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ABSTRACT 

 Vehicle routing problems have various extensions such as time windows, multiple 

vehicles, backhauls, simultaneous delivery and pick-up, etc. The objectives of all these 

problems are to design optimal routes minimizing total distance traveled, minimizing 

number of vehicles, etc that satisfy corresponding constraints. 

 

 In this study, an ant colony optimization based heuristic that can be used to solve 

various vehicle routing problems is proposed. The objective function considered to 

minimize the total distance traveled by all vehicles. The heuristic is applied to vehicle 

routing problem with time windows and vehicle routing with simultaneous delivery and 

pick-up. Vehicles are identical and capacities of the vehicles are finite. The time 

window constraints in the first problem are assumed to be strict. 

 

The proposed heuristic consists of four steps. First, a candidate list is formed for 

each customer in order to reduce computational time. Second, a feasible solution is 

found, and initial pheromone trails on each arc is calculated using it. Then, routes are 

constructed based on Dorigo et al. (1997). While visibility is calculated during route 

construction process, the distance between two customers, customers’ distance to the 

depot and the time window associated with the customer to whom the ant is considered 

to move are considered. Pheromone trails are modified by both local and global 

pheromone update. Finally, constructed routes are improved using 2-opt algorithm. 

 

The algorithm have been tested on the benchmark problem instances of Solomon 

(1987) for vehicle routing problem with time windows, and benchmark problem 

instances of Min (1989) and Dethloff (2001) for vehicle routing with simultaneous 

delivery and pick-up. The algorithm is proven to give good results when compared to 

the best known results in the literature. 

 



ÖZET 

 Araç Rotalama Problemlerinin zaman kısıtı, değişik özellikli araçlar, eşzamanlı 

dağıtım ve toplama gibi çok çeşitli uzantıları vardır. Bütün problemdeki amaç ise tüm 

kısıtları sağlayan kat edilen toplam mesafeyi, kullanılan araç sayısını vs. azaltan optimal 

rotalar oluşturmaktır. 

  

 Bu çalışmada çeşitli Araç Rotalama Problemlerinin çözümü için kullanılabilecek 

karınca kolonisi optimizasyonuna dayanan bir sezgisel yaklaşım önerilmiştir. 

Modeldeki amaç fonksiyonu, araçlar tarafından kat edilen toplam mesafenin en 

küçüklenmesidir. Önerilen yaklaşım Zaman Kısıtlı Araç Rotalama Problemine ve Eş 

Zamanlı Dağıtım ve Toplamalı Araç Rotalama Problemine uygulanmıştır. Tüm araçlar 

aynı özelliklere sahiptir ve araçların kapasiteleri göz önünde bulundurulmaktadır. 

 

Önerilen sezgisel yöntem dört aşamadan oluşmaktadır. Ilk olarak hesaplama 

zamanını azaltmak için aday listeleri oluşturulur. İkinci olarak olurlu bir çözüm bulunur 

ve bu çözüm kullanılarak her bir yol üzerindeki başlangıç feromen seviyeleri hesaplanır. 

Daha sonra Dorigo (1997) tarafından önerilen yönteme dayanılarak rotalar oluşturulur. 

Rotaların oluşturulması sırasında uygunluk hesaplanırken müşteriler arasındaki uzaklık, 

müşterilerin depoya olan uzaklıkları ve zaman kısıtı göz önünde bulundurulur. Feromen 

seviyeleri ise hem yerel hemde global feromen yenileme yontemleri ile değiştirilir. Son 

olarak oluşturulan rotalar 2-opt algoritmasi kullanılarak iyileştirilir. 

  

 Algoritma, zaman kısıtlı araç rotalama problemi için Solomon’un 1987 yılında 

oluşturduğu kıyaslama problemi örnekleri ile, eş zamanlı dağıtım ve toplamalı araç 

rotalama problemi için ise Min’ in 1989 yılında ve Dethloff’ un 2001 yılında 

oluşturduğu kıyaslama problemi örnekleri ile test edilmiştir. Algoritma, problemlerin 

literatürde bilinen en iyi sonuçları ile karşılaştırldığında iyi sonuçlar vermektedir. 
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1. INTRODUCTION 

The problem of transportation of people, goods or information is commonly 

denoted as routing problem. As the routing problem has wide areas of application, 

optimization of the transportation has become an important issue. 

 

The basic routing problem is the Traveling Salesman Problem (TSP). The TSP is 

the problem of finding a minimal length closed tour that visits all cities of a given set 

exactly once. The Vehicle Routing Problem (VRP) is the TSP with m vehicles where a 

demand is associated with each city and the system has various constraints. VRP was 

first formulated by Dantzig and Ramser in 1959. The problem can be defined as the 

design of a set of minimum-cost vehicle routes, originating and terminating at a central 

depot, for a fleet of vehicles that services a set of customers with known demand 

(Dantzig and Ramser, 1959).  

 

 
 

  

 

 

 

 

 

 

 

 

Figure 1.1  General representation of the Vehicle Routing Problem 

 

 In the literature, VRP is commonly formulated with capacity constraints, so the 

Vehicle Routing Problem generally has the same meaning with Capacitated Vehicle 
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Routing Problem (CVRP). Nevertheless, more realistic problems has various other 

constrains such as time windows, multiple depots/vehicles, etc. 

 

 There have been many papers proposing exact algorithms for solving the VRP. 

These algorithms are based on dynamic programming, Lagrangean relaxation, and 

column generation. On the other hand, as the VRP is known to be NP-hard, exact 

algorithms are not capable of solving problems for big numbers of customers.  

 

 Heuristics are thought to be more efficient for complex VRPs and have become 

very popular for researchers. There are three types of heuristics in the literature: 

construction algorithms, improvement algorithms, and metaheuristics. Since 

metaheuristic approaches are very efficient for escaping local optimum values while 

searching for better solutions they give competitive results. That is why the recent 

publications are all based on metaheuristic approaches such as genetic algorithms, tabu 

search, simulated annealing, ant systems. 

 

 In this thesis, an ant system (AS) based heuristic for the VRPs is proposed. AS 

was first introduced for solving the TSP. Since then many implementations of AS have 

been proposed for a variety of combinatorial optimization problems such as quadratic 

assignment problem (QAP), job shop scheduling problem, and VRP. 

   

  AS is based on the way that real colonies of ants behave in order to find shortest 

path between their nest and food sources. It simulates the behavior of real ants to solve 

combinatorial optimization problems with artificial ants. Artificial ants find solutions in 

parallel processes using a constructive mechanism guided by artificial pheromone and a 

greedy heuristic known as visibility. The amount of pheromone deposited on arcs is 

proportional to the quality of the solution generated and increases at run-time during the 

computation. In addition, the artificial ants are enabled to use local search heuristic in 

an attempt to improve the solution quality.  

 

 In this study, we propose an AS approach to Vehicle Routing Problem with 

Time Window (VRPTW) and Vehicle Routing Problem with Simultaneous Delivery 

and Pick-up (VRPSDP) that produces comparable results to those that exist in the 

literature. Chapter 2 includes a comprehensive literature review on the ant algorithms 
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where a detailed definition of the algorithm is given, and major studies on this subject 

are explained. 

 

  Chapter 3 includes a detailed definition of the VRPTW and a literature review 

on the problem. It also describes the proposed ant system based approach for solving the 

VRPTW and reports the computational study on it. A benchmark study between the 

proposed approach and the best known results in the literature based on the test 

problems of Solomon (1987). 

 

 Chapter 3 includes a detailed definition of the VRPSDP and a literature review 

on the problem. It also describes the proposed ant system based approach for solving the 

VRPSDP and reports the computational study on it. The proposed approach has been 

tested on the benchmark problem instances of Min (1989) and Dethloff (2001). 

 

 The last chapter provides a discussion of the results achieved and concluding 

remarks. It also gives directions for future research.  
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2. ANT ALGORITHMS 

 Ant algorithms are one of the examples of swarm intelligence in which scientists 

study the behavior patterns of bees, termites, ants, and other social insects in order to 

simulate processes. Ant algorithms were first proposed by Dorigo et al. (1991) as an 

approach to solve combinatorial optimization problems like the TSP and QAP. Then, 

they have been applied to various other problems.  

 

In this chapter, first general characteristics of ant algorithms and the ant colony 

optimization heuristic will be described. Then, applications of ant algorithms to various 

combinatorial optimization problems will be explained. Finally, a review of the 

improvements to ant algorithms will be given. 

2.1. Basic Idea of Ant Algorithms 

 Understanding how blind animals like ants could establish shortest paths from 

their nests to feeding sources was one of the problems studied by ethnologists. Then, it 

was discovered that pheromone trails are used to communicate among individuals 

regarding paths and to decide where to go. 

 

 Ant algorithms are based on the way that real ant colonies behave in order to 

find shortest path between their nests and food sources. While walking ants leave 

aromatic essence, called pheromone, on the path they walk. Other ants can sense the 

existence of pheromone and choose their way according to the level of pheromone. 

Greater level of pheromone on a path will increase the probability that ants will follow 

that path. The level of pheromone laid is based on the length of the path and the quality 

of the food source. The level of pheromone on a path will increase when the number of 

ants following that path increases. In time all ants will follow the shortest path.  
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 Choosing the shortest path can be explained in terms of autocatalytic behavior 

(i.e. positive feedback) that the more are the ants following a trail the more that trail 

becomes attractive for being followed. The most interesting aspect of autocatalytic 

process is that finding the shortest path around the obstacle is the result of the 

interaction between the obstacle shape and ants distributed behavior. Although all ants 

move at approximately the same speed and deposit a pheromone trail at approximately 

the same rate, it takes longer to go on their longer side than on their shorter side of 

obstacles. This makes the pheromone trail accumulate quicker on the shorter side. 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 2.1  An example of the behavior of the real ants 

 

Consider for example the experimental setting shown in Figure 2.1. There is a 

path along which ants are walking (for example from food source A to the nest E and 

vice versa). Suddenly an obstacle appears and the path is cut off. So at position B the 

ants walking from A to E (or at position D those walking in the opposite direction) have 

to decide whether to turn right or left. The choice is influenced by the intensity of the 

pheromone trails left by preceding ants. A higher level of pheromone on the right path 

gives an ant a stronger stimulus and thus a higher probability to turn right. The first ant 

reaching point B (or D) has the same probability to turn right or left (as there was no 

previous pheromone on the two alternative paths). Because path BCD is shorter than 

BHD the first ant following it will reach D before the first ant following path BHD. 

Shorter paths will receive pheromone reinforcement more quickly as they will be 

completed earlier than longer ones. The result is that an ant returning from E to D will 
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find a stronger trail on path DCB, caused by the half of all the ants that by chance 

decided to approach the obstacle via DCBA and by the already arrived ones coming via 

BCD: they will therefore prefer path DCB to path DHB. As a consequence, the number 

of ants following path BCD per unit of time will be higher than the number of ants 

following BHD. This causes the quantity of pheromone on the shorter path to grow 

faster than on the longer one. Thus, the probability that any single ant chooses the path 

to follow is quickly biased towards the shorter one. The final result is that very quickly 

all ants will choose the shorter path (Dorigo and Colorni, 1996). 

 

In what follows is the description of how ant system simulates the behavior of 

real ants to solve combinatorial optimization problems with artificial ants.  

 

Consider the example in Figure 2.2, which is a possible AS interpretation of 

Figure 2.1 (Dorigo et al, 1991). The distances between D and H, between B and H, and 

between B and D are equal to 1. C is positioned in the middle of D and B. 30 new ants 

come to B from A and 30 to D from E at each time unit. Each ant walks at a speed of 1 

per time unit and lays down a pheromone trail of intensity 1 at time t.  Evaporation 

occurs in the middle of the successive time interval (t+1, t+2).  

 

At t=0 30 ants are in B and 30 in D. As there is no pheromone trail they 

randomly choose the way to go. Thus, approximately 15 ants from each node will go 

toward H and 15 toward C. 

   

 
 

  

 

 

 

 

 

 

 

 

Figure 2.2  An example of the behavior of the artificial ants 
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At t=1 30 new ants come to B from A. They sense a trail of intensity 15 on the 

path that leads to H, laid by the 15 ants that went through B-H-D. They also sense a trail 

of intensity 30 on the path to C, obtained as the sum of the trail laid by the 15 ants that 

went through B-C-D and by the 15 ants that went through D-C-B. The probability of 

choosing a path is therefore biased. The expected number of ants going toward C will 

be the double of those going toward H: 20 versus 10, respectively. The same is true for 

the new 30 ants in D which came from E. This process continues until all of the ants 

eventually choose the shortest path.  

 

 In brief, if an ant has to make a decision about which path to follow it will most 

probably follow  the path chosen heavily by preceding ants, and the more is the number 

of ants following a trail, the more attractive that trail becomes for being followed. 

 

 In the ant meta-heuristic, a colony of artificial ants cooperates in finding good 

solutions to discrete optimization problems. Artificial ants have two characteristics. On 

the one hand they imitate the following behavior of real ants: 

 

• Colony of cooperating individuals: Like real ant colonies, ant algorithms are 

composed of entities cooperating to find a good solution. Although each 

artificial ant can find a feasible solution, high quality solutions are the result of 

the cooperation. Ants cooperate by means of the information they concurrently 

read/write on the problem states they visit. 

• Pheromone trail: While real ants lie pheromone on the path they visit, artificial 

ants change some numeric information of the problem states. This information 

takes into account the ant’s current performance and can be obtained by any ant 

accessing the state. In ant algorithms pheromone trails are the only 

communication channels among the ants. It affects the way that the problem 

environment is perceived by the ants as a function of the past history. Also an 

evaporation mechanism, similar to real pheromone evaporation, modifies the 

pheromone. Pheromone evaporation allows the ant colony to slowly forget its 

past history so that it can direct its search towards new directions without being 

over-constrained by past decisions. 
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• Shortest path searching and local moves: The aim of both artificial and real ants 

is to find a shortest path joining an origin to destination sites. Like real ants 

artificial ants move step-by-step through adjacent states of the problem. 

• Stochastic state transition policy: Artificial ants construct solutions applying a 

probabilistic decision to move through adjacent states. As for real ants, the 

artificial ants only use local information in terms of space and time. The 

information is a function of both the specifications and pheromone trails induced 

by past ants. 

 

 On the other hand, they are enriched with the following capabilities. 

 

• Artificial ants can determine how desirable states are. 

• Artificial ants have a memory that keeps the ants’ past actions. 

• Artificial ants deposit an amount of pheromone which is a function of the quality 

of the solution found. 

• The way that artificial ants lies pheromone is dependent on the problem.  

• Ant algorithms can also be enriched with extra capabilities such as local 

optimization, backtracking, and so on, that cannot be found in real ants. 

2.2. The Ant Colony Optimization Heuristic 

 In Ant Colony Optimization (ACO), a number of artificial ants with the 

described characteristics search for good quality solutions to the discrete optimization 

problem. If G = (C, L) is assumed as the graph of a discrete optimization problem, ACO 

can be used to find to find a solution to the shortest path problem defined on the graph 

G. A solution is described in terms of paths through the states of the problem in 

accordance with the problems’ constraints. For example, in the TSP, C is the set of 

cities, L is the set of arcs connecting cities, and a solution is a closed tour.  

  

 Each ant is assigned to an initial state based on problem criteria. The start state is 

usually defined as a unit length sequence. Artificial ants find solutions in parallel 

processes using an incremental constructive mechanism to search for a feasible solution. 
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It starts from the initial state and move to feasible neighbor states. Moves are made by 

applying a stochastic search policy guided by ants’ memory, problem constraints, 

pheromone trail accumulated by all the ants from the beginning of the search process 

and problem-specific heuristic information (visibility). The ants’ memory keeps 

information about the path it followed. It can be used to carry useful information to 

compute the goodness of the generated solution and/or the contribution of each 

executed move. It also provides the feasibility of the solutions. While building its own 

solution, each ant also collects information on the problem characteristics and its 

performance. It uses this information to modify the representation of the problem, as 

seen by the other ants. The information collected by ants is stored in pheromone trails. 

Visibility measures the attractiveness of the next node to be selected. Visibility value 

represents a priori information about the problem instance definition. A solution is 

constructed by moving through a sequence of neighbor states.  

 

The decisions about when the ants should release pheromone on the 

environment and how much pheromone should be deposited depend on the problem. 

Ants can release pheromone while building the solution, or after a solution has been 

built, or both. In addition, pheromone trails can be associated with all problem arcs or 

some of them. 

 

Probabilistic tables that are function of the pheromone trail and heuristic values 

guide the ants’ search. The stochastic component of the decision policy and the 

pheromone evaporation mechanism prevents a rapid drift of all the ants towards the 

same part of the search space.  

 

After building a solution the ant deposits additional pheromone information on 

the arcs of the solution. In general, the amount of pheromone deposited is proportional 

to the goodness of the solution. If a move generates a high-quality solution its 

pheromone will be increased proportionally to its contribution. After an ant constructs a 

solution and deposits pheromone information it dies. 

 

Although a single ant can find a solution high quality solutions are only found as 

a result of the global cooperation among all ants. Communication among ants is 

mediated by information stored in pheromone trail values. 
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procedure ACO heuristics() 
         While (termination condition not met)  
 schedule activities 
      ants generation and activity(); 
      pheromone evaporation();  
                   daemon actions(); 
             end schedule activities 
          end while 
end procedure 
 
procedure ants generation and activity() 
         While (available resources)  
 new active ant(); 
          end while 
end procedure 
 
procedure new active ant(); 
        initialize ant(); 
        M=update ant memory (); 
         While (current memory ≠complete solution)  
 A=read local ant routing table(); 
 P=compute transition probabilities; 
 next state=apply decision policy; 
 move to next state(next state); 
 if (local pheromone update) 
     deposit pheromone on the visited arc(); 
     update ant routing table(); 
 end if 
 M=update internal state(); 
          end while 
          if (global pheromone update) 
 foreach visited arc do  
     deposit pheromone on the visited arc(); 
     update ant routing table(); 
               end foreach 
           end if 
           die(); 
end procedure 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3  The ACO heuristic 

 

In brief, a colony of ants concurrently moves through feasible adjacent states of 

the problem by applying a stochastic decision process. By moving, ants incrementally 

build solutions to the optimization problem. During the solution construction process 

or/and after the solution is constructed, the ants evaluate the (partial) solution and 

update pheromone trail values. Figure 2.3 provides the pseudo code of the ACO 

heuristic developed by Dorigo and Caro (1999). 

 

Beside ants’ generation and activity described above, ACO algorithm has two 

more procedures: pheromone trail evaporation and daemon actions. Pheromone 
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evaporation is the process by which the pheromone trail values on the arcs decrease 

overtime. This prevents the convergence of the algorithm to a sub-optimal solution and 

enables the generation of new solutions. Daemon action is an optional process by which 

the solutions are observed and the extra pheromone is deposited on the arcs used by the 

shortest path. 

 

Ants generation and activity, pheromone trail evaporation, and daemon actions 

of ACO need synchronization. In general, a strictly sequential scheduling of the 

activities is particularly suitable for non-distributed problems, where the global 

knowledge is easily accessible at any instant and the operations can be conveniently 

synchronized. On the contrary, some form of parallelism can be easily and efficiently 

exploited in distributed problems like routing in telecommunications networks (Dorigo 

et al., 1998). 

2.3. Ant System  

In this section, general characteristics of the ant algorithms are described 

through Ant System (AS) approach, as it is the first study on ACO and most of the ant 

algorithms proposed are strongly inspired by AS. In addition, the first application of an 

ACO algorithm was done using the TSP, and TSP is the prototypical representative of 

NP-hard combinatorial optimization problems (Garey and Johnson, 1979). Therefore, 

AS is introduced with its application to the TSP. Then, its applications to solve other 

optimization problems will be explained.  

2.3.1. TSP Application 

  The TSP is the problem of finding a minimal length closed tour that visits all 

cities of a given set exactly once. Artificial ants find solutions to the TSP in parallel 

processes using a constructive mechanism.  

 

 While solving the TSP, first all m artificial ants are randomly placed on cities 

and initial pheromone trail intensities are set on edges. Then, each artificial ant moves 
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from one city to another. It chooses the city to move using a probabilistic function based 

on intensity of pheromone trail on edges and a heuristic function.  Intensity of 

pheromone trail gives information about how many ants in the past have chosen that 

edge. The heuristic function is called visibility and is used to increase the probability of 

going to a closer city. In the earliest approaches, it was usually chosen as a function of 

the edges length. Artificial ants probabilistically choose closer cities with a lot of 

pheromone trail. Each time an ant makes a move the trail it leaves on path (i, j) is 

collected and used to compute the new values for path trails.  

 

Each artificial ant has a memory called tabu list. The tabu list forces the ant to 

make legal tours.  It saves the cities already visited and forbids the ant to move already 

visited cities until a tour is completed.  

 

After all cities are visited, the tabu list of each ant will be full. The shortest path 

found is computed and saved. Then, tabu lists are emptied. This process is iterated for a 

user-defined number of cycles. 

 

Suppose there are n cities and bi is the number of ants at city i. Consider the 

following notation: 

∑
=

=
n

i
ibm

1

: Total number of ants 

N             : Set of cities to be visited 

tabuk       : Tabu list of the k-th ant 

tabuk(s)   : s-th city visited by the k-th ant in the tour  

τij(t)         : Intensity of trail on edge between city i and city j at time t  

ηij            : Visibility of  edge between city i and city j 

ηij is usually assumed as the inverse of the distance between city i and city j (dij) 

Thus, ηij = 1/ dij. 

 

After m artificial ants are randomly placed on cities, the first element of each 

ant's tabu list is set to be equal to its starting city. Then, they move to unvisited cities. 

The probability of moving from city i to city j for the k-th ant  is defined as: )( k
ijp

 12



 

[ ] [ ]
[ ] [ ]

⎪
⎪
⎩

⎪⎪
⎨

⎧
∈

⋅

⋅

= ∑
∈

otherwise,0

, k
ik

allowedk
ik

ijij

k
ij

allowedj
p

k

βα

βα

ητ

ητ

    (2.1) 

 

where allowedk = {N – tabuk}, α and β are parameters that control the relative 

importance of pheromone trail versus visibility.  

 

Each time an ant moves from city i to city j, the pheromone trail on the edge (i, 

j) is modified. This is called as local trail updating. This prevents an edge to become 

dominant, and to be chosen by all the ants. Local trail updating is applied using the 

following formula:  

 
0)1( τρτρτ ⋅+⋅−= ijij       (2.2) 

 
where τ0 is a parameter representing the initial pheromone value on each edge and ρ is a 

coefficient such that (1 - ρ) represents the evaporation of trail.  

 

After all the ants have completed their tours, the ant that made the shortest tour 

modifies the edges belonging to its tour. This is called as global trail updating and is 

applied using the following formula: 

 

ijijij ∆+⋅= ττρτ        (2.3) 

   ∑  
=

∆=∆
m

k

k
ijij

1

ττ

where is the quantity per unit of length of pheromone trail laid on path (i, j) by the k-

th ant and is given by: 

k
ij∆τ

 

 
otherwise,0

 tour itsin  ) ,(path  usesant th if,

⎪⎩

⎪
⎨

⎧ −
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jik
L
Q

k
k
ijτ  

 

where Q is a constant and Lk is the tour length of the k-th ant. 
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Figure 2.4  Solving the TSP using ACO  

 

AS algorithm defined above is called ant-cycle. Two other algorithms of the AS 

ant-density and ant-quantity algorithms are also proposed. They differ in the way the 

trail is updated. In the ant-density, a quantity Q of trail is left on path (i, j). In the ant-

quantity a quantity Q/dij of trail is left on edge (i, j) every time an ant goes from i to j.  

 

In the ant-density: 

 
otherwise ,0

 tour itsin  ) ,(path  usesant th if ,

⎩
⎨
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=∆
jikQk

ijτ  

 

In the ant-quantity: 
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Finally, the shortest route is saved, the tabu lists of all ants are emptied, and the 

ants are free again to construct new tours. The process as described in Figure 2.4 

continues until the tour counter reaches the maximum number of cycles, NCmax, or 

stagnation (all ants construct the same tour). 

 

In general, all the ACO algorithms for the TSP follow a specific algorithmic 

scheme, which is outlined in Figure 2.5 (Stützle and Dorigo, 1999). After the 

initialization of the pheromone trails and some parameters a main loop is repeated until 

a termination condition. In the main loop, first, the ants construct feasible tours, then the 

generated tours are improved by applying local search, and finally the pheromone trails 

are updated.  

 
procedure ACO algorithm for TSPs 
     Set parameters, initialize pheromone trails 
     While (termination condition not met)  
 ConstructSolutions 
 ApplyLocalSearch % optional 
 UpdateTrails 
      end 
end ACO algorithm for TSPs 

 
 

  

 

 

 

 

Figure 2.5  An Algorithmic skeleton for ACO algorithm applied to the TSP 

2.3.2. Other Applications 

 As ant algorithm is versatile, it can be applied to different variants of a problem. 

For example, it can also be used to solve the Asymmetric TSP (ATSP). Solving ATSP 

is similar to solving TSP. The only differences are in the distance and trail matrices that 

are not symmetric.  

 

 AS is also a robust heuristic that can be applied to various other combinatorial 

optimization problems such as VRP, QAP, the job-shop scheduling problem (JS), 
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sequential ordering problem (SOP), graph coloring, routing in communications 

networks, and so on. (Dorigo et al., 1991). 

  

 Assigning n facilities to n locations so that the cost of the assignment is 

minimized is an example of QAP. Since QAP is the generalization of the TSP, AS was 

first applied to QAP after the TSP. 

 

Let, D = {dij }, where dij is the distance between location i and location j    and 

F ={fhk }, where fhk is the flow between facility h and facility k 

A permutation π is interpreted as an assignment of facility h= π(i) to location i, for each 

i=1,..,n. The problem is to identify a permutation π of both row and column indexes of 

the matrix F that minimizes the total cost: 

 

∑
=

=
n

ji
jiij fdZ

1,
)()(.min ππ  

 

An AS approach similar to AS approach of the TSP is used to solve the QAP. As 

AS requires the objective function represented on the basis of a single matrix, first the 

QAP objective function was expressed by a combination of the "potential vectors" of 

distance and flow matrices. The potential vectors, D and F, are the row sums of each of 

the two matrices as follows: 
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From these two potential vectors, a third matrix S is obtained, where each 

element is computed as sih=di.fh. 
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  Visibility is used as the inverse of the values of S.  

 

Various ACO algorithms for the QAP have been introduced.  The interested 

reader is referred to Stützle and Dorigo (1999) for an overview of these approaches. 

 

The JSP can be described as the following: A set of M machines and a set of J 

jobs are given. The j-th job (j=1, ..., J) consists of an ordered sequence of operations 

from a set O={... ojm ...}. Each operation ojm∈ O belongs to job j and has to be processed 

on machine m for djm consecutive time instants. N=|O| is the total number of operations. 

The problem is to assign the operations to time intervals in such a way that no two jobs 

are processed at the same time on the same machine and the maximum of the 

completion times of all operations is minimized (Graham et al., 1979). 

 
To solve JSP by AS, first the problem is represented as a directed weighted 

graph Q=(O’,A) where O’=O-{o0} and A is the set of arcs that connect o0 with the first 

operation of each job and that completely connect the nodes of O except for the nodes 

belonging to a same job. Nodes belonging to a same job are connected in sequence. 

Node o0 specifies the job scheduled first. Therefore, there are N+1 nodes and 

( JNN +− 2)1.( ) arcs. Each arc is weighted by intensity of trail (τij) and the visibility   

ηij. Visibility can be calculated as a function of the processing time or the completion 

time.  

     

 
 

  

 

 

 

 
Figure 2.6  A graph for JSP with 3 jobs and 2 machines  

 
First, all ants are placed on o0. Then, at each step a feasible permutation of the 

remaining nodes have to be identified. In order to obtain a feasible permutation, the set 

of allowed nodes must be defined according to both the tabu list, and the problem 
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characteristic. For each ant k, let Gk be the set of all the nodes still to be visited and Sk 

the set of the nodes allowed at the next step. Transition probabilities are computed on 

the basis of Equation 2.1, where the set of allowed nodes is equal to Sk. When a node is 

chosen, it is deleted from both Gk and Sk.  If the chosen node is not the last job then its 

immediate successor is added to Sk. In this way, feasible solutions are provided. The 

process continues until Gk is emptied. The trails are computed as in the case of TSP. 

However, results are not competitive.  

 

The SOP is closely related to the ATSP, but additional precedence constraints 

between the nodes have to be satisfied. Gambardella and Dorigo (1997) extended the 

AS approach used to solve the ATSP and enhanced it by a local search algorithm. Then, 

they obtained excellent results and were able to improve the best known solutions for 

many benchmark instances. 

2.4. Improvements to Ant System 

AS is the first study which uses ACO algorithm to solve NP-hard combinatorial 

optimization problems. However, its performance compared to other approaches is 

rather poor. Therefore, several ACO algorithms have been proposed in order to increase 

the performance of AS. Improved versions have been applied to various optimization 

problems. Examples include the VRP (Bullnheimer et al., 1997; Gamberdella et al., 

1999), sequential ordering (Gamberdella and Dorigo, 1997), single machine tardiness 

(Bauer et al., 1999), multiple knapsack (Leguizamon and Michalewicz, 1999), etc. 

2.4.1. Elitist Strategy 

 A first improvement on the AS is called the elitist strategy, and is introduced in 

Dorigo et al.(1996). The global best tour is denoted by Lgb and a strong additional 

reinforcement to the arcs belonging to that tour is given. When the pheromone trails are 

updated, pheromone value equal to e.1/Lgb is added to the arcs of that tour, where e is 

the number of elitist ants.  
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2.4.2. Ant Colony System  

Dorigo and Gambardella (1996) proposed the ACS which has two types. In the 

first type, after all the ants have built a solution, pheromone trails on the arcs used by 

the ant that found the best tour so far are updated. In the second, after all the ants have 

built a solution, a local search procedure based on 3-opt is applied to improve the 

solutions and then pheromone trails on the arcs used by the ant that found the best tour 

so far are updated. The pheromone trail update rule is as follows: 

  

ijijij ∆+⋅−= τρτρτ .)1(       (2.4) 

where τ∆ij = (length of the shortest tour)-1 

 

A different decision rule, called pseudo-random-proportional rule, is used in the 

ACS. The pseudo-random-proportional rule , used by ant k in node I to choose the 

next node j is the following: 

k
ijP
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where q is a random variable uniformly distributed over [0, 1], and q0 Є [0, 1] is a 

parameter. 

 

While using the probabilistic choice of the components to construct a solution is 

called exploration, choosing the component that maximizes a blend of pheromone trail 

values and heuristic evaluations is called exploitation. 
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                                            (2.6) 

 

An ant moving from city i to city j updates the pheromone trail on arc (i, j). 

 

0.)1( τϕτϕτ +⋅−= ijij                                                                           (2.7) 
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where 10 ≤< ϕ   

 

τ0 = (n.Lnn )-1

where n is the number of cities and Lnn is the length of a tour produced by the nearest 

neighbor heuristic. 

 

Last, ACS exploits a data structure called candidate list which provides 

additional local heuristic information. A candidate list is a list of preferred cities to be 

visited from a given city. In ACS, when an ant is in city, instead of examining all the 

unvisited neighbors, it chooses the city to move to among those in the candidate list. 

Other cities are examined only if no candidate list city has unvisited status. The 

candidate list of a city contains d cities ordered by non-decreasing distance (d is a 

parameter) and the list is scanned sequentially and according to the ant tabu list to avoid 

already visited cities (Dorigo et al., 1998). 

 

There are other versions of ACS.  These differ from the ACS described above: 

(i) in the way local pheromone update applied, such as setting τ0 =0, 

(ii) in the way the decision rule are made  

(iii) in the type of solution used for global pheromone updating, such as 

adding the pheromone only to arcs belonging to the best solution found  

2.4.3. Ant –Q 

Ant-Q has the same characteristics as ACS. The only difference is in the value 

of τ0. Pheromone trails are updated with a value which is a prediction of the value of the 

next state. In Ant-Q, an ant k applies global pheromone updates by the following 

equation: 

jallowedl
jlijij

∈

+⋅−= τγϕτϕτ max..)1(     (2.8) 

Unfortunately, it was later found that setting the complicate prediction term to a 

small constant value, as it is done in ACS, resulted in approximately the same 

performance. Therefore, although having a good performance, Ant-Q was abandoned 

for the equally good but simpler ACS (Dorigo et al., 1998). 
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2.4.4. MAX-MIN Ant System  

Stutzle and Hoos (1997) proposed the MAX-MIN Ant System (MMAS). The 

solutions are constructed in the same way as in AS. The main modifications are the 

followings:  

 

• The allowed range for intensity of pheromone trails are in an interval [τmin ,τmax ]. 

This indirectly limits the probability pij of selecting a city j when an ant is in city 

i to an interval [pmin; pmax], with 0 < pmin ≤ pij ≤ pmax ≤ 1. 

• Initial pheromone values are set equal to τmax. This increases the exploration of 

tours at the start of the algorithm, since the relative differences between the 

pheromone trail values are less pronounced. 

• After each iteration, only the pheromone levels of the arcs used by the best ant 

are increased using the formula (2.3). 

• To avoid stagnation that may occur in case some pheromone trails are close to 

τmax while most others are close to τmin, pheromone trails are updated such that: 

ijij τττ −=∆ max  

  

 Better solutions are obtained using MMAS. 

 

 In Stutzle and Hoos (1999), MMAS using the pseudo-random-proportional 

action choice rule of ACS is considered. Using that choice rule, very good solutions 

could be found faster but the final solution quality achieved was worse. 

 

 MMAS applied to the flow shop scheduling problem (FSP) outperforms earlier 

proposed Simulated Annealing algorithms and performs comparably to Tabu Search 

algorithms (Stützle,1997) 

 

 MMAS has been applied to the generalized assignment problem by Lorençou 

and Serra (1998). It found optimal and near optimal solutions. 
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2.4.5. ASrank 

Bullnheimer et al.(1997) proposed ASrank where after all m ants construct their 

tours, the ants are sorted by their tour lengths (L1≤ L2≤…≤ Lm). The trail levels on the 

arcs visited by the best σ -1 ants are updated. Contribution of an ant to the trail level 

update is proportional to the rank µ of the ant. In addition, extra emphasis is given to the 

best route found so far. When the trail levels are updated this path is treated as if a 

certain number of ants, namely the σ elitist ants, had chosen the path. The amount of 

pheromone on the arc (i, j) is updated according to the following formula:  
*. ijijijij τττρτ ∆+∆+=       (2.9) 
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2.4.6. Local Search 

Local search starts from some initial assignment and repeatedly tries to improve 

the current assignment by local changes. If a better tour T is found, it replaces the 

current tour and the local search is continues from T. The most widely known 

improvement algorithms are 2-opt (Croes, 1958) and 3-opt (Lin, 1965). They test 

whether the current solution can be improved by replacing 2 or 3 arcs, respectively. 
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Local search algorithms with k >3 arcs to be exchanged are not used commonly due to 

the high computation times.  

2.4.7. Candidate List 

A candidate list contains a given number of potential customers to be visited for 

each customer i. Many AS procedures use a candidate list in order to reduce run-times 

of larger instances. Generally, candidate set strategies have only been used as a part of 

local search procedure applied to the solutions constructed by ACO. However, in 

improvements of ACS, candidate set strategies were applied as part of the construction 

process. An ant first chooses the next customer to be visited from the candidate list 

corresponding to the current customer. After all the states in the candidate list have been 

visited, one of the remaining states is considered. Candidate lists are usually formed 

using nearest neighborhood when TSPs are solved. A candidate list consists of a fixed 

number of cities for each city in the order of non-decreasing distances.  

 

Stützle and Hoos (1996) proposed a candidate set strategy that requires to be 

regenerated throughout the search process. Randall and Montgomery (2002) proposed 

two types of candidate set for ACO: elite candidate set and evolving set. In the elite 

candidate set, the candidate set is formed by selecting the best k states based on their 

probability values. Then, this set is used for the next l iterations. In the evolving set, 

states with low probability values are eliminated temporarily and these states are not 

used for the next l iterations.  
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3. VEHICLE ROUTING PROBLEM WITH TIME WINDOWS 

 In this chapter, first the VRPTW will be explained, and a linear integer 

programming formulation of it will be given. Then, a detailed review of the VRPTW 

from the literature is given. Finally, an ACO based approach is proposed and applied to 

VRPTW. 

3.1. Mathematical Formulation of the VRPTW 

 The simplest type of the VRP is the capacitated vehicle routing problem 

(CVRP). In the CVRP, each customer i (i = 1…n) has a demand qi of goods and each 

vehicle with a capacity Q is available to deliver goods.  A solution to CVRP is a set of 

tours where each customer visited exactly once, each vehicle must start and end its tour 

at the depot, and the total tour demand is at most Q. 

 

 Mathematically, CVRP is described by a set of homogenous vehicles V, a set of 

customers C, and a directed graph G (N, A, d). N = {0,…,n+1} denotes the set of 

vertices. The graph consists of |C|+2 vertices where the customers are denoted by 1, 

2,…,n and the depot is represented by the vertices 0 and n+1. A = {(i, j): i≠j} denotes 

the set of arcs that represents connections between the depot and the customers and 

among the customers. No arc terminates at vertex 0 and no arc originates from vertex 

n+1. A cost(distance) cij is associated with each arc (i, j). Finally, Q, di, cij are assumed 

to be non-negative integers. 

 

 For each arc (i, j), where i ≠ j; i ≠ n + 1; j ≠0, and each vehicle k, xijk is defined as 

⎩
⎨
⎧

=
otherwise,0

),(arc uses  vehicleif,1 jik
xijk  
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 The goal is to design a set of minimal total cost routes such that each customer is 

serviced exactly once and every route originates at vertex 0 and ends at vertex n + 1. 

 

  VRP can be stated mathematically as: (Larsen,1999) 

 

                                  (3.1) ∑∑∑
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 In the model above, the objective function (3.1) aims to minimize the total travel 

distance. The constraint (3.2) assures visiting each customer exactly once and (3.3) 

states that no vehicle is loaded more than its capacity. The next three equations (3.4, 

3.5, and 3.6) ensure that each vehicle leaves the depot 0, after arriving at a customer the 

vehicle leaves that customer again, and finally arrives at the depot n+1. Constraints 

(3.7) are the binary constraints. 

 

Most real world problems encountered in distribution have a time constraint 

within which distribution of goods or services can be made. In addition, customers' 

preferences, such as in restaurants where deliveries are only allowed before a certain 

time of the day, may also restrict the schedule of the vehicles involved. Normally, these 

issues are simplified and formulated as VRP; the solution to this relatively 

unconstrained problem may not be practical (Bodin, 1990). VRPTW generalizes VRP 
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by involving additional constraints which restricts each customer to be served within a 

given time window.  

 

VRPTW is a well-known NP-hard problem which is an extension of VRP, 

encountered very frequently in making decisions about the distribution of goods and 

services (Tan et al., 2000). In VRPTW least cost routes from a given central depot to a 

set of geographically scattered customers with known demands are designed for a fleet 

of identical/non-identical vehicles with known capacities. The routes must originate and 

terminate at the depot. Moreover, each customer is visited only once by exactly one 

vehicle within a given time, and each route must satisfy capacity constraint. 

 

 Time window [ai, bi] given for a customer is defined as follows: ai and bi are the 

earliest and the latest times, respectively, when the customer permits the start of the 

service. Service at customer i must not start before ai and the vehicle must arrive at 

customer i before bi. The vehicle may arrive before ai but the customer cannot be 

serviced until ai. The depot also has a time window [a0, b0]. A vehicle can leave the 

depot after a0 and must return to the depot until b0. 

 

 In VRPTW, allowable delivery times of the customers add complexity to the VRP 

because of the time feasibility constraint that must be satisfied for each customer. The 

following is set of decision variables and constraints added to the model to specify the 

times that services begin. 

 

  sik : Time that vehicle k starts to service customer i       VkΝi ∈∀∈∀ ,  

 Assuming a0 = 0, s0k = 0  Vk ∈∀  

 

 VkNjisxKts jkijkijik ∈∀∈∀≤−−+ ,,)1(                         (3.8) 

             VkNibsa iiki ∈∀∈∀≤≤ ,                              (3.9) 

 

 Constraints (3.8) state that vehicle k going from i to j can not arrive at j before sik 

+ tij. K in this constraint is a very large number. Constraints (3.9) ensure the 

observations of time windows. 
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 In some cases, vehicles are allowed to start service just at the time they arrive to 

the customer site. So, in these types of problems, there are no waiting times for the 

vehicles at the customer sites. 

3.2. Complexity of VRPTW 

 The problem of finding the route for only one vehicle/person that has to visit a set 

of customers is called the TSP. TSP is a well-known NP-hard problem. The VRP is the 

generalization of the TSP, as the TSP is the VRP with one vehicle and without any 

constraints, such as customer demand or vehicle capacity. As an m-TSP, VRP is more 

complicated than TSP. Adding time windows constraints to the VRP results in a more 

complicated VRP than the VRP without time windows. Furthermore, Savelsbergh 

(1985) had shown that even finding a feasible solution to the VRPTW when the number 

of vehicles is fixed is itself an NP-Complete problem. Although optimal solutions to 

VRPTW can be obtained using exact methods, the computational time required to solve 

the VRPTW to optimality is prohibitive (Desrochers et al.,1992). Therefore, the 

development of approximation algorithms or heuristics for this problem has been of 

primary interest to many researchers.  

3.3. Optimal Algorithms for VRPTW  

 The first exact algorithm for the VRPTW was proposed by Kolen et al. (1987). 

Since then various researchers have studied on exact algorithms for the VRPTW. Exact 

algorithms in the literature are based on principles of dynamic programming, 

lagrangean relaxation, and column generation. 

3.3.1. Dynamic Programming 

 Kolen et al. (1987) is inspired from Christofides et al. (1981) and presented the 

first paper on dynamic programming for the VRPTW. In this paper, branch-and-bound 

approach was used in order to retrieve optimal solutions. There are three nodes in the 
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branch-and-bound algorithm, each of which corresponds to three sets: The set of fixed 

feasible routes starting and finishing at the depot, partially built route starting at the 

depot, and customers that are not allowed to be next on partially built route starting at 

the depot. Branching is done by selecting a customer that is not forbidden and that does 

not appear in any route. At each branch-and-bound node, dynamic programming is used 

to calculate a lower bound on all feasible solutions.  

3.3.2.  Lagrangean Relaxation-Based Methods 

 There are many studies that use Lagrangean relaxation based methods for 

solving VRPTW. Variable splitting followed by Lagrangean decomposition was used 

by  Jörnsten et al. (1986), Madsen et al. (1988) and Halse (1992). Jörnsten et al. (1986) 

presented variable splitting for the first time, but no computational results were given. 

Madsen et al. (1988) also presented four different decomposition approaches without 

any computational results.  Then, Halse (1992) offered three approaches and gave the 

computational results of one of these approaches.  

 

  Fisher et al. (1997) used K-tree approach followed by Lagrangean relaxation.  

They formulate the VRPTW as finding a K-tree with degree 2K on the depot, degree 2 

on the customers and subject to capacity and time constraints. This representation 

becomes equal to K routes.  

 

Finally Kohl et al. (1997) relax the constraints that ensure each customer must 

be visited exactly once and add a penalty term to the objective function. The model is 

decomposed into one sub-problem for each vehicle. The resulting problem is a shortest 

path problem with time window and capacity constraints.  

3.3.3.  Column Generation 

Column generation is used when a linear program contains too many variables 

to be solved explicitly. The linear program is initialized with a small subset of variables 

and all other variables are set to 0. Then, a solution to that reduced linear program is 
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computed. Afterwards, it is checked if the addition of one or more variables, not in the 

linear program, might improve the LP-solution.  

 

Desrochers et al. (1992) used the column generation approach for solving the 

VRPTW for the first time.  They add feasible columns as needed by solving a shortest 

path problem with time windows and capacity constraints using dynamic programming. 

The LP solution obtained provides a lower bound that is used in a branch-and-bound 

algorithm to solve the integer set-partitioning formulation. 

 

Kohl (1995) solves more instances using a more effective version of the same 

model as Desrochers et al. (1992) with the addition of valid inequalities.  

3.4. Approximation Algorithms for the VRPTW 

 Since the VRPTW is an NP-hard problem, many approximation algorithms have 

been proposed in the literature. These algorithms can be classified into three groups: 

construction algorithms, improvement algorithms, and metaheuristics. 

3.4.1. Construction Algorithms 

 Construction algorithms are used to build an initial feasible solution for the 

problem. They build a feasible solution by inserting unrouted customers iteratively into 

current partial routes according to some specific criteria, such as minimum additional 

distance or maximum savings, until the route's scarce resources (e.g. capacity) are 

depleted (Cordeau et al., 1999). These types of algorithms are classified as either 

sequential or parallel algorithms. In a sequential algorithm routes are built one at a time 

whereas in a parallel algorithm many routes are constructed simultaneously. 
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3.4.1.1 Sequential Construction Algorithms 

 Sequential construction algorithms are mostly based on the Sweep Heuristic 

(Gillet and Miller, 1974) and the Savings Heuristic (Clarke and Wright, 1964). In the 

sweep heuristic, routes are constructed as an angle sweeps the location of nodes on a 2D 

space. In the savings heuristic, first routes are constructed in a predefined quantity and 

then new nodes are added to available nodes in order to obtain maximum savings. 

 

 Baker and Schaffer (1986) proposed the first sequential construction algorithm. 

The algorithm is based on savings heuristic, and starts with all possible single customer 

routes in the form of depot – i – depot. Then two routes with the maximum saving are 

combined at each iteration. The saving between customers i and j is calculated as:  

 

  sij = di0 + d0j – G.dij                    (3.10) 

 

where G is the route form factor and dij is the distance between nodes i and j.  

 

  Solomon (1987) proposed Time Oriented Nearest Neighborhood Heuristic. 

Every route is initialized with the customer closest to the depot. At each iteration 

unassigned customer that is closest to the last customer is added to the end of the route. 

When there is no feasible customer, a new route is initialized.  

 

 Solomon (1987) also proposed Time-Oriented Sweep Heuristic. First, customers 

are assigned to different clusters and then TSPTW problem is solved using the 

heuristics proposed by Savelsbergh (1985).  

3.4.1.2 Parallel Construction Algorithms 

 Solomon (1987) proposed a Giant-Tour Heuristic. In this heuristic, first of all, a 

giant route is generated as a traveling salesman tour without considering capacity and 

time windows. Then, it is divided into number of routes. 
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Potvin and Rousseau (1993) proposed parallelization of the Insertion Heuristics. 

Each route is initialized by selecting the farthest customer from the depot as a center 

customer. Then, the best feasible insertion place for each not yet visited customer is 

computed. Customers with the largest difference between the best and the second best 

insertion place are inserted to the best feasible insertion place. Parallel algorithm in 

Foisy and Potvin (1993) also constructs routes simultaneously using the Insertion 

Heuristics to generate the initial center customers. 

 

 Antes and Derigs (1995) proposed another parallel algorithm based on the 

Solomon’s heuristic. Offers comes to the customers from the routes, unrouted customers 

send a proposal to the route with the best offer, and each route accepts the best proposal.  

3.4.2. Improvement Algorithms 

 Improvement algorithms try to find an improved solution starting from a 

considerably poorer solution.  Almost all improvement algorithms for the VRPTW use 

an exchange neighborhood to obtain a better solution. Exchange of neighborhood can be 

intra or inter route (Thangian and Petrovic, 1998). While k-opt procedure operates 

within a route, the relocate, exchange, and cross operators operate between routes. 

  

Croes (1958) introduced k-opt approach for single vehicle routes. In this 

heuristic, a set of links in the route are replaced by another set of k links.  

 

The Or-Opt exchange originally proposed for TSP by Or (1976) removes a chain 

of at most three consecutive customers from the route and tries to insert this chain at all 

feasible locations in the routes.  

 

 In 1-1 exchange procedure connectors between nodes are replaced by connectors 

between nodes either in the same or in different route. 1-0 exchange move transfers a 

node from its current position to another position in either the same or a different route. 

  

 Christofides and Beasley (1984) proposed the k-node interchange for the first time 

to take time windows into account. In this heuristic, sets M1 and M2 are identified for 
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each customer i. M1 denotes the customer i and its successor j. M2 denotes two 

customers that are closest to i and j on a different route than i and j. The elements of the 

sets M1 and M2  are removed and inserted in any other possible way.   

 

 Osman and Christofides (1994) introduced λ-interchange local search that is a 

generalization of the relocate procedure. λ, the parameter, denotes the maximum 

number of customer nodes that can be interchanged between routes.  

 

Potvin and Rousseau (1995) present two variants of 2-Opt and Or-Opt. For the 

2-Opt, they proposed the consideration of every pair of links in different routes for 

removal. For the Or-Opt, every sequence of three customers is considered and all 

insertion places are also considered for each sequence.  

 

 Schulze and Fahle (1999) proposed shift-sequence algorithm. A customer is 

moved from one route to another checking all possible insertion positions. If an 

insertion is feasible after the removal of another customer, that customer is removed. 

3.4.3. Metaheuristics  

 In order to escape local optima and enlarge the search space, metaheuristic 

algorithms such as simulated annealing, tabu search, genetic algorithm, and ant colony 

algorithm have been used to solve the VRPTW (Bräysy and Gendreau, 2001).  

3.4.3.1. Simulated Annealing 

 Simulated Annealing (SA) is a stochastic relaxation technique. It is based on the 

annealing process of solids, where a solid is heated to a high temperature and gradually 

cooled in order to crystallize (Bräysy and Gendreau, 2001). During the SA search 

process, the temperature is gradually lowered. At each step of the process, a new state 

of the system is reached. If the energy of the new state is lower than the current state, 

the new solution is accepted. But if the energy of the new state is higher, it is accepted 
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with a certain probability. This probability is determined by the temperature. SA 

continues searching the set of all possible solutions until a stopping criterion is reached.  

 

 Thangiah et al. (1994) used λ-interchange with λ=2 to define the neighborhood 

and decrease the temperature after each iteration. In case the entire neighborhood has 

been explored without finding and accepting moves the temperature is increased.  

 

  Chiang and Russell (1996) proposed three different SA methods. First one uses 

modified version of the k-node interchange mechanism and second uses λ-interchange 

with λ=1. The third is based on the concept of tabu list of Tabu Search.  

 

 Tan et al. (2001) proposed an SA heuristic. They defined a new cooling 

schedule. Thus, ehen the temperature is high, the probability of accepting the worse is 

high, when the temperature is decreased according to function given above; the 

probability of accepting worse is reduced. 

 

 Finally, Li and Lim (2003) proposed an algorithm that finds an initial solution 

using Solomon’s insertion heuristic and then starts local search from initial solution 

using proposed tabu-embedded simulated annealing approach. 

3.4.3.2. Tabu Search 

 Tabu search (TS) presented by Glover (1986) is a memory based local search 

heuristic. In TS, the solution space is searched by moving from a solution s to the best 

solution in its neighborhood N(s) at each iteration. In order to avoid from a local 

optimum, the procedure does not terminate at the first local optimum and the solution 

may be deteriorated at the following iteration. The best solution in the neighborhood is 

selected as the new solution even if it is poorer. Solutions having the same attributes 

with the previously searched solutions are put into tabu list and moving to these 

solutions is forbidden. This usually prevents making a move to solutions obtained in the 

last t iterations. TS can be terminated after a constant number of iterations without any 

improvement of the over all best solution or a constant number of iteration. 
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  Garcia et al. (1994) applied TS to solve VRPTW for the first time. They 

generate an initial solution using Solomon’s insertion heuristic and search the 

neighborhood using 2-opt and Or-opt. Garcia et al. (1994) also parallelized the TS using 

partitioning strategy. One processor is used for controlling the TS while the other is 

used for searching the neighborhood.  

 

 Thangiah et al. (1994) proposed TS with λ-interchange improvement method. 

They also combined TS with SA to accept or reject a solution. 

 

 Potvin et al. (1995) proposed an approach similar to Garcia et al. (1994) based on 

the local search method of Potvin and Rousseau (1995). 

 

 Badeau et al. (1997) generated a series of initial solutions. Then, they 

decomposed them into groups of routes and performed TS for each group using the 

exchange operator. Their tabu list contains penalized exchanges that are frequently 

performed. 

    

 Chiang and Russell (1997) used a parallel version of Russell (1995) to generate 

the initial solution and then applied λ-interchange. They penalize frequently performed 

exchanges and dynamically adjust parameter values based on the current search. 

 

 De Backer and Furnon (1997) used the savings heuristic to generate the initial 

solution and search the neighborhood using 2-opt and Or-opt .   

 

 Schulze and Fahle (1999) propose a parallel TS heuristic where initial solutions 

are generated using the savings heuristic and the neighborhood is searched using route 

elimination and Or-opt.  The search penalizes frequently performed exchanges. All 

routes generated are collected in a pool. To obtain a new initial solution for the TS 

heuristic, a set covering heuristic is applied to the routes in the pool.  

 Tan et al. (2000) generate the initial solution using modified Solomon’s insertion 

heuristic and search the neighborhood using λ-interchange and 2-opt.  A candidate list is 

used to save elite solutions found during the search process.  
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  Lau et al. (2002) introduce a concept of holding list containing the not yet 

serviced customers. All customers are put into the holding list at the beginning. 

Relocate and exchange operators are then used to transfer customers back and forth to 

the holding list.  

3.4.3.3. Genetic Algorithms 

The Genetic Algorithm (GA) is based on the Darwinian concept of evolution. 

Solutions to a problem are encoded as chromosomes and based on their fitness; good 

properties of solutions are propagated to a next generation (Vacic and Sobh, 2002).  The 

creation of the next generations involves four major phases:  

 

1. Representation: The significant features of each individual in the population are 

encoded as a chromosome.  

2. Selection: Two parent chromosomes are selected from the population.  

3. Reproduction: Genetic information of selected parents is combined by crossover and 

two offspring of the next generation are generated. 

4. Mutation: The gene sequence of small number of newly obtained is randomly 

swapped.  

 

A new generation is created by repeating the selection, reproduction, and 

mutation phases until a specified set of new chromosomes have been created. Then the 

current population is set to the new population of chromosomes. 

 

Thangiah et al. (1991) applied the GA to VRPTW for the first time. GA is 

proposed to find good clusters of customer. The routes within each cluster are then 

constructed with a cheapest insertion heuristic and λ–interchange are applied. 

 Thangiah et al. (1995) generate initial population by clustering the customers 

randomly into groups and applying the cheapest insertion heuristic for each group. 

Then, 2-point crossover is used. 

 

  GA of Potvin and Bengio (1996) is performed on chromosomes of feasible 

solutions. Parents are randomly selected and two types of crossover are applied to these 
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parents. The reduction of routes is obtained by two mutation operators. The routes are 

improved using Or-Opt at every k iterations. 

 

 Homberger and Gehring (1999) generated initial population using a modified 

savings heuristic and a precedence relationship among the genes in a chromosome. The 

difference of their algorithm is in the representation and the role of the mutation. The 

representation includes a vector of evolutionary strategy in addition to the solution 

vector and both components are evolved via crossover and mutation operators. The 

search is mainly driven by mutation, based on 2-opt, Or-opt, λ-interchanges, and special 

Or-opt for route elimination.  Crossover is used to modify the initially randomly created 

mutation codes. Only one offspring is created through crossover.  Fitness values are 

used to select predetermined number of offspring among created offsprings.  

 

  Tan et al. (2001) propose a GA approach in which the genetic operators are 

applied directly to solutions, represented as integer strings. The differences of the 

algorithm lie in the determination of customers served by different routes and the 

crossover. The basic grouping is determined by the Solomon’s insertion heuristic and λ-

interchanges are used to create alternative groupings. Crossover includes randomly 

choosing two cut points and performing a series of swapping operations. 

3.4.3.4. Miscellaneous Algorithms 

 Rochat and Taillard (1995) used a probabilistic local search method based on 

intensifying the solution, which is in some ways similar to the SA approach. First, with 

the proposed local search, I different solutions are generated. The generation of I initial 

solutions creates a set T of tours. Second, good tours are extracted. The extraction of 

tours, followed by the optimization with the local search and the insertion of the new 

tours in T is repeated until a stopping criterion is met.  

 

  Kilby et al. (1999) used a memory-based metaheuristic, Guided Local Search 

(GLS). In GLS, the cost function is modified by adding a penalty term, that is, escaping 

form local optima is done by penalizing solution features. As local search 

neighborhoods, they use 2-opt exchanges. 
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 In Potvin and Robillard (1999), a combination of a competitive neural network 

and a GA is described. They use a competitive neural network to cluster the customers. 

For every vehicle, a weight vector is defined. Initially, all weight vectors are placed 

randomly close to the depot. Then, customers are selected. For each cluster, the distance 

to all weight vectors are calculated and closest weight vector is updated by moving it 

closer to the customer. 

 

 Braysy et al. (2000) describe a two-step evolutionary algorithm based on the 

hybridization of a GA consisting of several local searches and route construction 

heuristics inspired form the studies of Solomon (1987). At the first step, a GA based on 

the studies of Braysy (1999) and Berger et al. (1998) is used. The second step consists 

of an evolutionary metaheuristic that picks every pair of routes in random order and 

applies randomly one of the four local search operators or route construction heuristics.  

 

  Tan et al. (2001) propose an artificial intelligence heuristic which can be 

interpreted as the hybrid combination of SA and TS. During the process, if a move is 

not a tabu and satisfies the SA criterion, it will be accepted and then the search is 

restarted from the beginning of a new current solution after updating the tabu list and 

SA parameters.  

3.5. Ant Colony Based Approaches 

In this section, ACO approaches for solving the VRPs will be discussed.  

3.5.1.  ACO for CVRP 

Bullneheimer et al. (1998) applied the AS to the VRP with one central depot and 

identical vehicles for the first time (Figure 3.1). They set the number of ants (m) equal 

to the number of cities (n). Initially, each ant is placed at each customer. Then, ants 

construct vehicle routes by successively selecting cities, until all cities have been 
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visited. When there is no feasible city to visit, the depot is selected and a new route is 

started. City j is selected after city i according to following random-proportional rule: 

visited. When there is no feasible city to visit, the depot is selected and a new route is 

started. City j is selected after city i according to following random-proportional rule: 
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After routes are constructed using the proposed approach, 2-opt heuristic is 

applied to each route. Then, pheromone trail on arc (i, j) is updated according to: 
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If arc (i, j) is used by the k-th ant, the pheromone trail on that are increased by 

k
k
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elitist ants used it. Each elitist ant increases the pheromone trail by *
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Figure 3.1  An algorithmic skeleton for ACO algorithm applied to the CVRP 
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Bullneheimer et al. (1999) introduced an improved ACO algorithm for the VRP 

with one central depot and identical vehicles (Figure 3.1). Differences of this approach 

from Bullneheimer et al. (1998) are in random proportional rule and pheromone trail 

update. They calculated the random proportional rule using equation 2.1. However, 

following parametrical savings function is used for the visibility: 

jiijijjiijjiij ddfdgsddfgddd 000000 )1( −+−−=−+−+=η  

 

After an artificial ant has constructed a feasible solution, ants are ranked 

according to solution quality. Only the best ranked and elitist ants are used to update the 

pheromone trails. This update is done using equation 2.9. They also used candidate lists 

for the selection of customers. Candidate lists are formed using nearest neighborhood.  

 

Bell and McMullen (2003) used ant colonies to solve the CVRP. Differences of 

this approach from Bullneheimer et al. (1998) are in selection the next customer and 

pheromone trail update. Candidate lists are also formed using nearest neighborhood.  

Selection of the next customer j is made using ACS approach. Thus, using equations 2.5 

and 2.6., each ant may either follow the most favorable path or randomly select a path to 

follow based on a probability distribution. Trail updating includes local updating of 

trails after each selection and global updating of the best solution route after all routes 

are constructed. These are respectively done with the following equations: 

0)1( τρτρτ ⋅+⋅−= ijij   

1)1( −⋅+⋅−= Lijij ρτρτ  

 

Doerner et al. (2001) proposed the savings based ant system approach (SbAS). 

The basic structure is identical to Bullneheimer et al. (1999), but they use the savings 

algorithm to calculate visibility. The attractiveness is calculated by: 

 

[ ] [ ]αβ τξ ijijij s=  
 

where sij is the savings of visiting customer j after customer i. Initially attractiveness 

values are sorted in non-increasing order and k-best combinations are considered at each 

decision step. If allowedk denotes the set of k feasible combinations (i, j) yielding the 

largest ξij, the decision rule is given by: 
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 After solutions are constructed, only the best ranked and elitist ants are used to 

update the pheromone trails. This update is done using equation 2.9. Then ξijs are 

calculated and sorted in non-increasing order.           

  
Marc Reimann et al. (2004) presented D-Ants for solving large scale VRPs. This 

approach is based on the fact that the VRP is a generalization of the TSP and built on 

the SbAS proposed by Doerner et al. (2001). D-Ants decomposes the set of tours that 

constitute the complete problem into a number of smaller sets of tours and solves these 

subproblems using the SbAS (Figure 3.2).  

 

 procedure D-Ants { 
Read the input data; 
Initialize the system (parameters and global pheromone matrix); 
repeat { 

for a prespecified number of iterations { 
Solve the complete problem using the SbAS; (Step I) 

} 
for the best solution found so far { 

Compute the center of gravity of each route 
according to the modified Miehle algorithm; (Step II) 

  } 
Decompose the best solution into a prespecifed number of subproblems 
by applying the Sweep algorithm to the centers of gravity; (Step III) 
for each subproblem { 

for a prespecified number of iterations { 
Solve the subproblem with the SbAS 
by the relevant part of global pheromone matrix locally; (Step IV)
If applicable, update best solution; (Step V) 

}  
} 
Update the global memory (global pheromone matrix); 

}until a stopping criterion is met; 
} 

 
 

    

 

 

   

                       

  

 

 

   

 

Figure 3.2  An Algorithmic skeleton for D-Ants algorithm  

 
D-Ants consists of five main steps. First, the initial solutions are generated by 

the SbAS. After finding the best solution, a decomposition leading to subproblems with 
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geographically close tours is found. Closeness of two tours is computed by the polar 

angle between the centers of gravity of the tours and the depot. The sweep algorithm is 

used to cluster the centers of gravity. Thus, in the second step the center of gravity for 

each vehicle route of the best solution found so far is computed. Distances are weighted 

by the demands and the coordinates of the center are iteratively adjusted until the 

change in the weighted distance of all customers to the center is minimal. Third, the 

sweep algorithm is applied to cluster the nodes corresponding to the centers of gravity. 

Fourth, subproblems are solved using the SbAS. Finally, pheromone information is 

changed locally after iterations of subproblem and after finding the best solution.  

3.5.2.  ACO for VRPTW 

Gambardella et al. (1999) presented Multiple Ant Colony System for Vehicle 

Routing Problem with Time Windows (MACS-VRPTW), an ACO based approach for 

solving the VRPTW. MACS-VRPTW has a multiple objective function and both 

objectives are optimized simultaneously by the coordination of two ant colonies. The 

first colony, ACS-VEI, reduces the number of vehicles used while the second, ACS-

TIME, optimize the travel times of the feasible solutions found by ACS-VEI. However, 

they use independent pheromone trail values. 

 

Initially, a feasible VRPTW solution, ψgb, is found using a nearest neighbor 

heuristic. ACS-VEI tries to find a feasible solution with one vehicle less than the 

number of vehicles used in ψgb. ACS-TIME tries to minimize the total travel time of ψgb 

that use as many vehicles as vehicles used in ψgb. ψgb is updated each time one of the 

colonies finds an improved fesible solution. When the improved solution contains fewer 

vehicles than ψgb, the process is restarted with the reduced number of vehicles. 

 

Before constructing routes, MACS-VRPTW makes the VRP similar to the TSP 

by duplicating the depot a number of times equal to the number of vehicles and setting 

distances between copies of the depot to zero.  
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Figure 3.3  Structure of the MACS-VRPTW 

 

ACS-VEI and ACS-TIME use a similar constructive procedure to ACS designed 

for the TSP. Each artificial ant starts from a randomly chosen copy of the depot and, at 

each step, moves to a not yet visited city that does not violate time window constraints 

and vehicle capacities. An ant positioned at city i chooses probabilistically the next city 

j to be visited by using exploration and exploitation mechanisms. ηij is computed by 

taking into account the traveling time tij between city i and j, the time window [bj,ej] of 

city j and the number of time customer j has not been inserted in a route INj. IN are set 

to zero in ACS-TIME. If Ni
k is the set of feasible cities for city i, then N∈∀j i

k  ηij is 

calculated by: 

 

delivery_timej  ← max( current_timek + tij, bj) 

delta_timeij      ← delivery_timej - current_timek 

distanceij   ← delta_timeij * ( ej - current_timek) 

distanceij          ← max( 1.0, (distanceij -INj)) 

ηij              ← 1/ distanceij

 

Each time an ant moves from one city to another, a local update of the 

pheromone trail is executed.  

 

0.).1( τρτρτ +−= ijij  

 

In ACS-TIME m artificial ants construct routes ψ1,…,ψm. If a better solution than 

ψgb is found, ψgb is updated. Then, the global updating is performed by: 
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ACS-VEI can produce infeasible solutions in which some customers are not 

visited. The solution with the highest number of visited customers is stored in ψACS-VEI. 

A better solution is found when the number of visited customers is increased. ACS-VEI 

uses a vector IN of integers for favoring the customers that are less frequently included 

in the routes. The entry INj contains the number of time customer j has not been inserted 

in a route. In ACS-VEI, pheromone trails are globally updated by both ψACS-VEI and ψgb.  

 

 
Figure 3.4  Feasible and infeasible solutions for a VRP with four duplicated depots and 

four vehicles 

 

If the solution is incomplete at the end of the constructive phase, all non visited 

customers sorted in decreasing delivery quantities are inserted to the best feasible 

location (Figure 3.4).  

 

Ellabib et al. (2002) proposed another AS based approach for solving VRPTW. 

The basic idea is to let the ACS perform its search in the space of local minima rather 

than in the search space of all feasible tours. The VRPTW is transformed to the TSP as 

proposed by Gamberdella et al. (1999).  

 

The approach starts by applying a tour construction heuristic for creating a good 

initial solution and then let the ACS operate on the search space of local optima to guide 

search toward the global optimum. The ant constructive procedure is similar to the ACS 

constructive procedure designed for the TSP in Dorigo and Gamberdella (1997). In this 

procedure, each ant starts from a randomly chosen depot and moves to the feasible 
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unvisited customer based on the transition rule until it finishes all the remaining 

unvisited customers. At each step, exploration and exploitation mechanism is applied 

for the diversification and intensification balance, visibility is computed for the 

transition rule, and the pheromone of the selected edge is updated locally. The global 

update rule is update at the end of all ant tours in which the pheromone of the best 

solution edges is updated. However, the amount of pheromone updated does not only 

depend on the length of the tour as considered in TSP but on the number of vehicles. 

Insertion and the nearest neighbor heuristics are applied to generate the initial solution 

for the ACS.  

 

The insertion heuristic considers the insertion of an unvisited customer u 

between two adjacent customer ip-1 and ip in a partially finished route. It is focused on 

the most effective Solomon the sequential insertion heuristic called (I1) (Solomon, 

1987).This heuristic applies two criteria one for selecting the best position of the 

unvisitied customer and the other for the customer who has the best cost. The cheapest 

insertion cost and the associated insertion place for each unvisited customer are 

calculated using the following equations: 

C0  = li + d0i 

C11 = diu + duj – µ.dij 

C12 = bju - bj

C1  = α1.C11+ α2.C12

C2  = λ.dou - C1

where, α1+ α2 = 1, µ≥0, and λ≥0 

C0 : Cost of the first customer inserted in a new route 

C1 : Cost of the best position 

C2 : Cost of best customer 

li   : Latest service time of customer i 

d0i : Distance from the depot to customer i 

dij : Distance between the customer i and j 

bj  and bju : Beginning of service before and after the insertion  

 

Nearest Neighbor algorithm starts every route by finding the closest unvisited 

customer. Three types of the cost functions are presented. The inverse of the cost is used 

as the visibility measure. 
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1. First visibility function is introduced by Solomon (1987). It  is calculated 

considering the distance between customers i and j, the difference between 

the completion time of service at customer i and the beginning time of 

service at customer j, and the urgency of delivering to customer j. 

 

2. The second function is introduced by Gamberdella et al. (1999). It is 

computed by multiplying the difference between the completion time of 

service at customer i and the beginning time of service at customer j by the 

urgency of delivery to customer j. 

 

3. The third function is based on the difference between the position angle of 

the current customer and the candidate customer is introduced.  

 

In order to solve Solomon benchmark problem instances different combinations 

of initial solution heuristics and the visibility functions are used. The solution quality is 

based on minimizing the number of routes followed by the total distance. 

 

3.5.3. ACO for Dynamic VRP 

Montemanni et al. (2003) proposed an algorithm for the Dynamic VRP (DVRP). 

The algorithm is based on the decomposition of the DVRP into static VRPs. In this 

algorithm, event manager receives new orders and keeps track of the served orders and 

vehicle. The working day is divided into time slices. For each of them a static VRP is 

created. New orders received during a time slice are considered at the end of that slice. 

At each time slice, customers whose service time starts in that time slice are assigned to 

the vehicles. A vehicle will wait at its last committed customer until all the customers 

are served or all vehicle capacity used. A new static problem is then considered. The 

method similar to Gambardella et al. (1999) is applied to solve static VRPs. The only 

difference is that visibility is calculated as the inverse of the distance. Once a time slice 

is over and the relative static problem has been solved, pheromone trail on each arc (i, j) 

is updated by the following equation: 
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orijrij τγτγτ +−= )1(  

where γr is  a new parameter introduced to adjust pheromone conservation. 

3.6. A Revised Ant Colony System Approach to the VRPTW 

In this section, a revised ant colony algorithm (RACS) for the VRPTW is 

proposed. It is influenced by the classical ACS approach of Dorigo et al. (1997) for the 

TSP.  

3.6.1.  Candidate List 

A candidate list is used in order to reduce the computation time and tour length. 

The candidate list of each customer is formed as follows: In the ACS, visiting customer 

j after the current customer i is based on the amount of both the pheromone trails ijτ and 

the visibility ηij on arc (i, j). Therefore, at each customer i candidate set Ω(i) is formed 

by taking k feasible customers with the largest attractiveness .  [ ]βητϕ ijijij .=

 

When forming the initial candidate lists, it is assumed that service at customer i 

starts at time ai and then ηij are calculated for each feasible customer j. As some arcs are 

reinforced through the local and global update of the pheromone information, the 

attractiveness values ijϕ change.  Thus, pheromone values that was initially high but not 

on the arcs of good solutions will decrease, while arcs with initially low values that 

appeared in good solutions will become more attractive. On the other hand, forming 

candidate lists after each local update is time consuming. Therefore, after each global 

pheromone trail update, the candidate list of each customer is formed again.  

3.6.2.  Initial Pheromone Trails 

In most of the ant colony based algorithms to VRP, initial pheromone trails τ0 is 

set equal to the inverse of the best known route distances found for the particular 
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problem. However, it was found that τ0=1/nLinitial , where Linitial is the length of the 

initial solution and n is the number of customers, can generate the shortest routes. In this 

way, solution made independent from the previous solutions.  

 

When the initial route is constructed, it is started at the depot and the customer 

with the highest φ0j value is selected as the first customer to be visited.  Then, the tour is 

constructed by selecting the not yet visited feasible customer with the highest φij at each 

time. A customer is infeasible if it violates either the capacity or the time window 

constraints. If no feasible customer is available then it is returned to the depot and a new 

route is started. This process continues until all customers are visited. The result of this 

is a set of tours through all customers. 

3.6.3.  Visibility 

In TSP, the tour length is determined only by the distance between two 

customers. So, the visibility is calculated as the inverse of the distance between 

customers. However, in VRPTW, not only the distance between two customers but also 

customers’ distance to the depot and the time window associated with the customer to 

whom the ant is considered to move are the essential characteristics of the tour length. 

Hence, these three characteristics are considered in calculating the visibility.  

 

 Savings measure proposed in Clarke et al. (1964) is used in order to consider the 

customers’ distances to depot. Savings measure sij is calculated by: 

 

sij = di0 + d0j - dij        (3.11) 

 

where dij (di0) denotes the distance between customers i and j (the depot). Thus, sij 

contains the savings of serving customer i and j on the same route instead of serving 

them on different tours. 

 

  The higher savings value favors visiting customer j after customer i while the 

longer distance value prevents it. Thus, the savings per unit distance traveled between 
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customers measures the attractiveness of visiting customer j after customer i and is 

calculated as follows: 

                 otherwise
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Since a high value of µij indicates that visiting customer j after customer i is a desired 

choice the tour length is expected to be shorter if the probability of moving from 

customer i to customer j increases with µij.  

 

 Furthermore, as VRPTW is a time window restricted problem, the tendency to 

visit a customer j with the smaller earliest and latest service starting times is more 

important. Thus, higher priority is given to that customer. The priority rule κij is 

calculated as follows: 

)( cjwij tbt −=κ                 (3.13) 

 

where tw is the waiting time and  tc the current time.  tw is obtained as follows: 
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 The visibility of selecting customer j after customer i is computed by:  
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3.6.4.  Route Construction Process 

It is assumed that the number of ants is equal to the number of customers and 

initially, each ant is positioned at each customer. Then, each ant constructs its own tour 

by successively selecting a not yet visited feasible customer. The choice of the next 

customer to visit is based on the information of both the pheromone trails and the 

visibility of that choice given in equation (3.16):  
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                              [ ]βητϕ ijijij =        (3.16) 

 

τij denotes the amount of pheromone on arc (i , j) and β is power weighting parameter 

that weights the consistency of arc (i , j).  

 

  Using the following equations (3.17) and (3.18) each ant may either visit the 

most favorable customer or randomly select a customer to visit based on a probability 

distribution p( i , j) (Dorigo et al., 1997) 

 

              (3.17) 

 
⎩
⎨
⎧ ≤

= Ω∈

otherwise,),(
if,maxarg

),( 0)(

jiP
qq

jip ijij ϕ

    (3.18) 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧
Ω∈

= ∑
Ω∈

otherwise,0

)(if,
),(

)(

ij
jiP

ih
ih

ij

ϕ

ϕ

 

 

where q0 (0 ≤ q0 ≤ 1) is a parameter that determines the relative importance of 

exploitation versus exploration.   

 

  In order to reduce the probability of repeatedly selected customer, each time an 

ant moves from one customer to another the amount of pheromone on the chosen arc is 

reduced by applying a local updating rule given in equation (3.19). Otherwise, some 

arcs become dominant and same routes are constructed at all iterations. 

 

( ) 01 ρττρτ +−= ijij      (3.19) 

where ρ (0 ≤ ρ ≤ 1) is the trail persistence parameter.  

 

If no feasible customer is available due to either the time window or the vehicle 

capacity constraint then the depot is chosen and a new route is started. This process is 

executed until all customers have been visited. 
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3.6.5.  Global Pheromone Update 

 

Once all ants construct their tours, the best λ tours are chosen.  Because of the 

computation time, 2-opt procedure is only applied to these best tours to improve 

solutions (Croes, 1958). Then the global updating rule based on ranked based version is 

applied as follows (Bullnheimer, 1999):  

 

∑ −

=
∆+∆+−=

1

1
*.).1( λ τλττρτ

r ij
r
ijijij    (3.20) 

 

If an arc is used by the rth best ant, the pheromone value on arc (i, j) will be 

increased by , where Lr
r
ij Lr /)( −=∆ λτ r is the tour length of the rth best ant. Also, the 

best solution found so far is increased if λ ants had traversed it by an 

amount , where L** /1 Lij =∆τ * is the length of the best solution obtained so far.  

 

As mentioned in the section 3.6.1, after the global pheromone update, the 

attractiveness values ijϕ  are calculated with the new pheromone information as in 

equation 3.16, and new candidate lists are formed. 

 

3.7. Computational Study 

In this section, experimental results of applying the proposed approach to solve 

VRPTW are presented.  

3.7.1.  Benchmark Problems 

 Solomon’s (1987) problems are used to test the performance of the proposed 

algorithm since they provide a common benchmark for the majority of algorithms on 

the literature. 
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 There are 56 problems made up of 100 customers located in 100*100 unit plane. 

The benchmark set contains six different subsets called R1, R2, RC1, RC2, C1, and C2. 

Vehicle capacity, customer time windows, service time, and coordinates vary so as to 

cover all configurations as thoroughly as possible. Thus, customers are randomly 

distributed in R1 and R2, clustered in C1 and C2. For groups RC1 and RC2, the 

clustered and random distributions are mixed. Problem sets R1, C1, and RC1 have a 

short scheduling horizon, narrow time windows, and low vehicle capacity. On the other 

hand, problem sets R2, C2, and RC2 have large scheduling horizon, wide time 

windows, and high vehicle capacity. In these data sets, travel times correspond to 

Euclidean distances. 

3.7.2.  Experiments on Solomon’s Data Instances 

The algorithm is coded in Visual C++. Firstly, the parameters were initialized. 

First parameter is the number of iterations. Its value affects the solution quality and 

computational time. Bigger number of iterations increases the probability of reaching 

better solutions at the expense of higher computational time. By applying several runs 

for various problem instances, it has been observed that there is almost no improvement 

after the 5000th iterations. So, the number of iterations is set as 5000. 

 

By applying experimental runs to different problems, it turns out that very small 

evaporation rates (like 0.0001 and 0.001) do not guarantee diversifying the solution to a 

new point. So, the search may not escape from the local optima using small evaporation 

rate. Based on the initial runs, ρ is set to 0.1. Also, it has been found out from the initial 

runs that setting k = 15, q0 = 0.75, β = 2, and 6 elitist ants generate better solutions. 

 

In order to test the performance and solution quality of the algorithms proposed, 

the results have been compared with the best known results of the Solomon instances in 

the literature. The best published results were obtained from the web page of Marius M. 

Solomon [63]. Table 3.1 reports the best results found by our algorithm and the best 

published results. In this table, NV means number of vehicles used and TD means travel 

distance. Gaps are the deviations from the best known. 
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Table 3.1  Comparison of the results of the RACS with the best known 

Best of  Best Known Best of  Best Known 
 TD NV TD NV 

Gap  TD NV TD NV 
Gap 

c101 828,937 10 828,94 10 0 c201 591,557 3 591,56 3 0 
c102 851,27 10 828,94 10 0,0269 c202 591,557 3 591,56 3 0 
c103 873,337 10 828,06 10 0,0547 c203 600,206 3 591,17 3 0,0153 
c104 841,527 10 824,78 10 0,0203 c204 591,557 3 590,6 3 0,0016 
c105 828,937 10 828,94 10 0 c205 588,876 3 588,88 3 0 
c106 832,268 10 828,94 10 0,004 c206 588,49 3 588,49 3 0 
c107 832,25 10 828,94 10 0,004 c207 588,286 3 588,29 3 0 
c108 832,25 10 828,94 10 0,004 c208 588,32 3 588,32 3 0 
c109 859,91 10 828,94 10 0,0374       
            
r101 1715,79 20 1645,79 19 0,0425 r201 1276,1 5 1252,37 4 0,0189 
r102 1556,11 19 1486,12 17 0,0471 r202 1169,19 5 1191,7 3 -0,019 
r103 1326,92 15 1292,68 13 0,0265 r203 1001,37 4 939,54 3 0,0658 
r104 1052,18 11 1007,24 9 0,0446 r204 787,421 4 825,52 2 -0,046 
r105 1431,65 15 1377,11 14 0,0396 r205 1068,75 4 994,42 3 0,0747 
r106 1287,64 13 1251,98 12 0,0285 r206 982,841 3 906,14 3 0,0846 
r107 1158,24 11 1104,66 10 0,0485 r207 923,024 3 893,33 2 0,0332 
r108 1021,85 10 960,88 9 0,0635 r208 778,429 3 726,75 2 0,0711 
r109 1231,91 12 1194,73 11 0,0311 r209 975,093 4 909,16 3 0,0725 
r110 1153,83 12 1118,59 10 0,0315 r210 1007,77 4 939,34 3 0,0728 
r111 1131,86 11 1096,72 10 0,032 r211 851,125 3 892,71 2 -0,047 
r112 1007,06 10 982,14 9 0,0254       
            
rc101 1679,38 15 1696,94 14 -0,01 rc201 1361,04 6 1406,91 4 -0,033 
rc102 1548,31 14 1554,75 12 -0,004 rc202 1207,43 5 1367,09 3 -0,117 
rc103 1318,92 11 1261,67 11 0,0454 rc203 1056,62 5 1049,62 3 0,0067 
rc104 1184,48 11 1135,48 10 0,0432 rc204 866,45 3 798,41 3 0,0852 
rc105 1594,3 15 1629,44 13 -0,022 rc205 1278,68 6 1297,19 4 -0,014 
rc106 1425,99 15 1424,73 11 0,0009 rc206 1187,3 4 1146,32 3 0,0357 
rc107 1313,29 12 1230,48 11 0,0673 rc207 1126,95 4 1061,14 3 0,062 
rc108 1168,16 11 1139,82 10 0,0249 rc208 908,516 3 828,14 3 0,0971 

  

 
On all of the 56 problem instances, the proposed approach achieved nine shorter 

travel distances and matched eight best-known solutions. The shorter distances are 

reported in boldface.  

 

Table 3.2 compares the mean number of vehicles (MNV) and the mean travel 

distance (MTD) obtained by proposed algorithm to the best known solutions. 
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Table 3.2  Comparisons of averages on all data sets 

Data Set Proposed Best Known 

C1 MNV 10 10
C1 MTD 842,298 828,38

C2 MNV 3 3
C2 MTD 591,1061 589,8588

R1 MNV 13,25 11,92
R1 MTD 1256,253 1209,887

R2 MNV 3,82 2,73
R2 MTD 983,7375 951,9073

RC1 MNV 13 11,5
RC1 MTD 1427,469 1408,496

RC2 MNV 4,5 3,25
RC2 MTD 1124,123 1119,353

 

  In general, the algorithm does not perform very well for problem set R1 but is 

efficient for problem set C2. It can be observed that the algorithm generated good 

results when compared to the best known in the literature. It is worth noting here that 

the best known solutions are obtained using various algorithms and an efficient 

algorithm that performs well across all problem sets does not exist. 

 

 The computational time is not the main focus of this study. Although the 

computational time slightly changes from problem to problem is approximately 35 

minutes. 

3.7.3. Comparison with Other Heuristics 

  In order to test the performance of the algorithms, comparison with some 

competing heuristics is provided in Table 3.3. Benchmark heuristics are as follows:  

• Potvin and Bengio (1996): Genetic algorithm (GA) 

• Tan et al. (2001):  Tabu search (TS) 

• Li and Lim (2003): Simulated annealing-like restarts (SA) 
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 Table 3.3  Comparisons of average travel distances of heuristics on all data sets 

Data Set Proposed GA TS SA 

C1 842,298 838,11 870,87 828,38 
C2 591,1061 589,9 634,85 589,86 
R1 1256,253 1296,83 1266,37 1215,06 
R2 983,7375 1117,70 1080,23 953,55 
RC1 1427,469 1446,2 1458,16 1385,57 
RC2 1124,123 1360,60 1293,38 1142,48 

 

 The results of all three algorithms proposed are obviously better than the genetic 

algorithm proposed by Potvin and Bengio and TS proposed by Tan et al.(2001). 

However, the results are relatively worse than the simulated annealing-like restarts of Li 

and Lim (2002).  

 

 The proposed algorithm performs better than TS in all problem sets. It provides 

competitive results to GA in problem sets C1 and C2 and significantly out performs in 

R1, R2, RC1 and RC2. The results are slightly worse than those of SA in C1, C2, R1, 

and R2. On the other hand, it performs SA in problem set RC2.  
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4. VEHICLE ROUTING PROBLEM WITH SIMULTANEOUS PICK-UP AND 
DELIVERY 

The VRP with Pick-ups and Deliveries (VRPPD) is an extension to the VRP 

where the vehicles are not only required to deliver goods to customers but also to pick 

some goods up at customer locations. Customers receiving goods are called linehauls, 

while customers sending goods are called backhauls. The objective function of the 

VRPPD is either to minimize the total distance traveled by the vehicles or the number of 

vehicles used, subject to maximum distance and maximum capacity constraints on the 

vehicles (Nagy and Salhi, 2004). 

 

VRPPD is classified into three groups: 

Delivery First, Pick-up Second VRPPD: Vehicles pick up goods after they have 

delivered their goods.  

Mixed Pickups and Deliveries: Linehauls and backhauls can occur in any 

sequence on a vehicle route.  

Simultaneous Pick-ups and Deliveries: Vehicles simultaneously deliver and 

pick-up goods.  

 

Delivery-first pickup-second and mixed VRPPD problems are jointly referred to 

as the vehicle routing problem with backhauling (VRPB). Each customer has either a 

pick-up or a delivery demand to be satisfied. Products to be delivered are loaded at the 

depot while picked up products are transported back to the depot. A set of vehicle routes 

has to be designed so that all customers are serviced exactly once and no "pick-up 

customer" is visited before any other "delivery customer" on the same route. In the VRP 

with backhauls and time windows (VRPBTW) each customer also must be served 

during her service time interval. 

 

 In this chapter, first the VRPSDP will be explained, and a linear integer 

programming formulation of it will be given. Then, a detailed review of the VRPSDP 
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from the literature is given. Finally, an ACO based approach is proposed and applied to 

VRPSDP. 

4.1. Mathematical Formulation of the VRPSDP 

The problem deals with a single depot distribution/collection system servicing a 

set of customers by means of a homogeneous fleet of vehicles. Each customer requires 

two types of service: a pick-up and a delivery. The critical feature of the problem is that 

both activities have to be carried out simultaneously by the same vehicle. Products to be 

delivered are loaded at the depot and products picked up are transported back to the 

depot. The objective is to find the set of routes servicing all the customers at the 

minimum cost (Angelelli and Mansini, 2001). 

 

From a practical point of view VRPSDP models situations such as distribution 

of soft drinks, laundry service of hotels where the customers are typically visited only 

once but for a double service, grocery stores where reusable specialized 

pallets/containers are used for the transportation of merchandise. Also, regulations force 

companies to take responsibility for their products throughout their lifetime. 

 

Mathematically, VRPSDP is described by a set of homogenous vehicles V, a set 

of customers C, and a directed graph G (N, A). N = {0,…,n+1} denotes the set of 

vertices. Each vehicle has capacity Q and each customer i has delivery and pick-up 

requests di and pi, respectively. The graph consists of |C|+2 vertices where the 

customers are denoted by 1,2,…,n and the depot is represented by the vertices 0 and 

n+1. A = {(i, j): i≠j} denotes the set of arcs that represents connections between the 

depot and the customers and among the customers. No arc terminates at vertex 0 and no 

arc originates from vertex n+1. A cost/distance cij is associated with each arc (i, j). 

Finally, Q, di, pi, cij are assumed to be non-negative integers. 

 

If P is assumed as an elementary path in G, P = {0 = i0, i1,…, ip, ip+1 = n + 1}, a 

feasible solution for our problem can be represented by a set of disjoint elementary 

paths originating from 0 and ending at n + 1. These paths visit every customer exactly 

once while satisfying the capacity constraints. Thus, the pick-up demands already 
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collected plus the quantities to be delivered must not exceed the vehicle capacity. The 

objective is to minimize the total distance traveled by all the vehicles. 

 

 For each arc (i, j), where i ≠ j, i ≠ n + 1, j ≠0, and each vehicle k, xijk is defined as 
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Dik is the amount of the remaining deliveries carried by vehicle k when departing from 

customer i and Pik is the amount of the collected pick-up quantities carried by vehicle k 

when departing from customer i. The mathematical problem is formulated as follows: 
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In the model above, the objective function (4.1) aims to minimize the total travel 

distance. Constraints (4.2) assure servicing each customer exactly once. Constraints 

(4.3) guarantee that if a vehicle arrives at a customer then the same vehicle leaves from 

it. The constraints (4.4) and (4.5) ensure that each vehicle is used at most once. The 

constraint set (4.6) introduces limits for vehicle loads. The constraints (4.8) and (4.10) 

establish that each vehicle leaves the depot fully loaded with the products to be 

distributed while the pick-up load is null. Conversely, the constraint sets (4.7) and (4.9) 

guarantee that when vehicles return back to the depot, they  have distributed all their 

deliveries and are fully loaded with the picked up quantities. The non-linear sets of 

equations (4.11) and (4.12) establish that if arc (i, j) is visited by vehicle k then the 

quantity to be delivered by the vehicle has to decrease by dj while the quantity picked 

up has to increase by pj.  Finally, (4.13) and (4.14) are nonnegative constraints. 

 

4.2. Complexity of VRPSDP 

 Anily (1996) proved that the VRPB is NP-hard as in the following way: If Pj =0 

(j Є J ),or even Pj ≤D (j Є J) then the problem reduces to the VRP which is known to be 

NP-hard. VRPB is also NP –hard. As the VRPB can be considered as the special case of 

the VRPSDP where either the delivery demand Dj or the pick-up demand Pj of each 

customer equals zero. VRPSDP is also NP –hard. 

4.3. Optimal Algorithms for the VRPSDP 

To our knowledge no exact algorithms have been proposed for the VRPSDP, 

except some suggestions in Halse (1992) and the algorithm introduced for the VRPSDP 

with time windows by Angelelli and Mansini (2001).  

 

Angelelli and Mansini (2001) implemented a branch and price approach based 

on a set covering formulation of the master problem. A relaxation of the elementary 

shortest path problem with time windows and capacity constraints is used as the pricing 
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problem. Branch and bound is applied to obtain integer solutions. Different branching 

strategies and some variants of a pricing algorithm are implemented in order to test their 

efficiency for this problem.  

4.4. Approximation Algorithms for the VRPSDP 

 The problem was first introduced by Min(1989).  He solved a practical problem 

faced by a public library. In his study, there was a central depot that is responsible for 

supplying remote libraries with ordered books and recollecting previously delivered 

books from them. There were two trucks with capacity of 10500 pounds. While solving 

this problem, the customers are first clustered into groups. Then, the TSPs in each group 

are solved. The infeasible arcs are penalized by setting their lengths to infinity and TSPs 

are solved again. 

 

Halse (1992) studied a number of VRP versions including a special case of the 

VRPSDP. He used a cluster-first routing-second approach for solving the problems. In 

the first stage the assignment of customers to vehicles is performed, then a routing 

procedure based on 3-opt is used.  

 

Gendreau et al. (1999) studied the VRPSPD for a single vehicle case. First, the 

TSP is solved without regard to pick-ups and deliveries. Then, the order of pick-ups and 

deliveries on the TSP-tour is determined. 

 

Casco et al. (1988) developed a load-based insertion procedure where the 

insertion cost for backhaul customers is based on the load still to be delivered. Salhi and 

Nagy (1999) modified this method by allowing backhauls to be inserted in clusters, not 

just one by one. This procedure is also capable of solving simultaneous problems. 

 

Dethloff (2001) modified the approaches of Casco et al. (1988) and Salhi and 

Nagy (1999) and developed a construction algorithm based on the cheapest-insertion 

concept. In this approach, customers are successively inserted into routes that are 

constructed consecutively. First, one customer is chosen as the seed customer. Then, a 

route from the depot to the seed customer and back to the depot is built. For all 

 59



 

remaining unrouted customers the value of an insertion criterion for all possible 

insertion positions is computed and the best of the feasible (with respect to the vehicle 

capacity) insertions is carried out. The insertion criterion consists of the extra travel 

distance, the distance of customers to the depot, and the remaining vehicle capacity after 

a potential insertion.  This phase is repeated until no further customer can be inserted 

into the route. Then, the next route is built with an arbitrarily chosen seed customer of 

the still unrouted customers. Again, insertions are performed as described until no more 

insertions are feasible. This route building and inserting procedure is repeated until all 

customers are routed.  

 
Nagi and Salhi (2004) proposed integrated heuristic to the VRPSDP. It consists 

of four phases. First, a weakly feasible initial solution is generated. Then, the generated 

solution is improved by using some of the improvement  heuristics such as reverse, 2-

opt , 3-opt, exchange, combine, split heuristics. In the third phase, routes are made 

feasible. In the final step, solution quality is attempted to improve. 

4.5. Ant System Based Appraches 

To our knowledge, there is no ant colony based approach to the VRPSDP. 

However, there is a number of ant colony based approaches for the VRPB. As VRPSDP 

is the generalization of the VRPB, in this section, various approaches for solving the 

VRPBs will be discussed.  

4.5.1.  VRPBTW 

Reimann et al. (2002) proposed ant system based approach to the VRPBTW. In 

this algorithm an insertion procedure based on Solomon (1987) is used to construct 

solutions. The routes are constructed one by one. First, the furthest customer from the 

depot is selected as the seed customer for the current route. Sequentially other 

customers are inserted into this route until no more insertions are feasible. The customer 

that will be inserted is selected by the following probability: 
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For each unrouted customer, visibility is calculated as follows:  
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where sj is the customer visited after customer j, is the arrival time at customer si
s j

b j, if i 

is inserted between customers j and sj, is the arrival time at customer s
jsb j before the 

insertion of customer i and  denotes the set of customers assigned to the current tour 

after which customer i could feasibly be inserted. α and β are parameters. According to 

this formula, a customer far from the depot is more likely to be chosen than a customer 

close to the depot. 

il
R

  

After routes are constructed, swap and move procedures are applied to improve 

the solution. The swap operator exchanges a customer i with a customer j. The move 

operator ejects a customer i from its current position and insert it at another position. 

Only global pheromone updating is applied, and the pheromone trails are updated 

according to the ASranked (see section 2.4.5). 

4.5.2.  ACO Approach for the Mixed VRPB 

 Wade and Salhi (2003) used AS based approach to solve the mixed vehicle 

routing problem with backhauls  

 
An approach that considers the number of customers in the neighborhood of 

each customer is proposed to form the candidate list. The minimum number of 

customers (M) contained in the candidate list is calculated by: 

 

 { }10,4NM =  
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Average distances of each customer i to all other customers ( id ) and the average of 

these distances (D) are respectively calculated. 
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For each customer k, average distance to all other customers that fall within the range 

(Ck) is calculated and the average of all these distances (R) is computed: 
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The candidate list is constructed for each customer i by, 

 

{ }RdmjE iji ≤==   s.t....1  

 

Also, if MEi <  then the nearest iEM −  customers not contained in Ei are selected. 

 

The whole region originated from the depot is divided into a given number of 

sectors so that each contains an equal number of customers. If this is not possible, the 

remaining customers are allocated to the final sector. An ant is placed at the closest and 

farthest customer to the depot within each sector. A given number of ants are then 

placed randomly on remaining nodes in each sector.  

 

Two different visibility functions, the choice of which depends on the remaining 

capacity on vehicle, are used. If the vehicle is nearly full then it would be more efficient 

to visit a customer that is between the current customer and the depot if possible. Thus, 

if the unused capacity on the vehicle is less than a given parameter then the visibility is 

calculated by: 

0.
1

jij
ij dd

=η  
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If the unused capacity on the vehicle is larger than a given parameter, the next 

customer j is considered with the nearest customer k in relation to j in the visibility. 

Feasibility of customer k is not checked.  
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In order to reduce the possibility that arcs are selected repeatedly and to 

encourage exploration of the search space, a frequency based local trail update is used. 

That is, if an arc has been selected a greater number of times than a given percentage, of 

the number of solutions that have been generated since the beginning of the algorithm, 

then the trail value on that arc is updated according to following equation: 

 

oijij vv ττγτ .).1( +−=  

 

where γ is a pheromone decay parameter in the range (0 < γ < 1) and v is an adjustment 

factor (v > 1). Otherwise, γ is set equal to 1 

 

The global best solution is used to update pheromone trail values together with a 

maximum number of iteration best solutions, λ. Considering each of the λ iteration best 

solutions, only if the solution is within a given percentage of the global best solution, θ, 

is the route used to update trail values. The trail values are updated according to 

equation (2.9) as given by Bullnheimer et al. (1997) except that λ is adjusted as follows: 
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To improve the solutions obtained 2-opt and 3-opt and the shift heuristics are 

used. In the 2-opt and 3-opt procedure only customers which belong to the same route 

are considered and each route is improved independently. In the shift heuristic, one or 

two customers between routes are exchanged. 

4.6. Computational Study 

In this section, the proposed ant system based approach for VRPSDP is tested on 

the benchmark problem instance(s) of Min (1989) and Dethloff (2001). 

4.6.1.  Benchmark Problems 

 The first instance used for testing is the real-life problem given by Min (1989). 

In that problem, there are 22 customers and a depot. The vehicle capacity is 10.500, the 

total delivery amount equals 20.300, and the total pick-up amount is 19.950.  

 

 The second problem set used for testing is given by Dethloff (2001). Random 

test instances with 50 customers are generated where two different geographical 

scenarios are examined: In scenario SCA, the coordinates of the customers are 

uniformly distributed over the interval [0,100]. Half of the customers in scenario CON 

are distributed in the same way as in SCA while the coordinates of the other half are 

uniformly distributed over the interval [100/3,200/3]. Distances are measured using the 

Euclidean metric in both cases. 

 

The delivery demand Dj of the customers are uniformly distributed over the 

interval [0,100].The pick-up demand Pj is computed by using a random number rj that is 

uniformly distributed over the interval [0,1] such that Pj =(0.5+ rj) Dj. Instances with 

different vehicle capacities are generated by choosing the minimal number of vehicles 

µ. Then, the corresponding capacity is ∑ ∈
=

Js sDC µ  where µ is chosen to be 3 or 8. 
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4.6.2.  Experiments on Dethloff’s Data Instances 

The Algorithm is coded in Visual C++. By applying experimental runs to 

different problems, the parameters were set. Considering both the solution quality and 

the computational time, the number of iterations is set as 5000. In addition, to escape 

from the local optima, ρ is set to 0.1. Also, initial runs suggest that k = 12, q0 = 0.75, β = 

1 and 5 elitist ants generate solutions. 

 

Min (1989) reported the objective value of his problem as 94. Dethloff (2001) 

reported the best solution for Min’s problem as 91 with a computation time of 

0.27seconds. Dethloff (2001) also reported that after 100 hours of computing time on a 

Pentium III 500 Mhz processor the best known solution for Min’s problem was found to 

be 89. Our proposed algorithm obtained the solution as 89 in approximately 17 seconds 

on a Intel Xeon 2 GHz processor. 

 

 In order to test the solution quality of the RACS, the results have been compared 

with those of Dethloff’s problems. For each of the Dethloff’s data 10 experiments are 

performed similar to Dethloff (2001). Table 4.1 reports the results found using RACS in 

comparison to Dethloff’s results. Dethloff only published the average travel distances of 

each data set after the 10 experiments. Therefore, we compare the average travel 

distances obtained by RACS with those of Dethloff’s.  

 

RACS achieves shorter away travel distances in 38 out of the 40 problem 

instances.  Only the average travel distances of SCA 8-2 and CON 8-6 are longer than 

the average travel distance found by Dethloff. However, they are approximately within 

%1 deviation. 

 

  The results of the RACS are presented in Appendix C in detail. In the table of 

appendix, BTD means the best travel distance obtained after 10 experiments, NV means 

number of vehicles used in the best result, and MCT means mean computational time in 

seconds. 
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  In sum, the algorithm performs very well for the data instances of Min (1989) and 

Dethloff (2001). It can be observed from the results that the RACS give better results 

when compared with the Dethloff.  

 

Table 4.1  Comparison of the results found with the RACS with the Dethloffs’ 

Data Set RACS Dethloff Deviation
SCA3-0 666,0416 689 -0,03332
SCA3-1 738,8839 765,6 -0,0349
SCA3-2 692,8085 742,8 -0,0673
SCA3-3 708,8335 737,2 -0,03848
SCA3-4 719,9005 747,1 -0,03641
SCA3-5 721,1812 784,4 -0,0806
SCA3-6 670,7185 720,4 -0,06896
SCA3-7 680,4808 707,9 -0,03873
SCA3-8 759,779 807,2 -0,05875
SCA3-9 693,2852 764,1 -0,09268
    
SCA8-0 1019,075 1132,9 -0,10047
SCA8-1 1129,507 1150,9 -0,01859
SCA8-2 1107,837 1100,8 0,006393
SCA8-3 1052,831 1115,6 -0,05626
SCA8-4 1171,683 1235,4 -0,05158
SCA8-5 1160,57 1231,6 -0,05767
SCA8-6 1028,7721 1062,5 -0,03174
SCA8-7 1100,279 1217,4 -0,09621
SCA8-8 1192,269 1231,6 -0,03193
SCA8-9 1103,998 1185,6 -0,06883
    
CON3-0 633,9779 672,4 -0,05714
CON3-1 567,6955 570,6 -0,00509
CON3-2 530,394 534,8 -0,00824
CON3-3 599,7221 656,9 -0,08704
CON3-4 600,0444 640,2 -0,06272
CON3-5 588,2873 604,7 -0,02714
CON3-6 516,6378 521,3 -0,00894
CON3-7 596,1911 602,8 -0,01096
CON3-8 523,8241 556,2 -0,05821
CON3-9 588,3128 612,8 -0,03996
    
CON8-0 916,76282 967,3 -0,05225
CON8-1 771,2668 828,7 -0,06931
CON8-2 746,0453 770,2 -0,03136
CON8-3 866,5003 906,7 -0,04434
CON8-4 875,343 876,8 -0,00166
CON8-5 827,2182 866,9 -0,04577
CON8-6 757,7431 749,1 0,011538
CON8-7 889,3294 929,8 -0,04353
CON8-8 814,6108 833,1 -0,02219
CON8-9 854,9211 877,3 -0,02551
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5. CONCLUSION 

 The purpose of this study was to develop ant system based approach for solving 

VRPs. The proposed approach basically differ form the other ant system heuristics in 

the way that it forms the candidate list, and it calculates the initial pheromone values 

and the visibility function.  

 

  Most of the ant system based heuristics forms the candidate lists at the 

beginning, and do not update them. On the other hand, attractiveness of arcs depends on 

the pheromone values on them. As pheromone values on arcs are updated, some arcs 

that are not on the candidate lists may become attractive. Thus, in this study candidate 

lists are updated after global pheromone update procedure. 

 

  In most of the ant colony based algorithms to VRP, initial pheromone trails is 

calculated based on the best known route distances found for the particular problem. 

However, in this study it is calculated based on the feasible solution found.  

 

Finally, visibility of an arc is calculated as a function of distance between two 

customers, customers’ distance to the depot and the time window associated with the 

customer to whom the ant is considered to move.  

 

  The proposed approach has been tested for VRPTW and VRPSDP. Solomon 

(1987) instances are used as a benchmark for the VRPTW. The results are compared 

with some known heuristics and the best known results of the problems. The results of 

the proposed approach are generally good when compared with the benchmark 

heuristics, but they are not that competitive with the best published results. 
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 This is the first study that uses ACO to solve VRPSDP. The proposed approach 

produce competitive results in relatively small competition time when compared to Min 

(1989) and Dethloff (2001).  

  

 Future work in this topic may focus on the visibility and local search method on 

the entire solution. Visibility has a significant importance on the solution quality. A 

revised heuristic will include capacity constraint or modified savings function. In this 

paper, the 2–opt algorithm is only applied in the route. Nevertheless, an application of a 

local search heuristic between routes may improve the solution quality. Although 

computational efficiency is not of primary concern in this study, the algorithm may be 

run on parallel computers to improve computational time. Also, other types of the VRP 

may be addressed using the same approach with little modification.  
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7. APPENDICES 

Appendix A: Pseudo-Code for the RACS to VRPTW 
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Appendix B: Computational Results of the RACS for VRPSDP 

 BTD NV MCT 
SCA3-0 653,869 4 146,8
SCA3-1 721,256 4 149,8
SCA3-2 685,299 4 150,4
SCA3-3 701,922 4 151,6
SCA3-4 709,299 4 152,2
SCA3-5 716,147 4 146,3
SCA3-6 660,864 4 149,6
SCA3-7 660,78 4 148,7
SCA3-8 754,053 4 148,6
SCA3-9 683,573 4 145,7
   
SCA8-0 1004,87 9 165,3
SCA8-1 1098,17 9 166,4
SCA8-2 1068,35 9 168,1
SCA8-3 1027,73 9 167,3
SCA8-4 1142,25 9 164,6
SCA8-5 1140,02 9 169,2
SCA8-6 998,621 9 174,4
SCA8-7 1065,2 9 177,3
SCA8-8 1173,15 9 165,5
SCA8-9 1089,58 9 170

   
CON3-0 627,409 4 151,2
CON3-1 559,551 4 150,7
CON3-2 525,428 4 159,6
CON3-3 597,61 4 155,8
CON3-4 589,322 4 163,2
CON3-5 583,279 4 171,6
CON3-6 508,668 4 172,7
CON3-7 578,184 4 154,7
CON3-8 523,676 4 147
CON3-9 579,487 4 155,1

   
CON8-0 893,619 9 173,2
CON8-1 756,416 9 175,4
CON8-2 732,986 9 173,6
CON8-3 858,633 9 178,9
CON8-4 848,95 9 178,1
CON8-5 808,083 9 175,2
CON8-6 742,962 9 181,9
CON8-7 875,204 9 181,1
CON8-8 804,81 9 178,9
CON8-9 839,992 9 182,3
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