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RETRIEVING WORDS FROM THEIR "MEANINGS”

Abstract

The human brain is the best memory that can record and keep a huge number of
information for a long time. Words, their meanings, domains, relationships between
different words, and the grammars of languages are well organized in the linguis-
tic component, of brain. While speaking or writing, we can generally express our
thoughts and feelings by words without thinking for a long time what the correct
words can be. But, sometimes things do not go like clockwork even for human brain.
In our daily life, we can often forget or not remember a word that we use frequently
and exactly know its meaning. While writing a document, talking with friends, or
solving a puzzle, we can not remember which word to say or to write. When we face
this problem, it will be of no use to attempt searching in a traditional dictionary to
find the word that we can not remember. In such cases, there is a need for resources
that can locate the word from its meaning.

This thesis presents the design and the implementation of a Meaning to Word
dictionary (MTW), that locates a set of Turkish words , which most closely matches
the correct/appropriate one based on a definition entered by the user. The approach
of extracting words from ”"meaning”s is based on checking the similarity between
the user’s definition and an entry of the Turkish dictionary without considering any
semantics or grammatical information.

MTW can be used in various application areas such as computer-assisted lan-
guage learning, finding the correct words for the definition questions in solving
crossword puzzles, and searching the one word representations or synonyms of a
multi-word definitions in a reverse dictionary.

Results on unseen data indicate that in 72% of the real users queries and 90% of
different dictionaries queries, our system returns the correct answer in the first 50

results, respectively.



szet

insan beyni biiyiik sayida bilgiyi kaydeden ve uzun siire bunu saklayabilen en iyi
hafizadir. Kelimeler, tanimlari, kullanim alanlari, kelimeler arasindaki iligkiler ve
dillerin gramerleri beynin dilsel boliimiinde ¢ok iyi organize edilmigtir. Konugurken
ve yazarken, genellikle duygu ve diigiincelerimizi dogru ve uygun kelimelerin ne
oldugunu iizerinde fazla diisiinmeden ifade edebiliriz. Fakat, bazen igler insan beyni
icin bile yolunda gitmeyebilir. Giinliik yasantimizda, cok kullandigimiz ve an-
lamini iyi bildigimiz kelimeleri sik sik unutur, hatirlayamayiz. Bir yaz1 yazarken
arkadaslarla konugurken ya da bir bulmaca ¢ozerken soyleyecegimiz ya da yazacagimiz
kelimeyi bir tiirlii hatirlayamayiz.

Boyle bir problem ile karsilagtigimizda, hatirlayamadigimiz kelimeyi bulmak icin
klasik bir sozliigii kullanmanin faydasi olmaz. Bu gibi durumlarda, anlamindan ke-
limeyi bulmay1 saglayacak kaynaklara ihtiyag vardir. Bu tezde, kullanicinin tanimina
dayali en iyi uyan dogru Tiirkce kelimeyi bulan ” Anlamdan Kelimeye” sisteminin
tasarim ve uygulanmasi sunulmustur.

Anlamdan kelime ¢ikarma yaklagimi, herhangi bir anlamsal ve dilbilgisel bilgi
kullanmadan kullanicinin tanimi ile Tiirkce sozliikteki tanimlar arasindaki benz-
erlikleri bulmaya dayalidir. ” Anlamdan Kelimeye” sistemi, bilgisayar destekli dil
ogrenme, bulmaca ¢6zme veya birden fazla kelimeli tanimlarin, bir kelime ile ifade
edilebilen versiyonunu ya da esanlamlarini 6grenmeye yarayan ters sozliikler gibi bir
cok alanda uygulanabilir.

Sistem, daha Once hi¢ gormedigi gercek kullamici tamimlarinda %72, farkli bir
sozliikten aliman tamimlarda %90 dogru kelimeyi anilan siraya gore ilk 50 sonugta

bulmaktadir.
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Chapter 1

INTRODUCTION

1.1 Motivation

The human brain is the best memory that can record and keep a huge number of in-
formation for a long time. Everyday, the recieved information from the environment
is processed, and stored in relevant parts of the brain. The linguistic component
of the brain is one of the well-developed ones. Words, their meanings, domains,
relationships between different words, and the grammars of languages are learned.
An avarage human being keeps a large vocabulary in his memory and, remembers

any of the words and uses it whenever he needs.

While speaking or writing, we can generally express our thoughts and feelings by
words without thinking for a long time what the correct words can be. The process
of calling out the words from the memory to tongue takes less than a few tenths of
a second. But, sometimes things do not go like clockwork even for human brain. In
our daily life, we can often forget or not remember a word that we use frequently
and exactly know its meaning. This can occur during any of our activities. While
writing a document, talking with friends, or solving a puzzle, we can not remember
which word to say or to write. Sometimes, we can not remember the name of an

object that we see, even if we know its name very well.

When we face this problem, it will be of no use to attempt searching in a tradi-



tional dictionary to find the word that we can not remember. In such cases, there
is a need for resources that can locate the word from its meaning. Extraction of
words from "meaning”s is an application that serves users, who can not remember

or want to learn a single-word version of a multi-word description.

There are much reasons we attack the problem of extracting words from ”mean-
ing”s to words for Turkish are manifold: Although some "meaning” to word reverse
dictionaries are available for English in print [1,2] and computer-based [3]. No such
tool is present for Turkish. Turkish posses challenging issues not encountered in
other meaning to word applications, and therefore, understanding and solving the
problem of extraction words from meanings for Turkish is itself an interesting re-
search issue. This thesis presents the design and the implementation of a Meaning
to Word dictionary (MTW), that locates a set of Turkish words, which most closely
matches the correct/appropriate one based on a definition entered by the user. The
approach of extracting words from meanings is based on checking the similarity
between the user’s definition and an entry of the Turkish dictionary without con-

sidering any semantics or grammatical information.

MTW can be used in various application areas such as computer-assisted lan-
guage learning, finding the correct words for the definition questions in solving
crossword puzzles, and searching the one word representations or synonyms of a

multi-word definitions in a reverse dictionary.

MTW is trained with 50 definitions from real users and 50 definitions from a
different Turkish dictionary [5] and tested with another set of 50 definitions from
users and dictionary. Results on unseen data indicate that in 66% of the real users
queries and 90% of different dictionaries queries, our system returns the correct
answer in the first 50 results. Additionally, the conclusion offers an analysis of the

system’s achievements and the areas for improvements for the system.



1.2 Outline of the Thesis

The organization of this thesis is as follows: Chapter 2 explains the problem with
detailed examples and contrasts it with information retrieval. Chapter 3 presents the
main natural language processing techniques in the context of information retrieval
and explains the algorithm that is developed for the problem, the applied methods
and evaluations of each method. Chapter 4 presents the results and conlusions follow

in Chapter 5.



Chapter 2

FROM "MEANING”S TO
WORDS

This thesis attacks the problem of finding the appropriate word (or words), whose
meaning matches the given user’s definition for Turkish language. In this thesis
definition stands for the user’s definition and word is the target, whose meaning

matches the user’s definition.

Suppose a user knows the definition of a word but can not remember the word
itself. The user then enters a variety of contextual phrases that approximate his
or her understanding of the word. In this work, both the user’s definition and the
dictionary entries are meaningful sequences of words that define a certain word.
Some examples of user definitions and the corresponding meanings of some words

that are collected during the implementation of MTW are listed below.!

o far
— User Definition: tasitlarin on kismina mutlaka takilan ve gece yolu
aydinlatmaya yarayan tasit aksesuar:

— Dictionary Definition: tasitlarin oén béliminde bulunan uzagr aydinlatan

gucli 151k verict

!These definitions are elicited from SU graduate students



e akimolcer

— User Definition: akima ol¢mek i¢cin kullanian alet

— Dictionary Definition: elektrik akiminin siddetini ol¢gmeye yarayan

arac, amperolcer
e yontem

— User Definition: izlenen metot

— Dictionary Deifinition: bir amaca erismek icin izlenen tutulan yol,

usul, sistem
e istifa
— User Definition: calistigr isten kendi istegiyle ayrilmak
— Dictionary Definition: kend: istegiyle gorevden ayrilma
e villa

— User Definition: yazlik biyik ev
— Dictionary Definition: yazlikta veya sehir disinda bahceli ve giizel
maustakil ev

e kornis

— User Definition: perdeleri asmak icin kullanilan bir tir mekanizma
— Dictionary Definition: perdeleri asmaya yarayan tahta veya metalden
arac

e hiicre

— User Definition: canlinin en kicik yapi tase

— Dictionary Definition: ince bir zar i¢indeki protoplazma ve cekirdekten
olusmus bir organizmanin yapr ve gorev bakimlarindan en kicuk birligs,

goze

For example, s/he knows the meaning of the word far;



- tasitlarin on kismina takilan, gece yolu aydinlatmaya yarayan aksesuar

However the actual definition of the word in the dictionary is:

- tasitlarin on boluminde bulunan uzagr aydinlatan giucli 151k verici

By using the user’s definition, MTW should return the word far most probably at
the top of the candidate list. Therefore, MTW deals with two challenging problems:

- locating words whose definitions are ”similar” to the query in some sense.

- ranking the candidate words using a variety of ways.

Figure 2.1 shows the general structure of MTW system.

| User Definition |

| Search in Dictionary |

| Rank Candidates |

Figure 2.1: The general structure of MTW

The similarity detection is done by using symbolic and statistical methods that
select terms (words, phrases, and other units) from meanings that are deemed to
represent their content. User definition "resembles” a typical relevant meaning, ev-

erything about this definition becomes a valid search criterion: words, collocations,



phrases, various relationships, etc., and a query is created from the user’s defini-
tion. A subsequent search process will attempt to match a preprocessed user query
against term-based representations of meanings in each case determining a degree of
relevance between the two. This relevance depends upon the number and types of
matching terms. Simply, the meaning’s relevance is a function of the number of each
query word that appears in the meaning. Figure 2.2 show the process of relevance

determination between the user’s query and each meaning in the database.

User's Definition

Candidat ith
Relevance Detection S atoares
Helevance scores

Database

Figure 2.2: The Process of Relevance Determination

For example, for the user’s definition and a word meaning from the database for

the word far:

User’s Definition: tasitlarin on kismina takilan, gece yolu aydinlatmaya
yarayan aksesuar
Dictionary Definition: tasitlarin on bolumunde bulunan uzagr aydinlatan

gucli 151k verici

The similar words tasitlarin, on, boliminde, and aydinlatan are detected as

tasitlarin and on directly exist in dictionary definition, the stems of aydinlatan
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and aydinlatmaya are similar, and the stems of boliminde and kismina have same
meaning. Therefore, the similarity score can be assigned 4 as the total number of

similar words are 4.

For the same word far another :

User’s Definition: tasitlarin on kismina takilan, gece yolu aydinlatmaya
yarayan aksesuar
Dictionary Definition: bir elektrik akiminin siddetini 6lgmeye yarayan

arac amperolcer

MTW is expected to compute a lower similarity score than the actual meaning’s
score as the meaning of the word akimolger is irrelevant for the user’s definiton.
The similarity score of this meaning is 1 because only the word yarayan matches

the user’s definition.

Sometimes similarity matching is hard, if the user enters a definition that is too
general. In such a case, the system may return many candidates, and most of them
can be correct in one way or the other, or none can be correct. As an example for
this case, when a user enters following definition with the intention of retrieving the

word cicek as:

- bir bitkl tird

Since the user’s definition is too general, the system returns thousands of can-
didates consisting of the word bitki where each of the returned words is a potential

candidate for the user’s definition such as:

abanozgiller = iki ¢eneklilerden sicak iilkelerde yetisen ve kerestesine
abanoz denilen bir bitki familyasi

abdiilleziz = akdeniz bolgesinde ve afrikada yetigen cok yillik ve otsu
bir bitki cyperus esculentus

acem lalesi = tagkirangillerden turuncu ve sari renkte cicekli yillik ve



cok yillik tiirleri olan tohumla saksida ve tarlada tiretilebilen bir siis bitk-

isi giineg topu

ziilfaris ziilfaruz = baklagillerden bir siis bitkisi ve bunun giizel kokulu
mor beyaz renkli sag liilesi goriiniigiinde olan kivintili ¢igegi phaseolus

caracalla

The following definition for the word gurur is a good example for the second case:

- wnsanlara ait karakter ozelligi onemli bir seye sahip olduklar: ya da onemli

seyler basardiklary zaman hissettikler: duygu
The dictionary meaning of the word gurur:
- kendini begenme buyiklenme kibir

Although the user’s definition is specific enough, the definition and the corre-
sponding meaning have no commonality. Also, the system can not find any similar
word matching the user’s definiton so the words in the candidate list unluckily do

not meet the user’s request.

The problem of retrieving words from their meanings, at first sight, seems to
be an information retrieval problem. Yet, it is distinct from information retrieval
in some important aspects. The following three sections explain the nature and
purpose of information retrieval, its similarities with, and its distinctions from our

problem.

2.1 Information Retrieval (IR)

Information Retrieval is a field that uses (mostly) statistical and symbolic techniques
to retrieve documents for a given query, employing little natural language analysis.

Information retrieval systems use some representation of the user’s query and the



documents to consider and find the subset of documents that are most relevant to
the query. A typical IR system responds to the user’s query by selecting documents
from a database and ranking them in terms of relevance. IR must find relationships
between the information needs of the users and the information held within the
documents, both considered in a very general sense, and neither directly available
to the computing system. People rarely supply enough information for the system
to determine what the user is looking for. For example, queries for WWW search
engines almost never exceed four words. An IR system well suited for general use
would be able to process very short queries. The selection process in IR systems has,
traditionally, relied on exact string matching. Unfortunately, such systems were not

precise enough in their selections, returning too many irrelevant documents.

The basis of most IR system is a very simple but very effective approach: First,
find the words in documents, and compare them to words in a query. Other types
of features are often used such as phrases, named entities (people, locations, orga-
nizations), and special features (chemical names, product names) instead of words.
File organizations or indexes are used for documents to increase the performance
of the system. Text indexing is the process of deciding what will be used to rep-
resent a given document. These index terms are then used to build indexes for
the documents. Different approaches vary in how they represent the query, the
document, and how they calculate the relevance. IR usually compares query-
document similarity. ”Similarity” can be measured in many ways such as string
matching/comparison, vocabulary used, probability that documents arise from same

model, or same meaning of text. Figure 2.3 shows the flow of the retrieval process.?

Information retrieval [19,23,25] methods have been around ever since the 1950’s.
In early systems, a human indexed by hand, all the books in the library, assign-
ing key words from a fixed set. (e.g., “computing”, “document management”).
The user could then enter queries based on these index terms (e.g., all books with
key words “computing” and “document management”). The details of the relevant

books would then be displayed, and possibly their location in the library. In 1960’s,

2This figure is available on the web from CMPSCI 646 lecture notes James Allan at University

of Massachusetts, Amherst
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Figure 2.3: The Flow of retrieval process

basic advances in retrieval and indexing techniques started. In 1970’s, probabilis-
tic and vector space models, clustering, relevance feedback, large, on-line Boolean
information services were introduced. In 1980’s, simple NLP methods have been
included, and IR is studied in the context. Starting in 1990’s, large-scale, full-text
IR and filtering experiments and systems, dominance of ranking, many Web-based
retrieval engines, interfaces and browsing, multimedia and multilingual, machine

learning techniques, and question answering were hot research subjects.

A retrieval model fixes the details of how we represent documents and queries,
and how we compare these to find relevant documents. There are a variety of

different models:

e Boolean Retrieval

e Ranked Retrieval



— Vector-space retrieval

— Probabilistic retrieval

The Boolean model of information retrieval does not use any statistics and rank-
ing. It is important for IR because it is the first model. In Boolean Retrieval,
A document is described as a set of features or index terms. e.g., ”computer”,
"retrieval”, ”information”, "natural language”. A query is a boolean expression
involving these terms. e.g., ”"computer AND (information OR document) AND re-
trieval”. Documents are counted as relevant if they satisfy the boolean expression
of the query. e.g., From the following set of documents, D2 and D3 would be rel-
evant for the query ”computer AND (information OR document) AND retrieval”.

Boolean retrieval only allows a yes/no answer concerning relevance.

D1: {computer, software, information, language}
D2: {computer, document, retrieval, library}

D3: {computer, information, filtering, retrieval}

Ranked retrieval methods allows us to rank documents in order of probability of
relevance. They represent document as long term vector D giving, for every possible
index term, whether it occurs in the document, e.g.:

D = {1,1,0,0,0,0,1,0,0}
This assumes fixed set of index terms, e.g.,:
{computer, software, information,...}

If the n'” item in the term vector is 1, this means that the document contains

the n'* index term in this set. The term vector can contain weights, indicating

importance of terms in the document. For example:

D = {0.4,1,0,0,0,0,0.2,0,0}
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Ranked Retrieval represents query ) similarly and use some measure to deter-
mine the likely relevance of document for the given query. There are two main
models for measuring relevance: Vector space retrieval [19] and probabalistic re-
trieval [23]. Vector Space Model [19] is one of these ranked retrieval models. It
treats the index representations of documents and query to vectors in a high di-
mensional Euclidean space. Each term is assigned a separate dimension and the
similarity measure is calculated with cosine of the angle that separates the two
vectors Q (query) and D (document). Cosine of the angle means normalizing the
vectors to the unit length and taking the vector inner product. In Vector Space
retrieval, the similarity between document and Query is computed using a vector

similarity function. For example, if the document and query is given as follows:

D = {1, 0.5, 0, 0.2}
Q=1{1,0,0,1}

Then, the calculation of similarity is;

sim(D,Q)=1x1+02x1=1.2 (2.1)

Document term weights are determined based on their frequency, f, in the doc-
ument, and their frequency, df, in the entire collection. If N is the number of words
in the entire collection then the weight is computed as follows: Term ”computer”
occurs 5 times in the document, D1, and 200 times in the collection. Term ”bezafi-

brate” occurs 3 times in a the document, D1, and 5 times in the collection.

number_of occurrence_in_document(t)

Lt d) = = (2.2)
number_of _occurrence_in_collection(t
a(t) = i ) 23)

For example, If N = 1000 then tf(computer,D1) = 0.005 and df(computer) = 0.2,
and tf(bezafibrete,D1) = 0.003 and df(bezafibrate) = 0.005 for terms ”computer”
and "bezafibrate”, respectively. In WWW search engines, the weights may be cal-
culated differently, e.g., ignoring df and using heuristics concerning where a term

occurs in document (e.g., title).
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Probabilistic Model [19,20] are another example for ranked retrieval models. In

probabalistic retrieval, relevance is viewed in probabilistic terms:

P(Relevant\Doc) (for a given query)

Then, Bayes rule and a set of independent assumptions are used, and a rank-
ing function that computes this in terms of simpler probabilities is derived (e.g.,

P(Relevant\X1) where X1 is index term).

Ranked retrieval systems typically allow free text queries, such as;

- anformation retrieval and filtering systems

Common words (e.g., and) are filtered out. Then (if using vector space model), for
each document, its relevance is found by adding the weights of the terms in the
document vector that occur in the query. The query term ‘weights’ are assumed
as 1 or 0. 1 indicates the existance of the word and 0 indicates the absence of the

word.

The result of a ranked retrieval system is a list of documents, ranked in order of
relevance. Many systems then allow an iterative process where user can mark which
documents are actually most relevant, and the system tries to revise the query. This
is usually done by adjusting the term weights of the query. For example, if all the
documents marked as relevant include the term T, the weight of term T in the query
is increased. Many methods have been used to adjust these query weights. This

may be viewed in probabalistic terms, or as a machine learning problem.

There are many alternative methods for term weighting and measuring relevance.
A traditional approach is for a given document collection, creates a test set consisting

of queries and a human-selected set of relevant documents.

First the retrieval model is used to find the N most relevant documents for each
query and the ”precision” and ”"recall” is calculated. The best retrieval model is
the one giving highest precision and recall. Recall and precision measure how good

a set of retrieved documents is compared with an ideal set of relevant documents.
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Recall is the proportion of relevant documents that are retrieved and precision is

the proportion of retrieved documents that are relevant.

2.1.1 Similarities between MTW and IR

This section explores the similarities of IR and MTW.

The goals of IR and MTW are similar. IR and MTW are inter-active systems
that take the real user’s needs and attempt to locate the most similar information
that matches the user’s needs. Generally, IR user enters some keywords about the
topic that he wants to find. Some examples of IR queries are listed below.

- Turizm acentalar:

_ Istanbul 1$ merkezleri

- El isleme sanatlar:

Similarly, a MTW user enters a variety of contextual phrases that approximate his
or her understanding of the word. Some examples of MTW queries are listed below.

- beklenmedik garip bir seyin sebep oldugu saskinlik, sasirma

- Bir kimsenin veya ailenin i¢inde yasadigr yer

- bir ist bir ustanin yaninda calisarak ogrenen kisi
In both of the systems, the user’s request is not used directly. User requests are
processed (through tokenization, stop-word removal, stemming) to determine the
search terms and generate a meaningful query. Then, IR and MTW return a list

of results that are expected to satisfy the user’s request. Suppose, the definition

entered by the user is;

- geceleri avlanan magaralarda yasayan ucabilen memeli hayvan
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MTW responds to this definition with a list of words that attempts to match the

user’s definition;

samur = kuzey avrupada yasayan cok yumusak ve ince tiiyleri olan
postu icin avlanan kiiciik hayvan martes zibelilina

aslan = kedigillerden erkekleri yeleli yirtic1 afrikada yasayan kuyrugu
ve ucu piiskiillii cok koyu sar1 renkli giiclii bir memeli tiirii arslan
yarasa = yarasalardan on ayaklari perdeli kanat biciminde geligsmig
viicudu yumusak sik kularla kapli iskeletleri hafif yapili ucabilen memeli

hayvan vespertilio

mors = morsgillerden kuzey atlantikte yasayan derisi disi ve yagi icin
avlanan bir memeli odobenus rosmsrus
balina = balinalardan yag1 ve c¢ubuklar i¢in avlanan memeli hayvan

kadirga baligi falyanos balaena mistycetus

Similarly, an IR user, using the search engine Google, enters his/her needs to

find the relevant documents with this topic as:
- yarasa

IR returns a list of document headings that are relevant to the user’s topic;

- Tiirkiye Chiroptera-Yarasa Tiirleri (www.geocities.com/mammalia-2000/chirop.htm)
- Memeliler (www.biltek.tubitak.gov.tr/cocuk/01/subat/memeliler.pdf)

- Bilim ve Teknik Web Sitesi :: Canlilar diinyas: (www.biltek.tubitak.gov.tr/canlilar/
TR-tur-listesi/liste-memeli.htm)

IR uses collection (or collections) as the resource of search for the user’s request.

This collection consists of thousands of documents. MTW uses a similar resource,
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the dictionary, that consists of thousands of definitions. Each document in IR col-
lection refers to each word-meaning pair in the MTW dictionary. Like user requests,
the documents in IR collection and the meanings in MTW dictionary are expressed
in natural language. As the resource sizes are large, both IR, and MTW do not use
the documents directly. An index language is used to represent the documents or

meanings to decrease the search space and increase the search time.

To find out the relevant documents, IR compares the query with each of the
documents in the collection. A similar process is applied to the user definition of
MTW. MTW compares the user definition and each meaning in the dictionary to
match the relevant one. Generally, the systems do this comparison with string match

or comparision.

Ranking the returned candidate lists in IR and MTW is the most important
task. Generally, users only check the first twenty or thirty entries that are returned
from the system. Therefore, returning an unordered list is inefficient as the user
wants to see the most relevant information before the others. Both MTW and IR
use a relevance score for each document or meaning in the collection and rank them
in a decsending order. Both of the systems attempt to return the most important

document or meaning at the top of the candidate list.

2.1.2 Differences between MTW and IR

IR seems to be similar to our system in a general frame but the question is whether
IR really meets our needs or not. Our study indicates that these similarities are su-
perficial and do not completely address our needs. Behind these surface similarities,
we can actually argue that MTW is quite different from IR. Below we discuss these

distinctions in detail.

Although the goals of MTW and IR seems similar as taking a query from the
user and returning a ranked list of relevant information, a detailed study shows that
they are different in some aspects. The IR user while entering keywords, expects

to see all of the related documents about his query and most probably does not
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want to rely on only one document’s information. Moreover, large IR collections
have many documents related to the same subject. For this reason, IR returns
several documents headings that are exactly relevant in the ranked list. At this
point, IR differs from MTW. The MTW user is interested in the correct word for
his definition, and expects MTW to return only one relevant word when possible.
Also, there can be only one (or a small number) relevant word that exactly matches
the user definition in the dictionary. This is because of the structure of MTW
dictionary, every meaning can be related to only one word or its synonyms. For
example: if the IR user’s query is yarasa, the system will return several documents
about bats, bat’s life, bat’s properties, kinds of bats and so on. On the contrary,

when the MTW user enters the definition;

- geceleri avlanan magaralarda yasayan ucabilen memeli hayvan

the user expects to see the word yarasa at the top of the ranked list.

The query expression in IR and MTW are different. The IR user enters the
keywords to define his query. These keywords are generally a group of words which
defines the important properties of the user’s interest. As mentioned previously, the
avarage number of query words in search engines such as Google does not exceed
more than four or five. On the contrary, MTW needs long and detailed information
as it does not perform a keyword search. In MTW, the user enters a grammatical
sequence of words (a sentence or a phrase) instead of keywords to express his def-
inition. As the user attempts to exactly define his needs, the length of the query

varies and rarely reduces to less than six or seven words.

The space size of the collections and the documents is another difference of IR
and MTW. As mentioned earlier, IR systems have large collections with hunderds
of thousands or millions of large documents. These documents are generally long
articles consisting of several paragraphs. In contrast to IR, the space size of MTW
is small compared to a document database. MTW has a medium collection with

thousands of small documents. MTW documents are usually one sentence long
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defining a word’s meaning. Table 2.1 compares some IR and MTW collection.?

,4

Collection Characteristics | Cranfield | CACM ISI West TREC2 MTW
Collection size(docs) 1,400 3,204 | 1,460 11,953 742,611 89,019
Collection size(Mb) 1.5 2.3 2.2 254 2,162 4.3

Unique Stems 8,226 5,493 | 5,448 196,707 1,040,415 21,653
Stem Occurrences 123,200 | 117,578 | 98,304 | 21,798,833 | 243,800,000 | 715,612

Table 2.1: Statistics of IR collections and MTW collection

Table 2.2 shows the document statistics of databases used in TREC2 and MTW

collection. °

Collection Size (Mb) | # docs | Avg. # words/docs

Financial Times (FT) 564 210,158 421.7

Federal Register (FR) 395 55,630 644.7

Congressional Record (CR) 235 27,922 1373.5

FBSI 470 130,471 543.6

LA. Times 475 131,896 526.5

MTW 4.3 89,019 7.8

Table 2.2: Document statictics of TREC2 collection and MTW collection

Lastly, the collections of the systems are different. Generally IR systems have

collections from different sources, such as newspaper articles, papers, magazines,

personal web pages, lecture notes, and so on. The collection of MTW has only one

source: A set of definitions of words.

2.2 Applications

MTW has many applications. One application can be a Reverse Dictionary. Al-

though there are many hard-cover [1,2,6,9] and computer-based [2] applications

3Turkish language statistics are used for MTW

4The total number of definitions are presented as ’docs’ in MTW
>The Text REtrieval Conference (TREC), co-sponsored by the National Institute of Standards

and Technology (NIST) and the Defense Advanced Research Projects Agency (DARPA)
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for English, a reverse dictionary is not available for Turkish. A reverse dictionary
works the opposite of the traditional dictionaries [4,5]. In traditional dictionaries,
the user can find detailed definition of the word that s/he knows. For example, the
user hears the word sayfiye and wants to learn the exact meaning. By looking at the

alphabetically presented dictionary, under the letter S, the user finds the meaning:

- yazhkta veya sehir disinda bahceli ve giuzel mustakil buyik ev

In the reverse dictionary, the process works in opposite fashion: The user wants to
learn if s/he can express yazlik biyik ev in only one specific word. By using the

system, user obtains the answer villa or sayfiye.

Casey’s SnowDay Reverse Dictionary [3] uses n-gram analysis to determine
matches between a query (the definition that the user types in) and the defini-
tions in the dictionary. N-gram analysis is a method of matching documents based
on the statistical similarity of occurences of n-grams (n-length combinations of let-
ters) in the text. The similarity of two documents can be determined by looking at

how many of their n-grams match.

Another application of MTW can be crossword puzzle solving. Puzzle solving
systems [7-10] for English generally contain a huge size of vocabulary opposed to a
dictionary. [10] Puzzle solving is a classical constraint satisfaction problem. These
puzzle solvers want user to type in partial words with question marks filling in for
unknown letters and return a list of words that satisfy the constraints of the user.

During this process, the puzzle solver does not use any meaning information of

matching the constraints as;

engrossing
engagement
encampment
enchanting

endearment
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The words in the puzzle solver’s list have completely different meaning. The user
should decide to match the correct one by adding new constraints to his pattern.
OneAcross Puzzle Solver [8] uses a kind of a meaning information similar to MTW.
System wants a clue (optional) and a pattern that you can either enter the length
of the word (if a clue exists) or you can type the word with question marks for
unknown letters. Table 2.3 shows some examples of clues and patterns of Oneacross

puzzle solver.

Pattern Clue
Trout Basket 5)
- 7a7t?7s77ke
Cut 777
Scheme r?7?

Table 2.3: Examples of clues and patterns of Oneacross puzzle solver

MTW presents a new view to puzzle solving. Crossword puzzle solving is viewed
as matching the correct word to the puzzle clue instead of contraint satisfaction.
With MTW, the user enters the clue of the puzzle and the other constraints such as
length or known letters, if available. The constraints are not so necessary because
MTW searchs the similarity of the clue with the meanings in the dictionary. These
constraints can only increase the precision of the system. MTW can only solve
vocabulary clues. Other clues such as special names, places or events are out of the

scope of MTW puzzle solving.
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Chapter 3

IMPLEMENTATION

3.1 General Structure

The scope of the current work is the implementation of the meaning to word sys-
tem for Turkish language. Our approach to MTW is based on checking individual
words in the user’s request by making a number of analyses without taking into
consideration the semantics or the context. Figure 3.2 shows the general structure
of the MTW system. MTW uses advanced natural language processing techniques
to enhance the effectiveness of term-based information retrieval. The backbone of
the system is a search engine, augmented with various natural language processing
for translating the user’s information request into an effective query, that retrieves
inverted files from pre-processed database, and then searches and ranks the words in
response to the user queries. A user request is given as input to the program, and the
program checks the words one by one to find the similar definitions containing these
words. At the begining of the system, the database text is processed once to extract
and analyze the terms as syntactic contexts. The user’s natural language request
is also processed and all indexing terms occurring in it are identified. In the user’s
request and database processing stage, removing the low quality terms(frequent and
no-meaning words) from the queries is at least as important as adding synonyms and
hyponyms. In some instances, low quality terms has to be removed before similar

terms can be added to the query or else the effect of query expansion is drowned out
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by the increased noise. After the query is constructed, the database search follows,
and a ranked list of words is returned. It should be noted that all the processing

steps are fully automated, no human intervation or manual encoding is required.
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3.2 Databases and Other Sources of Information

MTW uses two sources to match the appropriate words for the user’s query. These
sources are the Turkish Dictionary and Turkish wordnet. Turkish Dictionary is the
basic source of retrieving words from meanings. Turkish wordnet is a helper source
to Turkish Dictionary to expose the relations of words in the user’s request and
definitions in the Turkish dictionary when needed. Following two sections explain
the properties and the usages of the Turkish dictionary and Turkish wordnet in

detail.

3.2.1 Dictionary

MTW needs a dictionary to search in and match the corresponding meanings to the
user’s request. MTW uses the Turkish Dictionary that is prepared and published
in print and electronic copy by the Tiirk Dil Kurumu (TDK - Turkish Language
Association). Each entry of TDK dictionary has 8 different fields indicating the
word (hearword), the entry number (entry-no), the multiple number (mult-no), the
sense number (sense-no), the type of word (word-type),the meaning of the word
(meaning),the type of usage (usage-type) and the word’s context (context) for each
of the words. These entries shows the word, entry, multiple and sense numbers, the
type of the word (noun, exclamation, adverb, adjective), its meaning, the type of

usage (public, metaphor) and lastly the context (music, philosophy, theatre).

MTW uses a simplified version of the TDK dictionary as MTW pays no attention
to the part-of-speech, context or sense of the word. Thus, the MTW dictionary only
has alphabetically ordered words and their meanings. In the dictionary, each line
contains only one word and its corresponding meaning. The Turkish dictionary used
in MTW has 89,019 entries with 82,489 unique words and 21,653 unique stems. The
number of unique words are less than the number of entries. TDK dictionary treats
each sense of the words as a different entry. For example the word hortum has three
different senses and each of them is treated as a different word as their meanings

are different.
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1- hortum = Filde ve baz boceklerde boru bi¢iminde uzamig agiz veya burun

bolumii.

2- hortum = Tulumba veya musluklara takilan genellikle plastikten uzun boru.

3- hortum = Hava veya suyun hizla doniip siitun biciminde yiikselmesiyle olusan,

alani dar bir siklon gesidi.

Table 3.1 shows the general structure and some entries of the Turkish dictionary

used in MTW.

Although dictionary is the main resource for searching, it is too big to search in

it directly. Therefore, dictionary is processed and index and frequency tables are

produced to efficient search. Further, these tables will be explained in detail in the

following sections.

Headword | entry- | mult- | sense- | word- | meaning usage-| contex
no no no type type

celep 1 0 1 is. koyun keci sigir gibi ke- | - -
silecek hayvanlarin ticare-
tini yapan kimse

evirmek 1 0 2 - yapisini degigtirmek taklip | - -
etmek

imparator | 1 0 1 is. bir imparatorlugu yoneten | - -
kimse

ok 1 0 1 is. yayla atilan ucunda sivri bir | - -
demir bulunan ince ve kisa
tahta cubuk”

para 1 0 1 is. Devletge bastirilan iizerinde | - -
saymaca degeri yazili kagit
veya metalden odeme araci
nakit

para 1 0 2 - Kurusun kirkta biri esk. -

Table 3.1: Examples from Turkish Dictionary
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3.2.2 WordNet

WordNet [17] is an on-line lexical reference system developed in Princeton University.
WordNet’s design is inspired by current psycholinguistic theories of human lexical
memory. English nouns, verbs, and adjectives are organized into synonym sets, each
representing one underlying lexical concept. Different relations link the synonym

sets.

The Turkish wordnet is structured in a similar way as the WordNet around the
notion of a synset, which is a set of synonymous word meanings. Two expressions
are synonymous in a linguistic context C, if the substitution of one for the other
in C does not alter the truth value. Table 3.2 displays some synsets from Turkish

wordnet.

Synonym Table

{durum, vaziyet, hal, keyfiyet}

{nakil, nakliyat, transfer, tagi}

{tavir, davranig, hareket, huy}

{gam, keder, hiiziin, elem, iiziintii, stkint1}

Table 3.2: Examples from the Synonym Table

Basic semantic relations such as hyponymy /hypernymy,antonymy and meronymy
are links between these synsets. Hyponymy is a semantic relation between word
meanings: e.g. akcaaga¢ is a hyponym of aga¢, and aga¢ is a hyponym of bitki.
Antonymy is a lexical relation between word forms: e.g. words zengin and fakir are
antoyms. The antonym of a word x is generally not-x. Meronymy is a part-whole
(or HASA) semantic relation between word meanings: e.g araba has tekerlek (as a
part) or tekerlek is a part of araba. Figure 7?7 shows the structure of wordnet. There
is also an equivalence relation for each synset to the closest concept from an Inter-
Lingual-Index (ILI). The ILI contains all WordNet synsets but is extended with any

other concept needed to establish precise equivalence relation across synsets.
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|yapay nesne| |Dogal nesne|

tasit araci

| otomobil, araba | |

spor araba

Figure 3.2: The Structure of Turkish wordnet

3.3 Dictionary Processing

Although the main components, dictionary and wordnet, are available in the system,
MTW needs the additional information in some phases. As the dictionary is too big
to traverse frequently, it is necessary to use relatively small files that are derived
from the dictionary. These files contains only some important information about
the dictionary. For example, while searching for relevant definitons to the user’s
query, it is not effective to do the search in the original dictionary. Using a small file
that consists of the line numbers of each word is more effective. In addition to the
line numbers, sometimes MTW needs the frequencies of the words of user definiton.
Again, it is not efficient to traverse the dictionary to calculate the frequencies of

words.

The following sections explain the generation of index and frequency files and

additional information derived from these files.
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3.3.1 Index Files

IR systems search thousands of documents and it is inefficient and time consuming
to do the search in the original collection. Therefore, there is a need for indexing
that on some means of indicates what documents are about instead of keeping the
original documents. The search is done in an index file, which has a very small size

with respect to the original collection.

Indexing is the base for retrieving documents that are relevant to the user’s need.
An index language is the language used to describe documents and requests. The
elements of the index language are index terms, which may be derived from the
text of the document to be described, or may be arrived at independently. Index

languages for IR vary from simple to complicated ones [11-15].

Although MTW does not have a large collection, the dictionary is indexed to
make the search effective within a reasonable time. Instead of complex indexing
algorithms, a simple one is used because the each document of MTW is only one

sentence long.

Word Index Table

While matching the corresponding meanings to the user request, MTW uses words
as terms. Therefore, the first idea is to index the word meanings according to the

words that they have. Word Index Table is stored in the hash table.

Indexing is done with one word by word traverse of the whole dictionary. For
each line of the dictionary, the words are taken sequentially. The hash table is
checked whether the word occurs or not. If the hash table does not contain this
word, then a new entry is added. The word is assigned as the key of this entry and
the line number is assigned as its value. If the word is already in the hash table,
then its line number added to the value array. Table 3.3 shows some examples from

the Word Index Table.

The first entry is the word, and the following numbers represent the lines (or
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Word Lines

sepi 70099, 70102, 74333

sepici 19384, 74324

sepicilik 19383

sepicinin 70100

sepilenmek | 70103

sepilenmis | 56889, 70105

sepilemek | 63906, 70101, 70104

Table 3.3: Examples from word index file

words) consisting of this word. For example, the stem sepilemek occurs in the word

meanings 63906 (palamutlamak), 70101 (sepileme) and 70104 (sepilenmek).

Stem Index Table

Stem Index Table is generated by the help of Word Index Table instead of traversing
the dictionary. The only difference of Stem Index Table from Word Index Table is
the index terms. The index terms are the word stems instead of the original words.
For generating the Stem Index Table, Word Index Table is traversed once and the
indexes are stored in hash table similarly. Stemmer processes each word in the Word
Index Table and stems are produced. Then this stem is searched in the hash table.
If the stem exists in the hash table, then all the lines that this word occurs in are
added to the value array of the stem. Otherwise, a new entry is added and the stem
is assigned as the key and the lines that the stem occur are added as the value.
Sometimes, stemmer produces more than one stem e.g. for the word sepilenmis
stemmer produces sepile and sepi. For such cases, the algorithm checks both of the

stems and adds the lines to all of the stems as values.
Table 3.4 shows a part of the Stem Index Table.

The first entry is the stem, and the following numbers represent the lines (or
words) coming from this stem. For example, the stem sepile occurs in the word

meanings 70103(sepilenme), 70104 (sepilenmek), 70101 (sepileme), 70105(sepili),
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Stem Lines

Serap 36651, 83593, 66477

Septik | 51403, 51404, 53553

Sepile 70103, 70104, 70101, 70105, 63906, 56889

Sepi 70103, 70100, 19383, 74324, 70099, 19384, 70105, 70102, 56889, 74333
Seny6r | 52660, 70065, 70066

Sempati | 31321, 23529

Table 3.4: Examples from Stem Index file

63906 (palamutlamak) and 56889(mesin). From Table 3.3, the exact words are

sepilenmek, sepilemek, and sepilenmais.

3.3.2 Frequency Tables

IR systems use term frequencies for ranking and weighting the terms in the queries
and documents. In order to discriminate between good terms and poor terms, it is
convenient to take into account the differences between the distribution of terms in
the overall document collection and the distribution of the same terms in a set of
relevant documents. IR expects that good terms will occur with a higher frequency
in relevant documents than in the whole collection, and poor terms will occur with

the same frequency (randomly) in both.

A similar idea is used in MTW. The relevance definition is changed a little and
simplified. Because MTW has one sentence long definitions instead of long docu-
ments, it is not possible to determine the informativeness of a term in a specific
meaning. But the frequency information can be used to determine the informative-
ness of the word in the whole collection. If a word’s frequency of the user’s request
is high in the collection, then this word does not give much information because it
occurs in many meanings. Otherwise, the word will be considered a specific word
as it occurs in a few documents. Two different frequency tables are generated from

Turkish Dictionary: Word Frequency Table and Stem Frequency Table.
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Word Frequency Table

The first aim of generating the Word Frequency Table is the determination of infor-
mative words as mentioned before. Word Frequency Table is generated by the help
of Word Index File. For each of the words in Word Index File, the line numbers
are calculated and recorded in Word Frequency File. Table 3.5 shows a part of the
Word Frequency Table.

Word Frequency
caligtirmadan | 1

kul 25

yap 4

yapi 194

yapig 8

kiicilik 1028

bir 19901

bul 1

Table 3.5: Examples from word-frequency table

If MTW is in Direct Word Match Mode then Subset Generation and Sorting uses
Word Frequency Table. Subset Generation and Sorting will be explained in detait

in the following sections.

Stem Frequency Table

The generation of the Stem Frequency Table is similar to the Word Frequency Table.
Stem Frequency Table is generated by the help of Stem Indez File. For each word in
Stem Index Table, the line numbers are summed and the result is recorded in Stem

Frequency Table.

In addition to Subset Generation, stem frequencies are also important for Stop

Word Removal. Table 3.6 shows a part of the stem frequency table.

The first entry of Table 3.6 is the stem and the second entry is its frequency.
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Stem Frequency

kul 2792
bul 3051
yap 6283
gel 2815
kiiclik 1070

antreman | 3

antrenor

4
antitoksin | 2
2

antitez

Table 3.6: Examples form stem-frequency table

Table 3.6, shows that the word antitez is more informative than the word bul.

If MTW is in the Stem Match Mode or Query Expansion Mode, then it uses
Stem Frequency Table in Subset Generation and Sorting. Stem Frequency Table is
also used in generating the Stop Word List.

3.3.3 Stop Word List

Stop Word List contains the most frequent or function words. To generate a stop
word list, two different methods are used. Firstly, Stem Frequency Table is sorted in
an ascending order and the first hundred words are taken as frequent and added to
the Stop Word List. Secondly, the words that have no meaning such as prepositions,
exclamations are determined and added to the Stop Word List. Stop Word List is
used in the Stop Word Removal to eliminate the non-informative words from the

user request. Table 3.7 shows some of the stopwords.
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List of Stopwords

i

bir

ol

o, bu, su

de, da, den, dan

veya, ya da

sey

ve

Table 3.7: Examples from stopwords

3.4 Query Generation

NLP techniques are often applied to enable users to enter a natural language request
without bothering them with formalisms such as Boolean connectives. In IR sys-
tems, NLP is used to preprocess the documents in order to extract content carrying
terms, discover inter-term dependencies and build a conceptual hierarchy specific to
the database domain, and to process user’s natural language requests into effective
search queries. The NLP techniques presented in this section result in a representa-
tion of dictionary and user request that is closer to the actual meaning of the text,

ignoring as many of the irregularities of natural language as possible.

A typical approach to dictionary indexing and query processing is the follow-
ing. First a tokenization process takes place to extract the tokens, then words are

stemmed, and finally the stop words are removed.

MTW uses a similar approach for query processing. Firstly, the terms are se-
lected and tokenized. Then, different morphological forms of words are normalized
to a stem, so that words such as kisiler and kisi can be related. Finally, semanti-
cally irrelevant words that only add clutter, such as prepositions, conjuctions and
pronouns and high frequency words are eliminated. While these function words are
important for proper analysis of complete sentences, they can be safely removed as

single-word size tokens are used in MTW.
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MTW Process has three steps to generate a useful/meaningful search query:

Tokenization, Stemming, and Stop Word Removal.

3.4.1 Tokenization

In IR systems, single terms are used for creating document index and query [24].
The words in documents and the user’s natural language query words are individual
terms of the vectors. Single terms are insufficient to express the whole meaning of
the document or query, so different multiple term techniques have been in later IR

systems.

Tokenization approach used in MTW divides the symbols into two parts: Word
symbols and non-word symbols. Characters other than letters and digits are non-
word symbols. Non-word symbols are eliminated from the definition because they
are unnecessary in further processing. To standardize the words, all uppercase word

symbols are changed to lowercase symbols.

For example, the following definition:

- Satilan bir malin; cinsini, miktarini, fiyatine ve toplam tutarini belirten ve

satier tarafindan dizenlenerek aliciya verilen belge

is transformed to:

- satilan bir malin cinsinie miktarine fiyatine ve toplam tutarine belirten ve satict

tarafindan dizenlenerek aliciya verilen belge

after tokenization.

3.4.2 Stemming

Generally, the words of the user’s definition and the corresponding definition in the

dictionary may have the same stem but different affixes. Stemming enables matching
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different morphological variants of the original definition’s words and it is a kind of

normalization [22,24]. Figure 3.3 shows an example of words that have same stems.

illerde

[ Mden [ 0 Je—{ fm ]

ilde

illerinde

Figure 3.3: Different variants of il

A stemmer applies morphological rules to normalize the words. Although stem-
ming helps to match the morphological variants, it also can hampe the retrieval.
Sometimes stemming algorithms can produce different meaning stems for a word,
such as for the query en yiksek yer, the stemmer gives two different stems yik and
yuksek for the word yiksek; and for the query evlenmemsis kadin, the stemmer gives
kady and kadwn, for the word kadin; where yuksek and kadin are the correct stems
for the queries respectively. In these cases, the user questions why some offered
words are candidates that were not entered. A solution to this problem can be the
part-of-speech determination; a lemmatizer can find the correct lemma before the
stemming process. Another approach for finding morphological variants is to gen-
erate all possibilities for the query and not to change the dictionary meanings. For

example, the following tokenized definiton:

- satilan bir malin cinsinie miktarin fiyating ve toplam tutarine belirten ve satict

tarafindan dizenlenerek aliciya verilen belge

is transformed to:
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- sat bir mal cins miktar fiyat ve toplam tutar belirt ve sat taraf dizenle al ver

belge

after the stemming process.

3.4.3 Stop Word Removal

Stop words are words that contribute nothing or very little meaning; they should
be removed from the query and dictionary (or meanings) [24]. The user’s definition
may contain such words. A word can be a stop word from two different views. If
a word occurs frequently in a dictionary, it will retrieve many meanings from the
dictionary thus it is not an informative word. The selection of stop words based on
frequency is simple: the top 200-300 frequent words in the dictionary are selected
as stop words and removed from meanings and query. In our dictionary, words such

as g, bir, and ol are examples for most frequently occurring words.

Stem Frequency Table is used for stop word removal as Word Frequency Table
is not suitable because of the aggulative structure of the Turkish Language. For
example, the words bir, biri, birinde, birileri can be considered as stopwords and the
frequencies of the words are 19901, 12, 4 and 2, respectively. With these frequencies,
it is possible to eliminate only the word bir. The others is not detected as stopword
although all of the words have the same stem bir. Stem Frequency Table having
the frequencies of all words helps the selection of frequent words. For example, the

following stemmed definition:

- sat bir mal cins miktar fiyat ve toplam tutar belirt ve sat taraf dizenle al ver

belge

becomes:

- sat mal cins miktar fiyat ve toplam tutar belirt ve sat taraf dizenle al ver belge

after the stop word removal process.
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If a word has little meaning conceptually, it is also a stop word. These words
should be eliminated without looking at their frequency. If the frequency of this
word is low, it is still dangerous to add it to the query set. A conceptual stop
word can affect the ranking negatively. Words for prepositions, and determiners are
examples of stop words. In Turkish, some stop words are ve, o, bu, de, da, and ya

da. For example, the stemmed definition

- sat mal cins miktar fiyat ve toplam tutar belirt ve sat taraf dizenle al ver belge
becomes

- sat mal cins miktar fiyat toplam tutar belirt sat taraf dizenle al ver belge

after the stop word removal process.

3.5 Query Processing

In IR systems, while searching for the correct meaning for the user’s request, rarely
all of the query words can be matched with the relevant documents. Only some
of the words can match the relevant documents while the others can not. For this
reason, an approximate match is more suitable than the exact match of user’s request
with the dictionary meanings. Sparck-Jones, Walker, and Robertson [18] introduces
a binary-independent probabilistic IR model. In this model, all of the different
subsets of terms must be generated for user’s query and each of the sets are treated
as a different query. The system is expected to search and find relevant documents
for all of the subsets. For the query ’ social political’, there are 4 different sets that
must find their place with their Boolean representations: ’social and political’ (1,1),
’social not political’ (1,0), ’political not social’ (0,1), 'not(social or political)’ (0,0).
The system do not search the set (0,0), because it is labeled as irrelevant at first.
The rest of the sets can be relevant for the query. Hence, the systems searches for

all of these sets.
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Similarly,users do not enter all of the words of the correct definition everytime.
User requests rarely contain all of the relevant words. Generally, correct meaning
matches some words of the user’s request, while it does not match the others. For

example the word wvilla:

- User Definition: yazlik biyik ev

- Actual Meaning: yazlikta veya sehir disinda bahgeli ve guzel mustakil ev

Only the words yazlik and ev matches the actual meaning.

Although the word buytuk does not match any of the words in this meaning,
this meaning is the correct one for the user’s query. A similar idea like [18] is
implemented in MTW. Subsets are generated as queries from the original query and

MTW search all of these subsets.

Still, there is one point to take into account while searching subsets in the dic-
tionary, what is the order of the generated subsets? An unordered search of the
subsets gives irrelevant results. Therefore, MTW should determine the relevance
of each subset and rank them in order to their relevance. For example, searching
the (n-1)-word subsets before the n-word subsets is nonsense. An algorithm is im-
plemented to rank the generated subset. The more informative subsets should be
ranked at the top of subset list and they should be searched before the other subsets.

Following two sections explains the Subset Generation and Subset Sorting in detail.

3.5.1 Subset Generation

To generate all subsets from the query, a subset generator processes the query and
all 2" — 1 subsets of the n words of the query are produced. Figure 3.4 show the

structure of subset generation.

If the number of words in query increases then the number of subsets increases
exponentially. This causes the increase of the search time. As one of the aims
of MTW is to complete the search in a reasonable time, a threshold is introduced.

After several experiments, the threshold value is assigned as eight. In another words,
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Query

O nwords level
O O ......... O 11 words level

|
|
I
|
Y
O O ........... © 1 word level

Figure 3.4: Structure of Subset Generation

MTW can use maximum eight terms from the user request. MTW sorts the terms in
an acsending order by the help of Stem Index File and Word Index File and selects

the most informative eight terms from the query.

A list of subsets is now available for the system:
{vazlik biiyiik ev, yazlik biiyiik, yazlik ev, yazlik, biiyiik ev, biiyiik, ev}

After generating subsets, the system searches the definitions for each subset. For
example, for the subset yazlik ev, the system finds all words which contain the words

yazlik and ev together in their meanings.
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Subset number | yazlik | biiyiik | ev | Generated subset
1 1 1 1 | yazlik biiyiik ev
2 1 1 0 yazlik biiyiik
3 1 0 1 yazlik ev
4 1 0 0 yazlik
5t 0 1 1 biiyiik ev
6 0 1 0 biiyiik
7 0 0 1 ev

Table 3.8: Subset generation table for query yazlik buyuk ev

3.5.2 Subset Sorting

Searching the meanings with an unordered subset list is not efficient because the
system does not know which of the subsets can give the correct meaning so it searchs
all of of the subsets. Assume that there 11 words in the query, then the number
of the subsets is 2048. Searching all of the 2048 subset is time consuming to find
the relevant word for the user’s definition. With sorting, the system starts from the
most informative subset that has more words than the others. A threshold is used
while searching, such as 1000 candidate words, and then these candidates are sorted

and the result list’s first n word is printed to the user.

For the query yazlik buyik ev, we want to rank the word wvilla, with meaning
yazlikta veya sehir disinda bahceli ve giizel maistakil biytk ev before the word konak
with meaning buyuk ve gosterisli ev. For this reason, the subsets are sorted in order

to their number of words. The sorted list becomes:

{yazlk biyik ev, yazlik biyik, yazlik ev, yazlik, biyik ev, biyik, ev}

Now, it is guaranteed that the system is able to find the most similar ones before
the others. But still there exists a problem. Suppose there are two words that
match the same number of words in their meanings. The aim is to find the word
that matches more informative words than the other definitions so the system should

decide which of the subsets are more informative than others, again preserving the
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first ranking criterion, the number of words of the subset [21].

There is a need for the selection of informative subsets in the same number of
words group. The Word Frequency Table and Stem Frequency Table are used to
determine the degree of informativeness of a word. Table 3.9 shows the frequencies

of each word in the dictionary.

Word | Word Occurrence | Stem Occurrence

yazlik 9 12
biiyik 931 1168
ev 157 734

Table 3.9: Frequencies of each word of the query yazlik biyik ev

From Table 3.9, it is easy to conclude that the word yazlik is more informative
than the words biyik and ev, and the word ev is more informative than the word
biyik. This is not surprising because the word biuyiik is a general adjective and it
can be used with any noun, and the word yazlik is a specific kind of the word ewv.
With the help of this information, it is useful to search the word yazlik before ewv,

and buyik.

The problem for the one-word subsets is solved, this is not good to multi-word
subsets. For example, it will be logical to search the subset yazlik ev before the
subset biyik ev. To solve this problem, the logarithms of word frequencies are
added and the result is used to define the information measure of the subset. As
the frequencies of words are to small, the sum of word frequency logaritms is used

instead of directly multiplying the frequencies. The sorting formula:

ZiESubsetj log (fre%')
N;

where, freg_i is the frequency of i word and Nj; is the number of words of the

relevance_of_subset(j) = (3.1)

jth subset. The frequency of the word is calculated by dividing the number of

occurrences by the total number of words of the dictionary as:

occurrence(i)
= 3.2
freq total_words (3:2)
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The total_words is constant for any document. For our dictionary, the total

occurrence is 715,612. After sorting the subsets the last order is:
{yazlk biyik ev, yazlik ev, yazlik biyik, biyik ev, yazlik, ev, biyik}

After sorting the subsets, the system is ready to search for the correct word (or

words) in the dictionary.

3.6 Searching for "Meaning’

MTW searches all of the subsets in the dictionary. The search algorithm is as
follows. Two hash tables, Final set and Word Set, are used to find the words that
this subset exists in. For each subset, the search starts with the first term in the
subset. The lines that the word occurs in are determined from the index tables and
assigned to the Final Set. In a similar way as the Stem Index File and Word Index
File, the line number (line) refers to each word’s definition. For the following words,
the lines of the word is assigned to Word Set instead of Final Set. Then Word Set
and Final Set are intersected. For any line of Final Set occuring in the intersection,
the line stays in the set. Otherwise, the line number is eliminated from the Final

Set.

If the intersection of the Final Set and Word Set is empty, the process is termi-
nated for this subset as there is no line containing all of these words and the process
continues to search in for the following subsets. Otherwise, the process is finished

and MTW takes the resultant lines to the Candidates Set.

Three different methods are implemented for MTW. In each method, either the

type of terms are changed or new terms are added to the user’s query.

3.6.1 Direct Word Match

Simplest idea for finding the similarity between two phrases is to directly match the

common words of both, then decide the commonality with a threshold, and return
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the best matching word.

The Direct Word Match searches the words of the query in dictionary without
any process. This means that a word in the query must exists in the meaning exactly.

This method is the baseline of the system. For example, the following query,

- geceleri avlanan magaralarda yasayan ucabilen memeli hayvan

the words are taken directly as terms and the query becomes

- {geceleri, avlanan, magaralarda, yasayan, ucabilen, memeli, hayvan}

Direct Word Match searches these words in the dictionary by the help of Word
Index File for each generated subset. The following two meanings are ranked at the

top of the list:

- Definition #1: yarasalardan on ayaklary perdeli kanat biciminde gelismis
vicudu yumusak sik killarla kaply iskeletleri hafif yapilr ugabilen memeli hay-

van vespertilio (word: yarasa)

- Definition #2: kuzey avrupada yasayan cok yumusak ve ince tiyler: olan

postu i¢in avlanan ki¢ik hayvan martes zibelilina (word: samur)

The user searches for the yarasa, and both of the words yarasa and samur
match the user request. The word yarasa comes from the subset {ucabilen, memeli,
hayvan} and the word samur from the subset {avlanan, yasayan, hayvan. Although
only three words common in their meanings, these words are the most relevant words

and therefore it is ranked at the top of the returned list.

3.6.2 Stem Match

If searching the words does not work for all cases, then searching the stems can be
a solution [22]. Stem Match searches the word stems of the query, instead of the

exact words, in the word meanings by the help of Stem Index file. For example:
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- Query: akvma 6l¢gmek i¢in kullanian alet (word: akimolger)

- Meaning: bir elektrik akimanan siddetini 6l¢gmeye yarayan ara¢ amperolcer

At first sight, none of the query words is matching the correct definition and
there are lots of candidates containing the word alet, kullanilan, and so on, in its
definitions so the correct word is not in the returned list and all of the returned

words are irrelevant for the user’s query if we use Direct Word Match.

- Query: akim ol¢ kullan alet

- Meaning: elektrik akim siddet ol¢ yara ara¢c amperolcer

With the Stem Match, the query words are replaced with the stems, and the
query is akim, 6l¢, icin, kullan, and alet. Stem Match matches the words akim:
and akimanin, and the words ol¢gmek and olgmeye because the words have the same

common stems akim and ol¢, respectively.

3.6.3 Query Expansion Match

Generally, for a specific word, the user’s definition and the word’s meaning try to
express the same concept but with different words. The words of the query and
the dictionary meaning are similar but expressed with different syntaxes. The users
of retrieval systems (or search engines) often use different words to describe the
concepts in their queries than the authors use to describe the same concept in their
documents. In experiments, two people use the same term to describe an object less

than 20% of the time.

For matching these kinds of words, a new method is introduced. The solution [16]
is to expand the user’s query with additional similar words. There are two different
approaches for query expansion: Relevant Answer Expansion, and Similar Word
Expansion. First one expands query with unexpanded query’s relevant answers.

Second one expands the query with word relations.
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In Relevant Answer Expansion, firstly the original query is tried in the system,
and the candidates are ranked by their relevance. Then, top scored n candidates
are taken for the expansion, and the relevant words of these candidates are used
to expand the query. This expansion is widely used in IR systems but it is not
applicable for our case. Relevant Answer Expansion uses the document frequency
and term frequency to detect the relevance of a word in a document. It is not
possible to find the relevant word of a sentence because the word meanings in the

dictionary are only one sentence and generally each word’s frequency is one.

Similar Word Expansion uses the relations between the words. The original
query’s words are taken and relationed words are included to the query to form the
expanded one. These relations can be any relation such as synonym, hyponym, and
hyperonym. Most of the retrieval systems use synonym relation alone and the results
show that including other relations does not increase the precision as expected. In
Query Expansion Match, the Similar Word Expansion is used to expand the query.
The synonym of a word is added to the user’s original query if it exists in the

Synonym Table. For example:

- Query: daha once hi¢c evlenmemis olan kisi

- Definition: evlenmemis kimse

Firstly, only the word evlenmemis is matching the correct meaning. But the
words kigi and kimse are similar words. By the help of Synonym Table the synonyms
insan, kimse, sahs, birey are included the in original query and the meaning is

searched with this new query. Table 3.2 shows some examples of synonyms.

3.7 Ranking

MTW ’s second important goal is to rank the correct candidates at the top of the
ranked list. MTW uses three criteria to rank the candidate definitions. Firstly, the

number of matched words is calculated. Secondly, the length of the candidate defi-
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nition is determined. And lastly, the longest common subsequence of the candidate

definition and user definition is calculated.

3.7.1 Number Of Match

The number of Match criterion is simple and easy to calculate. If any meaning has
more common words with the query than other meanings, then this meaning is more

relevant than those in the dictionary. For example;

- Query: hapishanede mahkumlarin kaldigr kiuciuk odalarin her bir:

- Definition#1: ince bir zar icindeki protoplazma ve cekirdekten olusmus bir

organizmanin yapr ve girev bakimlarndanen ki¢ik birligi géze (word: hiicre)

- Definition#2: hapishanede tutuklularin veya hukumlilerin yalniz olarak ka-

patildiklary kiigik oda (word: hiicre)

In the example, the user entered a query for the word hiicre. Suppose the above
two meanings exist in the dictionary and the system wants to distinguish the similar
one from other. The number of matched words is then calculated. Definition#1
matched word kicik so #match-1 is 1 and Definition#2 matched wordshapishane,
kticik, oda so # match-2is 3. As #match-2 > #match-1, the 2,; meaning is more

similar to the user’s definition and is ranked top of the 1;; meaning.

3.7.2 Candidate Length

The second criterion is the length of candidate. If two candidates have the same
number of matches with the user definition then, the lengths of the candidates are
checked. The shorter candidate is ranked before the longer one. For example, for

the following query

- geceleri avlanan magaralarda yasayan ucabilen memeli hayvan
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two candidate definitions

- Definition #1: yarasalardan gelismis viicudu yumusak sik killarla kaply iskelet-

leri hafif yapili u¢abilen memeli hayvan vespertilio (word: yarasa)

- Definition #2: kuzey avrupada yasayan cok yumusak ve ince tuyleri olan

postu i¢in avlanan ki¢ik hayvan martes zibelilina (word: samur)

have the same number of matches. The length of the 2"¢ definition is 16 while the
length of the 15! definition is 14. Therefore, the 1% definition is ranked before the

2nd definition.

3.7.3 Longest Common Subsequence

The third and last criterion is the length of longest common subsequence. The
longest subsequence is calcuted and the definition that have longer common subse-

quence is ranked before the shorter ones.

We are interested in the notion of resemblance or similarity between two sen-
tences s1 and s2 that have m and n words, respectively. A dual notion is to look
at the distance between these two sentences. We are interested in a distance which
enables to transform s/ into s2 using three kinds of basic operations: the substitu-
tion of a word of sI by a word of s2, the deletion of a word of s or the insertion of
a word of s2. A cost is associated to each of these operations and for each word of

the vocabulary:

e Sub(a,b) is the cost of the substitution of the word a by the word b;
e Del(a) is the cost of the deletion of the word a;

e Ins(a) is the cost of the insertion of the word a.

The general problem consists of finding a sequence of such basic operations to

transform s/ into s2 minimizing the total cost of the operations used. The total
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cost is equal to the sum of the costs of each of the basic operations. This cost is a

distance on the words if Sub is a distance on the words.

We are trying to minimize the distance between s/ and s2 which is generally the
same (but not always) than maximizing the similarity between these two sentences.
The solution is not necessarily unique. A solution can be given as a sequence of

basic operations of substitutions, deletions and insertions.

For example, again for the following query

- geceleri avlanan magaralarda yasayan ucabilen memeli hayvan

the same two candidate definitions

- Definition #1: yarasalardan ayaklar perdeli kanat biciminde gelismis vicudu
kdlarla kaply iskeletleri hafif yapili ugcabilen memelt hayvan wvespertilio

(word: yarasa)

- Definition #2: kuzey avrupada yasayan cok yumusak ve ince tiyler: olan

postu i¢in avlanan ki¢ik hayvan martes zibelilina (word: samur)

This time both of the definitons match the same number of words and the length
of the definitions are same. But, 1(st) definition has a subsequence ucabilen memeli
hayvan with length three while the 2"¢ have two subsequences avlanan hayvan and
yasayan hayvan with lengths two. MTW ranks the 1°¢ definiton before the 274

definition.

3.8 Data fusion

Merging results from different systems seems to be a promising approach for achiev-
ing improved performance, since, in practice, no single information system is better
than all others in all cases. Data Fusion (DF) is a broad discipline encompassing

a variety of techniques for combining data, or evidence, from different sources to
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achieve a unified perspective on some object, or event, of interest. DF' is a problem-
solving technique ased on the idea of integrating many answers to a question into
a single, best answer. A number of data fusion algorithms have been proposed in
distributed Information Retrieval, including min, max, average, sum, weighted av-
erage, and other linear combinations. [26-28] Among them, CombMNZ and Comb-
SUM [26] are two well-known methods. For every document, CombSUM adds up
all the scores, while CombMNZ multiplies the total scores by the non-zero scores.
data fusion is used to combine the ranked lists of Stem match and Query Expansion
Match. In this thesis, a simple method, weighted SUM (WSUM), [29] that allows to
weight the retrieval systems is used. WSUM is a linear combination model, in which
the weight of every input system is calculated via the returned results of the input
systems, which is the same as the fusion process applies. Last score is calculated
by:

Score(d) = Z w; * score;(d;) (3.3)

i

where ¢ is the iy, retrieval system. Also, a simple method is used to normalize the

retrieved document scores of each retrieval system:

) unnormalized_score — min_score
normalized_score = _ (3.4)
Max_score — min_score
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Chapter 4

PERFORMANCE EVALUATION

MTW is implemented with Perl language as it is a strong language for string opera-
tions and pattern matching. MTW is implemented in Windows but the system also
works in UNIX platform without any changes. This chapter presents the test and
train results of MTW for the introduced methods Direct Word Match, Stem Match

and Query Expansion in detail.

4.1 Setup

The experiments were carried out on two different test sets: test_set and dict_test_set.
In addition, two train sets are used: train_set and dict_train_set. In the experiments
50 queries were used for each set. Queries for test_set and train_set are taken from
real users. Users are given different words and asked to attempt to define these
words. Queries for dict_test_set and dict_train_set are taken from a dictionary [5].
The dictionary meanings of the same 50 words that are given to the users are used

as queries. Table 4.1 shows the properties of the train and test sets.
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train_set | test_set | dict_train_set | dict_test_set
Number of queries 50 50 50 50
Avg. number of query words 5.66 4.64 9.24 13.98
Max. number of query words 17 12 23 45
Min. number of query words 2 1 1 6

Table 4.1: Properties of test and train sets

4.2 Results

4.2.1 Direct Word Match

Table 4.2 shows the results of Direct Word Match in the test and train sets. Direct

Word Match can only match 16% of the real user queries and approximately 30%

of the dictionary queries. And, this method can not find any correct candidate for

the 36% of the queries.

Rank | train_set | test_set | dict_train_set | dict_test_set
1-10 4 (8%) | 6 (12%) 10 (20%) 9 (18%)

11 -50 4 (8%) 2 (4%) 12 (24%) 10 (20%)

51 - 100 3 (6%) 4 (8%) 7 (14%) 5 (10%)
101 - 300 | 6 (12%) 2 (4%) 4 (8%) 8 (16%)
301 -500 | 5 (10%) | 7 (14%) 9 (18%) 6 (12%)
501 - 1000 4 (8%) | 8 (16%) 3 (6%) 4 (8%)
over 1000 | 6 (12%) 4 (8%) 3 (6%) 6 (12%)
not found | 18 (36%) | 17 (34%) 2 (4%) 2 (4%)

Table 4.2: Results of Direct Word Match

52

The reason of these disappointing results is discussed in the following section.



Evaluation

Direct Word Match has advantages and disadvantages. The total number of can-
didates is less and the precision is high in the returned list. The method works
well if the user’s definition is mostly same to the word’s definition. Besides these
advantages, Direct Word Match lacks finding the words that have same stem. This
problem occurs because of the Turkish language structure. Turkish is a aggulative
language and can take infinite number of suffices after the stem. The following ex-
amples show some queries and word meanings that the method cannot match the

words with same stems but with different suffices:

- Query: kapr esiklerinde bulunan ve ayakkabilarn altlarinin temizlendigi

kalin bez

- Definition:ayakkabilarin altina temizlemek i¢in kapi onlerine konulan kil plas-

tik vb den yapilmas yizu tirtikl  silecek

The common stem is alt for the words altlarinin and altina,

- Query: akima olgmek icin kullanilan alet

- Definition: bir elektrik akimanan siddetini olgmeye yarayan ara¢ amperélger

akim for the words akimi and akiminin, and 6l¢ for the words olgmek and dlgmeye,

- Query: yeni evlenen kiz

- Definition: evlenmek icin hazirlanmis sislenmis kiz veya yeni evlenmasg

kadin

evlen for the words evlenen, evlenmek, evlenmis.
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4.2.2 Stem Match

Stem Match is tested with two different approaches. In the first one, all of the stems
returned from the stemmer are included in the query. In other words, if the stemmer
returns more than one stem for a word such as the stems il and ilim for the word
tlimde, both stems are included in the query and searched in the dictionary. Table

4.3 shows the results of Stem Match with all stems included.

Rank | train_set | test_set | dict_train_set | dict_test_set
1-10 | 13 (26%) | 18 (36%) 45 (90%) 41(82%)
11-50| 7 (14%) | 12 (24%) 2 (0%) 5(10%)

51 - 100 4 (8%) 1 (2%) 1 (0%) 2(4%)
101 - 300 3 (6%) 3 (6%) 2 (0%) 1(2%)
301 - 500 2 (4%) 2 (4%) 0 (0%) 1(2%)
501 - 1000 | 6 (12%) 2 (4%) 0 (0%) 0(0%)
over 1000 4 (8%) 2 (4%) 0 (0%) 0(0%)
not found | 11 (22%) | 10 (20%) 0 (0%) 0(0%)

Table 4.3: Results ofStem Match with all stems included

In the second one, a simple heuristic approach is used. We assume that the
longest stem returned from the stemmer is the correct stem. So, only the longest
stems are included in the query this time. For example, although the stemmer
returns the stems i/ and ilim for the word ilimde, only the stem ilim is included and
searched in the dictionary. Table 4.4 shows the results of Stem Match with only

longest stems included.

The results are now more encouraging than Direct Word Match. The correct
words of the 60% of the real user queries and the 96% of the dictionary queries are

ranked in the first 50 results.

In addition, another approach is used. This time, the frequencies of the words
are included in the ranking. Table 4.5 and 4.6 show the results of Stem Match with

all stems and only longest stem included, respectively.

Although the results are satisfactory enough, there is still some missing data.
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Rank | train_set test_set | dict_train_set | dict_test_set
1-10 | 14 (28%) | 21 (42%) 46 (92%) 43 (0%)
11-50| 5 (10%) | 9 (18%) 1 (2%) 5 (0%)
51-100 | 4 (8%) | 1 (2%) 1 (2%) 1 (0%)
101-300 | 3 (6%)| 1(2%) 2 (4%) 1 (0%)
301-500 | 2 (4%) | 3 (6%) 0 (0%) 0 (0%)
501-1000 | 5 (10%) | 2 (4%) 0 (0%) 0 (0%)
over 1000 | 4 (8%) | 2 (4%) 0 (0%) 0 (0%)
not found | 13 (26%) | 11 (22%) 0 (0%) 0 (0%)

Table 4.4: Results of Stem Match only longest stems are included

Rank | train_set test_set | dict_train_set | dict_test_set
1-10 | 14 (28%) | 20 (40%) | 42 (84%) 41 (82%)

11-50 | 4 (8%) |12 (24%) | 4 (8%) 4 (8%)
51-100 | 5 (10%) | 0 (0%) 2 (4%) 2 (4%)
101-300 | 3 (6%) | 3 (6%) 2 (4%) 2 (4%)
301 - 500 | 3 (6%) | 2 (4%) 0 (0%) 1 (2%)
501 - 1000 | 5 (10%) | 1 (2%) 0 (0%) 0 (0%)
over 1000 | 5 (10%) | 2 (4%) 0 (0%) 0 (0%)
not found | 11 (22%) | 10 (20%) | 0 (0%) 0 (0%)

Table 4.5: Results of Stem Match with all stems and frequency calculation in ranking

The results and the incapabilities of the Stem Match are discussed in the following

section.

Evaluation

The Stemming helps to match morphological variants of the user’s query. The words
that cannot match because of suffixes are found by stemming. This increased the
precision of the retrieval. As mentioned (in Stemming Section), stemming tends to
hurt as many queries as it helps. Stemming sometimes mixes up two words with

very different meanings to the same stem. The Table 4.7 presents some examples
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Rank | train_set | test_set | dict_train_set | dict_test_set

1-10 | 15 (30%) | 20 (40%) | 43 (86%) | 42 (84%)
11-50 | 3(6%) |11 (22%)| 3 (6%) 5 (10%)
51-100 | 5 (10%) | 1 (2%) 2 (4%) 2 (4%)
101-300 | 4 (8%) | 3 (6%) 1 (2%) 1 (2%)
301-500 | 2 (4%) | 1 (2%) 0 (0%) 0 (0%)
501-1000 | 4 (8%) | 1(2%) 0 (0%) 0 (0%)
over 1000 | 4 (8%) | 2 (4%) 1 (2%) 0 (0%)
not found | 13 (26%) | 11 (22%) 0 (0%) 0 (0%)

Table 4.6: Results of Stem Match with longest stem and frequency calculation in

ranking

words and stems.

Word Stems

yapilan | yap1 yap
belli | bel belli

yazl yaz yazl

Table 4.7: Words and the stems returned from the stemmer

If stemmer turns more than one stem for a word, only one of these stems is
the correct stem, and the rest is noise. Because it cannot be detected which of the
stems is the correct one, the Stem Match uses all of the stems in the search, e.g., the
system searches the stems yaz and yaz: in the dictionary for the query word yapilan.
In this case, the user cannot understand why some irrelevant word (or words) occurs

in the candidate list.

Moreover, some stems have the same syntax but different meanings,e.g., the stem
yaz means write as a verb and summer as a noun. So, the system returns the words

consisting of the morphological variants of both summer and write.

Stemming increases the number of candidates because the stem frequencies is
generally, the same or more than the word frequencies. This noise comes both from

the multiple stems and stems that have multiple meanings.
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Although Stem Match helps finding the similarity between the user’s definition

and meaning, it still has some weak points. The method cannot find similar words.

Query: daha 6nce hig evlenmemis olan kisi (bekar)

Meaning: evlenmemis kimse

Query: izlenen metot (yontem)

Meaning: bir amaca erigmek i¢in izlenen tutulan yol usul sistem

Query: tasitlarin 6n kismina mutlaka takilan ve gece yolu aydinlatmaya
yarayan tagit aksesuar: (far)
Meaning: tagitlarin 6n boliimiinde bulunan uzagi aydinlatan giicli 151k

verici

The query - meaning couples shows the lack of the Stem Match. The words kist,
kimse; metot, usul; and kissm, bolum are similar but the method cannot relate these

words.

4.2.3 Query Expansion Match

We use the same approaches that are used in Stem Match. Table 4.8 and 4.9 show
the results of the Query Expansion Match with all stems and only longest stems,

respectively.

Although, the results do not change for the first 50 results. Query Expansion
Match increased the precision of the results in the first 10 results. Now, the 48% of
the real user queries and the 90 % of the dictionary queries are ranked in the first

10 results.

Similarly, the frequency calculation in ranking is applied in the Query Expan-

sion Match. Tables 4.10 and 4.12 show the results of the Query Expansion Match
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of terms.

Rank | train_set test_set | dict_train_set | dict_test_set
1-10 | 14 (28%) | 24 (48%) | 45 (90%) (82%)
11-50| 9 (18%) | 9 (18%) 2 (4%) (10%)
51-100 | 3 (6%) | 3 (6%) 1 (2%) 2 (4%)
101 - 300 | 7 (14%) | 2 (4%) 2 (4%) 1 (2%)
301-500| 0(0%) | 1(2%) 0 (0%) 1 (2%)
501 -1000 | 4 (8%) | 5 (10%) 0 (0%) 0 (0%)
over 1000 | 4 (8%) | 1 (2%) 0 (0%) 0 (0%)
not found | 9 (18%) | 5 (10%) 0 (0%) 0 (0%)

Table 4.8: Query Expansion Match with all stems included

Rank | train_set test_set | dict_train_set | dict_test_set

1-10 | 15 (30%) | 22 (44%) | 45 (90%) 40 (80%)
11-50 | 8 (16%) | 12 (24%) 1 (2%) 5 (10%)
51-100 | 3 (6%) | 2 (4%) 0 (0%) 4 (8%)
101 - 300 | 6 (12%) | 2 (4%) 3 (6%) 1 (2%)
301-500 | 1 (2%) | 2 (4%) 0 (0%) 0 (0%)
501-1000 | 2 (4%) | 3 (6%) 0 (0%) 0 (0%)
over 1000 | 6 (12%) | 2 (4%) 0 (0%) 0 (0%)
not found | 9 (18%) | 5 (10%) 0 (0%) 0 (0%)

Table 4.9: Query Expansion Match with only longest stem included

respectively.

Evaluation

o8

50 results and 10 results show a decrease in precision.

all stems, and only longest stem included with frequency calculation in ranking,

The results of frequency calculation are not as good as expected. Both the first

Query Expansion Match has the disadvantages of Stem Mach when all of the stems
are included. In addition, some noise are newly introduced because of the expansion

Although the expanded terms are generally useful, sometimes the new




Rank | train_set test_set | dict_train_set | dict_test_set

1-10 | 14 (28%) | 24 (48%) | 41 (82%) 39 (78%)
11-50 | 6 (12%) | 8 (16%) | 5 (10%) 6 (12%)
51-100 | 5 (10%) | 5 (10%) 0 (0%) 2 (4%)
101 - 300 | 7 (14%) | 2 (4%) 3 (6%) 2 (4%)
301-500 | 1(2%) | 1 (2%) 0 (0%) 0 (0%)
501 - 1000 | 5 (10%) | 3 (6%) 0 (0%) 0 (0%)
over 1000 | 3 (6%) | 2 (4%) 1 (2%) 1 (2%)
not found | 9 (18%) | 5 (10%) 0 (0%) 0 (0%)

Table 4.10: Query Expansion Match with all stems and frequency calculation in

ranking

terms can not match the correct definition. This causes a decrease in the ranks.
Besides, only a few of the new terms are relevant to the definitions and the rest is
noise. Although it has some disadvantages, Query Expansion is the best method

that gives high precision in the first 10 and 50 results.

4.2.4 Data Fusion Results

Although Query Expansion gives better results than Direct Word Match and Stem
Match, it is not efficient enough. Because of the noice introduced by the relational
words, it does not work successfully for every case. In data fusion, we merged
the results of Stem Match and Query Expansion. The weights of the methods
are determined with training. First 1000 results from both systems are taken and
tested for possible weigths. The weigths are 0.7 for Stem Match and 0.3 for Query
Expansion. The results of data fusion is better for train set and test set than the
results of individual methods. MTW can find the right answer of 70% of train set

queries and 72% of the test set queries in the first 50 results.
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Rank | train_set test_set | dict_train_set | dict_test_set

1-10 | 13 (26%) | 24 (48%) | 41 (82%) 39 (78%)
11-50 | 8 (16%) | 7 (14%) 4 (8%) 6 (12%)
51-100 | 4 (8%) | 6 (12%) 0 (0%) 3 (6%)
101 - 300 | 6 (12%) | 4 (8%) 4 (8%) 2 (4%)
301-500 | 2 (4%) | 0 (0%) 0 (0%) 0 (0%)
501-1000 | 3 (6%) | 2 (4%) 0 (0%) 0 (0%)
over 1000 | 5 (10%) | 2 (4%) 1 (2%) 0 (0%)
not found | 9 (18%) | 5 (10%) 0 (0%) 0 (0%)

Table 4.11: Query Expansion Match with longest stem and frequency calculation in

ranking
Rank | train_set | test_set | dict_train_set | dict_test_set
1-10| 13 (26%) | 24 (48%) 41 (82%) 39 (78%)
11-50| 8 (16%) | 7 (14%) 4 (8%) 6 (12%)
51-100| 4 (8%) | 6 (12%) 0 (0%) 3 (6%)
101 -300 | 6 (12%) | 4 (8%) 4 (8%) 2 (4%)
301 - 500 | 2 (4%) 0 (0%) 0 (0%) 0 (0%)
501 - 1000 | 3 (6%) 2 (4%) 0 (0%) 0 (0%)
over 1000 - - -
not found | 9 (18%) | 5 (10%) 0 (0%) 0 (0%)

Table 4.12: Data Fusion results with w; = 0.7 and wy; = 0.3

4.3 Summary

The processing time of each query is calculated for Stem Word Match and Query
Expansion Match in order to measure the speed of MTW retrieval. Timing depends
on two factors. The first one is the similarity of the user definition with the dic-
tionary definition. The number of common words decreases the processing time.
The second one is the number of terms in the user definition. As mentioned before,
MTW generates and searches all the subsets of terms. The increase in the number

of terms increases the number of generated subsets and this effects the processing
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time of the user’s request in a negative way. The terms that are added to the query
in Query Expansion Match increases the number of query terms and the effect of

the expansion is seen in Table 4.14.

Times | test_1 | test_2 | dict_test_1 | dict_test_2
max. time(sec.) | 156 44 52 196
min. time(sec.) 1 1 1 1
avg. time(sec.) | 15.4 5.2 7.5 18.1

Table 4.13: Timing in Stem Word Match

Times | test_1 | test_2 | dict_test_1 | dict_test_2
max. time(sec.) | 176 86 138 218
min. time(sec.) 1 1 1 1
avg. time(sec.) | 16.8 | 9.2 11.3 23.1

Table 4.14: Timing in Stem Word Match
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Chapter 5

Conclusion

In this thesis, we presented the design and implementation of a Meaning to Word
system that locates a Turkish word that most closely matches the appropriate one,

based on a definition entered by the user.

The performance results of MTW on unseen data from real users are rather
satisfactory. Using only simple and symbolic methods, the correct words are ranked
at the first 50 top results for %72 of the queries. The results on unseen queries from
a different dictionary shows that the methods used while implementing MTW are

reasonable.

MTW has many advantages and disadvantages. One of advantages is the free
stemming and query expansion that gives a great flexibility to MTW retrieval. Some
IR systems, such as search engines (Google, AltaVista) do not use the stemming
and query expansion. These search engines can not match even the plural form
of the word if the singular form is entered or visa versa. By stemming and query
expansion in MTW, the user’s definition can match the correct word(s) even if the
terms of the dictionary definition does not contain the same words with same affixes.
Another advantage of MTW is its speed. MTW is sufficiently speedy, although it
has many time consuming components. Table 4.13 and 4.14 shows the times that
MTW consumes in the test and train set queries. The maximum times are high but
the avarage spent time shows that only a few querise have high timings and the rest

of the queries is responded in a reasonable time.
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One disadvantage of MTW is false matches. Because of the noise from the wrong
stems and unrelevant synonyms, MTW can produce many irrelevant candidates.
Another disadvantage is the dependence of user request. MTW works best if the
request is typed similar to the actual definition. The incomplete Turkish wordnet is
another disadvantage of MTW. MTW can not locate the relationships of the words
of user request and dictionary definitions if the relationship does not exist in the
Turkish wordnet. Lastly, the lack of opposite matching is another disadvantage of
MTW. The following exaples explain this:

- guzel olmayan

- tath karsity
The words olmayan and karsit: give a negative meaning to the queries. MTW can
not detect this negativeness in the queries and searches the words guzel and tatl.
But, it should search the definitions that have the words cirkin and aci, tatsiz.

Therefore, the returned candidates can be totally irrelevant to the user’s request

unless the definition structures are similar to these definitions.
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Appendix A

Sample Outputs of MTW
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