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ABSTRACT 

 In this study, we focus on the theoretical framework of a decision model for a real 

world problem. The problem reveals itself as simultaneous distribution of commodities 

and recollection of empty packages the same size as the initial state with a single depot 

and a fleet of uniform vehicles with limited capacities. Resembling instances pile a 

profound literature under the category of “pick-up and delivery problems with 

backhauls” and “rural postman problem.” To solve the arousing NP-hard problem we 

use genetic algorithm approach. Computational efficiency and a good solution 

performance are sought. 

 

 We have studied the wide literature of the vehicle routing problems, classified and 

briefly introduced the previous asserted algorithms, which provide considerably high 

quality solutions.  

 

 We have developed a genetic algorithm based meta-heuristic on a linear IP model 

proposed by Dethloff (2001) and conducted tests to come up with a robust heusritic 

producing results with a reasonable quality. The models we studied were mainly taken 

from the machine scheduling literature and adapted to handle our problem. Our research 

has revealed that no resembling problem has ever been proposed to be solved using the 

genetic algorithms approach. Thus, this work is a first in its field. 

 

 The improvement algorithm is found to be considerably good performing while 

the random keys method failed to produce reasonable solutions. We have tested our 

algorithm on two benchmark problems introduced by Min (1989) and Dethloff (2001). 

The latter is composed of 40 problem instances generated. We have performed 

parameter tests to tune our algorithm and shown that our algorithm produced the best 

ever solution for the first problem and considerably good solutions for the second one. 

  



ÖZET 

 Bu çalışmada gerçek hayatta örnekleri görülebilen özel bir karar problemi için 

kuramsal bir yapı oluşturma üzerine odaklanılmıştır. Problemin kendisi aynı büyüklükte 

olan dağıtılacak ve iade malların kapasiteleri belirlenmiş özdeş araçlardan oluşan bir 

filo ile dağıtılması ve aynı anda depoya götürülmek üzere toplanması olarak 

tanımlanabilir. Literatürde benzer problemler “geri seferli toplama ve iade problemleri” 

ve “kırsal kesim postacı problemleri” başlıkları altında incelenmektedir. Oluşan NP-

hard problemin çözümü için genetik algoritma (GA) kullanılmıştır. İşlemsel verimlilik 

ve iyi çözüm performansı aranmıştır. 

 

 Araç rotalama problemleri üzerine olan geniş literatür taranmış, en çok kullanılan  

çözüm yöntemleri kendi aralarında sınıflandırılmış ve kısaca tanıtılmıştır. 

  

 Dethloff (2001) tarafından önerilen doğrusal tamsayı programlama modeli baz 

alınarak genetic algoritma esaslı bir model geliştirilmiş ve bunun üzerinde denemeler 

gerçekleştirilerek yüksek kalitede sonuç üretebilen sağlam bir yaklaşım geliştirilmesine 

çalışılmıştır. Üzerinde çalıştığımız modeller benzer özellikler sergileyen makine 

çizelgeleme literatüründen alınarak problemimize uyarlanmıştır. Araştırmamız, 

üzerinde çalıştığımız problem için henüz GA’ları kullanarak çözüme ulaşmış herhangi 

bir çalışma olmadığını göstermiştir. Dolayısıyla yaptığımız çalışma mevcut haliyle 

alanında bir ilktir. 

 

 İkinci olarak önerilen geliştirilmiş algoritmamız oldukça başarılı sonuçlar 

üretirken rastsal anahtarlama metodu ile üretilen sonuçların oldukça kötü olduğu 

gözlenmiştir. Çözümlerimiz, yayınlanmış ve akademik literature girmiş olan Min’in 

(1989) tek ve Dethloff’un (2001) kırk örnekli  problemlerinin girdileri esas alınarak 

üretilmiş ve yayınlanmış, bilinen en iyi sonuçlarla karşılaştırılmıştır. Parametre testleri 



sonucunda uyarlamaları yapılmış olan algoritmamızın ilk problem için en iyi, ikincisi 

içinse göreceli olarak daha iyi sonuçlar bulduğu gösterilmiştir. 
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1. INTRODUCTION 

The transportation of goods or humans from one location to another has been a 

major problem to solve during distribution network design. The well-known Vehicle 

Routing Problem (VRP) arises through this major design need to utilize the resources of 

a distribution network to its utmost capacity. There exists a huge number of qualitative 

as well as quantitative criteria to take care of during analyzing phase of the problem. 

However, due to modeling concerns, only a set of aspects may be studied in a single 

problem. 

 

Since it was first formulated in 1959 by Dantzig and Ramser, the VRP has 

appealed much attention by the operations research academia. The VRP is a resembling 

problem to the “Traveling Salesman Problem” (TSP). In the TSP, the aim is to find the 

shortest trip for a salesman who is supposed to cover all customers starting at an initial 

location and obliged to return to some definite location, which is usually the initial 

location. The “VRP” is the name given to the class of problems that not only comprises 

the TSP but also adds some new features that add up to the current complexity of the 

TSP. 

 

In this study, one special configuration of the VRP is discussed. The problem 

comprises many customers or “nodes” to be served by a fleet of vehicles of 

homogeneous type and limited capacity. The vehicles deliver items to customers from 

the depot and pick-up loads to be delivered back to the depot at the end of the trip. The 

size of the picked up and delivered items are identical and they consume the same 

amount of capacity on each truck. Delivery and pick-up locations are unique and 

feeding a customer with anything picked up at a node other than the main depot is 

strictly avoided. The objective is to minimize the total distance covered by the fleet 

during service. Some instances of this type of problem may be observed in distribution 

networks of bottled spring water in re-collectable containers, industrial gas distribution-
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collection in refillable tanks, liquefied petroleum gas distribution in commercial 

containers from wholesalers to retailers, and so on. 
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2.  LITERATURE REVIEW 

2.1. Vehicle Routing Problem Definition  

 The vehicle routing problem is represented as the following graph theoretic 

problem. Let G = (V, A) be a complete graph where V = {0, 1, …, n} is the vertex set 

and A is the arc set. Vertices j = 1, …, n correspond to the customers, each with a 

known non-negative demand, dj, to be delivered whereas vertex 0 correspond to the 

depot. A non-negative cost, cij , is associated with each arc (i, j) ∈ A and represents the 

travel cost to go from vertex i to vertex j. If the cost values satisfy the symmetry, such 

that for any i and j ∈ V, cij = cji, then the problem is said to be symmetric VRP, else, it is 

called an asymmetric VRP. In several practical cases the cost matrix satisfies the 

triangle inequality, such that cik + ckj ≥ cij for any i, j, k  ∈ V (Toth and Vigo, 1998). 

 

The VRP consists of finding a collection of k simple circuits, each 

corresponding to a vehicle route, with minimum cost which is defined as the sum of the 

costs of the arcs belonging to the circuits, and such that: 

i. each circuit visits vertex 0, i.e., the depot; 

ii. each vertex j ∈ V \ {0} is visited by exactly one circuit; 

iii. for the case with limited vehicle capacity, C, and each vertex with a non-

negative demand value, di, the sum of the demand of the vehicles visited by a circuit 

does not exceed the vehicle capacity, C. 

 

Figure 1.1 illustrates how a solution to a VRP would look like after routes are 

generated. The sketch shows the vertices to be served (customers), the edges (route 

segments), and the depot.  
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Figure 1.1 General representation of the Vehicle Routing Problem. 

 

2.2. Categories of Vehicle Routing Problems 

 

 The VRP designates a wide range of set-ups on the original problem of TSP rather 

than addressing a specific problem. Several versions of the problem may be defined, 

depending on a number of factors, constraints, and objectives addressed in the problem 

context. Crainic and Laporte (1997) emphasize some questions in order to discriminate 

the problem through the tremendous VRP literature by discovering or highlighting the 

borders and content. The questions are listed as follows: 

 

1) Does the problem involve deliveries, collections, or a combination of both? Are 

there precedence relations between deliveries or collections? 

2) Does distribution take place through a single depot or from several centers? 

3) How many vehicles are involved? Is the number fixed or does it constitute a 

decision variable? Is the vehicle fleet homogeneous or heterogeneous? What are 

the capacity, speed, operating costs of these vehicles? 
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4) What are the work conditions of the drivers? What is the pay structure? What is 

the length of a normal workday? What are the conditions on overtime? Are 

multiple same day trips allowed? 

5) Is the demand known in advance or is it revealed in dynamic fashion during the 

course of operations? 

6) How often or when must each customer be visited during the planning period? 

On a given day, must customers be visited within specific time windows? 

 

It is fairly important to clarify the borders and content of the problem prior to 

developing an analytical approach towards a solution. From these questions, the main 

attributes within the configuration of most VRP problems ever published in literature 

are listed as follows:  

 

• Number of vehicles: The upper limit on number of vehicles available for 

routing. 

• Vehicles’ homogeneity/heterogeneity: The condition on the vehicles’ 

capacity, whether it is uniform for all vehicles or not. 

• Time windows: The imposed time constraint for servicing a customer. 

• Backhauls: Besides feeding a customer with its demand, the customer 

loads the truck with some load to be carried to another destination. 

• Splitting/Unsplitting of load: The load to be delivered or picked up at any 

node may be divided into any number of groups in the splitting case and 

this is strictly forbidden in the unsplitting case. This puts forward multiple 

trips to any node rather than a single one during the routing process. 

• Single Depot/Multi Depot: The distribution or collection process is 

constructed considering a single depot or multiple ones; even distribution 

and collection centers may be different. 

• Static/Dynamic Service Needs: The demand values are either known in 

whole or unknown to some level, even in whole prior to establishing a 

route for the service vehicle. 

• Precedence/Coupling Constraints: This is the case if a node’s demand is 

satisfied with anything picked up at a node other than the depot (coupling 
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constraint), the latter node has a precedence in service to the prior node 

(precedence constraint). 

  

2.3.  VRP with Simultaneous Pick-up and Delivery  

 In this thesis, we focus on the theoretical framework of a decision model for a real 

world problem. The problem reveals itself as distribution of commodities and 

simultaneous recollection of empty packages of the same size as the initially delivered 

ones with a single depot and a fleet of uniform vehicles with limited capacities. The 

problem is kept stripped from many of the attributes listed above in order to attain 

simplicity. With its current content and configuration, it is named as the vehicle routing 

problem with simultaneous pick-ups and deliveries (VRPSPD). 

2.3.1. Problem Definition 

 The graph theoretical definition of the VRPSPD problem is as follows: 

 

Instance: A graph G = (V, E), edge weights we for all e∈E and vertex weights dv 

and pv for all v∈V, a distinguished node, depot-d and a parameter either given or 

not k for upper limit to the number of vehicles available, and a parameter C 

denoting uniform capacity of each of the trucks. 

 

Objective: Find a partition of the nodes in V\{d} to V1,… ,Vk and a subset of 

edges Tk ⊆ E forming k tours each containing node d and each node of Vi exactly 

once, so that ∑e∈Tk we is minimized without violating ∑j∈Vh dj ≤ C, ∑j∈Vh pj ≤ C for 

h∈{1,… ,k} and pvt
* + dvt

*  + pv ≤ C for v∈V, t∈{1,… ,k}, pvt
* denoting all the 

load picked up at some partition Vt prior to some definite node v∈Vt ; dvt
* 

denoting all the load to be delivered at some partition Vt  after some definite node 

v∈Vt. 
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 To our knowledge, there has been little attention to the VRPSPD. This problem is 

first introduced to the literature by Min (1989). In his work, Min studied book 

distribution and recollection activity between a central library and 22 remote libraries at 

a county in Ohio. Each and every day, a central depot is responsible for supplying 

remote libraries with ordered books and recollecting previously delivered books from 

them in return. There are two trucks, which are assigned for this distribution and re-

collection activity, with limited capacity of 10500 pounds each. Thus, capacity invasion 

of books is given in pounds. The article also supplies the cost matrix in terms of 

distances between these libraries. The cost matrix is symmetric. 

 

 Halse (1992) studies this special case VRPSPD problem as well as many others in 

the VRP literature. In the work, cases with a single depot and multiple vehicles and 

number of nodes varying between 22 and 150 are studied.  

 

 Gendreau, Laporte and Vigo (1999) study the VRPSPD for a single vehicle case. 

They derive 26 problem instances based on some formerly published instances and they 

test the performance of their two newly developed heuristics with previously introduced 

in the VRP literature. In their problem instances, the number of nodes vary between 6 

and 261 including the depot. 

 

 Dethloff (2001) also studies the VRPSPD problem. In his work, he develops 40 

instances to test his algorithm. He also reports an improvement on the solution 

published by Min (1989). Then, he compares the results of his algorithm with those 

found by Salhi and Nagy (1999), based on their problem instances and problem 

structure. In the problem structure in Salhi and Nagy (1999), nodes are separated into 

disjoint delivery or pick-up nodes with 0 distance vector in between and they are 

provided either delivery or pick-up service, but not both at the same instant. Thus, a 

node may be visited more than once when the coupling of nodes in the solution is 

collapsed into single ones. Besides, the problem puts a limit on the maximum route 

length and introduces multiple depots rather than single depot case. 
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2.3.2. Mathematical Formulation of the Problem 

 The notion and the mathematical formulation of VRPSPD is as follows (Dethloff, 

2001): 

 

Sets 

 

J: Set of nodes 

J0: Set of nodes including the depot such that J0=J ∪ {0} 

V : Set of vehicles 

 

Parameters: 

 

C: Vehicle capacity 

cij:  Distance between nodes i∈Jo, i≠j, cii = M, i∈J, c00 = 0 

Dj:  Delivery amount of customer j∈J from the depot 

n:  Number of nodes, i.e., n = J0  

Pj :  Pick-up amount from customer j∈J 

M:  Large number, e.g. M












+= ∑ ∑∑
∈ ≠∈∈ J J

CP
J

D
i ijj

ijj
j

j

0 0
,

),(max  

 Decision Variables 

   

l '
v :  Load of vehicle v∈V when leaving the depot (which can be eliminated 

from the model) 

lj:  Load of vehicle after having serviced customer j∈J 

πj: Variable used to prohibit sub-tours (which can be interpreted as position 

of node j∈J in the route) 

xijv: Binary variable indicating whether vehicle v∈V travels directly from 

node i∈J0 to node j∈J0 (xijv = 1) or not (xijv = 0) 
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Model 
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  )1( 0
'

jvjjvj xMPDll −−+−≥        j∈J, v∈V (5) 

  







−−+−≥ ∑

∈Vv
ijvjjij xMPDll 1          i∈J, j∈J, ji ≠  (6) 

  Clv ≤'                           v∈V  (7) 

  Cl j ≤                             j∈J  (8) 

  







−−+≥ ∑

∈Vv
ijvij xn 11ππ          i∈J, j∈J, ji ≠  (9) 

  0≥jπ                   j∈J (10) 

  xijv ∈ {0, 1}        i∈J0 , j∈ J0, v∈V (11) 

 

 In the model above, the objective function (1) aims to minimize the total travel 

distance. Constraints (2) assure servicing each node exactly once. Constraints (3) assure 

that if a vehicle arrives at a customer, then the same vehicle must also leave it. Initial 

vehicle loads are determined by constraint set (4), while the initial loads after serving 

the first customer are defined with constraint set (5). The constraint set (6) introduces 

limits for vehicle loads “en route.” The constraints (7) and (8) ensure load amount of a 

truck stay under the capacity limits. Constraints (9) are sub-tour elimination constraints 

and (10) are the related non-negativity constraints. 

  

 A relaxation of the VRPSPD may be obtained by separating pick-up and delivery 

processes such that at any node, either pick-up or a delivery occurs. This relaxation has 
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been commented to be at least as hard as the NP-hard problems to solve (Mosheiov, 

1998). Thus, the VRPSPD is also NP-hard in the strong sense. 

 

2.4. Optimal Algorithms for VRP 

 The exact algorithms have proved to reveal deteriorating results with 

exponentially increasing solution times as the size of the problem increases or 

additional constraints are introduced, folding the complexity of the problem. Although, 

in the VRP literature, some results have been published with good performance, even 

reaching to optimality, the bound on the number of nodes for such problems is usually 

shallow, not exceeding 60 nodes. Various researchers studied these methods in case of 

the VRPSPD identical to ours or in other cases of the VRP. In what follows is the 

discussion of three exact methods in the literature. 

2.4.1. Dynamic Programming 

 In dynamic programming problems, there is a given initial state of the system, xo 

and discrete time dynamic system of N stages. The system takes value xk at the kth stage 

of the problem such that xk is a member of a given finite set. During the kth stage, the 

state of the system changes from xk to xk+1 according to an equation of the form  

     ( )kkkk uxfx ,1 =+     (12) 

where uk is a control that takes values from a given finite set, which may depend on the 

index k. This transition involves a cost gk(xk, uk).The final transition from 1−Nx  to Nx , 

involves an additional terminal cost G( Nx ). The functions fk, gk, and G are given. 

 

 Given a control sequence ),,( 10 −Nuu K , the corresponding state sequence 

),,( 0 Nxx K  is determined from the given initial state xo and the system of equation (12). 

The objective in dynamic programming is to find a control sequence and a 

corresponding state sequence such that the total cost  
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is minimized (Bertsekas, 1998).  

 

 The application instances of the dynamic programming in the VRP literature are 

abundant. Dethloff (2001) utilizes dynamic programming to calculate net savings 

attainable when imbedded the future steps and the course of actions to follow during 

those steps. The aim is to keep higher residual capacities on the vehicles to attain higher 

freedom for future servings of nodes while dealing with a current node. Higher residual 

capacities can be achieved by serving customers with a small (large) delivery amount 

and large (small) pick-up amount late (early) in the route. Each of those residuals is 

more advantageous if it is valid for a long part of the route. Additionally, the residual 

values are prospectively more advantageous if a higher cumulative demand for delivery 

and pick-up of the yet unrouted customers for future insertions exists. The formulation 

by Dethloff (2001) is left to the reader’s inquiry and will not be mentioned here. 

2.4.2. Lagrangean Relaxation Based Methods 

 Lagrangean Relaxation (LR) based methods have been widely used for obtaining 

a tight lower (upper) bound for the minimization (maximization) type problems. 

However, it requires a number of iterations and preferred to be used beside some 

heuristics or algorithms like the branch-and-bound method. The notion behind is 

explained as follows: Consider a simple linear programming problem instance with a 

linear cost function, linear side constraints and integer decision variables. Such a 

problem’s representation would be as follows in the most simplistic way: 

      axmin    (14) 

      subject to tt dxc ≤  t = 1,…, r (15) 

        xij∈Xij  ∀(i, j) ∈A (16) 

where a and ct are given vectors, dt are given scalars, and each Xij is a finite subset of 

integers. In the LR approach, the side constraints tt dxc ≤ is eliminated by adding it to 

the cost function multiplied by a vector of nonnegative scalars µt = (µ1,…, µr), thereby 

the cost function becomes 
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µt  is a Langrangean multiplier which may be viewed as a penalty per unit violation of 

the corresponding side constraint tt dxc ≤ . 

 

 A key idea of LR is that regardless of the choice of µ, the minimization of the L(x, 

µ) over the set of remaining constraints yields a lower bound to the optimal cost of the 

original problem (Bertsekas, 1998). 

 

 The main difficulty associated with LR is represented by the cardinality of the 

relaxed constraints, which does not allow for the explicit inclusion of all of them in the 

objective function. To overcome this difficulty Toth and Vigo (2002) propose to include 

only a limited set of the relaxed constraints and iteratively add to the LR constraints 

which are violated by the current solution of the Langrangean problem. Beside this 

mechanism, to avoid complexity of the objective function, they also propose to purge 

the relaxed constraints from the LR in case they become slack by the current solution. 

This process is iterated until no violated constraints are detected (hence, feasibility is 

attained) or a prefixed number of subgradient iterations have been executed.The model 

of Cordone and Calvo (1996) is based on a hierarchical objective function where the 

main objective is the minimization of the number of vehicles and the second objective is 

minimizing the total distance traveled. 

2.4.3. Column Generation Based Methods 

 Column generation has turned out to be an efficient method for a range of vehicle 

routing and scheduling problems. The notion behind is to avoid enumerating all 

variables (columns) to get a feasible solution to a given problem. Column generation is 

based on the idea of initializing the linear program with a small subset of variables (by 

setting all other variables to 0) and computing a solution to this reduced linear program. 

Given a feasible basis for an LP, the question of whether it is optimal or not is answered 

through checking all the reduced costs of the decision variables. For optimality case, 

reduced costs should satisfy non-negativity. This second part of the problem is also 

known as the pricing problem. If any columns are found with negative reduced costs, 
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they are included in the basis and solved. This iterative process continues until all 

reduced costs are found to be non-negative or until a predefined number of successive 

iterations. The column generation used together with branch-and-bound is denoted as 

Branch-and-Price algorithm. 

 

 Halse (1992) utilizes a LR and column generating approach. A cluster first-route 

second type heuristic is developed in which nodes are first distributed to vehicles and 

then the problem is solved using 3-opt approach. Angelelli and Mansini (2001) study 

the VRPSPD with time windows constraints. They implement a Branch-and-Price 

approach based on a set covering formulation for the master problem. A relaxation of 

the elementary shortest path problem with time windows and capacity constraints is 

used as pricing problem. Branch-and-Bound is applied to obtain integer solutions. 

Angelelli and Mansini (2001) provide further profound guidance about exact algorithms 

based on column generation and branch-and-price algorithms. 

 

2.5. Approximation Algorithms and Heuristics for VRP 

 

 Heuristics or approximate algorithms are designed to quickly find good but not 

necessarily optimal solutions. For a variety of problems with LP structure, it is easy to 

devise heuristic algorithms to find primal and dual feasible solutions. Depending on the 

quality of the solution required, an approximate solution may be the final answer for a 

particular problem or may be an input of an exact algorithm. One invaluable 

contribution of the heuristics may be in cases of solution by branch-and-bound method 

where they may provide lower and upper bounds in reducing the effort necessary to 

iterate the whole optimality tree (Nemhauser and Wolsey, 1989). 

 

 Though it is difficult to describe completely general heuristic algorithms, 

Nemhauser and Wolsey (1989) pinpoint three ideas, which are applicable in a wide 

variety of classes. The first is that of a greedy, alternatively called a steepest 

ascent/descent or myopic, algorithm.  
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 Greedy algorithms are frequently applied to maximization of set functions. Let 

v(Q) be a real valued function defined on all subsets of N = {1,…, n} and consider the 

problem max{ v(Q): Q ⊆ N}. Then, assume set Qt is an instance of Q such that it 

satisfies Q ⊆ N. Then, the next element to be added to Qt should be the one that gives 

the greatest immediate increase in value, provided that it exists. Moreover, once an 

element is chosen, it is kept throughout the algorithm.  

 

 The second idea highlighted is that of local search or interchange heuristics. As 

the name implies, a heuristic of this type takes a given feasible solution and, by making 

only limited changes, tries to find a better solution. Such algorithms are mainly studied 

under the title of route improving heuristics. 

 

 The third general principle is to utilize primal and dual heuristic solutions in pairs. 

It is particularly desirable to find both primal and dual feasible solutions since the dual 

solution provides an upper limit for the deviation from optimality of the primal solution 

(Wolsey and Nemhauser, 1989). Iterating the primal-dual couple associatively, i.e, 

developing and testing one’s solution based on the solution of the other, one may reach 

a solution to a complex problem with a reasonable quality if not the optimum itself. 

2.5.1. Construction Algorithms 

 Construction type heuristics aim to provide feasible as well as reasonably good 

solutions to complex problems. These sorts of heuristics are grouped into sequential or 

parallel heuristics. In the sequential case, a route is initially constructed and the 

remaining ones are constructed whenever necessary. On the contrary, in the case of 

parallel heuristics, many routes are constructed simultaneously following a predefined 

set of rules. 

 

 The well-known sweep heuristic (Gillett and Miller, 1974) and the savings 

heuristic (Clarke and Wright, 1964) are the most cited cases of the sequential 

construction algorithms. In the former one, routes are constructed as an angle sweeps 

the location of nodes on a 2D space, while in the latter case routes are constructed in a 

predefined quantity, then new nodes are added to currently available nodes in order to 
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attain maximum savings in the total distance covered. Assume that node 0 denotes the 

depot and nodes N = {1,…, n} denote the nodes such that d0i for i ∈ N denotes the 

distance from the depot to node i, dj0  and dij  the distances from the depot to node j and 

the distance between nodes i and j for j ∈ N. The savings amount sij when the arcs 

between the depot and node j, node i and depot are replaced with a single one between 

nodes i and j will be as follows: 

      ijjiij ddds γ−+= 00     (18) 

where γ represents some type of coefficient emphasizing or penalizing the savings 

attained. 

 

 The first algorithm presented by Gendreau, Laporte and Vigo (1999) propose to 

construct a sequence and serve nodes with positive demands (they describe positive 

demand as the case when the pick-up quantity is greater than the delivery quantity) until 

a violation on the residual capacity of the truck during handling the next positive 

demand customer occurs. Then they quit to serve the customer and begin to serve the 

next available customer with negative demand. When there is enough room available to 

serve the next customer, the node where the former capacity violation occurred is 

returned and the next following node with a positive demand is served. 

 

 Building routes sequentially may cause latterly constructed routes to be of poor 

quality since there are only few alternative points of insertion at the latter iterations of 

the process. This can be overcome partially by constructing parallel routes. Potvin and 

Rousseau (1993) propose a parallelization of the Insertion Heuristics by creating many 

routes simultaneously. For the initialization of each route, the customer that is farthest 

from the depot is selected as a “center customer.” Then the customers are inserted to the 

best feasible insertion place.  

 

 Lacomme et al. (2001) emphasize that most Genetic Algorithms (GA) for the TSP 

instances use permutation chromosomes as constructive heuristics. For the capacitated 

arc routing case they study (a special type of TSP), a chromosome could be viewed as 

the order in which the vehicle must perform n tasks, assuming that a single vehicle 

performs all trips in turn. This encoding type is found appealing because it always has 
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an optimal sequence. However, that one great trip may be divided into sub-trips 

considering all the inevitable trip delimiters such as the capacity constraints. 

  

      

 

Figure 2.1 Main steps of Ulusoy’s algorithm (Lacomme et al., 2001) 

 

 Ulusoy’s algorithm (1985) provides an elegant solution for keeping simple 

permutation chromosomes. In the capacitated arc routing case, a fleet of vehicles are 

assigned routes and they are supposed to serve the arcs rather than edges en route, 

which creates a slight difference from the classical vehicle routing cases. In the 

algorithm, first the capacity constraints are ignored and a one giant tour T covering all 

the tasks (a,b,c, and d in Figure 2.1) is formed. Second, an auxiliary graph is built in 

which each arc denotes a subsequence of T that can be done by one single trip. Each arc 

is weighted by the cost of that particular trip constructed. A shortest path in this graph 

shows where to split T into trips and gives the cost of the corresponding solution. At 

last, the solution is built with one trip per arc of the path. The steps of the algorithm are 

visualized in Figure 2.1. In our work, the first step is followed and then the giant tour is 

partitioned with iterating each node’s servicing requirements, their comparison with the 

current vehicle’s available capacity, if any violation is detected closing the current 

vehicle, sending it back to depot and consequently opening a new one and servicing the 
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first customer a capacity violation is faced until all the nodes are served. This 

partitioning scheme is a sort of “Iterated Tour Partitioning Heuristic,” which is 

introduced first by Haimovich and Rinnooy Kan (1985) and studied for a special case of 

pick-up and delivery type vehicle routing problems by Mosheiov (1998). For deeper 

interest and worst-case analysis of further constructive heuristics, one may refer to the 

Anily and Bramel (1999). 

2.5.2.  Route Improvement Heuristics 

 Route improvement heuristics strive for constructing a better tour starting from a 

considerably poorer performing one. Such an activity is basically classified as 

neighborhood search in the optimization literature. Neighborhood search notion has 

been widely used in the combinatorial optimization problems and especially in TSPs for 

more than forty years. 

 

 The neighborhood of some point is the region of the search space that is “near” 

some particular point in that space. Consider some abstract search space S together with 

some particular point Sx ∈ . The intuition is that a neighborhood N (x) of x is a set of all 

points of the search space S that are close in some measurable sense to the given point x.  

 

 Many search methodologies are based on the statistics of the neighborhood 

around a given point; that is, the sequence of points that these techniques generate while 

searching for the best possible solution relies on local information at each step along the 

way. These techniques are designed to locate solutions within a neighborhood of the 

current point that have better corresponding evaluations. Appropriately, they are known 

as “neighborhood” or “local search” strategies (Michalewicz and Fogel, 2000). 

 

 There are two categories of local optimization methods that are used to improve 

the routes, namely intra-route and inter-route. The intra-route local optimization 

rearranges the order in which the customers are visited to decrease the total distance 

traveled by the vehicles. The inter-route method exchanges or moves customers 

between two routes in order to improve the overall quality of the solution (Thangiah and 

Petrovic, 1998). 
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 For both inter-route and intra-route optimization methods, there are few number 

of methods preferred by a wide range of researchers. These are the k-opt (Croes, 1958), 

Or-opt (Or, 1976), 1-0 and 1-1 exchange moves (Waters, 1987). 

 

 The k-opt heuristic replaces a set of links in the route by another set of k links in 

order to attain a gain in the overall cost function. The complexity of the heuristic is 

mostly affected by the size of k. For larger k values, the heuristic tends to give better 

results, but the computational time increases. The most preferred k values are usually 2 

or 3. The 2-opt checks two paths, 3-opt checks 8 different paths and 4-opt would check 

48 different paths. As k reaches the total number of customers in a route, then the 

improvement procedure leads to an exact iterative search procedure. The Or-opt 

procedure is a modification of the 3-opt procedure provides a reduction in the 

computational effort required. The Or-opt only considers a subset of the paths 

considered for 3-opt that results at most three adjacent customers being inserted 

between two other customers. In other words, Or-opt removes a chain of at most three 

customers and relocates them in the remaining chain satisfied that the constraints are not 

violated and maximum savings is attained. The 1-1 exchange move procedure is 

swapping arcs between two nodes from the same route. The same procedure is 

constructed in the case of multiple routes but the swapping of connectors between nodes 

takes place between two different routes. The 1-0 exchange move transfers a node from 

its current position in one route to another position in either the same or a different 

route.  Figure 2.2 illustrates examples for a 2-opt move, 1-1 exchange, and 1-0 

exchange procedures. 
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Figure 2.2 2-Opt, 1-1 exchange, 1-0 exchange moves for single and multiple routes 
(Tarantilis et al., 2002) 

 

 In this study, Or-opt local search method based on movement of a single node is 

utilized. Our work yet comprises two main steps, the constructive step which establishes 

routes and the finalizing step which reduces the total length of found routes using local 

search methods, similar to Or-opt. In our work, one single giant tour is established first, 

and then it is partitioned based on the residual capacities on the vehicles as well as the 

empty spaces available to accommodate the current node’s pick-up requirements. Soon 

after the initial routes are established, each node’s location within a route is checked for 

a better replacement that will reveal a saving in terms of total distance. Each node is 

checked for replacing in a location succeeding its current location until the route end, 

and replaced at a location that will reveal the utmost positive saving if there exists any. 

Thus, our local search mechanism resembles the Or-opt process with a single node. 
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2.5.3. Meta-Heuristics 

 In recent years, there have been significant advances in the theory and 

applications of meta-heuristics for complex optimization problems. A meta-heuristic is 

an iterative master process that guides and modifies the operations of subordinate 

heuristics to efficiently produce high quality solutions. It may combine intelligently 

different concepts to explore the search space using adaptive learning strategies and 

structured information (Osman, 2002). Meta-heuristics are general combinatorial 

optimization techniques, which are designed with the aim of being flexible enough to 

handle as many different combinatorial optimization problems as possible rather than 

handling a certain type or configuration of a specific problem. For a good introduction 

on meta-heuristics, we refer the reader to Osman (1995), Osman and Kelly (1996), and 

Golden et al. (1998). 

 

 For the last two decades, much of the research effort has been devoted to 

development of meta-heuristics, using mainly two principles: local search and 

population search. In local search methods, an intensive exploration of the search space 

is performed by moving at each step from the current solution to another promising 

solution in its neighborhood. Simulated annealing (SA) and tabu search (TS) are the 

most popular local search methods. Population search consists of maintaining a pool of 

good solutions and combining them in order to produce hopefully better solutions. 

Classical examples are GAs and adaptive memory procedures (Hertz and Widmer, 

2003). 

 

 Hertz and Widmer provide guidelines for success in adaptation of a meta-heuristic 

to a combinatorial optimization problem. These basic principles are grouped into two 

for local search and population search methods. The ones for the local search methods 

are listed as follows:  

• It should be easy to generate solutions in the solution space of a particular 

problem. For the case of NP-hard problems, the search space should be defined by 

relaxing some constraints of the original problem, and adding some penalty 

coefficients in the cost function against violation of constraints. 

• For each solution instance in the solution space, there must exists an improvement 

path available for the meta-heuristic to advance which links the current solution 
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instance to an optimal solution instance. If such a condition is not satisfied, then 

an optimal solution will never be reached. 

• The solutions in the neighborhood of a solution instance should be in some sense 

close to that particular solution. It is important to define neighborhoods so that a 

reasonable solution may be generated in a reasonable time and effort. Taking 

neighborhoods great in content may lead to a burden of solving the original 

problem instead. The neighborhood of an instance should be easily obtained by 

performing simple modifications on the original solution instance. 

• The topology induced by the cost function on the solution set should not be too 

flat. It is difficult for a local search to escape from large plateaus since any 

solution in the boarder of such a plateau should have the same cost value as its 

neighbors, thus it becomes impossible to guide a search towards an optimal 

solution. A common way to avoid such cases is to add some components in the 

cost function, which will discriminate between solutions with same objective 

function values.  

 

 The guidelines addressed for the population search methods are listed as follows:  

 

• Pertinent information should be transmitted during the co-operation phase. In the 

co-operation phase, groups of individuals exchange pieces of information and new 

offspring solutions are created that should combine the best features of the parent 

solutions. 

• The combination of two equivalent parent solutions should not produce an 

offspring that is different form the parents. 

• Diversity should be preserved in the population. One of the major difficulties 

observed when using population search algorithms is the premature convergence 

of the process, all solutions in the population having a natural tendency to become 

equal to the best solution in it. If this occurs, then the population search behaves 

more or less like a local search since there is nothing to gain in combining 

equivalent solutions. In order to prevent such a phenomenon, it is important to 

implement operators that preserve diversity in the population. The mutation 

operator in genetic algorithms is an example of such a tool. 
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Next, the most commonly used three search meta-heuristics are briefly 

described: SA, TS and GA.  

2.5.3.1 Simulated Annealing 

 

 In order to alleviate the problem of becoming trapped at a local optimum, SA 

allows the selection of some uphill moves in a controlled manner. Let S be the current 

solution and N(S) be a neighborhood of S. We randomly select S’∈N(S) and compute 

the difference )'()( SfSfD −= , where f (S) is the objective function value of S. If D < 

0, then S’ is is selected as the new solution. If D > 0 and e-D/T > q (where 0 < q  < 1 is 

randomly generated from a uniform distribution), then S is selected as the new solution. 

T is simply a control parameter known as the temperature. Typically, the temperature is 

gradually lowered during a search process so that the probability of accepting an uphill 

move (i.e., D > 0) steadily decreases. The SA procedure continues until a stopping 

condition is met (Golden et al., 1998). For further details the interested reader is 

referred to the Osman and Kelly (1996) and Reeves (1993). 

2.5.3.2 Tabu Search 

 

 TS aims to avoid getting trapped at a poor local minimum, by accepting on 

occasion a worse or even infeasible solution from within the current solution (Bertsekas, 

1998). The main idea behind TS is quite simple. A “memory” forces the search to 

explore new areas of the search space. We can memorize some solutions that have been 

examined recently and these become tabu (forbidden) points to be avoided in making 

decisions about selecting the next solution (Michalewicz and Fogel, 2000).  

 

 The memory concept of the TS is quite crucial. Golden et al. (1998) define two 

types of memory: short-term and long-term memory. Usually, short-term memory is 

imposed to restrict the search from revisiting solutions that were considered previously 
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and to discourage the search from cycling between subsets of solutions. On the other 

hand, long-term memory is used to diversify the search. Usually, it is implemented to 

discourage frequently made moves and to encourage the search process to explore new 

regions of the solution space. One other element of the TS is the aspiration criterion, 

which is defined as the overriding mechanism of the short-term and long-term memory 

functions.  

 

 Golden et al. (1998) provide an extensive survey of academic publishings in the 

tabu search while Michalewicz and Fogel (2000) provide some basic pseudo-codes. 

2.5.3.3 Genetic Algorithms 

 

 The concept of GAs for solving optimization problems is based on the analogy to 

evolution theory in population genetics. Holland (1975) adopted the idea of survival of 

the fittest in a process of cooperation and competition among individuals to 

combinatorial optimization problems. The solutions of a problem are coded into 

chromosomes, a sequence of genes. A set of such chromosomes is called a population. 

Starting from an initial population new chromosomes are generated by standard genetic 

reproduction operators, crossover and mutation, and are evaluated with respect to a 

problem specific fitness function (Derigs et al., 1999). 

 

 Derigs et al. (1999) divide the genetic mechanism into two distinct stages. The 

static stage comprises definition of a coding scheme and developing an appropriate 

fitness function capturing the main objectives and constraints for the given problem. 

Any GA incurs a wide range of parameters such as the population size, deviation 

structure, and termination conditions. These parameters are adjusted at the static stage. 

The dynamic stage is divided into four phases, which are iteratively applied until a 

termination condition is satisfied. It is this dynamic stage’s resemblance to the evolution 

in nature, which names this population search type meta-heuristic. These phases are 

listed as follows: 
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• Selection phase: A number of individuals of the current population are selected 

and paired for reproduction. 

• Reproduction phase: Applying the principle genetic reproduction operators like 

crossover and mutation new solutions are generated by sexual reproduction. 

• Integration phase: The new individuals are evaluated according to the defined 

fitness function. Then, it is decided which of these offsprings will be integrated 

into the new population and which older individuals will be excluded form the 

older population.  

• Control phase: Global metrics of the population are assessed and the 

communication scheme is updated. The algorithm checks if the termination 

condition holds. 

 

 For to define a GA, beside the iterating structure, a set of operation parameters 

must be supplied. Usually, the hardest part of the work is to determine these operation 

parameters. The current practice is to make as many experiments as possible with all 

combination of a set of predefined parameters and consequently addressing the best 

performing combination, or applying it to a set of problems. However, current efforts in 

GA are to develop parameter free structures or reducing parameters to the minimum 

possible levels. For further knowledge in the GA literature the reader is referred to the 

Gen and Cheng (2000) and Reeves and Rowe (2003). 
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3. A DUAL GA APPROACH FOR THE VRPSPD 

 There have been no efforts detected to solve the VRPSPD or its relaxed cases 

using the GAs. Thus, the genetic representation and model infrastructures are mainly 

searched through the machine shop scheduling with multi machines literature, which 

offers an adequate amount of instances. 

 

 The two problems are fairly identical in the fashion that in both cases some items 

are distributed to some scarce resource, which are the vehicles in the VRP case and the 

machines in the machine scheduling case. The capacity constraint imposed by the 

capacitated vehicle routing problem (CVRP) is replaced by the total available time span 

of the machine and the resource invasion of each of the loads in the CVRP case is 

replaced by the time consumption of each of the jobs to be scheduled on the machines. 

The two way constraints (the residual capacity constraints on deliverable goods and 

empty space constraints availing picking of loads) imposed by the simultaneous 

delivery and pick of loads in the VRPSPD case could not be substituted with any of the 

current practices in the machine shop scheduling literature which are usually one way 

(available time span constraint of the machine). Thus, continuous two-way check of the 

available capacity is added in this problem.  

 

 The resulting problem required an efficient data structure to handle the 

evolutionary mechanisms’ needs with utmost efficiency. In the canonical (binary) 

representation of genes in the chromosome, some gene sequences become obsolete 

since they do not provide information correspondending to a meaningful allele (an allele 

represents the meaning of a gene). For example, when binary strings are required to 

represent alleles ranging from 1 to 50, some 6 digits are required in the string. However, 

the strings representing more than 50 correspond to nothing meaningful. Thus, if in a 

gene a string sequence greater than 50 ever occurs following a crossover operation, then 

that gene must be iterated once more, which adds up to the complexity and solution 
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time of the algorithm. Seeking methods to avoid both deficiencies, our method has to be 

quite efficient. In this research, rather than the binary representation, integer labels are 

assigned in addressing the alleles of the genes. 

 

 One important feature in the GA heuristics is that maintaining the sequence 

feasibility through the crossover operations. This is mainly keeping the chromosome 

structures healthy and meaningful right after a reproduction process. In many cases, 

after the reproduction phase, one may see replication of genes in one parent 

chromosome while the other parent lacks those in its sequence. This is a crucial mishap 

if the sequence of genes on the chromosome means one great tour sequence like the one 

in Figure 2.1. Then replications of genes in a chromosome mean revisiting of some 

nodes, which is an undesirable outcome. Besides, omitting some genes in a 

chromosome means no service to those nodes during the great sequence. Fixing those 

undesirable faults requires extra search efforts, increases computational time and 

introduces ample amounts of computer codes, which gets harder to trace. Thus, an 

efficient method should never let replications or omitting of genes on the chromosome 

structures. The two heuristics that we have studied well satisfy this requirement. 

 

    

 

Figure 3.1 An example of replications and omitting of genes through crossover     
(Bean, 1994) 

 

 Through our literature search, two models seemed to provide utmost 

computational efficiency and coding ease beside their characteristic properties. In an 

effective GA, two main opposite goals must be satisfied at the highest levels. These are 

“exploration,” which means exploration of the solution space as much as possible, and 

“exploitation,” which means exploiting the inherited memory from the previous 

iterations to the success of future iterations. Thus, a slight contradiction between the 

aims of these two goals may be that exploitation requires continuing the search within 

the small neighborhood of a solution, while exploration requires the neighborhood 
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widened. The following reveals some different characteristics in terms amount of 

exploitation as well as exploration they provide. 

3.1. Random Keys Method 

 

 This method by Bean (1994) mainly focuses to overcome the difficulty of 

maintaining offspring feasibility through the genetic crossover operations. This method 

proved to be effective in multiple machine scheduling, resource allocation, and 

quadratic assignment type problems. However, no application to a VRP type problem 

has been noticed in the literature. 

 

 The random keys representation encodes a solution with random numbers. These 

values are used to sort keys to decode the solution. Random keys eliminate the offspring 

feasibility problem by using chromosomal encoding that represents solutions in a soft 

manner. These encodings are interpreted in the objective evaluation routine in a way 

that avoids the feasibility problem.  

 

 The primary difference between this encoding and those others is the use of 

random numbers as tags to represent solutions. Random numbers are sampled from 

some space, typically [0, 1]n. The genetic algorithm searches that space as a surrogate 

for the literal space. Points in the random keys space are mapped to points in the literal 

space for evaluation. For this reason, the random keys approach differs the binary 

encodings. The generation of random numbers in the keys space employs a sense of 

random search in conjunction with the GA. One advantage of this encoding is its 

robustness to problem structure (Bean, 1994). In the paper, the algorithm is tested in 

three different problem instances. For its simplicity and ease to illustrate the overall 

mechanism, the case for the single machine scheduling will be discussed here.  

 

 Consider a problem that requires sequencing of five jobs on a machine. The 

consecutive chromosome structure will be composed of genes, each of which will 

correspond to a job to be scheduled. In order to form an instantiation, generate a 
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uniform (0, 1) random deviate for each allele. Then the chromosome structure would be 

as follows: 

 

     (.46, .91, .33, .75, .51)     (19) 

 

 The mapping to the literal space is accomplished by sorting the alleles and 

sequencing the jobs in the ascending order. The sequence would be then: 

 

     3 → 1 → 5 → 4 → 2     (20) 

 

 This sequence may easily be evaluated for the tardiness or total work time it 

introduces. Crossovers are executed on the chromosomes –the random keys- not on the 

sequence. Consider two parents 

 

    (.46, .91, .33, .75, .51) ≡ 3 → 1 → 5 → 4 → 2  (21) 

and 

    (.84, .32, .64, .04, .48) ≡ 4 → 2 → 5 → 3 → 1  (22) 

 

 Using a one-point crossover and performing it right after the second gene, the 

offsprings would be 

 

    (.84, .32, .33, .75, .51) ≡ 2 → 3 → 5 → 4 → 1  (23) 

and 

    (.46, .91, .64, .04, .48) ≡ 4 → 1 → 5 → 3 → 2  (24) 

 

 Since any sequence of numbers can be interpreted as a sequence, all offsprings are 

feasible solutions. The random keys simply serve as tags, which the crossover operator 

uses to rearrange the jobs. 

 

 The above heuristic is applied to the forty VRPSPD problem instances for a tour 

of fifty nodes (Dethloff, 2001). As tour partitioning approach, the way described 

beforehand was employed. However, the solution quality has turned out to be very poor 

compared to the values published by Dethloff (2001). One reason is the high amount of 
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deviation on the chromosome structures during crossovers. On chromosomes of fifty 

nodes, amount of passed data from parents to offsprings seemed to diminish a great 

deal. Thus, this method proved to be strong in the sense of exploration and providing 

diversity but weak in the sense of exploiting the inherited memory. The pseudo-code for 

the random keys procedure is provided in Appendix A. 

3.2. Improvement Heuristic 

 The improvement heuristic proposed is based on the GA structure developed by 

Topcuoglu and Sevilmis (2002) for a task-scheduling problem with multi objectives. 

Their problem definition is the optimal mapping selection between tasks and processors 

so that precedence requirements are satisfied, schedule length is minimized as well as 

the number of processors employed is tried to be minimized.  

 

 In their representation, each chromosome is presented by a single string of a 

predefined length, which denotes the number tasks to be scheduled. Each gene is a tuple 

such that one element of the pair shows the task number while the other shows the 

processor this task is assigned. The ordering of tasks on the chromosome also reveals 

the precedence relations of tasks on the processors.  

 

 The most important feature of the representation is the crossover operation 

presented in that paper. Their single-point order crossover operator randomly generates 

a crossover point and cuts the selected pair of chromosomes into left and right parts. 

Then, it copies the left portion with respect to crossover point of the chromosome from 

the first parent to the first child, which is then appended with the remaining genes (in 

the form of tuples) from the other parent in the same order. The second child string is 

generated in the same way. Figure 3.2 illustrates the crossover operation. This strategy 

guarantees to produce valid schedules considering the precedence constraints. 

Implication of this result to the case of VRPSPD is that using some variant of this 

chromosome representation and this crossover mechanism, the great tours covering all 

the nodes may easily be constructed and generations may be iterated without any 

congestion due to replication of genes in the chromosomes or omitting any of those. 
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Figure 3.2 Two schedules (chromosomes) and an output of crossover operator applied 
to these chromosomes (Topcuoglu and Sevilmis, 2002) 

 

 This second method has a more potential to pass genetic information to 

forthcoming generations without dramatic destruction. The reason is that in this second 

heuristic, during the crossover operation, rather than single relocations of genes in the 

offsprings, groups of genes are replaced preserving the order they have at the parent 

chromosome. Thus, inheritage of pertinent information of the parents is more 

expectable for the offsprings. 

 

 Our approach blends the good sides of the both heuristics, such that it strives to 

exploit the high deviation and initiation procedures as well as the data couple structure 

of the random keys method and blends it with the crossover mechanism of the second 

heuristic. The pseudo-code of our heuristic is provided in the Appendix B. Figure 3.3 

provides an overall representation of our heuristic. 

 

 The first step in our heuristic is to initiate the population. For this purpose random 

keys method is used. Each gene in our structure consists of two information pieces, the 

number of the node it represents and the random key assigned. Initialization of the 

population is done by sorting the genes of each and every chromosome in ascending 

order of the random keys they comprise. Then after the generations may begin. 
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Initiate the population by ordering the genes wrt random keys 

While Number of generations ≤ Criteria on Generations 

 For  

 Partition each giant tour to subtours 

    Improve subtours by savings based local search (1 node Or-opt) 

    Evaluate the chromosomes and derive fitness values 

 End For: each chromosome iterated 

 Assign matching probabilities wrt fitness values 

 Replace bad chromosomes with outperforming ones in the same population 

 Realize crossovers 

 Realize mutations 

End While: Criteria on Generations violated

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Brief description of the dual GA algorithm 

 

 In each generation, the first step is to partition each giant tour (chromosome 

sequence of genes represent the giant tour) to some sub-routes, which are then assigned 

a vehicle each. The procedure is iterating the nodes in the chromosome following the 

sequence they appear. At each gene, two checks are made. The first one is whether the 

demand of the node may be satisfied with the residual capacity on the truck. The second 

one is whether the amount to be picked up after the delivery may be accommodated on 

the truck with the current empty capacity. If both are not violated, then that node is 

serviced by the vehicle and vehicle advances to the next consecutive node. If any check 

conditions is violated at that particular node, then the node is left unserviced, the vehicle 

is sent to the depot and a new vehicle is sent to the unserviced node to satisfy its needs. 

The fitness function is the total distance covered by all the trucks during servicing all 

the customers in a giant tour. Then comes the route improvement procedure. Imitating 

the Or-opt procedure, each sub-tour is taken separate, and then each node in this tour is 

considered for relocation at an available point following its current location. Again the 

capacity constraints are considered and maximum positive saving is sought on the 

current tour at evaluating the location of each node on a particular sub-tour. 

 

 The fitness values of each chromosome are determined based on the reduced total 

tour lengths. Then, these chromosomes are ordered in descending fitness values and the 
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worst n many of them are replaced with the best n chromosomes (n is a parameter set by 

the user). Then comes the crossover procedure, which is the same as the one depicted by 

Topcuoglu and Sevilmis (2002).  

 

 The crossover procedure is followed by the deviation procedure. There are three 

different types of mutations included in our heuristic. The first one is to interchange the 

locations of two genes on a chromosome with probability values increasing with the gap 

between the last generation a best solution is found and the current generation. The 

second type of mutation is altering the random key value of a gene with again a random 

pattern just similar to the previous mutation. The third mutation is reordering the genes 

on a chromosome using the random keys procedure. The number of chromosomes to be 

reordered is determined by two methods. The first one is linearly incrementing the 

number and the second one is generating Fibonacci numbers beginning from a 

parameter. Advancing mechanism operates when the difference between the last 

generation a best solution is found and the current generation divided by some 

parameter reveals no remainder. The results of comparison of linear proportion to 

Fibonacci numbers and other parameter tests are analyzed in the following chapter. This 

overall genetic evaluation procedure is sustained until a violation on the terminating 

condition of the algorithm is faced. 
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4. COMPUTATIONAL STUDY 

 This chapter discusses the parameter setting and computational experiments in 

comparison with two benchmark studies in the literature. 

4.1. Benchmark Problems 

 The benchmark problems studied in this work is provided form two sources. Min 

(1989) studies the VRPSPD with the same configuration as ours but imposes a 

constraint on the maximum number of vehicles available to use, which is strictly two in 

his problem. His problem studies the case with 22 customers and a single node. Each 

node requires deliveries and provides some load to be picked and transported to the 

main depot. The delivery and pick-up quantities are determined from averaging daily 

transfer quantities and considered to be deterministic. He provides the symmetric 

distance matrix based on the real geographical measurements and the cost function 

comprises only the total distance covered.  

 

 The second source of problems studied is the one studied by Dethloff (2001). In 

his work, Dethloff randomly generates test instances with 50 customers and two 

different geographical scenarios. In the first scenario, SCA, the coordinates of the 

customers are uniformly distributed over the interval [0, 100]. Scenario CON consists of 

one half of the customers distributed in the same way as SCA. The coordinates of the 

other half are more concentrated. They are uniformly distributed over the interval 

[100/3, 200/3], thus yielding a more “urban” configuration in 1/9th of the area. Distances 

are measured in Euclidean metric in both of the cases. 

 

 The delivery amounts of the customers are uniformly distributed over the interval 

[0,100]. The pick-up demand Pj corresponding to the delivery demand Dj is computed 
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by using a random number rj that is uniformly distributed over the interval [0,1] such 

that Pj = (0.5+rj ) Dj . 

 

 The vehicle capacities are taken into consideration as well. Instances with 

different vehicle capacities are generated by choosing the minimal number of vehicles 

required, denoted by µ. Then the corresponding capacity is C =∑ ∈Js sD µ/ . In the 

instance descriptor the digit after the letters for the geographical scenario represents the 

respective value of µ, which is chosen to be 3 or 8. For each of the resulting 

configurations 10 random experiments are performed. The last digit of the instance 

descriptor denotes the number of the experiment (Dethloff, 2001). 

4.2. Parameters and Analysis 

 The static stage of GAs requires existence of some number of parameters to attain 

a solution quality and sustain controllable evaluation of the process. Robustness 

requires applicability of a solution heuristic to any kind of problems within the same 

problem area without further tuning of parameter sets. In order to achieve this, the state 

of the art trend is to strip a heuristic from any parameters, though it is quite hard. Thus, 

eliminating as many parameters as possible by replacing them with some self-advancing 

mechanisms that relies on some parameter or variable is the approach we have followed 

throughout this research. Through some computational tests, we have reduced the 

parameters to four. 

 

 The parameters that resides yet in the heuristic are described as follows: 

 

• Discard Quantity: This parameter defines how many of the worst chromosomes 

will be discarded and replaced with how many best ones at each generation. 

• Initial Destructive Mutation Quantity (Normmut): At each generation, some 

number of chromosomes is deviated by the destructive mutation process. The 

upper limit to number of these chromosomes to go under this process is 

determined dynamically throughout the generations based on the difference 

between the generation a best solution found and the current solution. However, 
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this dynamic routine has to initiate from some number and “Normmut” provides 

this initiation. 

• Population Size: The population size describes the number of parents that go 

under reproduction and number of new offsprings generated at each generation of 

the evolution algorithm. The size of the population is kept still throughout the 

generations. 

• Increment Size: To advance the upper limit to the number of destructive mutations 

that may be performed consecutively at each generation, the difference between 

the generation a best solution found and the current solution is operated by a mode 

function. When the result is 0, then the upper limit is advanced some quantity 

determined by the advancing mechanism. The mode operator value is called as the 

“Increment size.” 

 

 One other issue worth mentioning is the total number of generations to be held 

consecutively. Our current practice is taking it as long as possible in order to watch the 

improvement of the objective function value through generations. In order to diminish 

the solution time to some reasonable values, we seek a reasonable value for the 

maximum number of generations allowed prior to termination condition of the problem. 

Figure 4.1-4.4 illustrate the improvement process of the solutions of four different 

families of problem instances developed by Dethloff (2001). The x coordinate gives the 

range of generations from 0 to 50000 replications. The graphs provide insights about 

when to stop the generations without losing too much from the solution quality. Figures 

4.1, 4.2, 4.3 and 4.4 represent each a group of problems’ (SCA3, SCA8, CON3, and 

CON8, respectively) solution result path marked at each 500 generations from the very 

beginning to the last generation, which is 50000th generation.  
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Runtime Analysis for SCA 3-*
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Figure 4.1 Graph of total tour length versus generations for the SCA 3 Problems 

 

Runtime Analysis for SCA 8-*
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Figure 4.2 Graph of total tour length versus generations for the SCA 8 Problems 

Runtime Analysis for CON 3-*
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Figure 4.3 Graph of total tour length versus generations for the CON 3 Problems 
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Runtime Analysis for CON 8-*
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Figure 4.4 Graph of total tour length versus generations for the CON 8 Problems 

 

 Extensive tests are performed to obtain the best parameter settings among some 

number of alternatives generated for each parameter. However, due to high computation 

duration requirements, all combinations of these parameters could not be iterated. The 

results revealed to be promising and the best parameter set is found to be (8/200/5/13), 

with the same order described earlier. The solutions using these parameters are 

compared to the results of the sample problems in Dethloff (2001) and Min (1989).  

4.3. Comparison of Results with the Benchmarks 

 We have coded and run our algorithm in ANSI C. Min (1989) declares his 

solution for his problem as 94. He uses a method of clustering the nodes into two 

groups, then solving a relaxation of the problem using branch and bound, then 

determining the constraint violations, penalizing moves leading to such violations and 

then solving the relaxed form of the problem iteratively until no violations of the 

constraints are faced. Dethloff (2001) declares his best solution to the same problem as 

91 using the three heuristics he introduces. He follows a dynamic approach based on 

savings method by Clarke and Wright (1964) improved by some level of considering 

future attainable savings at each step. The solution time is declared to be less than a 

second. Besides, in the paper it is reported that the best-known solution after a hundred 

hours of computation time using Pentium III 500 Mhz processor is found to be 89, with 
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a lower bound of 84. Our solution approach provides a value of 88 with a Pentium IV 

1.3 Ghz processor in less than a minute. 

 

Table 4.1  Comparison of results to those of Dethloff (2001) 

Best Obtained During 

Parameter Analysis 

Results using 

Parameters (8/5/200/13) 
Problem Code Dethloff's Best Best Soln.        % Gap Best Soln.      % Gap 

SCA3-0 689.0 640.69 -7.01 680.25 -1.27 

SCA3-1 765.6 753.11 -1.63 773.18 0.99 

SCA3-2 742.8 747.51 0.63 722.537 -2.73 

SCA3-3 737.2 716.04 -2.87 683.95 -7.22 

SCA3-4 747.1 698.35 -6.53 736.329 -1.44 

SCA3-5 784.4 670.44 -14.53 728.341 -7.15 

SCA3-6 720.4 675.93 -6.17 670.06 -6.99 

SCA3-7 707.9 711.91 0.57 718.622 1.51 

SCA3-8 807.2 746.21 -7.56 758.093 -6.08 

SCA3-9 764.1 754.65 -1.24 744.683 -2.54 

SCA8-0 1132.9 1064.42 -6.04 1129.25 -0.32 

SCA8-1 1150.9 1212.2 5.33 1232.22 7.07 

SCA8-2 1100.8 1188.3 7.95 1232.62 11.97 

SCA8-3 1115.6 1098.04 -1.57 1133.826 1.63 

SCA8-4 1235.4 1189.91 -3.68 1249.188 1.12 

SCA8-5 1231.6 1175.52 -4.55 1157.542 -6.01 

SCA8-6 1062.5 1113.39 4.79 1119.119 5.33 

SCA8-7 1217.4 1128.84 -7.27 1134.23 -6.83 

SCA8-8 1231.6 1178.08 -4.35 1192.876 -3.14 

SCA8-9 1185.6 1273.72 7.43 1259.932 6.27 

CON3-0 672.4 661.23 -1.66 648.805 -3.51 

CON3-1 570.6 567.58 -0.53 570.751 0.03 

CON3-2 534.8 539.53 0.88 531.821 -0.56 

CON3-3 656.9 625.81 -4.73 640.144 -2.55 

CON3-4 640.2 613.06 -4.24 610.17 -4.69 

CON3-5 604.7 582.28 -3.71 605.357 0.11 

CON3-6 521.3 514.9 -1.23 521.066 -0.04 

CON3-7 602.8 622.69 3.30 626.701 3.96 

CON3-8 556.2 546.75 -1.70 553.623 -0.46 

CON3-9 612.8 623.65 1.77 606.939 -0.96 

CON8-0 967.3 907.89 -6.14 926.144 -4.25 

CON8-1 828.7 836.59 0.95 862.001 4.02 

CON8-2 770.2 779.11 1.16 783.807 1.77 

CON8-3 906.7 884.57 -2.44 934.192 3.03 

CON8-4 876.8 860.33 -1.88 849.79 -3.08 

CON8-5 866.9 881.32 1.66 881.473 1.68 

CON8-6 749.1 729.87 -2.57 776.08 3.60 

CON8-7 929.8 904.31 -2.74 929.369 -0.05 

CON8-8 833.1 825.15 -0.95 828.567 -0.54 

CON8-9 877.3 892.76 1.76 901.243 2.73 
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 The results obtained during the parameter test and with specified parameter set are 

listed in the Table 4.1. The first column denotes the problem name, the second column 

the best solutions presented by Dethloff (2001), and the third column denotes the best 

found solutions during parameter testing with the percent gap compared to Dethloff, and 

the last column the results with our last parameter set again with the percent gap. The 

percent gap is calculated as  

 

    {Dual GA –Dethloff’s Best}/ Dethloff’s Best   (25) 

 

The bold face values denote the results which are better than those found by Dethloff 

(2001). As seen on the table, Dual GA algorithm with parameters (8/5/200/13) 

performed better than Dethloff’s Best in 16 problem instances out of 20 with 3 vehicles 

case and 8 problem instances out of 20 with 3 vehicles case. 
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5. CONCLUSION 

 Our work studied a very specialized case of the classical VRP, which is the 

VRPSPD. Our problem differs mainly from the rest of the literature with its capacity 

constraints. These require simultaneous pick-ups and deliveries of loads of the same 

size from the depot to the customers and from the customers to the depot. Besides, in 

the case of our problem the tour is not segmented to line haul and backhaul clusters and 

splitting of the demand as well as pick-up quantities is not permitted to occur. Yet, there 

exists some number of similar instances to our problem in the literature. We have 

studied and described these problems, approaches, and solution techniques in the 

literature as well as the general VRP literature.  

 

 We have tested our dual GA heuristic, which was improved by ourselves. The 

heuristics introduced for solving the VRP start at one point of the search space and 

proceed down one path, accepting an improvement if it exists. That is, no matter how 

many times one runs the heuristics she would always end up with the same final 

solution if she started from the same initial solution. Stochastic heuristics or heuristics 

that tend to change the search path based on upon probabilistic factors, on the other 

hand yield to give different solutions during different executions, even when starting 

from the same initial solution (Thangiah and Petrovic, 1998). The heuristics developed 

in this thesis incurred high level of stochastic content. Thus, it is quite probable that 

even the runs are replicated with our codes on identical machines, one may not come up 

with the solutions same as the ones we have supplied at this work.  

 

 It was the first time at this paper the random keys method was tested on a VRP 

instance. Together with the second heuristic this work is the first ever study that uses 

GAs to solve VRPSPD. We have come out with improvements to the previously 

declarations as a result of our study. However, computation times, although not 

expressed explicitly, are not quite short to compete with other heuristics whose 
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progresses are declared to be in seconds. Future directions to our work may be to 

eliminate the remaining parameters while improving the best solutions of this study as 

well as to enhance the speed of the process leading to a satisficing outcome. This would 

be probable by imbedding the improvements in the exact algorithms, better memory 

properties, and enhancing the search capabilities of the genetic mechanism with those of 

the well performing ones such as the tabu search and the simulated annealing heuristics. 
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Appendix A: Pseudo-Code for Random Keys Method 

Initialize the input and data keeping structures 

 

Read and input the distance matrix between all the nodes including the depot. 

 

Read and input the demand and supply amounts at each node excluding the depot. 

 

Sum up the demand and supply values at each node and assess the minimum amount of 

vehicles required. 

 While NOT end of 50 nodes 

  total demand += demand of node i; 

  total supply += supply of node i; 

  i← i+1; 

 If (total demand > total supply) 

  Minimum number of vehicles = total demand / vehicle capacity 

 Else 

  Minimum number of vehicles = total supply / vehicle capacity 

 

Establish the initial truck capacity available for distribution of goods and the initial 

empty capacity. 

 

fullcapacity = Vehicle capacity * fillrate; 

emptycapacity = Vehicle capacity * (1-fillrate); 

 

Initialize the chromosome structure.  

• 200 chromosomes are constructed as the initial population and this number is kept 

constant throughout the generations. 

• Each gene of the chromosome possesses two information values. The first one is 

the number of the node, the second is the random number assigned to this gene. 
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While NOT End of the Generations 

  

Generate twins of currently generated chromosomes. 

 

Sort the genes in the clone chromosome in ascending order of the random numbers at 

each gene. 

 

Distribute the nodes to vehicles and calculate the total road covered. 

 

 for (total number of total chromosomes, i) 

    for (total number of genes in the clone chromosome, j) 

       if (the fullcapacity ≥ demand (i,j)) AND (emptycapacity + demand (i,j) ≥ 

supply (i,j)) 

  fullcapacity ← fullcapacity – demand(i, j); 

  emptycapacity ← emptycapacity + demand (i,j) - supply (i,j); 

  roadcovered ← roadcovered + distance(i1,(i-1)1); 

      else 

  roadcovered ← roadcovered + distance(( i-1)1 , 0); 

  fullcapacity = Vehicle capacity * fillrate; 

emptycapacity = Vehicle capacity * (1-fillrate); 

fullcapacity ← fullcapacity – demand(i, j); 

emptycapacity ← emptycapacity + demand (i,j) - supply (i,j); 

roadcovered ← distance(0, i1); 

 

   if (it is the last gene j) 

   roadcovered ← roadcovered + distance( i1 , 0); 

 

Record the performance of the clone chromosome. 

 

Compare the found value with the current best practice. 

 

 if (current best solution >  roadcovered(i)) 

    current best solution = roadcovered(i); 
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    keep the original chromosome sequence i; 

 

Sort the road covered values of each of 200 chromosomes in ascending order. 

 

Assign them weight values with respect to performances obtained. 

 

Generate a random matching between pair of the 200 chromosomes taking into 

consideration the weight values based on the performance vales assigned. 

 

Realize cross-over between two parents for every pair. 

 

 take the original cromosomes 

crosspoint =random number less than maximum number of genes; 

 for (j = crosspoint to maximum number of nodes) 

    temp = parent1 j4; 

    parent1 j4 = parent2 j4; 

   parent2 j4 = temp; 

 

Realize mutations and alter the random number part of a random gene at an original 

random chromosome. 

 

check = current generation -  the last generation a best solution found; 

increase the chance of mutation as check increases; 

if (mutation condition satisfied) 

   choose a random original  chromosome, i; 

   choose a random gene, j; 

   (i, j)4 = random number; 

 

This is the end of the generations. 

 

Get the best chromosome sequence ever found in the replications, redistribute the nodes 

to vehicles and output the obtained sequence on the user screen. 
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Appendix B: Pseudo-Code For the Second Method 

Initialize the input and data keeping structures 

 

Read and input the distance matrix between all the nodes including the depot. 

 

Read and input the demand and supply amounts at each node excluding the depot. 

 

Sum up the demand and supply values at each node and assess the minimum amount of 

vehicles required. 

 While NOT end of 50 nodes 

  total demand += demand of node i; 

  total supply += supply of node i; 

  i← i+1; 

 If (total demand > total supply) 

  Minimum number of vehicles = total demand / vehicle capacity 

 Else 

  Minimum number of vehicles = total supply / vehicle capacity 

 

Establish the initial truck capacity available for distribution of goods and the initial 

empty capacity. 

 

fullcapacity = Vehicle capacity * fillrate; 

emptycapacity = Vehicle capacity * (1-fillrate); 

 

Initialize the chromosome structure.  

• 200 chromosomes are constructed as the initial population and this number is kept 

constant throughout the generations. 

• Each gene of the chromosome possesses two information values. The first one is 

the number of the node, the second is the random number assigned to this gene. 

 

Sort the genes in the chromosomes in ascending order of the random numbers of each 

gene. 
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While NOT End of the Generations 

  

Distribute the nodes to vehicles and calculate the total road covered. 

 

 for (total number of total chromosomes, i) 

    for (total number of genes in the clone chromosome, j) 

       if (the fullcapacity ≥ demand (i,j)) AND (emptycapacity + demand (i,j) ≥ 

supply (i,j)) 

  fullcapacity ← fullcapacity – demand(i, j); 

  emptycapacity ← emptycapacity + demand (i,j) - supply (i,j); 

  roadcovered ← roadcovered + distance(i1,(i-1)1); 

      else 

  roadcovered ← roadcovered + distance(( i-1)1 , 0); 

   Send the sub-route to optimizer 

  roadcovered ← reduced roadcovered; 

  total_route_covered ← roadcovered + total_route_covered; 

  roadcovered ← 0; 

  fullcapacity = Vehicle capacity * fillrate; 

emptycapacity = Vehicle capacity * (1-fillrate); 

fullcapacity ← fullcapacity – demand(i, j); 

emptycapacity ← emptycapacity + demand (i,j) - supply (i,j); 

roadcovered ← distance(0, i1); 

 

   if (it is the last gene j) 

   roadcovered ← roadcovered + distance( i1 , 0); 

  Send the sub-route to optimizer 

  roadcovered ← reduced roadcovered; 

  total_route_covered ← roadcovered + total_route_covered; 

   

The optimizer reduces the sub-tour distance by applying Or-opt. 

 

Given a sub-tour with n nodes 
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h← 1, m← 2, ns← 0, maximum_ns← 0 ; 

While Not All n Nodes Iterated 

 While Not All Nodes Following h Considered 

  Calculate the net saving ns if the node h is replaced between node m and m+1; 

  If (ns ≥ maximum_ns) And (ns ≥0) 

     maximum_ns ← ns; 

     best_location_for_insertion ← m; 

 m ← m+1; 

 END of While, m = n; 

 Replace node h between m and m+1; 

 h← h+1; 

END of While, h=n; 

Calculate the total sub-tour length; 

Give out the sub-tour length 

 

 

Record the performance of the clone chromosome. 

 

Compare the found value with the current best practice. 

 

 if (current best solution >  total_route_covered (i)) 

    current best solution = total_route_covered (i); 

    keep the original chromosome sequence i; 

 

Sort the total_route_covered values of each of 200 chromosomes in ascending order. 

 

Assign them probability weight values, p(i) with respect to performances obtained. 

 

p(i) ← Average of (total_route_covered) / total_route_covered(i) 

 

Generate a random matching between two of the 200 chromosomes for 100 times taking 

into consideration the probability weight values. 
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Realize cross-over between two parents for 100 times. 

 

 take the parent cromosomes 

crosspoint =random number less than maximum number of genes; 

 for (i ≤ crosspoint) 

  locate the gene of the first parent directlyinto the first offspring; 

 for (j = crosspoint to maximum number of nodes) 

    search the genes in the second parent but not yet located in the offspring; 

  locate them in the offspring with the same sequence appearing in the second 

parent 

 

Realize mutations and alter the random number part of a random gene at an original 

random chromosome. 

 

check = current generation -  the last generation a best solution found; 

increase the chance of normal mutation and destructive mutation linearly as 

check increases in multiples of IncremetSize; 

While (mutation condition satisfied) 

   choose a random original  chromosome, c; 

   choose two random genes, i and j; 

   interchange their locations on the chromosome; 

   choose two random gene, s; 

   change its random key with an arbitrary number; 

END While;  

While (destructive mutation condition satisfied) 

   choose a random original  chromosome, c; 

   resort the genes in the chromosome with ascending order of the random keys; 

END While; 

 

This is the end of the generations. 

 

Get the best chromosome sequence ever found in the replications, redistribute the nodes 

to vehicles and output the obtained sequence on the user screen. 
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