

A REVISED ANT COLONY SYSTEM APPROACH TO VEHICLE
ROUTING PROBLEMS

by

ELİF İLKE GÖKÇE

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

July 2004

A REVISED ANT COLONY SYSTEM APPROACH TO VEHICLE
ROUTING PROBLEMS

APPROVED BY:

Assistant Prof. Dr. Bülent Çatay …………………………

(Thesis Supervisor)

 Assistant Prof. Dr. Hüsnü Yenigün ………………..………..

Assistant Prof. Dr. Kemal Kılıç …..………………………

 Assistant Prof. Dr. Kerem Bülbül .…..…………………..…

Assistant Prof. Dr. Tonguç Ünlüyurt …..………………………

DATE OF APPROVAL: ………………………….

© Elif İlke Gökçe 2004

ALL RIGHTS RESERVED.

ACKNOWLEDGEMENTS

 I would like to thank my thesis advisor Assistant Prof Dr. Bülent Çatay for his

encouragement, motivation and considerable time he spent from beginning to end of my

thesis.

 I thank to graduate committee members of my thesis. Assistant Prof. Dr. Kemal

Kılıç, Assistant Prof. Dr. Kerem Bülbül and Assistant Prof. Dr. Hüsnü Yenigün for their

worthwhile suggestions and remarks.

ABSTRACT

 Vehicle routing problems have various extensions such as time windows, multiple

vehicles, backhauls, simultaneous delivery and pick-up, etc. The objectives of all these

problems are to design optimal routes minimizing total distance traveled, minimizing

number of vehicles, etc that satisfy corresponding constraints.

 In this study, an ant colony optimization based heuristic that can be used to solve

various vehicle routing problems is proposed. The objective function considered to

minimize the total distance traveled by all vehicles. The heuristic is applied to vehicle

routing problem with time windows and vehicle routing with simultaneous delivery and

pick-up. Vehicles are identical and capacities of the vehicles are finite. The time

window constraints in the first problem are assumed to be strict.

The proposed heuristic consists of four steps. First, a candidate list is formed for

each customer in order to reduce computational time. Second, a feasible solution is

found, and initial pheromone trails on each arc is calculated using it. Then, routes are

constructed based on Dorigo et al. (1997). While visibility is calculated during route

construction process, the distance between two customers, customers’ distance to the

depot and the time window associated with the customer to whom the ant is considered

to move are considered. Pheromone trails are modified by both local and global

pheromone update. Finally, constructed routes are improved using 2-opt algorithm.

The algorithm have been tested on the benchmark problem instances of Solomon

(1987) for vehicle routing problem with time windows, and benchmark problem

instances of Min (1989) and Dethloff (2001) for vehicle routing with simultaneous

delivery and pick-up. The algorithm is proven to give good results when compared to

the best known results in the literature.

ÖZET

 Araç Rotalama Problemlerinin zaman kısıtı, değişik özellikli araçlar, eşzamanlı

dağıtım ve toplama gibi çok çeşitli uzantıları vardır. Bütün problemdeki amaç ise tüm

kısıtları sağlayan kat edilen toplam mesafeyi, kullanılan araç sayısını vs. azaltan optimal

rotalar oluşturmaktır.

 Bu çalışmada çeşitli Araç Rotalama Problemlerinin çözümü için kullanılabilecek

karınca kolonisi optimizasyonuna dayanan bir sezgisel yaklaşım önerilmiştir.

Modeldeki amaç fonksiyonu, araçlar tarafından kat edilen toplam mesafenin en

küçüklenmesidir. Önerilen yaklaşım Zaman Kısıtlı Araç Rotalama Problemine ve Eş

Zamanlı Dağıtım ve Toplamalı Araç Rotalama Problemine uygulanmıştır. Tüm araçlar

aynı özelliklere sahiptir ve araçların kapasiteleri göz önünde bulundurulmaktadır.

Önerilen sezgisel yöntem dört aşamadan oluşmaktadır. Ilk olarak hesaplama

zamanını azaltmak için aday listeleri oluşturulur. İkinci olarak olurlu bir çözüm bulunur

ve bu çözüm kullanılarak her bir yol üzerindeki başlangıç feromen seviyeleri hesaplanır.

Daha sonra Dorigo (1997) tarafından önerilen yönteme dayanılarak rotalar oluşturulur.

Rotaların oluşturulması sırasında uygunluk hesaplanırken müşteriler arasındaki uzaklık,

müşterilerin depoya olan uzaklıkları ve zaman kısıtı göz önünde bulundurulur. Feromen

seviyeleri ise hem yerel hemde global feromen yenileme yontemleri ile değiştirilir. Son

olarak oluşturulan rotalar 2-opt algoritmasi kullanılarak iyileştirilir.

 Algoritma, zaman kısıtlı araç rotalama problemi için Solomon’un 1987 yılında

oluşturduğu kıyaslama problemi örnekleri ile, eş zamanlı dağıtım ve toplamalı araç

rotalama problemi için ise Min’ in 1989 yılında ve Dethloff’ un 2001 yılında

oluşturduğu kıyaslama problemi örnekleri ile test edilmiştir. Algoritma, problemlerin

literatürde bilinen en iyi sonuçları ile karşılaştırldığında iyi sonuçlar vermektedir.

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. ANT ALGORITHMS... 4

2.1. Basic Idea of Ant Algorithms ... 4

2.2. The Ant Colony Optimization Heuristic... 8

2.3. Ant System.. 11

2.3.1. TSP Application .. 11

2.3.2. Other Applications .. 15

2.4. Improvements to Ant System.. 18

2.4.1. Elitist Strategy ... 18

2.4.2. Ant Colony System ... 19

2.4.3. Ant –Q ... 20

2.4.4. MAX-MIN Ant System... 21

2.4.5. ASrank ... 22

2.4.6. Local Search .. 22

2.4.7. Candidate List.. 23

3. VEHICLE ROUTING PROBLEM WITH TIME WINDOWS 24

3.1. Mathematical Formulation of the VRPTW... 24

3.2. Complexity of VRPTW .. 27

3.3. Optimal Algorithms for VRPTW.. 27

3.3.1. Dynamic Programming ... 27

3.3.2. Lagrangean Relaxation-Based Methods.. 28

 vii

3.3.3. Column Generation ... 28

3.4. Approximation Algorithms for the VRPTW .. 29

3.4.1. Construction Algorithms ... 29

3.4.1.1 Sequential Construction Algorithms... 30

3.4.1.2 Parallel Construction Algorithms ... 30

3.4.2. Improvement Algorithms .. 31

3.4.3. Metaheuristics ... 32

3.4.3.1. Simulated Annealing ... 32

3.4.3.2. Tabu Search ... 33

3.4.3.3. Genetic Algorithms.. 35

3.4.3.4. Miscellaneous Algorithms... 36

3.5. Ant Colony Based Approaches ... 37

3.5.1. ACO for CVRP ... 37

3.5.2. ACO for VRPTW.. 41

3.5.3. ACO for Dynamic VRP .. 45

3.6. A Revised Ant Colony System Approach to the VRPTW.................................. 46

3.6.1. Candidate List.. 46

3.6.2. Initial Pheromone Trails.. 46

3.6.3. Visibility.. 47

3.6.4. Route Construction Process... 48

3.6.5. Global Pheromone Update .. 50

3.7. Computational Study... 50

3.7.1. Benchmark Problems .. 50

3.7.2. Experiments on Solomon’s Data Instances ... 51

3.7.3. Comparison with Other Heuristics .. 53

 viii

4. VEHICLE ROUTING PROBLEM WITH SIMULTANEOUS PICK-UP AND

DELIVERY .. 55

4.1. Mathematical Formulation of the VRPSDP.. 56

4.2. Complexity of VRPSDP ... 58

4.3. Optimal Algorithms for the VRPSDP... 58

4.4. Approximation Algorithms for the VRPSDP ... 59

4.5. Ant System Based Appraches ... 60

4.5.1. VRPBTW .. 60

4.5.2. ACO Approach for the Mixed VRPB ... 61

4.6. Computational Study... 64

4.6.1. Benchmark Problems .. 64

4.6.2. Experiments on Dethloff’s Data Instances.. 65

5. CONCLUSION... 67

6. REFERENCES ... 69

7. APPENDICES .. 75

Appendix A: Pseudo-Code for RACS to VRPTW .. 75

Appendix B: Pseudo-Code for RACS to VRPTW... 75

Appendix C: Computational Results of the RACS for VRPSDP 81

 ix

 LIST OF FIGURES

Figure 1.1 General representation of the Vehicle Routing Problem................................ 1

Figure 2.1 An example of the behavior of the real ants... 5

Figure 2.2 An example of the behavior of the artificial ants ... 6

Figure 2.3 The ACO heuristic.. 10

Figure 2.4 Solving the TSP using ACO... 14

Figure 2.5 An Algorithmic skeleton for ACO algorithm applied to the TSP................ 15

Figure 2.6 A graph for JSP with 3 jobs and 2 machines.. 17

Figure 3.1 An algorithmic skeleton for ACO algorithm applied to the CVRP 38

Figure 3.2 An Algorithmic skeleton for D-Ants algorithm ... 40

Figure 3.3 Structure of the MACS-VRPTW ... 42

Figure 3.4 Feasible and infeasible solutions for a VRP with four duplicated depots and

four vehicles.. 43

 x

LIST OF TABLES

Table 3.1 Comparison of the results of the RACS with the best known 52

Table 3.2 Comparisons of averages on all data sets .. 53

Table 3.3 Comparisons of average travel distances of heuristics on all data sets 54

Table 4.1 Comparison of the results found with the RACS with the Dethloffs’ 66

 xi

1. INTRODUCTION

The problem of transportation of people, goods or information is commonly

denoted as routing problem. As the routing problem has wide areas of application,

optimization of the transportation has become an important issue.

The basic routing problem is the Traveling Salesman Problem (TSP). The TSP is

the problem of finding a minimal length closed tour that visits all cities of a given set

exactly once. The Vehicle Routing Problem (VRP) is the TSP with m vehicles where a

demand is associated with each city and the system has various constraints. VRP was

first formulated by Dantzig and Ramser in 1959. The problem can be defined as the

design of a set of minimum-cost vehicle routes, originating and terminating at a central

depot, for a fleet of vehicles that services a set of customers with known demand

(Dantzig and Ramser, 1959).

Figure 1.1 General representation of the Vehicle Routing Problem

 In the literature, VRP is commonly formulated with capacity constraints, so the

Vehicle Routing Problem generally has the same meaning with Capacitated Vehicle

 1

Routing Problem (CVRP). Nevertheless, more realistic problems has various other

constrains such as time windows, multiple depots/vehicles, etc.

 There have been many papers proposing exact algorithms for solving the VRP.

These algorithms are based on dynamic programming, Lagrangean relaxation, and

column generation. On the other hand, as the VRP is known to be NP-hard, exact

algorithms are not capable of solving problems for big numbers of customers.

 Heuristics are thought to be more efficient for complex VRPs and have become

very popular for researchers. There are three types of heuristics in the literature:

construction algorithms, improvement algorithms, and metaheuristics. Since

metaheuristic approaches are very efficient for escaping local optimum values while

searching for better solutions they give competitive results. That is why the recent

publications are all based on metaheuristic approaches such as genetic algorithms, tabu

search, simulated annealing, ant systems.

 In this thesis, an ant system (AS) based heuristic for the VRPs is proposed. AS

was first introduced for solving the TSP. Since then many implementations of AS have

been proposed for a variety of combinatorial optimization problems such as quadratic

assignment problem (QAP), job shop scheduling problem, and VRP.

 AS is based on the way that real colonies of ants behave in order to find shortest

path between their nest and food sources. It simulates the behavior of real ants to solve

combinatorial optimization problems with artificial ants. Artificial ants find solutions in

parallel processes using a constructive mechanism guided by artificial pheromone and a

greedy heuristic known as visibility. The amount of pheromone deposited on arcs is

proportional to the quality of the solution generated and increases at run-time during the

computation. In addition, the artificial ants are enabled to use local search heuristic in

an attempt to improve the solution quality.

 In this study, we propose an AS approach to Vehicle Routing Problem with

Time Window (VRPTW) and Vehicle Routing Problem with Simultaneous Delivery

and Pick-up (VRPSDP) that produces comparable results to those that exist in the

literature. Chapter 2 includes a comprehensive literature review on the ant algorithms

 2

where a detailed definition of the algorithm is given, and major studies on this subject

are explained.

 Chapter 3 includes a detailed definition of the VRPTW and a literature review

on the problem. It also describes the proposed ant system based approach for solving the

VRPTW and reports the computational study on it. A benchmark study between the

proposed approach and the best known results in the literature based on the test

problems of Solomon (1987).

 Chapter 3 includes a detailed definition of the VRPSDP and a literature review

on the problem. It also describes the proposed ant system based approach for solving the

VRPSDP and reports the computational study on it. The proposed approach has been

tested on the benchmark problem instances of Min (1989) and Dethloff (2001).

 The last chapter provides a discussion of the results achieved and concluding

remarks. It also gives directions for future research.

 3

2. ANT ALGORITHMS

 Ant algorithms are one of the examples of swarm intelligence in which scientists

study the behavior patterns of bees, termites, ants, and other social insects in order to

simulate processes. Ant algorithms were first proposed by Dorigo et al. (1991) as an

approach to solve combinatorial optimization problems like the TSP and QAP. Then,

they have been applied to various other problems.

In this chapter, first general characteristics of ant algorithms and the ant colony

optimization heuristic will be described. Then, applications of ant algorithms to various

combinatorial optimization problems will be explained. Finally, a review of the

improvements to ant algorithms will be given.

2.1. Basic Idea of Ant Algorithms

 Understanding how blind animals like ants could establish shortest paths from

their nests to feeding sources was one of the problems studied by ethnologists. Then, it

was discovered that pheromone trails are used to communicate among individuals

regarding paths and to decide where to go.

 Ant algorithms are based on the way that real ant colonies behave in order to

find shortest path between their nests and food sources. While walking ants leave

aromatic essence, called pheromone, on the path they walk. Other ants can sense the

existence of pheromone and choose their way according to the level of pheromone.

Greater level of pheromone on a path will increase the probability that ants will follow

that path. The level of pheromone laid is based on the length of the path and the quality

of the food source. The level of pheromone on a path will increase when the number of

ants following that path increases. In time all ants will follow the shortest path.

 4

 Choosing the shortest path can be explained in terms of autocatalytic behavior

(i.e. positive feedback) that the more are the ants following a trail the more that trail

becomes attractive for being followed. The most interesting aspect of autocatalytic

process is that finding the shortest path around the obstacle is the result of the

interaction between the obstacle shape and ants distributed behavior. Although all ants

move at approximately the same speed and deposit a pheromone trail at approximately

the same rate, it takes longer to go on their longer side than on their shorter side of

obstacles. This makes the pheromone trail accumulate quicker on the shorter side.

Figure 2.1 An example of the behavior of the real ants

Consider for example the experimental setting shown in Figure 2.1. There is a

path along which ants are walking (for example from food source A to the nest E and

vice versa). Suddenly an obstacle appears and the path is cut off. So at position B the

ants walking from A to E (or at position D those walking in the opposite direction) have

to decide whether to turn right or left. The choice is influenced by the intensity of the

pheromone trails left by preceding ants. A higher level of pheromone on the right path

gives an ant a stronger stimulus and thus a higher probability to turn right. The first ant

reaching point B (or D) has the same probability to turn right or left (as there was no

previous pheromone on the two alternative paths). Because path BCD is shorter than

BHD the first ant following it will reach D before the first ant following path BHD.

Shorter paths will receive pheromone reinforcement more quickly as they will be

completed earlier than longer ones. The result is that an ant returning from E to D will

 5

find a stronger trail on path DCB, caused by the half of all the ants that by chance

decided to approach the obstacle via DCBA and by the already arrived ones coming via

BCD: they will therefore prefer path DCB to path DHB. As a consequence, the number

of ants following path BCD per unit of time will be higher than the number of ants

following BHD. This causes the quantity of pheromone on the shorter path to grow

faster than on the longer one. Thus, the probability that any single ant chooses the path

to follow is quickly biased towards the shorter one. The final result is that very quickly

all ants will choose the shorter path (Dorigo and Colorni, 1996).

In what follows is the description of how ant system simulates the behavior of

real ants to solve combinatorial optimization problems with artificial ants.

Consider the example in Figure 2.2, which is a possible AS interpretation of

Figure 2.1 (Dorigo et al, 1991). The distances between D and H, between B and H, and

between B and D are equal to 1. C is positioned in the middle of D and B. 30 new ants

come to B from A and 30 to D from E at each time unit. Each ant walks at a speed of 1

per time unit and lays down a pheromone trail of intensity 1 at time t. Evaporation

occurs in the middle of the successive time interval (t+1, t+2).

At t=0 30 ants are in B and 30 in D. As there is no pheromone trail they

randomly choose the way to go. Thus, approximately 15 ants from each node will go

toward H and 15 toward C.

Figure 2.2 An example of the behavior of the artificial ants

 6

At t=1 30 new ants come to B from A. They sense a trail of intensity 15 on the

path that leads to H, laid by the 15 ants that went through B-H-D. They also sense a trail

of intensity 30 on the path to C, obtained as the sum of the trail laid by the 15 ants that

went through B-C-D and by the 15 ants that went through D-C-B. The probability of

choosing a path is therefore biased. The expected number of ants going toward C will

be the double of those going toward H: 20 versus 10, respectively. The same is true for

the new 30 ants in D which came from E. This process continues until all of the ants

eventually choose the shortest path.

 In brief, if an ant has to make a decision about which path to follow it will most

probably follow the path chosen heavily by preceding ants, and the more is the number

of ants following a trail, the more attractive that trail becomes for being followed.

 In the ant meta-heuristic, a colony of artificial ants cooperates in finding good

solutions to discrete optimization problems. Artificial ants have two characteristics. On

the one hand they imitate the following behavior of real ants:

• Colony of cooperating individuals: Like real ant colonies, ant algorithms are

composed of entities cooperating to find a good solution. Although each

artificial ant can find a feasible solution, high quality solutions are the result of

the cooperation. Ants cooperate by means of the information they concurrently

read/write on the problem states they visit.

• Pheromone trail: While real ants lie pheromone on the path they visit, artificial

ants change some numeric information of the problem states. This information

takes into account the ant’s current performance and can be obtained by any ant

accessing the state. In ant algorithms pheromone trails are the only

communication channels among the ants. It affects the way that the problem

environment is perceived by the ants as a function of the past history. Also an

evaporation mechanism, similar to real pheromone evaporation, modifies the

pheromone. Pheromone evaporation allows the ant colony to slowly forget its

past history so that it can direct its search towards new directions without being

over-constrained by past decisions.

 7

• Shortest path searching and local moves: The aim of both artificial and real ants

is to find a shortest path joining an origin to destination sites. Like real ants

artificial ants move step-by-step through adjacent states of the problem.

• Stochastic state transition policy: Artificial ants construct solutions applying a

probabilistic decision to move through adjacent states. As for real ants, the

artificial ants only use local information in terms of space and time. The

information is a function of both the specifications and pheromone trails induced

by past ants.

 On the other hand, they are enriched with the following capabilities.

• Artificial ants can determine how desirable states are.

• Artificial ants have a memory that keeps the ants’ past actions.

• Artificial ants deposit an amount of pheromone which is a function of the quality

of the solution found.

• The way that artificial ants lies pheromone is dependent on the problem.

• Ant algorithms can also be enriched with extra capabilities such as local

optimization, backtracking, and so on, that cannot be found in real ants.

2.2. The Ant Colony Optimization Heuristic

 In Ant Colony Optimization (ACO), a number of artificial ants with the

described characteristics search for good quality solutions to the discrete optimization

problem. If G = (C, L) is assumed as the graph of a discrete optimization problem, ACO

can be used to find to find a solution to the shortest path problem defined on the graph

G. A solution is described in terms of paths through the states of the problem in

accordance with the problems’ constraints. For example, in the TSP, C is the set of

cities, L is the set of arcs connecting cities, and a solution is a closed tour.

 Each ant is assigned to an initial state based on problem criteria. The start state is

usually defined as a unit length sequence. Artificial ants find solutions in parallel

processes using an incremental constructive mechanism to search for a feasible solution.

 8

It starts from the initial state and move to feasible neighbor states. Moves are made by

applying a stochastic search policy guided by ants’ memory, problem constraints,

pheromone trail accumulated by all the ants from the beginning of the search process

and problem-specific heuristic information (visibility). The ants’ memory keeps

information about the path it followed. It can be used to carry useful information to

compute the goodness of the generated solution and/or the contribution of each

executed move. It also provides the feasibility of the solutions. While building its own

solution, each ant also collects information on the problem characteristics and its

performance. It uses this information to modify the representation of the problem, as

seen by the other ants. The information collected by ants is stored in pheromone trails.

Visibility measures the attractiveness of the next node to be selected. Visibility value

represents a priori information about the problem instance definition. A solution is

constructed by moving through a sequence of neighbor states.

The decisions about when the ants should release pheromone on the

environment and how much pheromone should be deposited depend on the problem.

Ants can release pheromone while building the solution, or after a solution has been

built, or both. In addition, pheromone trails can be associated with all problem arcs or

some of them.

Probabilistic tables that are function of the pheromone trail and heuristic values

guide the ants’ search. The stochastic component of the decision policy and the

pheromone evaporation mechanism prevents a rapid drift of all the ants towards the

same part of the search space.

After building a solution the ant deposits additional pheromone information on

the arcs of the solution. In general, the amount of pheromone deposited is proportional

to the goodness of the solution. If a move generates a high-quality solution its

pheromone will be increased proportionally to its contribution. After an ant constructs a

solution and deposits pheromone information it dies.

Although a single ant can find a solution high quality solutions are only found as

a result of the global cooperation among all ants. Communication among ants is

mediated by information stored in pheromone trail values.

 9

procedure ACO heuristics()
 While (termination condition not met)
 schedule activities
 ants generation and activity();
 pheromone evaporation();
 daemon actions();
 end schedule activities
 end while
end procedure

procedure ants generation and activity()
 While (available resources)
 new active ant();
 end while
end procedure

procedure new active ant();
 initialize ant();
 M=update ant memory ();
 While (current memory ≠complete solution)
 A=read local ant routing table();
 P=compute transition probabilities;
 next state=apply decision policy;
 move to next state(next state);
 if (local pheromone update)
 deposit pheromone on the visited arc();
 update ant routing table();
 end if
 M=update internal state();
 end while
 if (global pheromone update)
 foreach visited arc do
 deposit pheromone on the visited arc();
 update ant routing table();
 end foreach
 end if
 die();
end procedure

Figure 2.3 The ACO heuristic

In brief, a colony of ants concurrently moves through feasible adjacent states of

the problem by applying a stochastic decision process. By moving, ants incrementally

build solutions to the optimization problem. During the solution construction process

or/and after the solution is constructed, the ants evaluate the (partial) solution and

update pheromone trail values. Figure 2.3 provides the pseudo code of the ACO

heuristic developed by Dorigo and Caro (1999).

Beside ants’ generation and activity described above, ACO algorithm has two

more procedures: pheromone trail evaporation and daemon actions. Pheromone

 10

evaporation is the process by which the pheromone trail values on the arcs decrease

overtime. This prevents the convergence of the algorithm to a sub-optimal solution and

enables the generation of new solutions. Daemon action is an optional process by which

the solutions are observed and the extra pheromone is deposited on the arcs used by the

shortest path.

Ants generation and activity, pheromone trail evaporation, and daemon actions

of ACO need synchronization. In general, a strictly sequential scheduling of the

activities is particularly suitable for non-distributed problems, where the global

knowledge is easily accessible at any instant and the operations can be conveniently

synchronized. On the contrary, some form of parallelism can be easily and efficiently

exploited in distributed problems like routing in telecommunications networks (Dorigo

et al., 1998).

2.3. Ant System

In this section, general characteristics of the ant algorithms are described

through Ant System (AS) approach, as it is the first study on ACO and most of the ant

algorithms proposed are strongly inspired by AS. In addition, the first application of an

ACO algorithm was done using the TSP, and TSP is the prototypical representative of

NP-hard combinatorial optimization problems (Garey and Johnson, 1979). Therefore,

AS is introduced with its application to the TSP. Then, its applications to solve other

optimization problems will be explained.

2.3.1. TSP Application

 The TSP is the problem of finding a minimal length closed tour that visits all

cities of a given set exactly once. Artificial ants find solutions to the TSP in parallel

processes using a constructive mechanism.

 While solving the TSP, first all m artificial ants are randomly placed on cities

and initial pheromone trail intensities are set on edges. Then, each artificial ant moves

 11

from one city to another. It chooses the city to move using a probabilistic function based

on intensity of pheromone trail on edges and a heuristic function. Intensity of

pheromone trail gives information about how many ants in the past have chosen that

edge. The heuristic function is called visibility and is used to increase the probability of

going to a closer city. In the earliest approaches, it was usually chosen as a function of

the edges length. Artificial ants probabilistically choose closer cities with a lot of

pheromone trail. Each time an ant makes a move the trail it leaves on path (i, j) is

collected and used to compute the new values for path trails.

Each artificial ant has a memory called tabu list. The tabu list forces the ant to

make legal tours. It saves the cities already visited and forbids the ant to move already

visited cities until a tour is completed.

After all cities are visited, the tabu list of each ant will be full. The shortest path

found is computed and saved. Then, tabu lists are emptied. This process is iterated for a

user-defined number of cycles.

Suppose there are n cities and bi is the number of ants at city i. Consider the

following notation:

∑
=

=
n

i
ibm

1

: Total number of ants

N : Set of cities to be visited

tabuk : Tabu list of the k-th ant

tabuk(s) : s-th city visited by the k-th ant in the tour

τij(t) : Intensity of trail on edge between city i and city j at time t

ηij : Visibility of edge between city i and city j

ηij is usually assumed as the inverse of the distance between city i and city j (dij)

Thus, ηij = 1/ dij.

After m artificial ants are randomly placed on cities, the first element of each

ant's tabu list is set to be equal to its starting city. Then, they move to unvisited cities.

The probability of moving from city i to city j for the k-th ant is defined as:)(k
ijp

 12

[] []
[] []

⎪
⎪
⎩

⎪⎪
⎨

⎧
∈

⋅

⋅

= ∑
∈

otherwise,0

, k
ik

allowedk
ik

ijij

k
ij

allowedj
p

k

βα

βα

ητ

ητ

 (2.1)

where allowedk = {N – tabuk}, α and β are parameters that control the relative

importance of pheromone trail versus visibility.

Each time an ant moves from city i to city j, the pheromone trail on the edge (i,

j) is modified. This is called as local trail updating. This prevents an edge to become

dominant, and to be chosen by all the ants. Local trail updating is applied using the

following formula:

0)1(τρτρτ ⋅+⋅−= ijij (2.2)

where τ0 is a parameter representing the initial pheromone value on each edge and ρ is a

coefficient such that (1 - ρ) represents the evaporation of trail.

After all the ants have completed their tours, the ant that made the shortest tour

modifies the edges belonging to its tour. This is called as global trail updating and is

applied using the following formula:

ijijij ∆+⋅= ττρτ (2.3)

 ∑
=

∆=∆
m

k

k
ijij

1

ττ

where is the quantity per unit of length of pheromone trail laid on path (i, j) by the k-

th ant and is given by:

k
ij∆τ

otherwise,0

 tour itsin) ,(path usesant th if,

⎪⎩

⎪
⎨

⎧ −
=∆

jik
L
Q

k
k
ijτ

where Q is a constant and Lk is the tour length of the k-th ant.

 13

Figure 2.4 Solving the TSP using ACO

AS algorithm defined above is called ant-cycle. Two other algorithms of the AS

ant-density and ant-quantity algorithms are also proposed. They differ in the way the

trail is updated. In the ant-density, a quantity Q of trail is left on path (i, j). In the ant-

quantity a quantity Q/dij of trail is left on edge (i, j) every time an ant goes from i to j.

In the ant-density:

otherwise ,0

 tour itsin) ,(path usesant th if ,

⎩
⎨
⎧ −

=∆
jikQk

ijτ

In the ant-quantity:

 14

otherwise,0

 tour itsin) ,(path usesant th if,

⎪
⎩

⎪
⎨

⎧ −
=∆

jik
d
Q

ij
k
ijτ

Finally, the shortest route is saved, the tabu lists of all ants are emptied, and the

ants are free again to construct new tours. The process as described in Figure 2.4

continues until the tour counter reaches the maximum number of cycles, NCmax, or

stagnation (all ants construct the same tour).

In general, all the ACO algorithms for the TSP follow a specific algorithmic

scheme, which is outlined in Figure 2.5 (Stützle and Dorigo, 1999). After the

initialization of the pheromone trails and some parameters a main loop is repeated until

a termination condition. In the main loop, first, the ants construct feasible tours, then the

generated tours are improved by applying local search, and finally the pheromone trails

are updated.

procedure ACO algorithm for TSPs
 Set parameters, initialize pheromone trails
 While (termination condition not met)
 ConstructSolutions
 ApplyLocalSearch % optional
 UpdateTrails
 end
end ACO algorithm for TSPs

Figure 2.5 An Algorithmic skeleton for ACO algorithm applied to the TSP

2.3.2. Other Applications

 As ant algorithm is versatile, it can be applied to different variants of a problem.

For example, it can also be used to solve the Asymmetric TSP (ATSP). Solving ATSP

is similar to solving TSP. The only differences are in the distance and trail matrices that

are not symmetric.

 AS is also a robust heuristic that can be applied to various other combinatorial

optimization problems such as VRP, QAP, the job-shop scheduling problem (JS),

 15

sequential ordering problem (SOP), graph coloring, routing in communications

networks, and so on. (Dorigo et al., 1991).

 Assigning n facilities to n locations so that the cost of the assignment is

minimized is an example of QAP. Since QAP is the generalization of the TSP, AS was

first applied to QAP after the TSP.

Let, D = {dij }, where dij is the distance between location i and location j and

F ={fhk }, where fhk is the flow between facility h and facility k

A permutation π is interpreted as an assignment of facility h= π(i) to location i, for each

i=1,..,n. The problem is to identify a permutation π of both row and column indexes of

the matrix F that minimizes the total cost:

∑
=

=
n

ji
jiij fdZ

1,
)()(.min ππ

An AS approach similar to AS approach of the TSP is used to solve the QAP. As

AS requires the objective function represented on the basis of a single matrix, first the

QAP objective function was expressed by a combination of the "potential vectors" of

distance and flow matrices. The potential vectors, D and F, are the row sums of each of

the two matrices as follows:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=→

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

6
6
4

042
501
310

DD
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=→

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

30
30
30

01020
20010
20100

FF

From these two potential vectors, a third matrix S is obtained, where each

element is computed as sih=di.fh.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

180180180
180180180
120120120

S

 16

 Visibility is used as the inverse of the values of S.

Various ACO algorithms for the QAP have been introduced. The interested

reader is referred to Stützle and Dorigo (1999) for an overview of these approaches.

The JSP can be described as the following: A set of M machines and a set of J

jobs are given. The j-th job (j=1, ..., J) consists of an ordered sequence of operations

from a set O={... ojm ...}. Each operation ojm∈ O belongs to job j and has to be processed

on machine m for djm consecutive time instants. N=|O| is the total number of operations.

The problem is to assign the operations to time intervals in such a way that no two jobs

are processed at the same time on the same machine and the maximum of the

completion times of all operations is minimized (Graham et al., 1979).

To solve JSP by AS, first the problem is represented as a directed weighted

graph Q=(O’,A) where O’=O-{o0} and A is the set of arcs that connect o0 with the first

operation of each job and that completely connect the nodes of O except for the nodes

belonging to a same job. Nodes belonging to a same job are connected in sequence.

Node o0 specifies the job scheduled first. Therefore, there are N+1 nodes and

(JNN +− 2)1.() arcs. Each arc is weighted by intensity of trail (τij) and the visibility

ηij. Visibility can be calculated as a function of the processing time or the completion

time.

Figure 2.6 A graph for JSP with 3 jobs and 2 machines

First, all ants are placed on o0. Then, at each step a feasible permutation of the

remaining nodes have to be identified. In order to obtain a feasible permutation, the set

of allowed nodes must be defined according to both the tabu list, and the problem

 17

characteristic. For each ant k, let Gk be the set of all the nodes still to be visited and Sk

the set of the nodes allowed at the next step. Transition probabilities are computed on

the basis of Equation 2.1, where the set of allowed nodes is equal to Sk. When a node is

chosen, it is deleted from both Gk and Sk. If the chosen node is not the last job then its

immediate successor is added to Sk. In this way, feasible solutions are provided. The

process continues until Gk is emptied. The trails are computed as in the case of TSP.

However, results are not competitive.

The SOP is closely related to the ATSP, but additional precedence constraints

between the nodes have to be satisfied. Gambardella and Dorigo (1997) extended the

AS approach used to solve the ATSP and enhanced it by a local search algorithm. Then,

they obtained excellent results and were able to improve the best known solutions for

many benchmark instances.

2.4. Improvements to Ant System

AS is the first study which uses ACO algorithm to solve NP-hard combinatorial

optimization problems. However, its performance compared to other approaches is

rather poor. Therefore, several ACO algorithms have been proposed in order to increase

the performance of AS. Improved versions have been applied to various optimization

problems. Examples include the VRP (Bullnheimer et al., 1997; Gamberdella et al.,

1999), sequential ordering (Gamberdella and Dorigo, 1997), single machine tardiness

(Bauer et al., 1999), multiple knapsack (Leguizamon and Michalewicz, 1999), etc.

2.4.1. Elitist Strategy

 A first improvement on the AS is called the elitist strategy, and is introduced in

Dorigo et al.(1996). The global best tour is denoted by Lgb and a strong additional

reinforcement to the arcs belonging to that tour is given. When the pheromone trails are

updated, pheromone value equal to e.1/Lgb is added to the arcs of that tour, where e is

the number of elitist ants.

 18

2.4.2. Ant Colony System

Dorigo and Gambardella (1996) proposed the ACS which has two types. In the

first type, after all the ants have built a solution, pheromone trails on the arcs used by

the ant that found the best tour so far are updated. In the second, after all the ants have

built a solution, a local search procedure based on 3-opt is applied to improve the

solutions and then pheromone trails on the arcs used by the ant that found the best tour

so far are updated. The pheromone trail update rule is as follows:

ijijij ∆+⋅−= τρτρτ .)1((2.4)

where τ∆ij = (length of the shortest tour)-1

A different decision rule, called pseudo-random-proportional rule, is used in the

ACS. The pseudo-random-proportional rule , used by ant k in node I to choose the

next node j is the following:

k
ijP

[]{ }

otherwise ,

 if ,maxarg 0

⎪⎩

⎪
⎨
⎧ ≤⋅

= ∈

k
ij

ijijallowedjk
ij

p

qq
P i

βητ
 (2.5)

where q is a random variable uniformly distributed over [0, 1], and q0 Є [0, 1] is a

parameter.

While using the probabilistic choice of the components to construct a solution is

called exploration, choosing the component that maximizes a blend of pheromone trail

values and heuristic evaluations is called exploitation.

[] []
[] []

⎪
⎪
⎩

⎪⎪
⎨

⎧
∈

⋅

⋅

= ∑
∈

otherwise,0

, k
ik

allowedk
ik

ijij

k
ij

allowedj
p

k

β

β

ητ

ητ

 (2.6)

An ant moving from city i to city j updates the pheromone trail on arc (i, j).

0.)1(τϕτϕτ +⋅−= ijij (2.7)

 19

where 10 ≤< ϕ

τ0 = (n.Lnn)-1

where n is the number of cities and Lnn is the length of a tour produced by the nearest

neighbor heuristic.

Last, ACS exploits a data structure called candidate list which provides

additional local heuristic information. A candidate list is a list of preferred cities to be

visited from a given city. In ACS, when an ant is in city, instead of examining all the

unvisited neighbors, it chooses the city to move to among those in the candidate list.

Other cities are examined only if no candidate list city has unvisited status. The

candidate list of a city contains d cities ordered by non-decreasing distance (d is a

parameter) and the list is scanned sequentially and according to the ant tabu list to avoid

already visited cities (Dorigo et al., 1998).

There are other versions of ACS. These differ from the ACS described above:

(i) in the way local pheromone update applied, such as setting τ0 =0,

(ii) in the way the decision rule are made

(iii) in the type of solution used for global pheromone updating, such as

adding the pheromone only to arcs belonging to the best solution found

2.4.3. Ant –Q

Ant-Q has the same characteristics as ACS. The only difference is in the value

of τ0. Pheromone trails are updated with a value which is a prediction of the value of the

next state. In Ant-Q, an ant k applies global pheromone updates by the following

equation:

jallowedl
jlijij

∈

+⋅−= τγϕτϕτ max..)1((2.8)

Unfortunately, it was later found that setting the complicate prediction term to a

small constant value, as it is done in ACS, resulted in approximately the same

performance. Therefore, although having a good performance, Ant-Q was abandoned

for the equally good but simpler ACS (Dorigo et al., 1998).

 20

2.4.4. MAX-MIN Ant System

Stutzle and Hoos (1997) proposed the MAX-MIN Ant System (MMAS). The

solutions are constructed in the same way as in AS. The main modifications are the

followings:

• The allowed range for intensity of pheromone trails are in an interval [τmin ,τmax].

This indirectly limits the probability pij of selecting a city j when an ant is in city

i to an interval [pmin; pmax], with 0 < pmin ≤ pij ≤ pmax ≤ 1.

• Initial pheromone values are set equal to τmax. This increases the exploration of

tours at the start of the algorithm, since the relative differences between the

pheromone trail values are less pronounced.

• After each iteration, only the pheromone levels of the arcs used by the best ant

are increased using the formula (2.3).

• To avoid stagnation that may occur in case some pheromone trails are close to

τmax while most others are close to τmin, pheromone trails are updated such that:

ijij τττ −=∆ max

 Better solutions are obtained using MMAS.

 In Stutzle and Hoos (1999), MMAS using the pseudo-random-proportional

action choice rule of ACS is considered. Using that choice rule, very good solutions

could be found faster but the final solution quality achieved was worse.

 MMAS applied to the flow shop scheduling problem (FSP) outperforms earlier

proposed Simulated Annealing algorithms and performs comparably to Tabu Search

algorithms (Stützle,1997)

 MMAS has been applied to the generalized assignment problem by Lorençou

and Serra (1998). It found optimal and near optimal solutions.

 21

2.4.5. ASrank

Bullnheimer et al.(1997) proposed ASrank where after all m ants construct their

tours, the ants are sorted by their tour lengths (L1≤ L2≤…≤ Lm). The trail levels on the

arcs visited by the best σ -1 ants are updated. Contribution of an ant to the trail level

update is proportional to the rank µ of the ant. In addition, extra emphasis is given to the

best route found so far. When the trail levels are updated this path is treated as if a

certain number of ants, namely the σ elitist ants, had chosen the path. The amount of

pheromone on the arc (i, j) is updated according to the following formula:
*. ijijijij τττρτ ∆+∆+= (2.9)

far so foundsolution best theoflength Tour :
antselitist ofNumber :

antselitist by the),(arcon level trailof Increase :

antbest th - theoflength Tour :

antbest th - by the),(arcon level trailof Increase :
index Ranking :
otherwise,0

solution best foundfar so on the is),arc(if,1

otherwise,0

),arc(on moveant best th - theif,1)(

*

*

**

1

1

L

ji

L

ji

ji
L

ji
L

ij

ij

ij

ij

ijij

σ

τ

µ

µτ

µ

σ
τ

µµσ
τ

ττ

µ

µ

µ
µ

σ

µ

µ

∆

∆

⎪⎩

⎪
⎨
⎧

=∆

⎪
⎩

⎪
⎨

⎧ −
=∆

∆=∆ ∑
−

=

2.4.6. Local Search

Local search starts from some initial assignment and repeatedly tries to improve

the current assignment by local changes. If a better tour T is found, it replaces the

current tour and the local search is continues from T. The most widely known

improvement algorithms are 2-opt (Croes, 1958) and 3-opt (Lin, 1965). They test

whether the current solution can be improved by replacing 2 or 3 arcs, respectively.

 22

Local search algorithms with k >3 arcs to be exchanged are not used commonly due to

the high computation times.

2.4.7. Candidate List

A candidate list contains a given number of potential customers to be visited for

each customer i. Many AS procedures use a candidate list in order to reduce run-times

of larger instances. Generally, candidate set strategies have only been used as a part of

local search procedure applied to the solutions constructed by ACO. However, in

improvements of ACS, candidate set strategies were applied as part of the construction

process. An ant first chooses the next customer to be visited from the candidate list

corresponding to the current customer. After all the states in the candidate list have been

visited, one of the remaining states is considered. Candidate lists are usually formed

using nearest neighborhood when TSPs are solved. A candidate list consists of a fixed

number of cities for each city in the order of non-decreasing distances.

Stützle and Hoos (1996) proposed a candidate set strategy that requires to be

regenerated throughout the search process. Randall and Montgomery (2002) proposed

two types of candidate set for ACO: elite candidate set and evolving set. In the elite

candidate set, the candidate set is formed by selecting the best k states based on their

probability values. Then, this set is used for the next l iterations. In the evolving set,

states with low probability values are eliminated temporarily and these states are not

used for the next l iterations.

 23

3. VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

 In this chapter, first the VRPTW will be explained, and a linear integer

programming formulation of it will be given. Then, a detailed review of the VRPTW

from the literature is given. Finally, an ACO based approach is proposed and applied to

VRPTW.

3.1. Mathematical Formulation of the VRPTW

 The simplest type of the VRP is the capacitated vehicle routing problem

(CVRP). In the CVRP, each customer i (i = 1…n) has a demand qi of goods and each

vehicle with a capacity Q is available to deliver goods. A solution to CVRP is a set of

tours where each customer visited exactly once, each vehicle must start and end its tour

at the depot, and the total tour demand is at most Q.

 Mathematically, CVRP is described by a set of homogenous vehicles V, a set of

customers C, and a directed graph G (N, A, d). N = {0,…,n+1} denotes the set of

vertices. The graph consists of |C|+2 vertices where the customers are denoted by 1,

2,…,n and the depot is represented by the vertices 0 and n+1. A = {(i, j): i≠j} denotes

the set of arcs that represents connections between the depot and the customers and

among the customers. No arc terminates at vertex 0 and no arc originates from vertex

n+1. A cost(distance) cij is associated with each arc (i, j). Finally, Q, di, cij are assumed

to be non-negative integers.

 For each arc (i, j), where i ≠ j; i ≠ n + 1; j ≠0, and each vehicle k, xijk is defined as

⎩
⎨
⎧

=
otherwise,0

),(arc uses vehicleif,1 jik
xijk

 24

 The goal is to design a set of minimal total cost routes such that each customer is

serviced exactly once and every route originates at vertex 0 and ends at vertex n + 1.

 VRP can be stated mathematically as: (Larsen,1999)

 (3.1) ∑∑∑
∈ ∈ ∈Vk Ni Nj

ijkij xc .min

 s.t.

 ∑∑ ∀i ∈ C (3.2)
∈ ∈

=
Vk Ni

ijkx 1

 ∑∑ ∀k ∈ V (3.3)
∈∈

≤
Nj

ijk
Ci

i Qxd

 ∑ ∀k ∈ V (3.4)
∈

=
Nj

jkx 10

∑ ∑
∈ ∈

=−
Ni Nj

hjkihk xx 0 ∀h ∈ C , ∀k ∈ V (3.5)

 ∀k ∈ V (3.6) ∑
∈

+ =
Ni

kinx 11

 ∀i,j ∈ N , ∀k ∈ V (3.7) { }1,0∈ijkx

 In the model above, the objective function (3.1) aims to minimize the total travel

distance. The constraint (3.2) assures visiting each customer exactly once and (3.3)

states that no vehicle is loaded more than its capacity. The next three equations (3.4,

3.5, and 3.6) ensure that each vehicle leaves the depot 0, after arriving at a customer the

vehicle leaves that customer again, and finally arrives at the depot n+1. Constraints

(3.7) are the binary constraints.

Most real world problems encountered in distribution have a time constraint

within which distribution of goods or services can be made. In addition, customers'

preferences, such as in restaurants where deliveries are only allowed before a certain

time of the day, may also restrict the schedule of the vehicles involved. Normally, these

issues are simplified and formulated as VRP; the solution to this relatively

unconstrained problem may not be practical (Bodin, 1990). VRPTW generalizes VRP

 25

by involving additional constraints which restricts each customer to be served within a

given time window.

VRPTW is a well-known NP-hard problem which is an extension of VRP,

encountered very frequently in making decisions about the distribution of goods and

services (Tan et al., 2000). In VRPTW least cost routes from a given central depot to a

set of geographically scattered customers with known demands are designed for a fleet

of identical/non-identical vehicles with known capacities. The routes must originate and

terminate at the depot. Moreover, each customer is visited only once by exactly one

vehicle within a given time, and each route must satisfy capacity constraint.

 Time window [ai, bi] given for a customer is defined as follows: ai and bi are the

earliest and the latest times, respectively, when the customer permits the start of the

service. Service at customer i must not start before ai and the vehicle must arrive at

customer i before bi. The vehicle may arrive before ai but the customer cannot be

serviced until ai. The depot also has a time window [a0, b0]. A vehicle can leave the

depot after a0 and must return to the depot until b0.

 In VRPTW, allowable delivery times of the customers add complexity to the VRP

because of the time feasibility constraint that must be satisfied for each customer. The

following is set of decision variables and constraints added to the model to specify the

times that services begin.

 sik : Time that vehicle k starts to service customer i VkΝi ∈∀∈∀ ,

 Assuming a0 = 0, s0k = 0 Vk ∈∀

 VkNjisxKts jkijkijik ∈∀∈∀≤−−+ ,,)1((3.8)

 VkNibsa iiki ∈∀∈∀≤≤ , (3.9)

 Constraints (3.8) state that vehicle k going from i to j can not arrive at j before sik

+ tij. K in this constraint is a very large number. Constraints (3.9) ensure the

observations of time windows.

 26

 In some cases, vehicles are allowed to start service just at the time they arrive to

the customer site. So, in these types of problems, there are no waiting times for the

vehicles at the customer sites.

3.2. Complexity of VRPTW

 The problem of finding the route for only one vehicle/person that has to visit a set

of customers is called the TSP. TSP is a well-known NP-hard problem. The VRP is the

generalization of the TSP, as the TSP is the VRP with one vehicle and without any

constraints, such as customer demand or vehicle capacity. As an m-TSP, VRP is more

complicated than TSP. Adding time windows constraints to the VRP results in a more

complicated VRP than the VRP without time windows. Furthermore, Savelsbergh

(1985) had shown that even finding a feasible solution to the VRPTW when the number

of vehicles is fixed is itself an NP-Complete problem. Although optimal solutions to

VRPTW can be obtained using exact methods, the computational time required to solve

the VRPTW to optimality is prohibitive (Desrochers et al.,1992). Therefore, the

development of approximation algorithms or heuristics for this problem has been of

primary interest to many researchers.

3.3. Optimal Algorithms for VRPTW

 The first exact algorithm for the VRPTW was proposed by Kolen et al. (1987).

Since then various researchers have studied on exact algorithms for the VRPTW. Exact

algorithms in the literature are based on principles of dynamic programming,

lagrangean relaxation, and column generation.

3.3.1. Dynamic Programming

 Kolen et al. (1987) is inspired from Christofides et al. (1981) and presented the

first paper on dynamic programming for the VRPTW. In this paper, branch-and-bound

approach was used in order to retrieve optimal solutions. There are three nodes in the

 27

branch-and-bound algorithm, each of which corresponds to three sets: The set of fixed

feasible routes starting and finishing at the depot, partially built route starting at the

depot, and customers that are not allowed to be next on partially built route starting at

the depot. Branching is done by selecting a customer that is not forbidden and that does

not appear in any route. At each branch-and-bound node, dynamic programming is used

to calculate a lower bound on all feasible solutions.

3.3.2. Lagrangean Relaxation-Based Methods

 There are many studies that use Lagrangean relaxation based methods for

solving VRPTW. Variable splitting followed by Lagrangean decomposition was used

by Jörnsten et al. (1986), Madsen et al. (1988) and Halse (1992). Jörnsten et al. (1986)

presented variable splitting for the first time, but no computational results were given.

Madsen et al. (1988) also presented four different decomposition approaches without

any computational results. Then, Halse (1992) offered three approaches and gave the

computational results of one of these approaches.

 Fisher et al. (1997) used K-tree approach followed by Lagrangean relaxation.

They formulate the VRPTW as finding a K-tree with degree 2K on the depot, degree 2

on the customers and subject to capacity and time constraints. This representation

becomes equal to K routes.

Finally Kohl et al. (1997) relax the constraints that ensure each customer must

be visited exactly once and add a penalty term to the objective function. The model is

decomposed into one sub-problem for each vehicle. The resulting problem is a shortest

path problem with time window and capacity constraints.

3.3.3. Column Generation

Column generation is used when a linear program contains too many variables

to be solved explicitly. The linear program is initialized with a small subset of variables

and all other variables are set to 0. Then, a solution to that reduced linear program is

 28

computed. Afterwards, it is checked if the addition of one or more variables, not in the

linear program, might improve the LP-solution.

Desrochers et al. (1992) used the column generation approach for solving the

VRPTW for the first time. They add feasible columns as needed by solving a shortest

path problem with time windows and capacity constraints using dynamic programming.

The LP solution obtained provides a lower bound that is used in a branch-and-bound

algorithm to solve the integer set-partitioning formulation.

Kohl (1995) solves more instances using a more effective version of the same

model as Desrochers et al. (1992) with the addition of valid inequalities.

3.4. Approximation Algorithms for the VRPTW

 Since the VRPTW is an NP-hard problem, many approximation algorithms have

been proposed in the literature. These algorithms can be classified into three groups:

construction algorithms, improvement algorithms, and metaheuristics.

3.4.1. Construction Algorithms

 Construction algorithms are used to build an initial feasible solution for the

problem. They build a feasible solution by inserting unrouted customers iteratively into

current partial routes according to some specific criteria, such as minimum additional

distance or maximum savings, until the route's scarce resources (e.g. capacity) are

depleted (Cordeau et al., 1999). These types of algorithms are classified as either

sequential or parallel algorithms. In a sequential algorithm routes are built one at a time

whereas in a parallel algorithm many routes are constructed simultaneously.

 29

3.4.1.1 Sequential Construction Algorithms

 Sequential construction algorithms are mostly based on the Sweep Heuristic

(Gillet and Miller, 1974) and the Savings Heuristic (Clarke and Wright, 1964). In the

sweep heuristic, routes are constructed as an angle sweeps the location of nodes on a 2D

space. In the savings heuristic, first routes are constructed in a predefined quantity and

then new nodes are added to available nodes in order to obtain maximum savings.

 Baker and Schaffer (1986) proposed the first sequential construction algorithm.

The algorithm is based on savings heuristic, and starts with all possible single customer

routes in the form of depot – i – depot. Then two routes with the maximum saving are

combined at each iteration. The saving between customers i and j is calculated as:

 sij = di0 + d0j – G.dij (3.10)

where G is the route form factor and dij is the distance between nodes i and j.

 Solomon (1987) proposed Time Oriented Nearest Neighborhood Heuristic.

Every route is initialized with the customer closest to the depot. At each iteration

unassigned customer that is closest to the last customer is added to the end of the route.

When there is no feasible customer, a new route is initialized.

 Solomon (1987) also proposed Time-Oriented Sweep Heuristic. First, customers

are assigned to different clusters and then TSPTW problem is solved using the

heuristics proposed by Savelsbergh (1985).

3.4.1.2 Parallel Construction Algorithms

 Solomon (1987) proposed a Giant-Tour Heuristic. In this heuristic, first of all, a

giant route is generated as a traveling salesman tour without considering capacity and

time windows. Then, it is divided into number of routes.

 30

Potvin and Rousseau (1993) proposed parallelization of the Insertion Heuristics.

Each route is initialized by selecting the farthest customer from the depot as a center

customer. Then, the best feasible insertion place for each not yet visited customer is

computed. Customers with the largest difference between the best and the second best

insertion place are inserted to the best feasible insertion place. Parallel algorithm in

Foisy and Potvin (1993) also constructs routes simultaneously using the Insertion

Heuristics to generate the initial center customers.

 Antes and Derigs (1995) proposed another parallel algorithm based on the

Solomon’s heuristic. Offers comes to the customers from the routes, unrouted customers

send a proposal to the route with the best offer, and each route accepts the best proposal.

3.4.2. Improvement Algorithms

 Improvement algorithms try to find an improved solution starting from a

considerably poorer solution. Almost all improvement algorithms for the VRPTW use

an exchange neighborhood to obtain a better solution. Exchange of neighborhood can be

intra or inter route (Thangian and Petrovic, 1998). While k-opt procedure operates

within a route, the relocate, exchange, and cross operators operate between routes.

Croes (1958) introduced k-opt approach for single vehicle routes. In this

heuristic, a set of links in the route are replaced by another set of k links.

The Or-Opt exchange originally proposed for TSP by Or (1976) removes a chain

of at most three consecutive customers from the route and tries to insert this chain at all

feasible locations in the routes.

 In 1-1 exchange procedure connectors between nodes are replaced by connectors

between nodes either in the same or in different route. 1-0 exchange move transfers a

node from its current position to another position in either the same or a different route.

 Christofides and Beasley (1984) proposed the k-node interchange for the first time

to take time windows into account. In this heuristic, sets M1 and M2 are identified for

 31

each customer i. M1 denotes the customer i and its successor j. M2 denotes two

customers that are closest to i and j on a different route than i and j. The elements of the

sets M1 and M2 are removed and inserted in any other possible way.

 Osman and Christofides (1994) introduced λ-interchange local search that is a

generalization of the relocate procedure. λ, the parameter, denotes the maximum

number of customer nodes that can be interchanged between routes.

Potvin and Rousseau (1995) present two variants of 2-Opt and Or-Opt. For the

2-Opt, they proposed the consideration of every pair of links in different routes for

removal. For the Or-Opt, every sequence of three customers is considered and all

insertion places are also considered for each sequence.

 Schulze and Fahle (1999) proposed shift-sequence algorithm. A customer is

moved from one route to another checking all possible insertion positions. If an

insertion is feasible after the removal of another customer, that customer is removed.

3.4.3. Metaheuristics

 In order to escape local optima and enlarge the search space, metaheuristic

algorithms such as simulated annealing, tabu search, genetic algorithm, and ant colony

algorithm have been used to solve the VRPTW (Bräysy and Gendreau, 2001).

3.4.3.1. Simulated Annealing

 Simulated Annealing (SA) is a stochastic relaxation technique. It is based on the

annealing process of solids, where a solid is heated to a high temperature and gradually

cooled in order to crystallize (Bräysy and Gendreau, 2001). During the SA search

process, the temperature is gradually lowered. At each step of the process, a new state

of the system is reached. If the energy of the new state is lower than the current state,

the new solution is accepted. But if the energy of the new state is higher, it is accepted

 32

with a certain probability. This probability is determined by the temperature. SA

continues searching the set of all possible solutions until a stopping criterion is reached.

 Thangiah et al. (1994) used λ-interchange with λ=2 to define the neighborhood

and decrease the temperature after each iteration. In case the entire neighborhood has

been explored without finding and accepting moves the temperature is increased.

 Chiang and Russell (1996) proposed three different SA methods. First one uses

modified version of the k-node interchange mechanism and second uses λ-interchange

with λ=1. The third is based on the concept of tabu list of Tabu Search.

 Tan et al. (2001) proposed an SA heuristic. They defined a new cooling

schedule. Thus, ehen the temperature is high, the probability of accepting the worse is

high, when the temperature is decreased according to function given above; the

probability of accepting worse is reduced.

 Finally, Li and Lim (2003) proposed an algorithm that finds an initial solution

using Solomon’s insertion heuristic and then starts local search from initial solution

using proposed tabu-embedded simulated annealing approach.

3.4.3.2. Tabu Search

 Tabu search (TS) presented by Glover (1986) is a memory based local search

heuristic. In TS, the solution space is searched by moving from a solution s to the best

solution in its neighborhood N(s) at each iteration. In order to avoid from a local

optimum, the procedure does not terminate at the first local optimum and the solution

may be deteriorated at the following iteration. The best solution in the neighborhood is

selected as the new solution even if it is poorer. Solutions having the same attributes

with the previously searched solutions are put into tabu list and moving to these

solutions is forbidden. This usually prevents making a move to solutions obtained in the

last t iterations. TS can be terminated after a constant number of iterations without any

improvement of the over all best solution or a constant number of iteration.

 33

 Garcia et al. (1994) applied TS to solve VRPTW for the first time. They

generate an initial solution using Solomon’s insertion heuristic and search the

neighborhood using 2-opt and Or-opt. Garcia et al. (1994) also parallelized the TS using

partitioning strategy. One processor is used for controlling the TS while the other is

used for searching the neighborhood.

 Thangiah et al. (1994) proposed TS with λ-interchange improvement method.

They also combined TS with SA to accept or reject a solution.

 Potvin et al. (1995) proposed an approach similar to Garcia et al. (1994) based on

the local search method of Potvin and Rousseau (1995).

 Badeau et al. (1997) generated a series of initial solutions. Then, they

decomposed them into groups of routes and performed TS for each group using the

exchange operator. Their tabu list contains penalized exchanges that are frequently

performed.

 Chiang and Russell (1997) used a parallel version of Russell (1995) to generate

the initial solution and then applied λ-interchange. They penalize frequently performed

exchanges and dynamically adjust parameter values based on the current search.

 De Backer and Furnon (1997) used the savings heuristic to generate the initial

solution and search the neighborhood using 2-opt and Or-opt .

 Schulze and Fahle (1999) propose a parallel TS heuristic where initial solutions

are generated using the savings heuristic and the neighborhood is searched using route

elimination and Or-opt. The search penalizes frequently performed exchanges. All

routes generated are collected in a pool. To obtain a new initial solution for the TS

heuristic, a set covering heuristic is applied to the routes in the pool.

 Tan et al. (2000) generate the initial solution using modified Solomon’s insertion

heuristic and search the neighborhood using λ-interchange and 2-opt. A candidate list is

used to save elite solutions found during the search process.

 34

 Lau et al. (2002) introduce a concept of holding list containing the not yet

serviced customers. All customers are put into the holding list at the beginning.

Relocate and exchange operators are then used to transfer customers back and forth to

the holding list.

3.4.3.3. Genetic Algorithms

The Genetic Algorithm (GA) is based on the Darwinian concept of evolution.

Solutions to a problem are encoded as chromosomes and based on their fitness; good

properties of solutions are propagated to a next generation (Vacic and Sobh, 2002). The

creation of the next generations involves four major phases:

1. Representation: The significant features of each individual in the population are

encoded as a chromosome.

2. Selection: Two parent chromosomes are selected from the population.

3. Reproduction: Genetic information of selected parents is combined by crossover and

two offspring of the next generation are generated.

4. Mutation: The gene sequence of small number of newly obtained is randomly

swapped.

A new generation is created by repeating the selection, reproduction, and

mutation phases until a specified set of new chromosomes have been created. Then the

current population is set to the new population of chromosomes.

Thangiah et al. (1991) applied the GA to VRPTW for the first time. GA is

proposed to find good clusters of customer. The routes within each cluster are then

constructed with a cheapest insertion heuristic and λ–interchange are applied.

 Thangiah et al. (1995) generate initial population by clustering the customers

randomly into groups and applying the cheapest insertion heuristic for each group.

Then, 2-point crossover is used.

 GA of Potvin and Bengio (1996) is performed on chromosomes of feasible

solutions. Parents are randomly selected and two types of crossover are applied to these

 35

parents. The reduction of routes is obtained by two mutation operators. The routes are

improved using Or-Opt at every k iterations.

 Homberger and Gehring (1999) generated initial population using a modified

savings heuristic and a precedence relationship among the genes in a chromosome. The

difference of their algorithm is in the representation and the role of the mutation. The

representation includes a vector of evolutionary strategy in addition to the solution

vector and both components are evolved via crossover and mutation operators. The

search is mainly driven by mutation, based on 2-opt, Or-opt, λ-interchanges, and special

Or-opt for route elimination. Crossover is used to modify the initially randomly created

mutation codes. Only one offspring is created through crossover. Fitness values are

used to select predetermined number of offspring among created offsprings.

 Tan et al. (2001) propose a GA approach in which the genetic operators are

applied directly to solutions, represented as integer strings. The differences of the

algorithm lie in the determination of customers served by different routes and the

crossover. The basic grouping is determined by the Solomon’s insertion heuristic and λ-

interchanges are used to create alternative groupings. Crossover includes randomly

choosing two cut points and performing a series of swapping operations.

3.4.3.4. Miscellaneous Algorithms

 Rochat and Taillard (1995) used a probabilistic local search method based on

intensifying the solution, which is in some ways similar to the SA approach. First, with

the proposed local search, I different solutions are generated. The generation of I initial

solutions creates a set T of tours. Second, good tours are extracted. The extraction of

tours, followed by the optimization with the local search and the insertion of the new

tours in T is repeated until a stopping criterion is met.

 Kilby et al. (1999) used a memory-based metaheuristic, Guided Local Search

(GLS). In GLS, the cost function is modified by adding a penalty term, that is, escaping

form local optima is done by penalizing solution features. As local search

neighborhoods, they use 2-opt exchanges.

 36

 In Potvin and Robillard (1999), a combination of a competitive neural network

and a GA is described. They use a competitive neural network to cluster the customers.

For every vehicle, a weight vector is defined. Initially, all weight vectors are placed

randomly close to the depot. Then, customers are selected. For each cluster, the distance

to all weight vectors are calculated and closest weight vector is updated by moving it

closer to the customer.

 Braysy et al. (2000) describe a two-step evolutionary algorithm based on the

hybridization of a GA consisting of several local searches and route construction

heuristics inspired form the studies of Solomon (1987). At the first step, a GA based on

the studies of Braysy (1999) and Berger et al. (1998) is used. The second step consists

of an evolutionary metaheuristic that picks every pair of routes in random order and

applies randomly one of the four local search operators or route construction heuristics.

 Tan et al. (2001) propose an artificial intelligence heuristic which can be

interpreted as the hybrid combination of SA and TS. During the process, if a move is

not a tabu and satisfies the SA criterion, it will be accepted and then the search is

restarted from the beginning of a new current solution after updating the tabu list and

SA parameters.

3.5. Ant Colony Based Approaches

In this section, ACO approaches for solving the VRPs will be discussed.

3.5.1. ACO for CVRP

Bullneheimer et al. (1998) applied the AS to the VRP with one central depot and

identical vehicles for the first time (Figure 3.1). They set the number of ants (m) equal

to the number of cities (n). Initially, each ant is placed at each customer. Then, ants

construct vehicle routes by successively selecting cities, until all cities have been

 37

visited. When there is no feasible city to visit, the depot is selected and a new route is

started. City j is selected after city i according to following random-proportional rule:

visited. When there is no feasible city to visit, the depot is selected and a new route is

started. City j is selected after city i according to following random-proportional rule:

[] [] [][] [] [] []
[] [] [] []

⎪
⎪
⎩

⎪⎪
⎨

⎧
∈

= ∑
∈

otherwise,0

,
...

...
k

allowedk
ikikikik

ijijijij

k
ij

allowedj
p

k

λγβα

λγβα

κµητ

κµητ

STEP I : Initialize
STEP II: For Imax iterations do:

a) For each ant k =1,...,m generate a new solution
b) Improve all vehicle routes using the 2-opt heuristic
c) Update the pheromone trail

ijij d1=η

µij: Savings of visiting customer j after customer i

 ijjiij ddd −+= 00µ

κji: Capacity utilization through the visit of customer j after customer i

Q
qQ ji

ij

+
=κ

Qi = Total capacity used including the capacity requirement of customer i

γ: Relative influence of the savings

λ: Relative influence of κji

After routes are constructed using the proposed approach, 2-opt heuristic is

applied to each route. Then, pheromone trail on arc (i, j) is updated according to:

*

1

.. ij

m

k

k
ijijij ∆+∆+= ∑

=

στρτ

If arc (i, j) is used by the k-th ant, the pheromone trail on that are increased by

k
k
ij L1=∆ . In addition, if arc (i, j) is on the so far best route, it is emphasized as if σ

elitist ants used it. Each elitist ant increases the pheromone trail by *
* 1 Lij =∆

Figure 3.1 An algorithmic skeleton for ACO algorithm applied to the CVRP

 38

Bullneheimer et al. (1999) introduced an improved ACO algorithm for the VRP

with one central depot and identical vehicles (Figure 3.1). Differences of this approach

from Bullneheimer et al. (1998) are in random proportional rule and pheromone trail

update. They calculated the random proportional rule using equation 2.1. However,

following parametrical savings function is used for the visibility:

jiijijjiijjiij ddfdgsddfgddd 000000)1(−+−−=−+−+=η

After an artificial ant has constructed a feasible solution, ants are ranked

according to solution quality. Only the best ranked and elitist ants are used to update the

pheromone trails. This update is done using equation 2.9. They also used candidate lists

for the selection of customers. Candidate lists are formed using nearest neighborhood.

Bell and McMullen (2003) used ant colonies to solve the CVRP. Differences of

this approach from Bullneheimer et al. (1998) are in selection the next customer and

pheromone trail update. Candidate lists are also formed using nearest neighborhood.

Selection of the next customer j is made using ACS approach. Thus, using equations 2.5

and 2.6., each ant may either follow the most favorable path or randomly select a path to

follow based on a probability distribution. Trail updating includes local updating of

trails after each selection and global updating of the best solution route after all routes

are constructed. These are respectively done with the following equations:

0)1(τρτρτ ⋅+⋅−= ijij

1)1(−⋅+⋅−= Lijij ρτρτ

Doerner et al. (2001) proposed the savings based ant system approach (SbAS).

The basic structure is identical to Bullneheimer et al. (1999), but they use the savings

algorithm to calculate visibility. The attractiveness is calculated by:

[] []αβ τξ ijijij s=

where sij is the savings of visiting customer j after customer i. Initially attractiveness

values are sorted in non-increasing order and k-best combinations are considered at each

decision step. If allowedk denotes the set of k feasible combinations (i, j) yielding the

largest ξij, the decision rule is given by:

 39

[]
[]

⎪
⎪
⎩

⎪⎪
⎨

⎧
∈

= ∑
∈

otherwise,0

, k

allowedk
ik

ij

ij

allowedj
p

k

ξ
ξ

 After solutions are constructed, only the best ranked and elitist ants are used to

update the pheromone trails. This update is done using equation 2.9. Then ξijs are

calculated and sorted in non-increasing order.

Marc Reimann et al. (2004) presented D-Ants for solving large scale VRPs. This

approach is based on the fact that the VRP is a generalization of the TSP and built on

the SbAS proposed by Doerner et al. (2001). D-Ants decomposes the set of tours that

constitute the complete problem into a number of smaller sets of tours and solves these

subproblems using the SbAS (Figure 3.2).

 procedure D-Ants {
Read the input data;
Initialize the system (parameters and global pheromone matrix);
repeat {

for a prespecified number of iterations {
Solve the complete problem using the SbAS; (Step I)

}
for the best solution found so far {

Compute the center of gravity of each route
according to the modified Miehle algorithm; (Step II)

 }
Decompose the best solution into a prespecifed number of subproblems
by applying the Sweep algorithm to the centers of gravity; (Step III)
for each subproblem {

for a prespecified number of iterations {
Solve the subproblem with the SbAS
by the relevant part of global pheromone matrix locally; (Step IV)
If applicable, update best solution; (Step V)

}
}
Update the global memory (global pheromone matrix);

}until a stopping criterion is met;
}

Figure 3.2 An Algorithmic skeleton for D-Ants algorithm

D-Ants consists of five main steps. First, the initial solutions are generated by

the SbAS. After finding the best solution, a decomposition leading to subproblems with

 40

geographically close tours is found. Closeness of two tours is computed by the polar

angle between the centers of gravity of the tours and the depot. The sweep algorithm is

used to cluster the centers of gravity. Thus, in the second step the center of gravity for

each vehicle route of the best solution found so far is computed. Distances are weighted

by the demands and the coordinates of the center are iteratively adjusted until the

change in the weighted distance of all customers to the center is minimal. Third, the

sweep algorithm is applied to cluster the nodes corresponding to the centers of gravity.

Fourth, subproblems are solved using the SbAS. Finally, pheromone information is

changed locally after iterations of subproblem and after finding the best solution.

3.5.2. ACO for VRPTW

Gambardella et al. (1999) presented Multiple Ant Colony System for Vehicle

Routing Problem with Time Windows (MACS-VRPTW), an ACO based approach for

solving the VRPTW. MACS-VRPTW has a multiple objective function and both

objectives are optimized simultaneously by the coordination of two ant colonies. The

first colony, ACS-VEI, reduces the number of vehicles used while the second, ACS-

TIME, optimize the travel times of the feasible solutions found by ACS-VEI. However,

they use independent pheromone trail values.

Initially, a feasible VRPTW solution, ψgb, is found using a nearest neighbor

heuristic. ACS-VEI tries to find a feasible solution with one vehicle less than the

number of vehicles used in ψgb. ACS-TIME tries to minimize the total travel time of ψgb

that use as many vehicles as vehicles used in ψgb. ψgb is updated each time one of the

colonies finds an improved fesible solution. When the improved solution contains fewer

vehicles than ψgb, the process is restarted with the reduced number of vehicles.

Before constructing routes, MACS-VRPTW makes the VRP similar to the TSP

by duplicating the depot a number of times equal to the number of vehicles and setting

distances between copies of the depot to zero.

 41

Figure 3.3 Structure of the MACS-VRPTW

ACS-VEI and ACS-TIME use a similar constructive procedure to ACS designed

for the TSP. Each artificial ant starts from a randomly chosen copy of the depot and, at

each step, moves to a not yet visited city that does not violate time window constraints

and vehicle capacities. An ant positioned at city i chooses probabilistically the next city

j to be visited by using exploration and exploitation mechanisms. ηij is computed by

taking into account the traveling time tij between city i and j, the time window [bj,ej] of

city j and the number of time customer j has not been inserted in a route INj. IN are set

to zero in ACS-TIME. If Ni
k is the set of feasible cities for city i, then N∈∀j i

k ηij is

calculated by:

delivery_timej ← max(current_timek + tij, bj)

delta_timeij ← delivery_timej - current_timek

distanceij ← delta_timeij * (ej - current_timek)

distanceij ← max(1.0, (distanceij -INj))

ηij ← 1/ distanceij

Each time an ant moves from one city to another, a local update of the

pheromone trail is executed.

0.).1(τρτρτ +−= ijij

In ACS-TIME m artificial ants construct routes ψ1,…,ψm. If a better solution than

ψgb is found, ψgb is updated. Then, the global updating is performed by:

 42

gb
ijij jiL gb ψρτρτ

ψ
∈∀+−=),().1(

ACS-VEI can produce infeasible solutions in which some customers are not

visited. The solution with the highest number of visited customers is stored in ψACS-VEI.

A better solution is found when the number of visited customers is increased. ACS-VEI

uses a vector IN of integers for favoring the customers that are less frequently included

in the routes. The entry INj contains the number of time customer j has not been inserted

in a route. In ACS-VEI, pheromone trails are globally updated by both ψACS-VEI and ψgb.

Figure 3.4 Feasible and infeasible solutions for a VRP with four duplicated depots and

four vehicles

If the solution is incomplete at the end of the constructive phase, all non visited

customers sorted in decreasing delivery quantities are inserted to the best feasible

location (Figure 3.4).

Ellabib et al. (2002) proposed another AS based approach for solving VRPTW.

The basic idea is to let the ACS perform its search in the space of local minima rather

than in the search space of all feasible tours. The VRPTW is transformed to the TSP as

proposed by Gamberdella et al. (1999).

The approach starts by applying a tour construction heuristic for creating a good

initial solution and then let the ACS operate on the search space of local optima to guide

search toward the global optimum. The ant constructive procedure is similar to the ACS

constructive procedure designed for the TSP in Dorigo and Gamberdella (1997). In this

procedure, each ant starts from a randomly chosen depot and moves to the feasible

 43

unvisited customer based on the transition rule until it finishes all the remaining

unvisited customers. At each step, exploration and exploitation mechanism is applied

for the diversification and intensification balance, visibility is computed for the

transition rule, and the pheromone of the selected edge is updated locally. The global

update rule is update at the end of all ant tours in which the pheromone of the best

solution edges is updated. However, the amount of pheromone updated does not only

depend on the length of the tour as considered in TSP but on the number of vehicles.

Insertion and the nearest neighbor heuristics are applied to generate the initial solution

for the ACS.

The insertion heuristic considers the insertion of an unvisited customer u

between two adjacent customer ip-1 and ip in a partially finished route. It is focused on

the most effective Solomon the sequential insertion heuristic called (I1) (Solomon,

1987).This heuristic applies two criteria one for selecting the best position of the

unvisitied customer and the other for the customer who has the best cost. The cheapest

insertion cost and the associated insertion place for each unvisited customer are

calculated using the following equations:

C0 = li + d0i

C11 = diu + duj – µ.dij

C12 = bju - bj

C1 = α1.C11+ α2.C12

C2 = λ.dou - C1

where, α1+ α2 = 1, µ≥0, and λ≥0

C0 : Cost of the first customer inserted in a new route

C1 : Cost of the best position

C2 : Cost of best customer

li : Latest service time of customer i

d0i : Distance from the depot to customer i

dij : Distance between the customer i and j

bj and bju : Beginning of service before and after the insertion

Nearest Neighbor algorithm starts every route by finding the closest unvisited

customer. Three types of the cost functions are presented. The inverse of the cost is used

as the visibility measure.

 44

1. First visibility function is introduced by Solomon (1987). It is calculated

considering the distance between customers i and j, the difference between

the completion time of service at customer i and the beginning time of

service at customer j, and the urgency of delivering to customer j.

2. The second function is introduced by Gamberdella et al. (1999). It is

computed by multiplying the difference between the completion time of

service at customer i and the beginning time of service at customer j by the

urgency of delivery to customer j.

3. The third function is based on the difference between the position angle of

the current customer and the candidate customer is introduced.

In order to solve Solomon benchmark problem instances different combinations

of initial solution heuristics and the visibility functions are used. The solution quality is

based on minimizing the number of routes followed by the total distance.

3.5.3. ACO for Dynamic VRP

Montemanni et al. (2003) proposed an algorithm for the Dynamic VRP (DVRP).

The algorithm is based on the decomposition of the DVRP into static VRPs. In this

algorithm, event manager receives new orders and keeps track of the served orders and

vehicle. The working day is divided into time slices. For each of them a static VRP is

created. New orders received during a time slice are considered at the end of that slice.

At each time slice, customers whose service time starts in that time slice are assigned to

the vehicles. A vehicle will wait at its last committed customer until all the customers

are served or all vehicle capacity used. A new static problem is then considered. The

method similar to Gambardella et al. (1999) is applied to solve static VRPs. The only

difference is that visibility is calculated as the inverse of the distance. Once a time slice

is over and the relative static problem has been solved, pheromone trail on each arc (i, j)

is updated by the following equation:

 45

orijrij τγτγτ +−=)1(

where γr is a new parameter introduced to adjust pheromone conservation.

3.6. A Revised Ant Colony System Approach to the VRPTW

In this section, a revised ant colony algorithm (RACS) for the VRPTW is

proposed. It is influenced by the classical ACS approach of Dorigo et al. (1997) for the

TSP.

3.6.1. Candidate List

A candidate list is used in order to reduce the computation time and tour length.

The candidate list of each customer is formed as follows: In the ACS, visiting customer

j after the current customer i is based on the amount of both the pheromone trails ijτ and

the visibility ηij on arc (i, j). Therefore, at each customer i candidate set Ω(i) is formed

by taking k feasible customers with the largest attractiveness . []βητϕ ijijij .=

When forming the initial candidate lists, it is assumed that service at customer i

starts at time ai and then ηij are calculated for each feasible customer j. As some arcs are

reinforced through the local and global update of the pheromone information, the

attractiveness values ijϕ change. Thus, pheromone values that was initially high but not

on the arcs of good solutions will decrease, while arcs with initially low values that

appeared in good solutions will become more attractive. On the other hand, forming

candidate lists after each local update is time consuming. Therefore, after each global

pheromone trail update, the candidate list of each customer is formed again.

3.6.2. Initial Pheromone Trails

In most of the ant colony based algorithms to VRP, initial pheromone trails τ0 is

set equal to the inverse of the best known route distances found for the particular

 46

problem. However, it was found that τ0=1/nLinitial , where Linitial is the length of the

initial solution and n is the number of customers, can generate the shortest routes. In this

way, solution made independent from the previous solutions.

When the initial route is constructed, it is started at the depot and the customer

with the highest φ0j value is selected as the first customer to be visited. Then, the tour is

constructed by selecting the not yet visited feasible customer with the highest φij at each

time. A customer is infeasible if it violates either the capacity or the time window

constraints. If no feasible customer is available then it is returned to the depot and a new

route is started. This process continues until all customers are visited. The result of this

is a set of tours through all customers.

3.6.3. Visibility

In TSP, the tour length is determined only by the distance between two

customers. So, the visibility is calculated as the inverse of the distance between

customers. However, in VRPTW, not only the distance between two customers but also

customers’ distance to the depot and the time window associated with the customer to

whom the ant is considered to move are the essential characteristics of the tour length.

Hence, these three characteristics are considered in calculating the visibility.

 Savings measure proposed in Clarke et al. (1964) is used in order to consider the

customers’ distances to depot. Savings measure sij is calculated by:

sij = di0 + d0j - dij (3.11)

where dij (di0) denotes the distance between customers i and j (the depot). Thus, sij

contains the savings of serving customer i and j on the same route instead of serving

them on different tours.

 The higher savings value favors visiting customer j after customer i while the

longer distance value prevents it. Thus, the savings per unit distance traveled between

 47

customers measures the attractiveness of visiting customer j after customer i and is

calculated as follows:

 otherwise
1if

, /1
, /)(0000 ≥−+

⎩
⎨
⎧ −+

= ijji

ij

ijijji
ij

ddd
d

dddd
µ (3.12)

Since a high value of µij indicates that visiting customer j after customer i is a desired

choice the tour length is expected to be shorter if the probability of moving from

customer i to customer j increases with µij.

 Furthermore, as VRPTW is a time window restricted problem, the tendency to

visit a customer j with the smaller earliest and latest service starting times is more

important. Thus, higher priority is given to that customer. The priority rule κij is

calculated as follows:

)(cjwij tbt −=κ (3.13)

where tw is the waiting time and tc the current time. tw is obtained as follows:

 otherwise
if

,

,
jijc

cj

ij
w

att
ta

t
t

≥+

⎪⎩

⎪
⎨
⎧

−
= (3.14)

 The visibility of selecting customer j after customer i is computed by:

⎪
⎩

⎪
⎨

⎧
≥

=

otherwise,1

1if,
ij

ij

ij

ij

ij µ
κ

κ
µ

η (3.15)

3.6.4. Route Construction Process

It is assumed that the number of ants is equal to the number of customers and

initially, each ant is positioned at each customer. Then, each ant constructs its own tour

by successively selecting a not yet visited feasible customer. The choice of the next

customer to visit is based on the information of both the pheromone trails and the

visibility of that choice given in equation (3.16):

 48

 []βητϕ ijijij = (3.16)

τij denotes the amount of pheromone on arc (i , j) and β is power weighting parameter

that weights the consistency of arc (i , j).

 Using the following equations (3.17) and (3.18) each ant may either visit the

most favorable customer or randomly select a customer to visit based on a probability

distribution p(i , j) (Dorigo et al., 1997)

 (3.17)

⎩
⎨
⎧ ≤

= Ω∈

otherwise,),(
if,maxarg

),(0)(

jiP
qq

jip ijij ϕ

 (3.18)

⎪
⎪
⎩

⎪⎪
⎨

⎧
Ω∈

= ∑
Ω∈

otherwise,0

)(if,
),(

)(

ij
jiP

ih
ih

ij

ϕ

ϕ

where q0 (0 ≤ q0 ≤ 1) is a parameter that determines the relative importance of

exploitation versus exploration.

 In order to reduce the probability of repeatedly selected customer, each time an

ant moves from one customer to another the amount of pheromone on the chosen arc is

reduced by applying a local updating rule given in equation (3.19). Otherwise, some

arcs become dominant and same routes are constructed at all iterations.

() 01 ρττρτ +−= ijij  (3.19)

where ρ (0 ≤ ρ ≤ 1) is the trail persistence parameter.

If no feasible customer is available due to either the time window or the vehicle

capacity constraint then the depot is chosen and a new route is started. This process is

executed until all customers have been visited.

 49

3.6.5. Global Pheromone Update

Once all ants construct their tours, the best λ tours are chosen. Because of the

computation time, 2-opt procedure is only applied to these best tours to improve

solutions (Croes, 1958). Then the global updating rule based on ranked based version is

applied as follows (Bullnheimer, 1999):

∑ −

=
∆+∆+−=

1

1
*.).1(λ τλττρτ

r ij
r
ijijij (3.20)

If an arc is used by the rth best ant, the pheromone value on arc (i, j) will be

increased by , where Lr
r
ij Lr /)(−=∆ λτ r is the tour length of the rth best ant. Also, the

best solution found so far is increased if λ ants had traversed it by an

amount , where L** /1 Lij =∆τ * is the length of the best solution obtained so far.

As mentioned in the section 3.6.1, after the global pheromone update, the

attractiveness values ijϕ are calculated with the new pheromone information as in

equation 3.16, and new candidate lists are formed.

3.7. Computational Study

In this section, experimental results of applying the proposed approach to solve

VRPTW are presented.

3.7.1. Benchmark Problems

 Solomon’s (1987) problems are used to test the performance of the proposed

algorithm since they provide a common benchmark for the majority of algorithms on

the literature.

 50

 There are 56 problems made up of 100 customers located in 100*100 unit plane.

The benchmark set contains six different subsets called R1, R2, RC1, RC2, C1, and C2.

Vehicle capacity, customer time windows, service time, and coordinates vary so as to

cover all configurations as thoroughly as possible. Thus, customers are randomly

distributed in R1 and R2, clustered in C1 and C2. For groups RC1 and RC2, the

clustered and random distributions are mixed. Problem sets R1, C1, and RC1 have a

short scheduling horizon, narrow time windows, and low vehicle capacity. On the other

hand, problem sets R2, C2, and RC2 have large scheduling horizon, wide time

windows, and high vehicle capacity. In these data sets, travel times correspond to

Euclidean distances.

3.7.2. Experiments on Solomon’s Data Instances

The algorithm is coded in Visual C++. Firstly, the parameters were initialized.

First parameter is the number of iterations. Its value affects the solution quality and

computational time. Bigger number of iterations increases the probability of reaching

better solutions at the expense of higher computational time. By applying several runs

for various problem instances, it has been observed that there is almost no improvement

after the 5000th iterations. So, the number of iterations is set as 5000.

By applying experimental runs to different problems, it turns out that very small

evaporation rates (like 0.0001 and 0.001) do not guarantee diversifying the solution to a

new point. So, the search may not escape from the local optima using small evaporation

rate. Based on the initial runs, ρ is set to 0.1. Also, it has been found out from the initial

runs that setting k = 15, q0 = 0.75, β = 2, and 6 elitist ants generate better solutions.

In order to test the performance and solution quality of the algorithms proposed,

the results have been compared with the best known results of the Solomon instances in

the literature. The best published results were obtained from the web page of Marius M.

Solomon [63]. Table 3.1 reports the best results found by our algorithm and the best

published results. In this table, NV means number of vehicles used and TD means travel

distance. Gaps are the deviations from the best known.

 51

Table 3.1 Comparison of the results of the RACS with the best known

Best of Best Known Best of Best Known
 TD NV TD NV

Gap TD NV TD NV
Gap

c101 828,937 10 828,94 10 0 c201 591,557 3 591,56 3 0
c102 851,27 10 828,94 10 0,0269 c202 591,557 3 591,56 3 0
c103 873,337 10 828,06 10 0,0547 c203 600,206 3 591,17 3 0,0153
c104 841,527 10 824,78 10 0,0203 c204 591,557 3 590,6 3 0,0016
c105 828,937 10 828,94 10 0 c205 588,876 3 588,88 3 0
c106 832,268 10 828,94 10 0,004 c206 588,49 3 588,49 3 0
c107 832,25 10 828,94 10 0,004 c207 588,286 3 588,29 3 0
c108 832,25 10 828,94 10 0,004 c208 588,32 3 588,32 3 0
c109 859,91 10 828,94 10 0,0374

r101 1715,79 20 1645,79 19 0,0425 r201 1276,1 5 1252,37 4 0,0189
r102 1556,11 19 1486,12 17 0,0471 r202 1169,19 5 1191,7 3 -0,019
r103 1326,92 15 1292,68 13 0,0265 r203 1001,37 4 939,54 3 0,0658
r104 1052,18 11 1007,24 9 0,0446 r204 787,421 4 825,52 2 -0,046
r105 1431,65 15 1377,11 14 0,0396 r205 1068,75 4 994,42 3 0,0747
r106 1287,64 13 1251,98 12 0,0285 r206 982,841 3 906,14 3 0,0846
r107 1158,24 11 1104,66 10 0,0485 r207 923,024 3 893,33 2 0,0332
r108 1021,85 10 960,88 9 0,0635 r208 778,429 3 726,75 2 0,0711
r109 1231,91 12 1194,73 11 0,0311 r209 975,093 4 909,16 3 0,0725
r110 1153,83 12 1118,59 10 0,0315 r210 1007,77 4 939,34 3 0,0728
r111 1131,86 11 1096,72 10 0,032 r211 851,125 3 892,71 2 -0,047
r112 1007,06 10 982,14 9 0,0254

rc101 1679,38 15 1696,94 14 -0,01 rc201 1361,04 6 1406,91 4 -0,033
rc102 1548,31 14 1554,75 12 -0,004 rc202 1207,43 5 1367,09 3 -0,117
rc103 1318,92 11 1261,67 11 0,0454 rc203 1056,62 5 1049,62 3 0,0067
rc104 1184,48 11 1135,48 10 0,0432 rc204 866,45 3 798,41 3 0,0852
rc105 1594,3 15 1629,44 13 -0,022 rc205 1278,68 6 1297,19 4 -0,014
rc106 1425,99 15 1424,73 11 0,0009 rc206 1187,3 4 1146,32 3 0,0357
rc107 1313,29 12 1230,48 11 0,0673 rc207 1126,95 4 1061,14 3 0,062
rc108 1168,16 11 1139,82 10 0,0249 rc208 908,516 3 828,14 3 0,0971

On all of the 56 problem instances, the proposed approach achieved nine shorter

travel distances and matched eight best-known solutions. The shorter distances are

reported in boldface.

Table 3.2 compares the mean number of vehicles (MNV) and the mean travel

distance (MTD) obtained by proposed algorithm to the best known solutions.

 52

Table 3.2 Comparisons of averages on all data sets

Data Set Proposed Best Known

C1 MNV 10 10
C1 MTD 842,298 828,38

C2 MNV 3 3
C2 MTD 591,1061 589,8588

R1 MNV 13,25 11,92
R1 MTD 1256,253 1209,887

R2 MNV 3,82 2,73
R2 MTD 983,7375 951,9073

RC1 MNV 13 11,5
RC1 MTD 1427,469 1408,496

RC2 MNV 4,5 3,25
RC2 MTD 1124,123 1119,353

 In general, the algorithm does not perform very well for problem set R1 but is

efficient for problem set C2. It can be observed that the algorithm generated good

results when compared to the best known in the literature. It is worth noting here that

the best known solutions are obtained using various algorithms and an efficient

algorithm that performs well across all problem sets does not exist.

 The computational time is not the main focus of this study. Although the

computational time slightly changes from problem to problem is approximately 35

minutes.

3.7.3. Comparison with Other Heuristics

 In order to test the performance of the algorithms, comparison with some

competing heuristics is provided in Table 3.3. Benchmark heuristics are as follows:

• Potvin and Bengio (1996): Genetic algorithm (GA)

• Tan et al. (2001): Tabu search (TS)

• Li and Lim (2003): Simulated annealing-like restarts (SA)

 53

 Table 3.3 Comparisons of average travel distances of heuristics on all data sets

Data Set Proposed GA TS SA

C1 842,298 838,11 870,87 828,38
C2 591,1061 589,9 634,85 589,86
R1 1256,253 1296,83 1266,37 1215,06
R2 983,7375 1117,70 1080,23 953,55
RC1 1427,469 1446,2 1458,16 1385,57
RC2 1124,123 1360,60 1293,38 1142,48

 The results of all three algorithms proposed are obviously better than the genetic

algorithm proposed by Potvin and Bengio and TS proposed by Tan et al.(2001).

However, the results are relatively worse than the simulated annealing-like restarts of Li

and Lim (2002).

 The proposed algorithm performs better than TS in all problem sets. It provides

competitive results to GA in problem sets C1 and C2 and significantly out performs in

R1, R2, RC1 and RC2. The results are slightly worse than those of SA in C1, C2, R1,

and R2. On the other hand, it performs SA in problem set RC2.

 54

4. VEHICLE ROUTING PROBLEM WITH SIMULTANEOUS PICK-UP AND
DELIVERY

The VRP with Pick-ups and Deliveries (VRPPD) is an extension to the VRP

where the vehicles are not only required to deliver goods to customers but also to pick

some goods up at customer locations. Customers receiving goods are called linehauls,

while customers sending goods are called backhauls. The objective function of the

VRPPD is either to minimize the total distance traveled by the vehicles or the number of

vehicles used, subject to maximum distance and maximum capacity constraints on the

vehicles (Nagy and Salhi, 2004).

VRPPD is classified into three groups:

Delivery First, Pick-up Second VRPPD: Vehicles pick up goods after they have

delivered their goods.

Mixed Pickups and Deliveries: Linehauls and backhauls can occur in any

sequence on a vehicle route.

Simultaneous Pick-ups and Deliveries: Vehicles simultaneously deliver and

pick-up goods.

Delivery-first pickup-second and mixed VRPPD problems are jointly referred to

as the vehicle routing problem with backhauling (VRPB). Each customer has either a

pick-up or a delivery demand to be satisfied. Products to be delivered are loaded at the

depot while picked up products are transported back to the depot. A set of vehicle routes

has to be designed so that all customers are serviced exactly once and no "pick-up

customer" is visited before any other "delivery customer" on the same route. In the VRP

with backhauls and time windows (VRPBTW) each customer also must be served

during her service time interval.

 In this chapter, first the VRPSDP will be explained, and a linear integer

programming formulation of it will be given. Then, a detailed review of the VRPSDP

 55

from the literature is given. Finally, an ACO based approach is proposed and applied to

VRPSDP.

4.1. Mathematical Formulation of the VRPSDP

The problem deals with a single depot distribution/collection system servicing a

set of customers by means of a homogeneous fleet of vehicles. Each customer requires

two types of service: a pick-up and a delivery. The critical feature of the problem is that

both activities have to be carried out simultaneously by the same vehicle. Products to be

delivered are loaded at the depot and products picked up are transported back to the

depot. The objective is to find the set of routes servicing all the customers at the

minimum cost (Angelelli and Mansini, 2001).

From a practical point of view VRPSDP models situations such as distribution

of soft drinks, laundry service of hotels where the customers are typically visited only

once but for a double service, grocery stores where reusable specialized

pallets/containers are used for the transportation of merchandise. Also, regulations force

companies to take responsibility for their products throughout their lifetime.

Mathematically, VRPSDP is described by a set of homogenous vehicles V, a set

of customers C, and a directed graph G (N, A). N = {0,…,n+1} denotes the set of

vertices. Each vehicle has capacity Q and each customer i has delivery and pick-up

requests di and pi, respectively. The graph consists of |C|+2 vertices where the

customers are denoted by 1,2,…,n and the depot is represented by the vertices 0 and

n+1. A = {(i, j): i≠j} denotes the set of arcs that represents connections between the

depot and the customers and among the customers. No arc terminates at vertex 0 and no

arc originates from vertex n+1. A cost/distance cij is associated with each arc (i, j).

Finally, Q, di, pi, cij are assumed to be non-negative integers.

If P is assumed as an elementary path in G, P = {0 = i0, i1,…, ip, ip+1 = n + 1}, a

feasible solution for our problem can be represented by a set of disjoint elementary

paths originating from 0 and ending at n + 1. These paths visit every customer exactly

once while satisfying the capacity constraints. Thus, the pick-up demands already

 56

collected plus the quantities to be delivered must not exceed the vehicle capacity. The

objective is to minimize the total distance traveled by all the vehicles.

 For each arc (i, j), where i ≠ j, i ≠ n + 1, j ≠0, and each vehicle k, xijk is defined as

⎩
⎨
⎧

=
otherwise,0

),(arc uses vehicleif,1 jik
xijk

Dik is the amount of the remaining deliveries carried by vehicle k when departing from

customer i and Pik is the amount of the collected pick-up quantities carried by vehicle k

when departing from customer i. The mathematical problem is formulated as follows:

 mi (4.1) n ij ijk
k V i N j N

c x
∈ ∈ ∈
∑ ∑ ∑

 s.t. ∑∑
∈∈

=
Ni

ijk
Vk

x 1 Cj ∈∀ (4.2)

 0ihk hjk
i N j N

x x
∈ ∈

− =∑ ∑ ∀h ∈ C , ∀k ∈ V (4.3)

 ∑
∈

≤
Nj

jkx 10 Vk ∈∀ (4.4)

 ∑∑
∈∈

+ =
Nj

jk
Ni

kin xx 01 Vk ∈∀ (4.5)

 QPD ikik ≤+ CiVk ∈∀∈∀ , (4.6)

 01 =+ knD Vk ∈∀ (4.7)

 ∑∑
∈∈

=
Nj

iijk
Ni

k dxD0 Vk ∈∀ (4.8)

 ∑∑
∈∈

+ =
Nj

iijk
Ni

kn pxP 1 Vk ∈∀ (4.9)

 00 =kP Vk ∈∀ (4.10)

 0)(=−+ jkjikijk PpPx VkCji ∈∀∈∀ ,, (4.11)

 0)(=−+ jkjikijk DdDx VkCji ∈∀∈∀ ,, (4.12)

 ≥ 0ikD VkCi ∈∀∈∀ , (4.13)

 ≥ 0ikP VkCi ∈∀∈∀ , (4.14)

 ∀i,j ∈ N , ∀k ∈ V (4.15) { }1,0∈ijkx

 57

In the model above, the objective function (4.1) aims to minimize the total travel

distance. Constraints (4.2) assure servicing each customer exactly once. Constraints

(4.3) guarantee that if a vehicle arrives at a customer then the same vehicle leaves from

it. The constraints (4.4) and (4.5) ensure that each vehicle is used at most once. The

constraint set (4.6) introduces limits for vehicle loads. The constraints (4.8) and (4.10)

establish that each vehicle leaves the depot fully loaded with the products to be

distributed while the pick-up load is null. Conversely, the constraint sets (4.7) and (4.9)

guarantee that when vehicles return back to the depot, they have distributed all their

deliveries and are fully loaded with the picked up quantities. The non-linear sets of

equations (4.11) and (4.12) establish that if arc (i, j) is visited by vehicle k then the

quantity to be delivered by the vehicle has to decrease by dj while the quantity picked

up has to increase by pj. Finally, (4.13) and (4.14) are nonnegative constraints.

4.2. Complexity of VRPSDP

 Anily (1996) proved that the VRPB is NP-hard as in the following way: If Pj =0

(j Є J),or even Pj ≤D (j Є J) then the problem reduces to the VRP which is known to be

NP-hard. VRPB is also NP –hard. As the VRPB can be considered as the special case of

the VRPSDP where either the delivery demand Dj or the pick-up demand Pj of each

customer equals zero. VRPSDP is also NP –hard.

4.3. Optimal Algorithms for the VRPSDP

To our knowledge no exact algorithms have been proposed for the VRPSDP,

except some suggestions in Halse (1992) and the algorithm introduced for the VRPSDP

with time windows by Angelelli and Mansini (2001).

Angelelli and Mansini (2001) implemented a branch and price approach based

on a set covering formulation of the master problem. A relaxation of the elementary

shortest path problem with time windows and capacity constraints is used as the pricing

 58

problem. Branch and bound is applied to obtain integer solutions. Different branching

strategies and some variants of a pricing algorithm are implemented in order to test their

efficiency for this problem.

4.4. Approximation Algorithms for the VRPSDP

 The problem was first introduced by Min(1989). He solved a practical problem

faced by a public library. In his study, there was a central depot that is responsible for

supplying remote libraries with ordered books and recollecting previously delivered

books from them. There were two trucks with capacity of 10500 pounds. While solving

this problem, the customers are first clustered into groups. Then, the TSPs in each group

are solved. The infeasible arcs are penalized by setting their lengths to infinity and TSPs

are solved again.

Halse (1992) studied a number of VRP versions including a special case of the

VRPSDP. He used a cluster-first routing-second approach for solving the problems. In

the first stage the assignment of customers to vehicles is performed, then a routing

procedure based on 3-opt is used.

Gendreau et al. (1999) studied the VRPSPD for a single vehicle case. First, the

TSP is solved without regard to pick-ups and deliveries. Then, the order of pick-ups and

deliveries on the TSP-tour is determined.

Casco et al. (1988) developed a load-based insertion procedure where the

insertion cost for backhaul customers is based on the load still to be delivered. Salhi and

Nagy (1999) modified this method by allowing backhauls to be inserted in clusters, not

just one by one. This procedure is also capable of solving simultaneous problems.

Dethloff (2001) modified the approaches of Casco et al. (1988) and Salhi and

Nagy (1999) and developed a construction algorithm based on the cheapest-insertion

concept. In this approach, customers are successively inserted into routes that are

constructed consecutively. First, one customer is chosen as the seed customer. Then, a

route from the depot to the seed customer and back to the depot is built. For all

 59

remaining unrouted customers the value of an insertion criterion for all possible

insertion positions is computed and the best of the feasible (with respect to the vehicle

capacity) insertions is carried out. The insertion criterion consists of the extra travel

distance, the distance of customers to the depot, and the remaining vehicle capacity after

a potential insertion. This phase is repeated until no further customer can be inserted

into the route. Then, the next route is built with an arbitrarily chosen seed customer of

the still unrouted customers. Again, insertions are performed as described until no more

insertions are feasible. This route building and inserting procedure is repeated until all

customers are routed.

Nagi and Salhi (2004) proposed integrated heuristic to the VRPSDP. It consists

of four phases. First, a weakly feasible initial solution is generated. Then, the generated

solution is improved by using some of the improvement heuristics such as reverse, 2-

opt , 3-opt, exchange, combine, split heuristics. In the third phase, routes are made

feasible. In the final step, solution quality is attempted to improve.

4.5. Ant System Based Appraches

To our knowledge, there is no ant colony based approach to the VRPSDP.

However, there is a number of ant colony based approaches for the VRPB. As VRPSDP

is the generalization of the VRPB, in this section, various approaches for solving the

VRPBs will be discussed.

4.5.1. VRPBTW

Reimann et al. (2002) proposed ant system based approach to the VRPBTW. In

this algorithm an insertion procedure based on Solomon (1987) is used to construct

solutions. The routes are constructed one by one. First, the furthest customer from the

depot is selected as the seed customer for the current route. Sequentially other

customers are inserted into this route until no more insertions are feasible. The customer

that will be inserted is selected by the following probability:

 60

∑
>

=

0hh
h

i
iP

η

η
η

For each unrouted customer, visibility is calculated as follows:

()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
+−−−−+−= ∈

j

j

jjjjil
is

isij
is

i
sjsisjiiRji typebbdddd

τ

ττ
γββαη

2
.))(1()(max,0max 0

where sj is the customer visited after customer j, is the arrival time at customer si
s j

b j, if i

is inserted between customers j and sj, is the arrival time at customer s
jsb j before the

insertion of customer i and denotes the set of customers assigned to the current tour

after which customer i could feasibly be inserted. α and β are parameters. According to

this formula, a customer far from the depot is more likely to be chosen than a customer

close to the depot.

il
R

After routes are constructed, swap and move procedures are applied to improve

the solution. The swap operator exchanges a customer i with a customer j. The move

operator ejects a customer i from its current position and insert it at another position.

Only global pheromone updating is applied, and the pheromone trails are updated

according to the ASranked (see section 2.4.5).

4.5.2. ACO Approach for the Mixed VRPB

 Wade and Salhi (2003) used AS based approach to solve the mixed vehicle

routing problem with backhauls

An approach that considers the number of customers in the neighborhood of

each customer is proposed to form the candidate list. The minimum number of

customers (M) contained in the candidate list is calculated by:

 { }10,4NM =

 61

Average distances of each customer i to all other customers (id) and the average of

these distances (D) are respectively calculated.

1
 where1

−
==

∑∑ ≠=

N

d
d

N
d

D ij ij
k

N

k k

For each customer k, average distance to all other customers that fall within the range

(Ck) is calculated and the average of all these distances (R) is computed:

{ }

{ }Ddj

d
C

N
C

R
ij

Ddj ij

k

N

k k ij

<
==

∑∑ <=

:
 where :1

The candidate list is constructed for each customer i by,

{ }RdmjE iji ≤== s.t....1

Also, if MEi < then the nearest iEM − customers not contained in Ei are selected.

The whole region originated from the depot is divided into a given number of

sectors so that each contains an equal number of customers. If this is not possible, the

remaining customers are allocated to the final sector. An ant is placed at the closest and

farthest customer to the depot within each sector. A given number of ants are then

placed randomly on remaining nodes in each sector.

Two different visibility functions, the choice of which depends on the remaining

capacity on vehicle, are used. If the vehicle is nearly full then it would be more efficient

to visit a customer that is between the current customer and the depot if possible. Thus,

if the unused capacity on the vehicle is less than a given parameter then the visibility is

calculated by:

0.
1

jij
ij dd

=η

 62

If the unused capacity on the vehicle is larger than a given parameter, the next

customer j is considered with the nearest customer k in relation to j in the visibility.

Feasibility of customer k is not checked.

[] [] []{ }

otherwise ,

 if ,maxarg 0

⎪⎩

⎪
⎨
⎧ ≤⋅

= ∈

k
ij

ijijijallowedjk
ij

p

qq
P i

φβα κητ
 (4.16)

[] [] []
[] [] []

⎪
⎪
⎩

⎪⎪
⎨

⎧
∈

⋅⋅

⋅

= ∑
∈

otherwise,0

, k

allowedk
ikikik

ijijij

k
ij

allowedj
p

k

φβα

φβα

κητ

κητ

 (4.17)

where
jkij

ij dd .
1

=κ and
ij

ij d
1

=η

In order to reduce the possibility that arcs are selected repeatedly and to

encourage exploration of the search space, a frequency based local trail update is used.

That is, if an arc has been selected a greater number of times than a given percentage, of

the number of solutions that have been generated since the beginning of the algorithm,

then the trail value on that arc is updated according to following equation:

oijij vv ττγτ .).1(+−=

where γ is a pheromone decay parameter in the range (0 < γ < 1) and v is an adjustment

factor (v > 1). Otherwise, γ is set equal to 1

The global best solution is used to update pheromone trail values together with a

maximum number of iteration best solutions, λ. Considering each of the λ iteration best

solutions, only if the solution is within a given percentage of the global best solution, θ,

is the route used to update trail values. The trail values are updated according to

equation (2.9) as given by Bullnheimer et al. (1997) except that λ is adjusted as follows:

 63

()
⎭
⎬
⎫

⎩
⎨
⎧

<
−

== θλ 100.
)cos(

)cos()cos(s.t.,...,1
best

bestssG

To improve the solutions obtained 2-opt and 3-opt and the shift heuristics are

used. In the 2-opt and 3-opt procedure only customers which belong to the same route

are considered and each route is improved independently. In the shift heuristic, one or

two customers between routes are exchanged.

4.6. Computational Study

In this section, the proposed ant system based approach for VRPSDP is tested on

the benchmark problem instance(s) of Min (1989) and Dethloff (2001).

4.6.1. Benchmark Problems

 The first instance used for testing is the real-life problem given by Min (1989).

In that problem, there are 22 customers and a depot. The vehicle capacity is 10.500, the

total delivery amount equals 20.300, and the total pick-up amount is 19.950.

 The second problem set used for testing is given by Dethloff (2001). Random

test instances with 50 customers are generated where two different geographical

scenarios are examined: In scenario SCA, the coordinates of the customers are

uniformly distributed over the interval [0,100]. Half of the customers in scenario CON

are distributed in the same way as in SCA while the coordinates of the other half are

uniformly distributed over the interval [100/3,200/3]. Distances are measured using the

Euclidean metric in both cases.

The delivery demand Dj of the customers are uniformly distributed over the

interval [0,100].The pick-up demand Pj is computed by using a random number rj that is

uniformly distributed over the interval [0,1] such that Pj =(0.5+ rj) Dj. Instances with

different vehicle capacities are generated by choosing the minimal number of vehicles

µ. Then, the corresponding capacity is ∑ ∈
=

Js sDC µ where µ is chosen to be 3 or 8.

 64

4.6.2. Experiments on Dethloff’s Data Instances

The Algorithm is coded in Visual C++. By applying experimental runs to

different problems, the parameters were set. Considering both the solution quality and

the computational time, the number of iterations is set as 5000. In addition, to escape

from the local optima, ρ is set to 0.1. Also, initial runs suggest that k = 12, q0 = 0.75, β =

1 and 5 elitist ants generate solutions.

Min (1989) reported the objective value of his problem as 94. Dethloff (2001)

reported the best solution for Min’s problem as 91 with a computation time of

0.27seconds. Dethloff (2001) also reported that after 100 hours of computing time on a

Pentium III 500 Mhz processor the best known solution for Min’s problem was found to

be 89. Our proposed algorithm obtained the solution as 89 in approximately 17 seconds

on a Intel Xeon 2 GHz processor.

 In order to test the solution quality of the RACS, the results have been compared

with those of Dethloff’s problems. For each of the Dethloff’s data 10 experiments are

performed similar to Dethloff (2001). Table 4.1 reports the results found using RACS in

comparison to Dethloff’s results. Dethloff only published the average travel distances of

each data set after the 10 experiments. Therefore, we compare the average travel

distances obtained by RACS with those of Dethloff’s.

RACS achieves shorter away travel distances in 38 out of the 40 problem

instances. Only the average travel distances of SCA 8-2 and CON 8-6 are longer than

the average travel distance found by Dethloff. However, they are approximately within

%1 deviation.

 The results of the RACS are presented in Appendix C in detail. In the table of

appendix, BTD means the best travel distance obtained after 10 experiments, NV means

number of vehicles used in the best result, and MCT means mean computational time in

seconds.

 65

 In sum, the algorithm performs very well for the data instances of Min (1989) and

Dethloff (2001). It can be observed from the results that the RACS give better results

when compared with the Dethloff.

Table 4.1 Comparison of the results found with the RACS with the Dethloffs’

Data Set RACS Dethloff Deviation
SCA3-0 666,0416 689 -0,03332
SCA3-1 738,8839 765,6 -0,0349
SCA3-2 692,8085 742,8 -0,0673
SCA3-3 708,8335 737,2 -0,03848
SCA3-4 719,9005 747,1 -0,03641
SCA3-5 721,1812 784,4 -0,0806
SCA3-6 670,7185 720,4 -0,06896
SCA3-7 680,4808 707,9 -0,03873
SCA3-8 759,779 807,2 -0,05875
SCA3-9 693,2852 764,1 -0,09268

SCA8-0 1019,075 1132,9 -0,10047
SCA8-1 1129,507 1150,9 -0,01859
SCA8-2 1107,837 1100,8 0,006393
SCA8-3 1052,831 1115,6 -0,05626
SCA8-4 1171,683 1235,4 -0,05158
SCA8-5 1160,57 1231,6 -0,05767
SCA8-6 1028,7721 1062,5 -0,03174
SCA8-7 1100,279 1217,4 -0,09621
SCA8-8 1192,269 1231,6 -0,03193
SCA8-9 1103,998 1185,6 -0,06883

CON3-0 633,9779 672,4 -0,05714
CON3-1 567,6955 570,6 -0,00509
CON3-2 530,394 534,8 -0,00824
CON3-3 599,7221 656,9 -0,08704
CON3-4 600,0444 640,2 -0,06272
CON3-5 588,2873 604,7 -0,02714
CON3-6 516,6378 521,3 -0,00894
CON3-7 596,1911 602,8 -0,01096
CON3-8 523,8241 556,2 -0,05821
CON3-9 588,3128 612,8 -0,03996

CON8-0 916,76282 967,3 -0,05225
CON8-1 771,2668 828,7 -0,06931
CON8-2 746,0453 770,2 -0,03136
CON8-3 866,5003 906,7 -0,04434
CON8-4 875,343 876,8 -0,00166
CON8-5 827,2182 866,9 -0,04577
CON8-6 757,7431 749,1 0,011538
CON8-7 889,3294 929,8 -0,04353
CON8-8 814,6108 833,1 -0,02219
CON8-9 854,9211 877,3 -0,02551

 66

5. CONCLUSION

 The purpose of this study was to develop ant system based approach for solving

VRPs. The proposed approach basically differ form the other ant system heuristics in

the way that it forms the candidate list, and it calculates the initial pheromone values

and the visibility function.

 Most of the ant system based heuristics forms the candidate lists at the

beginning, and do not update them. On the other hand, attractiveness of arcs depends on

the pheromone values on them. As pheromone values on arcs are updated, some arcs

that are not on the candidate lists may become attractive. Thus, in this study candidate

lists are updated after global pheromone update procedure.

 In most of the ant colony based algorithms to VRP, initial pheromone trails is

calculated based on the best known route distances found for the particular problem.

However, in this study it is calculated based on the feasible solution found.

Finally, visibility of an arc is calculated as a function of distance between two

customers, customers’ distance to the depot and the time window associated with the

customer to whom the ant is considered to move.

 The proposed approach has been tested for VRPTW and VRPSDP. Solomon

(1987) instances are used as a benchmark for the VRPTW. The results are compared

with some known heuristics and the best known results of the problems. The results of

the proposed approach are generally good when compared with the benchmark

heuristics, but they are not that competitive with the best published results.

 67

 This is the first study that uses ACO to solve VRPSDP. The proposed approach

produce competitive results in relatively small competition time when compared to Min

(1989) and Dethloff (2001).

 Future work in this topic may focus on the visibility and local search method on

the entire solution. Visibility has a significant importance on the solution quality. A

revised heuristic will include capacity constraint or modified savings function. In this

paper, the 2–opt algorithm is only applied in the route. Nevertheless, an application of a

local search heuristic between routes may improve the solution quality. Although

computational efficiency is not of primary concern in this study, the algorithm may be

run on parallel computers to improve computational time. Also, other types of the VRP

may be addressed using the same approach with little modification.

 68

6. REFERENCES

1. Anily, S., “The vehicle-routing problem with delivery and back-haul options,”
Naval Research Logistics, vol.43, pp.415 –434, 1996.

2. Backer, B., Furnon, V., Kilby P., Prosser P., Shaw, P., “Solving Vehicle Routing
Problems using Constraint Programming and Metaheuristics,” Journal of
Heuristics, vol.6, no.4, pp. 501-525, 2000.

3. Badeau, P.,Gendreaou, M., Guertin,F., Potvin J., Taillard E.D. “A parallel tabu
search heuristic for the vehicle routing problem with time windows,”
Transportation Research,(55), pp.109-122, 1997.

4. Braysy, O., “Genetic algorithms for the vehicle routing problem with time
windows,” Technical Report, Department of Mathematics and Statistics, University
of Vaasa, Finland, 1999.

5. Braysy, O., Berger, J., Barkaoi, M., “A new hybrid evolutionary algorithm for the
vehicle routing problem with time windows,” Presented at the Route 2000-
Workshop, Skodsborg, Denmark, 2000.

6. Braysy, O. and Gendreau, M., “Metaheuristics for the Vehicle Routing Problem
with Time Windows,” Sintef Technical Report STF42 A01025, Department of
Mathematics and Statistics, University of Vaasa, Finland, 2001

7. Bullnheimer, B., Hartl, R.F., Strauss, C., “A new ranked based version of the ant
system,” Working Paper, Vienna University of Economics and Business
Administration, Austria, 1997.

8. Bullnheimer, B., Hartl, R.F., Strauss, C., “Applying ant system to the vehicle
routing problem,” Presented at the 2nd International Conference on Metaheuristics,
Sophia, France, July 21-24, 1997.

9. Bullnheimer, B., Hartl, R.F., Strauss, C., “An improved ant system algorithm for
the vehicle routing problem,” Annals of Operations Research, vol.89, pp.319-
328,1999

 69

10. Bullnheimer, B., Hartl, R.F., Strauss, C., “Applying the ant system to the vehicle
routing problem,” Meta-Heuristics: Advances and Trends in Local Search
Paradigms for Optimization, Kluwer, Boston 1998.

11. Chiang, W., Russell, R. “Simulated annealing metaheuristics for the vehicle
routing problem with time windows,” Annals of Operations Research, (63), pp.3-
27,1996.

12. Chiang, W., Russell, R. “A reactive tabu search metaheuristic for the vehicle
routing problem with time windows”, INFORMS Journal on Computing, (9),
pp.417-430, 1997.

13. Clarke, G., Wright W., “Scheduling of vehicles from a central depot to a number
of delivery points,” Operations Research, (12), pp.568-581, 1964

14. Colorni A., M. Dorigo, V. Maniezzo, “Distributed Optimization by Ant Colonies,”
Proceedings of the First European Conference on Artificial Life, Paris, France,
pp.134-142., 1992.

15. Croes, G.A., “A method for solving the traveling salesman problems,” Operations
Research, (6), pp.791-812, 1958.

16. Deitel, H.M., Deitel, P.J., C++, How to Program, Prentice Hall, New Jersey,
2001.

17. Desrochers, M., Desroiers, J.,Solomon, M.M., “A new optimization algorithm
for the vehicle routing problem with time windows,” Operation Research, vol.40,
pp.342-354, 1992.

18. Dethloff, J., “Vehicle routing and reverse logistics: The vehicle routing problem
with simultaneous delivery and pick-up”, OR Spektrum, vol.23, pp.79-96, 2001.

19. Doerner, K.F., Hartl, R.F., Reimann, M., “Ants solve time constrained pick-up and
delivery problems with full truckloads,” Technical Report, Lehrstuhl für
Produktion und Logistik Institut für BWL, Wien, 2000.

20. Dorigo, M., Maniezzo, V. Colorni, A., “The ant system: Optimization by a colony
of cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics-Part
B, vol.26, pp.29-41, 1996.

21. Fisher,M.L., Jörnsten, K.O., Madsen, O.B.G., “Vehicle routing with time
windows: two optimization algorithms,” Operations Research, vol.45,no.3,1997

 70

22. Fogel, M., How to Solve it: Modern Heuristics, Springer, New York, 2000.

23. Gambardella, L.M., Dorigo, M., “HAS-SOP: Hybrid Ant System for the
Sequential Ordering Problem, Technical Report IDSIA 11-97, IDSIA, Lugano,
Switzerland, 1997.

24. Gambardella, L.M., Taillard, E., Agazzi, G., “MACS-VRPTW: A multıple ant
colony system for vehıcle routıng problems wıth tıme wındows,” Technical Report,
IDSIA, Lugano, Swıtzerland, 1999.

25. Garcia, B.D., Potvin J., Rousseau J., “A parallel implementation of the tabu search
heuristic for vehicle routing problems with time window constraints,” Computers
& Operations Research, vol.21, no.9, pp.1025-1033, 1994.

26. Gillet, E., Miller, L.R., “A heuristic algorithm for the vehicle routing dispatch
problem,” Operational Research, 22, pp.340-349,1974.

27. Glover, F., Laguna, M., “Tabu search,” Modern Heuristic Techniques for
Combinatorial Problems, Blackwell, Oxford, pp.76-150, 1993.

28. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., “Optimization
and Approximation in Deterministic Sequencing and Scheduling: a Survey,” in
Annals of Discrete Mathematics, vol.5, pp.287-326, 1979.

29. Homberger, J., Gehring, H., “Two evolutionary metaheuristics for the vehicle
routing problem with time windows,” INFOR, (37), pp.297-318, 1999.

30. Jörnsten, K.O., Madsen, O.B.G., Sorensen, B., “Exact solution of the vehicle
routing and scheduling problem with time windows by variable splitting,”
Technical Report, Department of Mathematical Modeling, Technical University of
Denmark, 1986.

31. Halze, K., “Modeling and solving complex vehicle routing problems,” Phd.
Thesis, Department of Mathematical Modeling, Technical University of Denmark,
1992.

32. Kilby, P., Prosser,P., Shaw, P., “Guided local search for the vehicle routing
problems with time windows,” Metaheuristics: Advances and Trends in Local
Search for Optimization, Kluwer Academic Publishers, pp.473-486, Boston, 1999.

 71

33. Kohl, N., “Exact methods for time constrained routing and scheduling problems,”
Phd. Thesis, Department of Mathematical Modeling, Technical University of
Denmark, 1995.

34. Kohl, N., Madsen O., “An optimization algorithm for the vehicle routing problem
with time windows based on Lagrangean Relaxation,” Operations Research, (45),
pp.395-406, 1997.

35. Kolen, A., Rinnooy A., Trienekens, H., “Vehicle routing with time windows,”
Operations Research, (35), pp.266-273, 1987

36. Larsen, J., “Parallelization of the vehicle routing problem with time Windows,”
PhD. Thesis, Technical University of Denmark, Lyngby, 1999.

37. Li, H., Lim, A., “Local Search with annealing-like restarts to solve the VRPTW,”
European Journal of Operational Research, Corrected Proof, Article in Press.,
2003.

38. Lin, S., “Computer Solutions for the Traveling Salesman Problem”, Bell Systems
Technology Journal, vol.44, pp.2245-2269, 1965.

39. Madsen, O.B.G., “Variable splitting and vehicle routing problem with time
windows,” Technical Report 1A/1988, Department of Mathematical Modeling,
Technical University of Denmark, 1988.

40. Min, H., “The multiple vehicle routing problem with simultaneous delivery and
pick-up points,” Transportation Research, vol.23-A, pp.377-386, 1989.

41. Randall, M., Montgomery J., “Candidate set strategies for ant colony
optimization,” Technical Report, School of Information Technology, Bond
University, QLD 4229, Australia, 2002.

42. Reimann, M., Doerner, K., Hartl, R. F., “Insertion based ants for vehicle routing
problems with backhauls and time windows,”Ant Algorithms, Springer LNCS
2463, Berlin, pp.135–147, 2002

43. Reimann, M., Doerner, K., Hartl, R. F., “Analyzing a Uni.ed Ant System for the
VRP and Some of Its Variants,” EvoWorkshops 2003, LNCS 2611, pp.300-310,
2003.

44. Montemanni, R., Gambardella, L.M., Rizzoli, A.E., Donati, A.V., “A new
algorithm for a Dynamic Vehicle Routing Problem based on Ant Colony System,”

 72

ODYSSEUS 2003: Second International Workshop on Freight Transportation and
Logistics, Palermo, Italy, 27- 30 May 2003.

45. Potvin,J., Bengio, S., “The vehicle routing problem with time windows-part II:
genetic search,” INFORMS Journal on Computing, (8), pp.165-172, 1996.

46. Potvin, J., Kervahut, T., Garcia, B.L., Rousseau, J.M., “The vehicle routing
problem with time windows; part I: tabu search,” INFORMS Journal on
Computing, (8), pp.158-164, 1995.

47. Reimann, M., Doerner, K., Hartl, R.F., “Insertion based ants for vehicle routing
problems with backhauls and time windows,” ANTS:2002, LNCS 2463, pp.136-
148,2002

48. Reimann, M., Doerner, K., Hartl, R.F., “ D-Ants: Savings based ants divide and
conquer the vehicle routing problem,” Computers and Operations Research,
vol.31, pp.563-591, 2004.

49. Rochat, Y., Taillard, E.D., “Probabilistic Diversification and intensification in
local search for vehicle routing,” Journal of Heuristics, (1), pp.147-167, 1995.

50. Savelsbergh, M.W.P., “Local search for routing problems with time windows,”
Annals of Operations Research, (4), pp.285-305, 1985.

51. Schulze,J., Fahle, T., “A parallel algorithm for the vehicle routing problem with
time window constraints,” Combinatorial Optimization: Recent Advances in
Theory and Praxis, Special volume of Annals of Operations Research, 86, pp.585-
607,1999.

52. Smith, R., Osman, I.H., Reeves, C.R., Smith, G.D., Modern Heuristic Search
Methods, Wiley, New York, 1996.

53. Solomon, M.M., “Algorithms for the vehicle routing and scheduling problems
with time window constraints,” Operations Research, vol.35, no.2, pp.254-265,
1987

54. Stützle, T., Dorigo, M., “ACO Algorithms for the quadratic qssignment
problem,”, New Ideas in Optimization, Mc Graw-Hill, 1999a.

55. Stützle, T., Hoos, H H.., “Improving the Ant System: A Detailed Report on the
MAX-MIN Ant System,” Technical Report AIDA-96-12 - Revised version,

 73

Darmstadt University of Technology, Computer Science Department, Intellectics
Group., 1996.

56. Stützle, T., Hoos, H.H., “MAX-MIN ant system and local search for combinatorial
optimization problems,” Meta-Heuristics: Advances and Trends in Local Search
Paradigms for Optimization, Kluwer Academic Publishers, pp. 313-329, Boston,
1999.

57. Tan, K.C., Lee, L.H., Zhu, Q.L., Ou, K., “Heuristic methods for vehicle routing
problem with time windows,” Artificial Intelligence in Engineering, (15), pp.281-
295, 2001.

58. Tan, K.C., Lee, L.H., Zhu, Q.L., Ou, K., “Artificial intelligence heuristics in
solving vehicle routing problems with time windows,” Engineering Applications of
Artificial Intelligence, (14), pp.825-837, 2001.

59. Thangiah, S., “Vehicle routing with time windows using genetic algorithms,”
Technical Report, SR4-CPSC-TR-93, 23, Computer Science Department, Slippery
Rock University, Slippery Rock, PA, 1993.

60. Thangiah, S., Osman, I.H., Sun, T., “Hybrid genetic algorithm, simulated
annealing and tabu search method for vehicle routing problems with time
windows,” Technical Report, UCK/OR94/4, Institute of Mathematics and
Statistics, University of Kent, Canterbury, UK, 1994.

61. Toth, P.,Vigo, D., “Models, relaxations and exact approaches for the capacitated
vehicle routing problem,” Discrete Applied Mathematics, vol.123, no.1-3, pp.487-
512, 2002.

62. Wade, A., Salhi, S., “An ant System Algorithm for the Mixed vehicle routing
problem with backhauls,” Kluwe Academic Publishers, Netherlands, 2003.

63. http://web.cba.neu.edu/~msolomon/problems.htm, July, 2004.

 74

7. APPENDICES

Appendix A: Pseudo-Code for the RACS to VRPTW

 75

Appendix B: Computational Results of the RACS for VRPSDP

 BTD NV MCT
SCA3-0 653,869 4 146,8
SCA3-1 721,256 4 149,8
SCA3-2 685,299 4 150,4
SCA3-3 701,922 4 151,6
SCA3-4 709,299 4 152,2
SCA3-5 716,147 4 146,3
SCA3-6 660,864 4 149,6
SCA3-7 660,78 4 148,7
SCA3-8 754,053 4 148,6
SCA3-9 683,573 4 145,7

SCA8-0 1004,87 9 165,3
SCA8-1 1098,17 9 166,4
SCA8-2 1068,35 9 168,1
SCA8-3 1027,73 9 167,3
SCA8-4 1142,25 9 164,6
SCA8-5 1140,02 9 169,2
SCA8-6 998,621 9 174,4
SCA8-7 1065,2 9 177,3
SCA8-8 1173,15 9 165,5
SCA8-9 1089,58 9 170

CON3-0 627,409 4 151,2
CON3-1 559,551 4 150,7
CON3-2 525,428 4 159,6
CON3-3 597,61 4 155,8
CON3-4 589,322 4 163,2
CON3-5 583,279 4 171,6
CON3-6 508,668 4 172,7
CON3-7 578,184 4 154,7
CON3-8 523,676 4 147
CON3-9 579,487 4 155,1

CON8-0 893,619 9 173,2
CON8-1 756,416 9 175,4
CON8-2 732,986 9 173,6
CON8-3 858,633 9 178,9
CON8-4 848,95 9 178,1
CON8-5 808,083 9 175,2
CON8-6 742,962 9 181,9
CON8-7 875,204 9 181,1
CON8-8 804,81 9 178,9
CON8-9 839,992 9 182,3

 76

	ACKNOWLEDGEMENTS
	ABSTRACT
	ÖZET
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	ANT ALGORITHMS
	Basic Idea of Ant Algorithms
	The Ant Colony Optimization Heuristic
	Ant System
	TSP Application
	Other Applications

	Improvements to Ant System
	Elitist Strategy
	Ant Colony System
	Ant –Q
	MAX-MIN Ant System
	ASrank
	Local Search
	Candidate List

	VEHICLE ROUTING PROBLEM WITH TIME WINDOWS
	Mathematical Formulation of the VRPTW
	Complexity of VRPTW
	Optimal Algorithms for VRPTW
	Dynamic Programming
	Lagrangean Relaxation-Based Methods
	Column Generation

	Approximation Algorithms for the VRPTW
	Construction Algorithms
	Sequential Construction Algorithms
	Parallel Construction Algorithms

	Improvement Algorithms
	Metaheuristics
	Simulated Annealing
	Tabu Search
	Genetic Algorithms
	Miscellaneous Algorithms

	Ant Colony Based Approaches
	ACO for CVRP
	ACO for VRPTW
	ACO for Dynamic VRP

	A Revised Ant Colony System Approach to the VRPTW
	Candidate List
	Initial Pheromone Trails
	Visibility
	Route Construction Process
	Global Pheromone Update

	Computational Study
	Benchmark Problems
	Experiments on Solomon’s Data Instances
	Comparison with Other Heuristics

	VEHICLE ROUTING PROBLEM WITH SIMULTANEOUS PICK-UP AND DELIVE
	Mathematical Formulation of the VRPSDP
	Complexity of VRPSDP
	Optimal Algorithms for the VRPSDP
	Approximation Algorithms for the VRPSDP
	Ant System Based Appraches
	VRPBTW
	ACO Approach for the Mixed VRPB

	Computational Study
	Benchmark Problems
	Experiments on Dethloff’s Data Instances

	CONCLUSION
	REFERENCES
	APPENDICES
	Appendix A: Pseudo-Code for the RACS to VRPTW
	Appendix B: Computational Results of the RACS for VRPSDP

