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Non-associated MTs use RCHs for the first contact with an AP/CC. This
phase is also used by MTs performing handover to have their connections
switched over to a new AP/CC.
The structure is slightly different when the AP/CC has a sectored antenna as
shown in Figure D.3. The solution chosen distributes the available MAC frame duration

over the sectors. In this case, each phase is repeated, in time, one for each sector.

NOTE 2: The use of DiL with sectored antennas is not specified.

MAC-Frame MAC-Frame MAC-Frame MAC-Frame

BCH, [BCH2 || BCHy [FCHq|FCHz | |FCHy| DLy | DLz L DL, ULy | ULz L UL, |RCH4|RCHyLJRCH,

Figure D.3 MAC Frame Format for Sectored Antennas

The DL, DiL and UL phases consist of two types of PDUs: long PDUs and short
PDUs. The long PDUs have a size of 54 bytes and contain control or user data, see
Figure D.4. The DLC SDU, which is passed from or to the DLC layer via the U-SAP,
has a length of 49.5 bytes. The remaining 4.5 bytes are used by the DLC for a PDU type
field, a sequence number (SN) and a cyclic redundancy check (CRC). The purpose of
the CRC is to detect transmission errors and is used, together with the SN, by the EC.

The short PDUs with a size of 9 bytes contain only control data and are always
generated by the DLC. They may contain resource requests in the uplink, ARQ
messages like acknowledgements and discard messages or RLC information.

The same size of 9 bytes is also used in the RCH. The RCH can only carry RLC
messages and resource requests. The access method to the RCH is a slotted aloha
scheme. The collision resolution is based on a binary back-off procedure, which is
controlled by the MTs. The AP/CC can decide dynamically how many RCH slots it
provides per MAC frame.
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Figure D.4 Format of the Long PDUs

D.1.2.2. Error Control

The EC is based on an ARQ (Automatic Repeat Request) scheme. Additional
forward error correction and the EC are complementary but do not collaborate.

The ARQ scheme is based on a selective repeat mechanism. It requires a very
careful transmission window handling in both transmitter and receiver. Therefore the
receiver has to notify the transmitter about the sequence number below, which all
messages have been received correctly (bottom of window) and which messages out of
the received ones were not correct. Moreover, the transmitter may want to discard

messages, e.g. because they have exceeded their maximum lifetime.

D.1.3. Radio Link Control Functions

NOTE: The control functions are closely related to the protocols defined in the
RLC. Only the RLC will be specified, the control functions themselves are out of the
scope of the standard. In the explanations below, the control functions and the actual

RLC will be handled synonymously.

126



D.1.3.1.

Association Control Function

A Terminal intending to communicate with an AP/CC has always to be associated

to this AP/CC. The reasons are:

The AP/CC always has to create some resources for each MT associated,
e.g. the RLC connection and a MAC ID.
The MAC protocol is centrally controlled by the AP/CC, regardless of

whether it operates in centralized or in direct mode.

The tasks of the association control are:

Association: The first step is the allocation of a MAC ID to a terminal,
followed by the negotiation of the link capabilities. These comprise the
selected CL and other features. AP/CC and MT decide in this step whether
encryption and / or authentication are performed or not and which
encryption and authentication mechanisms are used, respectively.
Encryption key exchange: This step is performed after the link capability
negotiation and is optional. It is based on the Diffie-Hellmann key
exchange procedure. The Diffie-Hellmann secret and public values are
used by both AP/CC and MT to generate and refresh the session key.
Authentication: This step is performed after the encryption key exchange
and is optional. The authentication affects both MT and AP/CC, i.e. they
perform a mutual authentication.

Beacon Signaling in the AP/CC: The beacon signaling provides basic
information about essential features and properties of the AP/CC, which
are broadcast in each MAC frame. The ACF provides some of the values
that are broadcast.

Encryption key refresh: This feature is optional. It can happen periodically
and is requested by the AP/CC.

Disassociation: This feature shall be performed by the MT if possible.

NOTE: This may not be possible if the MT power drops suddenly.
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D.1.3.2.

Radio Resource Control

The radio resource control (RRC) is responsible for the surveillance and efficient

use of available frequency resources.

The functions of the RLC for the support of the RRC are:

Dynamic Frequency Selection: HIPERLAN/2 will operate in a "Plug-and-
Play" manner and will not require frequency planning. The decision on the
selection of a frequency channel is, in the first step when no MTs are
associated, based on the AP/CC’s own measurements. During operation,
the situation may change and the AP/CC has to switch to a different
frequency channel. However, each terminal has a specific interference
situation, which may make it impossible for one or more MTs to
communicate with the AP/CC efficiently. Therefore, the decision when to
perform a frequency change and to which frequency has to be based on
both measurements of the AP/CC and the associated MTs. The DFS
supporting functions of the RLC allow for:

o Measurements of MTs and AP/CC: The terminal may do
measurements on its own or on different channel, either based on
its own decision or ordered by the AP/CC;

o Reporting of the obtained measurements from MTs to the AP/CC;

o Frequency change of the AP/CC and its associated MTs.

MT alive procedure: In order to make sure that the AP/CC does not
reserve resources unnecessarily for an MT, the AP/CC may request it to
report if it is still alive.

MT absence function: The MT may want to scan for a different frequency
channel in order to find out whether it shall perform a handover and to
which new AP/CC it shall change. This function is triggered by the MT.
Power saving function: Many MTs will be battery driven. Therefore,
HIPERLANY/2 will support an efficient scheme to support the conservation
of battery power. The mechanism will be based on sleep intervals after

which the terminal listens periodically whether the AP/CC wants it to
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D.1.3.3.

receive data. If no data are pending in DL, or DiL, the MT remains in
sleep modus without communication with the AP/CC in centralized mode
or with another MT in direct mode. The length of the sleep intervals can
be negotiated between AP/CC and MT. This function is triggered by the
AP/CC,; the selection of the sleep interval is done by the AP/CC.

Transmit Power Control: AP/CC and MT will support means to adapt their
transmission power to the current requirements of the radio link.

Handover: The handover function will be restricted to business and public
applications and will not be supported in home networks in the first phase.
The RRC will decide when to perform a handover and support its

execution.

DLC Control Function

The DLC connection control (DCC) is responsible for set up and release of user

connections. The relation to a higher layer connection set up procedure can be created

by a call reference identifier in the DLC connection set up request message. If any kind

of QoS support is required by a higher layer, the necessary parameters have to be

provided by the higher layers. Since the scheduler will not be specified, the

specification of these parameters is out of the scope of HIPERLAN/2. The only DLC

related parameters to be exchanged are a DLC Connection ID and ARQ related values

like maximum window size and number of allowed retransmissions.

The functions of DCC are:

DLC connection set up: This feature comprises set up procedures for
centralized mode, direct mode and multicasts, all of which can be
originated either by the AP/CC or the MT.

DLC connection release: This feature comprises release procedures for
centralized mode, direct mode and multicasts, all of which can be
originated either by the AP/CC or the MT.

DLC connection modify: This feature comprises modify procedures for

centralized mode, direct mode and multicasts all of which can be
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originated either by the AP/CC or the MT. The modification refers to the
DLC specific connection parameters, which are described above.
e Multicast join and leave: These features allow a terminal to join already

existing multicast groups and leave one it belongs to.

D.14. Convergence Layer

The convergence layers (CL) adapt the core network to the HIPERLAN/2 DLC
layer. The CL provides all functions needed for connection set-up and support mobility
in the core network. For each supported core network a special CL is designed. Support
for packet based networks like Ethernet (IEEE 802.3), IP, PPP and IEEE 1394 (Fire-
wire) as well as cell based networks like ATM and UMTS will be available.

The convergence layers available at the AP/CC are announced via broadcast. MT
and AP/CC negotiate one of them during association. In combination with the QoS
functions of HIPERLAN/2 it shall be possible to support various QoS schemes. Among
others IP like RSVP, Differentiated Services or priority scheduling according to IEEE
802.1D.

The packet based convergence layer is used to integrate HIPERLAN/2 into
existing packet-based networks. To support the different technologies used nowadays
and to be open for future technologies, the Packet CL is structured hierarchically into a
common part and a number of service specific convergence sub-layers (SSCS). The
common part mainly contains a SAR function to fit the packets into the fixed length of a
HIPERLANY/2 packet. The first SSCS to be specified is the Ethernet SSCS, which is
followed by IEEE 1394, IP, and PPP SSCSs in the course of the year 2000. For each
part a specification will be created.

The ATM CL also consists of a common part and SSCSs. The common part shall
not contain a SAR function because ATM cells basically fit into the HIPERLAN/2 DLC
SDU. Nevertheless, a compression of the ATM cell header is necessary, transmitting

only its most important parts.
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D.1.5. HIPERLAN;/2 Physical Layer

D.1.5.1. Transport Channels and PDU Trains

The radio subsystem provides a set of transport channels describing the message
format over the air interface. Transport channels are used as basic elements in
constructing PDU (Protocol Data Unit) trains. The PDU trains that consist of a sequence

of transport channels represent the interface between the DLC protocol and the PHY

layer. DLC specifies six different PDU train types:

A o

Broadcast PDU train;
FCH (Frame CHannel) and ACH (Access Feedback CHannel) PDU train;
Downlink PDU train;
Uplink PDU train with short preamble;

Uplink PDU train with long preamble;
Direct link PDU train.

D.1.5.2.  Reference Configuration

For the purpose of elaborating the specification of physical layer functions, a

reference configuration of the transmission chain is used as shown in Figure D.5. It

should be noted that only the transmission part is specified.

PO train from

DL C (trarsmit)

scrambling

Mapping
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e
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trans mittar

Figure D.5 Reference Configuration of Transmitter
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D.1.5.3. PHY Layer Functional Entities

The PHY layer of HIPERLANY/2 offers information transfer services to the DLC
of HIPERLANY/2. For this purpose, it provides for functions to map different DLC PDU
trains into framing formats called PHY bursts appropriate for transmitting and receiving
management and user information between an AP/CC and an MT in the centralized
mode or between two MTs in the direct mode. This includes the following functional

entities at transmitter:

e Configuring the transmission bit rate by choosing appropriate PHY mode
based on the link adaptation mechanism.

e Scrambling the PDU train content.

e Encoding the scrambled bits according to the forward error correction set
during PHY layer configuration.

e Interleaving the encoded bits at the transmitter by using the appropriate
interleaving scheme for the selected PHY layer mode.

e Sub-carrier modulation by mapping the interleaved bits into modulation
constellation points.

e Producing the complex base-band signal by OFDM modulation.

e Inserting pilot sub-carriers, appending appropriate preamble to the
corresponding PDU train at the transmitter and building the PHY layer
burst.

e Performing radio transmission by modulating the radio frequency carrier

with the complex base-band signal at transmitter.
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D.1.5.4. Physical Layer

D.1.5.4.1. Introduction

The PHY layer of HIPERLAN/2 is based on the modulation scheme Orthogonal
Frequency Division Multiplexing (OFDM). In order to improve the radio link capability
due to different interference situations and distance of MTs to the access point, a multi-
rate PHY layer is applied, where the "appropriate" mode will be selected by a link
adaptation scheme. The data rate ranging from 6 Mbit/s to 54 Mbit/s can be varied by
using various signal alphabets for modulating the OFDM sub-carriers and by applying
different puncturing patterns to a mother convolutional code.

BPSK, QPSK, 16QAM are used as mandatory modulation formats, whereas
64QAM is applied as an optional one for both AP and MT. The mode dependent

parameters are listed in the Table D.1.

Modulation Coding Rate R Nominal Bit Coded Bits Per Coded Bits Per Data Bits Per
Rate [Mbit/s] Sub-Carrier OFDM Symbol OFDM
Nepsc Ncpps Symbol Npgps |
BPSK 1/2 6 1 48 24
BPSK 3/4 9 1 48 36
QPSK 1/2 12 2 96 48
QPSK 3/4 18 2 96 72
16QAM 9/16 27 4 192 108
16QAM 3/4 36 4 192 144
64QAM 3/4 54 6 288 216

Table D.1 Mode Dependent Parameters
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D.1.5.4.2. Data Scrambling

The content of each PDU train (NBPDU bits) from the DLC shall be scrambled
with a length-127 scrambler. The scrambler uses the generator polynomial S(x) as given

by:

Sx)=X"+x*+1 (D.1)

and is illustrated in Figure D.6. The same scrambler shall be used to scramble transmit
data and to descramble receive data. All PDU trains belonging to a MAC frame are
transmitted by using the same initial state for scrambling. The initialization shall be

performed as follows:

e Broadcast PDU train in case AP uses one sector: scrambler initialized at
the 5th bit of BCH (Broadcast CHannel), at the 1st bit of FCH and at the
1st bit of ACH;

e Broadcast PDU train in case AP uses one sectors: scrambler initialized at
the 5" bit of BCH;

e FCH -and -ACH PDU train transmitted only in the case of a multiple
sector AP: scrambler initialized at the 1* bit of FCH and at the 1% bit of
ACH;

e Downlink PDU train, Uplink PDU train with short preamble, Uplink PDU
train with long preamble and Direct link PDU train: Scrambler initialized

at the 1% bit of the PDU train.

The initial state shall be set to a pseudo random non-zero state, which is
determined by the Frame counter field in the BCH at the beginning of the corresponding
MAC frame. The Frame counter field consists of the first four bits of BCH, represented
by (nsnsnyn;),, and shall be transmitted unscrambled. n4 shall be transmitted first. The
initial state shall be derived by appending (nsnsnyn;); to the fixed binary number (111),

in the form (111 ngn3nyny);.
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As an example if the Frame counter is given as (0100),, the initial state of the
scrambler shall be (111 0100),. The transport channel content starting with (10011101
000...), shall be scrambled to (00111110 011...),.

L '/‘IL
X7 X6 |X5 :TVX4 X3 | X2 |X1

Input bits

Scrambled output

Figure D.6 Scrambler Schematic Diagram

D.1.5.4.3. FEC (Forward Error Correction) Coding

The scrambled PDU train of NBPDU bits shall be encoded by a channel encoder
unit. The mandatory encoder is described in this clause and depicted in Figure D.7. It
consists of four consecutive operational blocks: code termination, encoding, code rate
independent puncturing (P1) and code rate dependent puncturing (P2). It should be
noted that this sequence of operation indicates a logical operation of the encoding

process, but not a specific implementation.

X
Scrambled Append Cogzgllun —>»> P;Iicslr&? & Puncturi Ch;]r;%el cgded
PDU trai2> six tail encoder serial Y ng P2 > train
bits —> Y output
>

Figure D.7 Functional blocks of FEC coder
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The codetermination, encoding, and puncturing P1 shall be performed depending

on the PDU train type as follows:

e Broadcast PDU train in omni-antenna case: tail bits shall be appended and
puncturing P1 shall be performed individually to BCH, FCH and ACH.
The encoder shall be initialized at the 1st bit of BCH, at the 1st bit of FCH
and at the 1st bit of ACH;

e Broadcast PDU train in sector-antenna case: tail bits shall be appended and
puncturing P1 shall be performed to BCH. The encoder shall be initialized
at the 1st bit of BCH;

e FCH and ACH PDU train: tail bits shall be appended and puncturing P1
shall be performed separately to FCH and ACH. The encoder shall be
initialized at the 1st bit of FCH, at the 1st bit of ACH without priority, and
at the 1st bit of ACH with priority;

e Downlink PDU train, Uplink PDU train with short preamble, Uplink PDU
train with long preamble, and Direct link PDU train: Tail bits shall be
appended and puncturing P1 shall be performed once for the PDU train.
The encoder shall be initialized at the 1st bit of the PDU train.

Puncturing P2 shall be performed equally to all the PDU train types as described in
clause D.1.5.4.3.2.

D.1.5.4.3.1.Code Termination, Encoding, P1 Puncturing

D.1.1.5.4.3.1. Downlink PDU Train, Uplink PDU Train with Short and Long
Preambles and Direct Link PDU Train

Four of the PDU train types (Downlink PDU train, Uplink PDU train with short
preamble, Uplink PDU train with long preamble, and Direct link PDU train) are
processed by the encoder as a whole. Tail bits are added once and the respective tail bit
puncturing, P1, shall be performed once for the PDU train. The encoder shall also be

initialized once at the beginning of the PDU train.
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In the first phase six non-scrambled zero ('0") bits are appended to the input data
for codetermination purposes. These bits, denoted as tail bits, return the convolutional
encoder to "zero state". The resulted (NBPDU + 6) bits shall be coded with a
convolutional encoder of code rate 1/2 with 64 states. The generator polynomials of the
mother code are G1 = 1330CT for X output and G2 = 1710CT [ITU reference for G1
and G2] for Y output (see Figure D.8). The encoder shall be set to "zero state" before

the encoding process.

»  Output data A

Input data —P @

»  Output data B

Figure D.8 The mother convolutional code of rate 2

The first puncturing scheme P1 will be applied independently from the code rate.
The puncturing shall be applied always to the first SCH-PDU (Short Transport
CHannel) of the last DLC Connection of the PDU train to be transmitted over the air
interface. If there is no such an SCH-PDU in the last DLC Connection, P1 shall be
applied to the first LCH-PDU (Long Transport CHannel) of the last DLC Connection of
the PDU train. Four examples of the position of the P1 puncturing inside a PDU train
are illustrated in Figure D.9 as informative information.

The first 156 bits of the PDU, which the P1 puncturing is applied to, are
punctured differently from the rest of the encoded bit stream. The puncturing patterns
are given in Table D.2. In this table X and Y refer to the two outputs of the

convolutional encoder (see Figure D.8) where X1 is sent first.
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PDU-wise bit Puncturing pattern Transmitted sequence
numbering (after parallel-to-serial conversion)
0-155 X: 1111110111111 X,Y X5 Y X5 Y3 X YaXsYsXe Y6 Xs Y7 Xo Y X 10
Y: 1111111111110 YoX11Y10X0n Y11 X13Y 1
>156 X: 1 X,Y,
Y: 1

Table D.2 Puncturing pattern P1 and transmitted sequence after parallel-to-serial

conversion
DLCC-1D] l
e -
I SCH | SCH | Lo L X X LCH I
L.\ppl}' puncturing P1 (a)
DLCC-TD | DLOCC-113 m
3 > 3
| SCH | SCH | LCH *ee | SCH | LCH LCH
L Apply puncturing P
(b}
> DLCC-ID | "
< Gt
ten | see | 1ten | sen | osen | osen |
L Apply punctunng Pl
(9]
DECC-11D 1 . Lo DECC-1D m ol
< 1
| LCH | sew LCH | SCH | LCH | SCH | SCH |
Apply puncturing J"J
DLCC-ID | (d)
fe— 2y L DLCC-ID m g
= - = 1
LCH aas I ECH | SCH LCH LCH

Apply puncturing F’)J

(e

Figure D.9 Position of Puncturing P1 in cases of,

(a) one DLC Connection (DLCC-ID 1) in a downlink PDU train.
(b) two (or more) DLC Connections (DLCC-ID 1...DLCC-ID m) in a downlink PDU
train,
(c) one DLC Connection (DLCC-ID 1) in an uplink PDU train,
(d) two (or more) DLC Connections (DLCC-ID 1...DLCC-ID m) in an uplink PDU
train, two (or more) DLC Connections (DLCC-ID 1...DLCC-ID m) in an uplink
PDU train when no SCH in the last DLC connection
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D.1.1.5.4.3.2. Broadcast PDU Train, FCH-and-ACH PDU train

Two of the PDU train types, i.e. Broadcast PDU train and FCH-and-ACH PDU
train in the case of a multiple sector AP, are processed transport channel by transport
channel. Tail bits shall be appended and additional puncturing shall be performed
individually to each transport channel. The encoder shall be also initialized once at the
beginning of each transport channel, i.e. at the 1st bit of BCH, FCH and ACH.

In the first phase six non-scrambled zero ('0') bits are appended to each transport
channel for codetermination purposes. These bits, denoted as tail bits, return the
convolutional encoder to "zero state". The resulted (NBPDU + 6) bits shall be coded
with a convolutional encoder of coding rate 1/2 with 64 states. The generator
polynomials of the mother code (G1 = 1330CT for X output and G2 = 1710CT for Y
output) are the same as used with other PDU train types shown in Figure D.8. The
encoder shall be set in "zero state" before the encoding process at the beginning of each
transport channel.

The first puncturing scheme P1 will be applied independently from the code rate.
The puncturing shall be applied always to all the transport channels in the PDU train
equally. The first 156 bits of the transport channel, which the P1 puncturing is applied
to, are punctured differently from the rest of the encoded bit stream. The puncturing
patterns are given in Table D.2. In this table X and Y refer to the two outputs of the

convolutional encoder (see Figure D.8) where X1 is sent first.

D.1.5.4.3.2.Code Rate Dependent Puncturing P2

Puncturing P2 is to provide code rates of 9/16 and 3/4 and it is applied to bits
from puncturing P1. It shall be performed equally to all the PDU train types. The input
i1s de-multiplexed into 2 sub-streams. The de-multiplexing is defined as a mapping of

the input bits x4; onto the output bits b, 4, (see Figure D.10):

bdi(mod)2, di(div)2 = xdi (D.2)
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where di is the input bit number, do is the output bit number in each sub-stream, mod is

the integer modulo operator, and div is the integer division operator.

X0, X1y X2t

Puncturing P2
bo’o, bl,b- e
DEMUX 31 Puncturing P2 Channel coded PDU
b1, bip.- with serial _> train

——>

output

Figure D.10 Code Rate Dependent Puncturing P2

Puncturing P2 is applied to the two bit sub-streams by 4, and b; 4, as given in Table

D.3. The result is parallel-to-serial converted into a coded and punctured bit stream

from which by is sent first.

Code Rates Puncturing pattern Transmitted sequence
r (after parallel-to-serial
conversion)
1/2 boao: 1 boo b0
b],d(): 1
9/16 b(),d()I 111111110 b(),() b],() b(),] b1,1 baz b1,2 b(),3
b1,d0: 111101111 b1,3 b0,4 b0,5 b1,5 b(),g b1,6 b0,7
bi7b1s
3/4 b(),dol 110 bao b1,0 b(),] b]yg
b],d()l 1 O 1

Table D.3 Puncturing pattern P2 and transmitted sequence after parallel-to-serial
conversion for the possible code rates
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D.1.5.4.4. Data Interleaving

All encoded data bits shall be interleaved by a block interleaver with a block size
corresponding to the number of bits in a single OFDM symbol, N¢cgps. The interleaver is
defined by a two-step permutation. It should be noted that this sequence of permutations
is for the ease of the mathematical representation of the interleaving process, but not a
specific implementation. The first ensures that adjacent coded bits are mapped onto
nonadjacent sub-carriers. The second permutation ensures that adjacent coded bits are
mapped alternately onto less and more significant bits of the constellation, and by this
long runs of low reliability bits are avoided.

k shall be the index of the coded bit before the first permutation; i shall be the
index after the first and before the second permutation and j shall be the index after the

second permutation, just prior to modulation mapping.

The first permutation, is defined by the rule:

i = (Ncgps/16)(k mod 16) + floor(k/16), k=0,1,..., Negps-1 (D.3)

The function floor(.) denotes here the largest integer not exceeding the parameter, and

mod is the integer modulo operator.

The second permutation is defined by the rule:

j =s -floor(i/s) + (i +Ncaps - floor(16 -i/Ncgps) ) mod s, i = 0,1, Ncgps— 1 (D.4)

The value of s is determined by the number of coded bits per sub-carrier, Nppsc,

according to:

s = max(Nppsc/2,1) (D.5)
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D.1.5.4.5. Signal Constellations and Mapping

HIPERLAN/2 PHY layer uses Orthogonal Frequency Division Multiplex
(OFDM) transmission. The OFDM sub-carriers shall be modulated by using BPSK,
QPSK, 16QAM or 64QAM modulation depending on the PHY mode selected for data
transmission. The interleaved binary serial input data is divided into groups of Ngpsc (1,
2, 4 or 6) bits and converted into complex numbers representing BPSK, QPSK, 16QAM
or 64QAM constellation points. The conversion shall be performed according to Gray
coded constellation mappings, illustrated in Figure D.11, with the input bit bl being the
earliest in the stream. Additionally, Table D.4 illustrates encoding from input bits to the
I and Q values for all the modulations. The output values d are formed by multiplying

the resulting (7 + jQ) value by a normalization factor Kyop:

d = (1 +]Q) XKMOD (D6)

The normalization factor Kvop depends on the modulation as prescribed in Table
D.4. Note that the modulation type can vary inside a PDU train from one PDU to
another while inside one PDU only one modulation type is used. The purpose of the
normalization factor is to achieve the same average power for all mappings. The

normalization factor Kyop should indicate this fact and no implementation rule.

Modulation Kymob
BPSK 1
QPSK 1/\/5
16QAM 1 \/ﬁ
GIQAM Va2

Table D.4 Modulation Dependent Normalization Factor KMOD
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BPSK

Input bit b, I-out Q-out
0 -1 0
1 1 0
QPSK
Input bit b, I-out Input bit b, Q-out
0 -1 0 -1
1 1 1 1
16QAM
Input bit I-out Input bsb, Q-out
b;b,
00 -3 00 -3
01 -1 01 -1
11 1 11 1
10 3 10 3
64QAM
Input bit I-out Input bsbsbg Q-out
b,b,b3
000 -7 000 -7
001 -5 001 -5
011 -3 011 -3
010 -1 010 -1
110 1 110 1
111 3 111 3
101 5 101 5
100 7 100 7

Table D.5 Encoding Tables for BPSK, QPSK, 16QAM and 64QAM

143




BPSK Q 16-QAM Qi byb b, by
by T
' 00 10 01 10 11 10 1010
0 1 - - 3T - -
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I
I 00 11 01 11 1111 1011
- - _]__ - -
3t Ty y 3 .T
PSK 0001 01 01 1101 001
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Figure D.11 BPSK, QPSK, 16QAM and 64QAM constellation bit encoding

D.1.5.4.6. Modulation Technique

The stream of complex valued sub-carrier modulation symbols at the output of

mapper, denoted by d,, shall be divided into groups of Ngp = 48 complex numbers:

Dn (mod) 48, n (div) 48 = dn

(D.7)

where mod is the integer modulo operator and div is the integer division operator.
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Each group D,,, shall be transmitted in an OFDM symbol. All data OFDM
symbols contain data in data carriers and reference information in pilot carriers. For data
there are Nsp = 48 carriers and for pilots Nsp = 4 carriers in each symbol. Thus, each
symbol is constituted by a set of Ngy = 52 carriers and transmitted with a duration Ts.
Two parts compose this symbol interval: a useful symbol part with duration 7y and a
cyclic prefix with duration 7¢p. The cyclic prefix consists of a cyclic continuation of the
useful part, Ty, and it is inserted before it. Thus the cyclic prefix is a copy of the last
Tcp/T samples of the symbol part sent in front of the symbol part.

The length of the useful symbol part is equal to 64 samples and its duration is Ty
= 3,2 us. For the cyclic prefix length T¢p there are two possible values in the
HIPERLAN/2 system: mandatory 800 ns and optional 400 ns.

Numerical values for the OFDM parameters are given in Table D.6. The symbol
format is shown in Figure D.12 in which CP stands for cyclic prefix followed by a

useful part, Data n, of the symbol.

Parameter Value
Sampling rate f;, = {/T 20 MHz
Symbol part duration Ty, 64*T
3,2 us
Cyeclic prefix duration T¢p 16*T 8*T
0,8 us (mandatory) 0,4 us (optional)
Symbol interval T 80*T 72*T
4,0 us (Ty+Tcp) 3,6 us (Ty+Tcp)
Number of data sub-carriers Ngp 48
Number of pilot sub-carriers Ngp 4
Total number of sub-carriers Ngr 52 (Ngp+Ngsp)
Sub-carrier spacing 4, 0,3125 MHz (1/Ty)
Spacing between the two outmost sub- 16,25 MHz (Ngr*4y)
carriers

Table D.6 Numerical Values for the OFDM Parameters
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CP Data I I I
* Lopy

Figure D.12 Illustration of an OFDM Symbol with Cyclic Prefix

Base-band format of a transmitted OFDM symbol is:

Ngr /2

rn(t): ch,n '\Pl,n(t) (D.3)
I=Ng /2

where: W, @)=
,else

(D.9)

where:
n denotes the OFDM symbol number;
[ denotes the sub-carrier number;
Ci, 1s complex symbol (data or pilot) for carrier 1 of the OFDM symbol no. 7.

The carriers used for data transmission are:
26<1<-22,-20<1<-8,-6<1<-1,1<1<6,8<1<20,22</<26
and the pilot carriers for reference signal transmissions are:

=-21,-7,7,21

146



The sub-carrier falling at D.C. (0-th sub-carrier, / = 0) is not used.
The mapping from an individual data symbol group D,,, into symbols Cj, is

defined as:

Dyyogn—26<1<-22

Dyiysp20<1<-8

C,, = ’ (D.10)
’n Dl+23’n,lglg6

Dyypp 8 <120

Dyyp1p-22 <1526

The reference signal transmitted in the pilot carriers is defined as:

+p,.l=-21
+p,.l==7
c,, =17 (D.11)
’ +pu.l=7
—-p,.l=21

where p, is a sequence to randomize the reference signal transmitted. The sequence p, is

a cyclic extension of the 127-element sequence given by:

po.6=1{1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1,
,1,1,-1,1,1,1,-1,1,1,-1,-1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1,
1,1,-1,-1,1,1,-1,-1,1,-1, 1,-1, 1, 1, -1, -1, -1, 1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1,
,1,-1,1,-1,1,-1,1,-1,-1,-1,-1,-1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1,
1, 1,-1,-1,-1,-1,-1,-1, -1}

The sequence p, can be generated with the polynomial S(x) used in data

scrambling (see Figure D.6):
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Sx) =X +X +1 (D.12)

when the "all ones" (1111111) initial state is used, and by replacing all 'l's with -1 and
all '0's with 1. Each sequence element is used for one OFDM symbol. This scrambler
shall be initialized at the beginning of all PDU trains.

The mapping from data and pilot complex symbols into the sub-carrier

frequencies is shown in Figure D.13.

”Il.u ”-LH [).'\.u ].}I?.u [)IH.n [)2¥.n D!-I.n DJ'-‘.H J.}‘v".u J.}-u.ll J)-H.n [)-I“-.n
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Figure D.13 Sub-carrier Frequency Allocation

The resulted Ngyy OFDM symbols are concatenated as:

Nsym

rpavroap ()= D 1, (t =nTy) (D.13)

n=l1

to result the base-band format of the PDU train, called payload. The structure of the
payload section is illustrated in Figure D.14. It consists of variable number (Ngym) of
OFDM symbols required to transmit the PDU train payload.

The following relation relates the actual transmitted signal to the complex base-

band signal:
rrr () = \/ERe{’BURST (t)e’*7 } (D.14)

where Re(.) stands for the real part of complex variable, f. denotes the carrier center
frequency, and rpugrsr(?) is base-band format of a PHY burst composed of payload and

preamble and is defined in the following clause.
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4 >
CP Data | CP Data 2 CP Data Ny

Figure D.14 PDU Train Payload (rpayLoap) format

D.1.5.4.7. PHY Bursts

System has five different kinds of PHY bursts:

Broadcast burst;
Downlink burst;
Uplink burst with short preamble;
Uplink burst with long preamble;

A e

Direct link burst (optional).

The PDU trains delivered by DLC are mapped onto the PHY bursts as depicted

below depending on the number of sectors used by AP.

a. Number of sectors per AP=I.

In this case, the Broadcast PDU train shall be concatenated to FCH-and-ACH

PDU train and the resulting Broadcast PDU train is mapped onto the Broadcast burst.

Broadcast PDU  Downlink Uplink PDU train Uplink PDU train  Direct link

train PDU train with short preamble ~ with long preamble PDU train
Broadcast burst Downlink burst ~ Uplink burst with ~ Uplink burst with Direct link
short preamble long preamble burst

b. Number of sectors per AP>1
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In this case only the Broadcast PDU train shall be mapped onto the Broadcast
burst. The FCH-and-ACH PDU train shall be mapped onto a downlink burst.

Broadcast PDU FCH-and-ACH Downlink  Uplink PDU train ~ Uplink PDU train  Direct link
train PDU train PDU train  with short preamble with long preamble PDU train

Broadcast burst Downlink  Downlink  Uplink burst with Uplink burst with Direct link

burst burst short preamble long preamble burst

Independently of the burst type each burst consists of two sections: preamble and
payload. Each burst is started with a preamble section, rpreampLe, Which is followed by

a payload section, rpayLoaD, and its base-band format is:

r BURST( f) =r PREAMBLE( t) +rp4 YLOAD( f-fPREAMBLE) (D- 1 5)

The time-offset tpresmpre determines the starting point of the payload section of
the burst and depends on the burst type. The basic structure of a PHY burst is illustrated
in Figure D.15.

Preamble VPREAMBLE Payload Y'PAYLOAD

Figure D.15 PHY burst format
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D.1.5.4.7.1.Broadcast burst

Broadcast burst consists of a preamble of length tpreanmsre = 16,0 us and a payload
section of length Ngyy, x Ts. Structure of the broadcast burst preamble is illustrated in

Figure D.16.

tprizanmrr =1 0.0 Us

Section | Section 2 Section 3
< SalB8us=40 LJH SR Us 4.!'#:‘ 2a08Us+ 23,2 Us =80 u:a’
[alia]aliafialss]B]B]m] o | C i |

Copy

Figure D.16 Broadcast Burst Preamble

In below the term "short OFDM symbol" refers only to its length that is 16
samples instead of a regular OFDM symbol of 64 samples used in HIPERLAN/2
system.

The broadcast burst preamble is composed of three sections: section 1, section 2
and section 3.

Section 1 consists of 5 specific short OFDM symbols that are denoted in Figure
D.16 by A and IA. The first 4 short OFDM symbols in section 1 (A, IA, A, 1A)
constitute a regular OFDM symbol consisting of 12 loaded sub-carriers (+2, +6, £10,

+14, +18, and +22) given by the frequency-domain sequence SA:

0,0,0,0,-1+j,0,0,0,1+,0,0,0,1-j,0,0,0,-1-,0,0,0,-1+ ],
SA 26 26 = |(13/6)x4 0,0,0,-1-,0,0,0,-1+,0,0,0,-1-,0,0,0,-1+j,0,0,0,-1- ],
0,0,0,1-j,0,0,0,1+,0,0,0,0

The last short symbol in section 1 (IA) is a repetition of preceding 16 time-domain
samples.

Section 2 consists of 5 specific short OFDM symbols that are denoted in Figure
D.16 by B and IB. The first 4 short OFDM symbols in section 2 (B, B, B, B) constitute
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a regular OFDM symbol consisting of 12 loaded sub-carriers (+4, £8, £12, 16, £20,

and +24) given by the frequency-domain sequence SB:

0,0,1+j,0,0,0,-1-3,0,0,0,1+0,0,0,-1-3,0,0,0,-1-3,0,0,
SB_»6 26 =_/(13/6)x4 0,1+,0,0,0,0,0,0,0,-1-3,0,0,0,-1-3,0,0,0,1+ 3,0,
0,0,1+j0,0,0,1+j,0,0,0,1+j,0,0

The last short symbol in section 2 (IB) is a sign-inverted copy of the preceding
short symbol B, i.e. IB =-B.

Section 3 consists of two OFDM symbols (C) of normal length preceded by a
cyclic prefix (CP) of the symbols. All the 52 sub-carriers are in use and they are

modulated by the elements of the frequency-domain sequence SC given by:

SC—26...26: {17 17 -17 _la la la -13 1: -1: 17 17 17 17 17 17 _la -1> 15 15 _17 17 _19 17 17 17 17 07 17
_15 _19 15 15 _13 15 _15 15 _1, _13 _15 _15 _17 17 17 _15 _1, 1, _13 15 _17 17 15 1’ 1}

The cyclic prefix CP is a copy of the 32 last samples of the C symbols and is thus
double in length compared to the cyclic prefix of the normal data symbols.
The broadcast burst is formed by concatenating the above-described preamble

with the data payload. The resulted broadcast burst is as illustrated in Figure D.21 a.

D.1.5.4.7.2.Downlink Burst

Downlink burst consists of a preamble of length = 8,0 us and a payload section of

length Ngyu x Ts. Structure of the downlink burst preamble is illustrated in Figure D.17.
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Figure D.17 Downlink Burst Preamble

The downlink burst preamble is equal to the section 3 of the broadcast burst
preamble. It is composed of two OFDM symbols (C) of normal length preceded by a
cyclic repetition (CP) of the symbols. All the 52 sub-carriers are in use and they are

modulated by the elements of the frequency-domain sequence SC given by:

SC—26...26= {19 15 _17 -19 19 19 '19 la _15 15 15 15 15 15 15 -19 '13 13 13 _17 17 -19 19 19 15 15 09 15
-1,-1,1,1,-1,1,-1,1,-1,-1,-1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1}

The cyclic repetition CP is a copy of the 32 last samples of the C symbols and is
thus double in length compared to the cyclic prefix of the normal data symbols.
The downlink burst is formed by concatenating the above - described preamble

with the data payload. The resulted downlink burst is as illustrated in Figure D.21 b.

D.1.5.4.7.3.Uplink Burst with Short Preamble
It consists of a preamble of length tprzsmpsre = 12,0 us and a payload section of

length Ngyax Ts. Structure of the short preamble for uplink bursts is illustrated in Figure

D.18.
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Figure D.18 Short Preamble for Uplink Bursts

In below the term "short OFDM symbol" refers only to its length that is 16
samples instead of a regular OFDM symbol of 64 samples used in HIPERLAN/2
system.

The short preamble for uplink bursts is composed of two sections: section 5 and
section 6. The sections are equal to the latter two sections of the broadcast burst
preamble: section 5 = section 2, section 6 = section 3.

Section 5 consists of 5 specific short OFDM symbols denoted in Figure D.18 by B
and IB. The first 4 short OFDM symbols in this section (B, B, B, B) constitute a regular
OFDM symbol consisting of 12 loaded sub-carriers (+4, +8, £12, £16, £20, and +£24)

given by the frequency-domain sequence SB:

0,0,1+j,0,0,0,-1-3,0,0,0,1+j,0,0,0,-1-30,0,0,-1-3,0,0,
SB_s 26 =.113/6)x4 0,1+},0,0,0,0,0,0,0,-1-30,0,0,-1-3,0,0,0,1+ 3,0,
0,0,1+30,0,0,1+j,0,0,0,1+ 30,0

The last short symbol in section 5 (IB) is a sign-inverted copy of the preceding
short symbol B, i.e. IB = -B.

Section 6 consists of two OFDM symbols (C) of normal length preceded by a
cyclic repetition (CP) of the symbols. All the 52 sub-carriers are in use and they are

modulated by the elements of the frequency-domain sequence SC given by:

SC—26...26: {1: 1: _17 _19 19 19 '1: 1: _17 17 17 17 17 17 17 _19 '1: 1: 1: _la la _19 19 19 19 19 Oa 13
-1,-1,1,1,-1,1,-1,1,-1,-1,-1,-1,-1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1}
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The cyclic repetition CP is a copy of the 32 last samples of the C symbols and is
thus double in length compared to the cyclic prefix of the normal data symbols.

The uplink burst with short preamble is formed by concatenating the above -
described preamble with the data payload. The resulted uplink burst is as illustrated in
Figure D.21 c.

D.1.5.4.7.4.Uplink Burst with Long Preamble
It consists of a preamble of length tpresnpre = 16,0 us and a payload section of

length Nsyyrx Ts. Structure of the long preamble for uplink bursts is illustrated in Figure

D.19.

tpreamsLE = 16,0 [1s

« >

Section 7 Section 8
< 10x 0.8 ps =80 ps > 2x08pus+2x32us=80us >
(Bl |{B|B]B|B]B|B|[B|[IB[] CP | C (] |

Copy |

Figure D.19 Long Preamble for Uplink Bursts

In below the term "short OFDM symbol" refers only to its length that is 16
samples instead of a regular OFDM symbol of 64 samples used in HIPERLAN/2
system.

The long preamble for uplink bursts is composed of two sections: section 7 and
section 8.

Section 7 consists of 10 specific short OFDM symbols denoted in figure 15 by B
and IB. The first 4 short OFDM symbols in this section (B, B, B, B) constitute a regular
OFDM symbol consisting of 12 loaded sub-carriers (4, +8, 12, £16, £20, and +£24)

given by the frequency-domain sequence SB:
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0,0,1+j,0,0,0,-1-3,0,0,0,1+j,0,0,0,-1-30,0,0,-1-3,0,0,
SB_s 26 =.113/6)x4 0,1+},0,0,0,0,0,0,0,-1-30,0,0,-1-3,0,0,0,1+ 3,0,
0,0,1+j0,0,0,1+j,0,0,0,1+3,0,0

The last short symbol in section 7 (IB) is a sign-inverted copy of the preceding
short symbol B, i.e. IB = -B.

Section 8 consists of two OFDM symbols (C) of normal length preceded by a
cyclic repetition (CP) of the symbols. All the 52 sub-carriers are in use and they are

modulated by the elements of the frequency-domain sequence SC given by:

SC—26...26: {1: 1: _17 _19 19 19 '1: 1: _17 17 17 17 17 17 17 _19 '1: 1: 1: _la la _19 19 19 19 19 Oa
L-1,-1,1,1,-1,1,-1,1,-1,-1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, 1, 1}

The cyclic repetition CP is a copy of the 32 last samples of the C symbols and is
thus double in length compared to the cyclic prefix of the normal data symbols. Thus
the section 8 is equal to the section 3, section 4, and section 6.

The uplink burst with long preamble is formed by concatenating the above -
described preamble with the data payload. The resulted uplink burst is as illustrated in
Figure D.21 d.

D.1.5.4.7.5.Direct Link Burst

Direct link burst is optional. It consists of a preamble of length tprpivpre = 16,0 ps
and a payload section of length Nsyy x Ts. Structure of the preamble for direct link

bursts is illustrated in Figure D.20.

tpreampLe = 10,0 s

4

A 4

Section 7 Section 8
10 x 0.8 us =80 us 2x08us+2x3.2us=8,0pus
< L : > L : L

[BIB]B]B]B]B]B]B]B]IB] cp ] C a
Copy |

>
i

Figure D.20 Preamble for Direct Link Bursts
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In below the term "short OFDM symbol" refers only to its length that is 16
samples instead of a regular OFDM symbol of 64 samples used in HIPERLAN/2
system.

The preamble for direct link bursts is composed of two sections: section 7 and
section 8.

Section 7 consists of 10 specific short OFDM symbols denoted in Figure D.20 by
B and IB. The first 4 short OFDM symbols in this section (B, B, B, B) constitute a
regular OFDM symbol consisting of 12 loaded sub-carriers 6(+4, +8, +12, +16, £20,
and +24) given by the frequency sequence SB:

0,0,1+j,0,0,0,-1-3,0,0,0,1+j,0,0,0,-1-30,0,0,-1-3,0,0,
SB_s 26 =.113/6)x4 0,1+},0,0,0,0,0,0,0,-1-30,0,0,-1-3,0,0,0,1+ 3,0,
0,0,1+0,0,0,1+j,0,0,0,1+3,0,0

Section 8 consists of two OFDM symbols (C) of normal length preceded by a
cyclic repetition (CP) of the symbols. All the 52 sub-carriers are in use and they are

modulated by the elements of the frequency-domain sequence SC given by:

SC—26...26: {13 1: _15 _17 17 17 _1: 17 _15 15 15 15 15 1, 1, _17 _15 15 15 _1, 1, _13 1) 1) 1) 15 O)
L-1,-1,1,1-1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,-1, 1,-1, 1, -1, 1, 1, 1, 1}

The cyclic repetition CP is a copy of the 32 last samples of the C symbols and is
thus double in length compared to the cyclic prefix of the normal data symbols. Thus
the section 7 is equal to the section 3, section 4, and section 6.

The direct link burst is formed by concatenating the above - described preamble

with the data payload. The resulted direct link burst is as illustrated in Figure D.21 e.
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Figure D.21 PHY burst structures: (a) Broadcast burst, (b) Downlink burst, (¢) Uplink
burst with short preamble, (d) Uplink burst with long preamble, (e) Direct link burst
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APPENDIX E: TOOLS THAT WERE USED

During this thesis, the tools listed in Table E.1 have been used.

Tool Version
Cadence Affirma NC Simulator 3.0
Synopsys Design Analyzer 1999.10-4
Matlab 6.1
Simulink 4.1

MS Word 2000

Table E.1 Tools that were used
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