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ABSTRACT 

In this thesis an in-wheel electric motor prototype has been designed for 
experimental purposes. In-Wheel Motor (Hub motor) can be used in electric cars with 4 
wheel independent drive configuration. Within every wheel, there can be one “Direct-
Drive In-Wheel Motor” to generate the necessary torque per wheel. Unlike conventional 
“central drive unit” systems, torque as well as the power and speed can be supplied to 
each tyre independently. 

The difference in this work is the design of a direct drive electric motor which is 
able to carry transverse loading acts on the tyre. Type of the motor is called inverted 
configuration or outer rotor structure in the literature, in which the rotating element is 
the casing of the motor. 

The electric machine designed in the thesis is Switched Reluctance Machine. First 
a 3D solid model was created. Necessary strength analyses have been done. 
Simultaneously, electromagnetic FEA have been done, when it is necessary either of the 
designs were modified until it converged to a set of consistent dimensions for both 
mechanic and electromagnetic design. 

Last, the results of the electromagnetic analysis were embedded into a hybrid 
simulation model, in order to check the coherency between the design and the analysis. 
The results were coherent.   
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ÖZET 

Bu tezde yapılan deneysel amaçlı bir “tekerlek-içi motor” prototipidir. Tekerlek-
içi motorlar 4 tekerlekten bağımsız çekişli elektrikli taşıtlarda kullanılır. Bu araçlarda 
her tekerleğin içine ‘doğrudan-sürüş’ yapısında birer tekerlek-içi motor yerleştirilir. 
Merkezi güç birimli yapıların aksine bu taşıtlarda güç, tork ve hız her bir tekerleğe 
kontrollü bir biçimde bağımsız olarak sağlanabilir. 

Bu tezin içerdiği farklılıklardan birisi şaft eksenine dik, yani radyal, yükleri 
kaldırabilen doğrudan-sürüş yapısında bir elektrik motorunun tasarımıdır. Tasarlanan 
motor türü literatürde terslenmiş motor, ya da dış rotor tasarımı şeklinde geçmektedir. 

Tasarım temel olarak ‘Anahtarlamalı Reluktans Motor’ tipindedir. İlk olarak 
mekanik tasarımın parçası olarak 3-Boyutlu katı modeller yaratılmış, ve gerekli 
dayanılılıkta olup olmadıkları sınanmıştır. Eş zamanlı olarak elektromanyetik tasarımın 
da sonlu-eleman-analizi yürütülmüş, gerektiği zaman her iki tasarımda yenilenerek 
sonuçta birbiriyle tutarlı boyut ve özellikler elde edilmiştir. 

Son olarak elektromanyetik analizden edilen veriler melez bir simulasyon 
modeline girilerek tasarım ve analizin sonuçaları karşılaştırılmıştır. Sonuçlar tutarlıdır. 
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ABSTRACT 

In this thesis an in-wheel electric motor prototype has been designed for 
experimental purposes. In-Wheel Motor (Hub motor) can be used in electric cars with 4 
wheel independent drive configuration. Within every wheel, there can be one “Direct-
Drive In-Wheel Motor” to generate the necessary torque per wheel. Unlike conventional 
“central drive unit” systems, torque as well as the power and speed can be supplied to 
each tyre independently. 

The difference in this work is the design of a direct drive electric motor which is 
able to carry transverse loading acts on the tyre. Type of the motor is called inverted 
configuration or outer rotor structure in the literature, in which the rotating element is 
the casing of the motor. 

The electric machine designed in the thesis is Switched Reluctance Machine. First 
a 3D solid model was created. Necessary strength analyses have been done. 
Simultaneously, electromagnetic FEA have been done, when it is necessary either of the 
designs were modified until it converged to a set of consistent dimensions for both 
mechanic and electromagnetic design. 

Last, the results of the electromagnetic analysis were embedded into a hybrid 
simulation model, in order to check the coherency between the design and the analysis. 
The results were coherent.   
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ÖZET 

Bu tezde yapılan deneysel amaçlı bir “tekerlek-içi motor” prototipidir. Tekerlek-
içi motorlar 4 tekerlekten bağımsız çekişli elektrikli taşıtlarda kullanılır. Bu araçlarda 
her tekerleğin içine ‘doğrudan-sürüş’ yapısında birer tekerlek-içi motor yerleştirilir. 
Merkezi güç birimli yapıların aksine bu taşıtlarda güç, tork ve hız her bir tekerleğe 
kontrollü bir biçimde bağımsız olarak sağlanabilir. 

Bu tezin içerdiği farklılıklardan birisi şaft eksenine dik, yani radyal, yükleri 
kaldırabilen doğrudan-sürüş yapısında bir elektrik motorunun tasarımıdır. Tasarlanan 
motor türü literatürde terslenmiş motor, ya da dış rotor tasarımı şeklinde geçmektedir. 

Tasarım temel olarak ‘Anahtarlamalı Reluktans Motor’ tipindedir. İlk olarak 
mekanik tasarımın parçası olarak 3-Boyutlu katı modeller yaratılmış, ve gerekli 
dayanılılıkta olup olmadıkları sınanmıştır. Eş zamanlı olarak elektromanyetik tasarımın 
da sonlu-eleman-analizi yürütülmüş, gerektiği zaman her iki tasarımda yenilenerek 
sonuçta birbiriyle tutarlı boyut ve özellikler elde edilmiştir. 

Son olarak elektromanyetik analizden edilen veriler melez bir simulasyon 
modeline girilerek tasarım ve analizin sonuçaları karşılaştırılmıştır. Sonuçlar tutarlıdır. 
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rP  : Number of rotor poles 

sP  : Number of stator poles 

R  : Resistance (Ω) 

sR  : Phase resistance (Ω) 

mwireR _  : Magnet wire resistance per meter (Ω/m) 

T  : Torque (Nm) 

eT  : Electromagnetic torque (Nm) 

fT  : Fall time (s) 

phT  : Number of coil turns per phase 

v : Vehicle speed (m/s) 

cW  : Co-energy (joules) 

coilw  : Width of the coil (m) 

spw  : Stator pole width (m) 
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1 INTRODUCTION 

Throughout the history of transportation, vehicle propulsion milestones have been 

few and far between. For thousands of years after the invention of the wheel, human and 

animal muscles were the “motors” behind every vehicle. In the 19th century, the 

industrial revolution took a giant leap forward with widespread use of the steam engine 

to power trains and boats across the world. 

By the end of the 19th century, two new engines had begun to emerge: the electric 

engine and the internal combustion engine. Though clean and quiet, electric vehicles 

lacked the performance and range of machines powered by the internal combustion 

engine, which quickly came to dominate the automobile industry. In the decades to 

follow, electric engines were used only sparingly in such vehicles as forklifts, streetcars 

and golf carts. 

As petroleum supplies dwindled and pollution increased in the 1960s and 1970s, 

the transportation and fuel industries began to re-examine the electric motor. Today, 

numerous programs are in place to investigate a number of alternative vehicle solutions, 

with a heightened interest in the clean, efficient capabilities of electric power. [1] 

1.1 Electric Vehicles 

Electric vehicles are simply vehicles which are driven by means of electric motors 

on the deck. The category generally forks into two as ‘pure EVs’ which have only 

batteries or fuel cell structures to power the electric motor, and ‘Hybrid vehicles’ which 

have generally  electric storage system plus a combustion engine. 

Although there is an ongoing discussion about the fact that if the EVs are really 

ZEV class structures or ‘elsewhere emission’ structures, the truth is they have no tail 

pipe emission at all. In that sense they are quite clean compared to the IC engine 

vehicles. They are also very quiet too. Electric motors are more efficient than the IC 



2 

engines, therefore especially with the help of regenerative braking EVs are economic 

too.  

The reason why they are not common today is the capacity and the quality of  

today’s electrical storage means. Battery technology is the bottle-neck of this emerging 

technology. They have generally quite low energy/mass ratio, therefore a vehicle with a 

range of 600 km per battery charge has to carry quite heavy package of batteries. In 

addition to that, batteries of today suffer from their high internal resistance, which 

makes recharging process quite slow. 

Despite these disadvantages, because of the mostly environmental reasons stated 

above this technology will definitely will over throne the IC engines eventually. Every 

day researchers come up with new ideas that help EVs improve in performance and 

quality. 

 

1.2 4-Wheel Independent Drive Configuration 

4 wheel independent drive concept is simply the configuration that each wheel on 

the vehicle is driven by an independent torque source. Power distribution between 

wheels is known as differential drive theory in the literature. 

Theories about differential drive and skid steering go back in the history almost as 

long as the electric vehicle itself. The Lunar Rover Vehicle [2] was actually an 

independent drive configuration, with in-wheel motors. 

Today the examples have multiplied. Many private companies are working on in-

wheel motors. Most of the race-wining solar cars use this technology. Again the mars 

robot pathfinder was an 6 wheel independent drive configuration.[3]  

 
a) 

 
b) 

 
c) 

Figure 1.1 : Examples of some In-wheel Motors; a) TM4, b) MM61, c) Wavecrest Adaptive Motor 
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Electric motors have many advantages over IC machines. They have fast 

response, they produce high torques at very low speeds, they are simple and have zero 

emission. 

Having a fast torque response, electric motors are far better controllable then IC 

engines. If they are fitted inside the wheel of the vehicle, then many things change in 

today’s world of cars. 

Differential gear boxes are used in all the cars today. The main purpose of it is to 

regulate the speed of the driven wheels during cornering. However, although it is a 

proven concept, it has a weakness. It can only regulate the rotational speeds of the 

wheels, but not the torque. This drove the manufacturers into very complicated drive 

assisting equipments for safety and better performance on cars. ABS,EPS,ASR Torsen 

differentials are some of the technologies emerged to control the traction of a car, they 

are sophisticated technologies. 

An in-wheel motor ends all this mess. Having an direct drive electric motor inside 

each wheel, eliminates many of the conventional modules in the car; gearbox, 

differential box, drive shaft, and IC engine of course. The figures below shows how it 

can change the concept of automotive industry. 

a) b) 

Figure 1.2 : An Example of how In-wheel Motor concept can revolutionize the vehicle design concept; a) 

Conventional 4 Wheel Drive Vehicle, b) New configuration using Wavecrest Adaptive In-wheel motors 

GM Hy-wire concept utilizes in-wheel motors. In this prototype everything that 

has anything to the with pushing the car is fitted inside the lower deck of the vehicle. 

This leaves a very large unused empty space ready to be re-utilized. 
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a) 

 
b) 

 
c) 

 
d) 

Figure 1.3 : An Example of how In-wheel Motor concept can revolutionize the vehicle design concept; a) 

& b) GM HyWire concept, c) & d) GM Autonomy concept 

Of course there’s more about this concept then meets the eye. Having the driving 

torque directly on the road by eliminating all the gearbox and transmission, power loss 

is decreased quite a big amount. Moreover, regenerative breaking can be utilized more 

efficiently, since each wheel can be commanded independently. This concept also adds 

to the safety of the vehicle since all of those assistive technologies mentioned above can 

be realized in one unit, the electric motor itself. Since it has the ability to generate 

negative torque, it has a natural ABS ability along with the others. 

Because of these reasons stated above this is quite likely to become a default 

configuration for future EV structures.  
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2 SRM 

The abbreviation SRM stands for ‘Switched Reluctance Motor’. Another widely 

used term for this motor is VRM; ‘Variable Reluctance Machine’ 

Reluctance motors were the earliest motors to be developed in the history. Their 

origins lie in the horse hoe electromagnet of William Sturgeon (1824) (Sturgeon ,W. 

:’Improved Electromagnet Apparatus’) and the improved version of Joseph Henry and 

in attempts to convert to ‘once only’ attraction for an iron armature into oscillatory or 

continuous motion. 

Many early designs were reluctance motors and these were strongly influenced by 

the steam engine, with electromagnets, armatures and current switching arrangements 

being regarded as the electromechanical equivalents of cylinders, pistons and valve 

gear. 

The first use of the term switched reluctance motor appears to have been by S.A. 

Nasar (1969) 

 

2.1 Basic Principles of SRM 

Variable-reluctance machines (often abbreviated VRMs) are perhaps the simplest 

of electrical machines. They consist of a stator with excitation windings and a magnetic 

rotor with saliency. Rotor conductors are not required because torque is produced by the 

tendency of the rotor to align with the stator-produced flux wave in such a fashion as to 

maximize the stator flux linkages that result from a given applied stator current. 

Although the concept of the SRM (VRM) has been around for a long time, only 

recently have these machines begun to see widespread use in engineering applications. 

This is due in large part to the fact that although they are simple in construction, they 

are somewhat complicated to control. For example, the position of the rotor must be 

known in order to properly energize the phase windings to produce torque. It is only 
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relatively recently that the widespread availability and low cost of micro and power 

electronics have brought the cost of the sensing and control required to successfully 

operate VRM drive systems down to a level where these systems can be competitive 

with systems based on dc and induction-motor technologies. 

Variable-reluctance machines are often referred to as switched reluctance 

machines (SRMs) to indicate the combination of a VRM and the switching inverter 

required to drive it. 

A reluctance machine is an electric machine in which torque is produced by the 

tendency of its movable part to move to a position where the inductance of the excited 

winding is maximized. This torque is called reluctance torque since it can be said it is 

out of a tendency to decrease the reluctance to its minimum. 

In a simple machine the coil inductance L varies with rotor position θ  as shown 

in Figure 2.1. Assume that the rotor carries a constant current. The positive motoring 

torque is produced only while the inductance is increasing, and that happens as the rotor 

approaches the aligned position. Passing the aligned position and entering a decreasing 

inductance profile, the attractive force between the poles produces a negative torque. If 

the machine rotates with a constant current in the coil, the negative and the positive 

torque impulses cancel, and therefore the average over a complete cycle is zero. To 

eliminate the negative torque impulses, the current must be switched off before entering 

the decreasing inductance zone. The ideal current waveform is therefore a series of 

pulses synchronized with the rising intervals. 



7 

 

Figure 2.1 : Variation of inductance and torque for constant current with rotor position 

 

Figure 2.2 : Variation of inductance current, flux-linkage, and EMF with rotor position 

 

The cycle of torque production associated with one current pulse is called a 

stroke. 

There are two main approaches for the mathematical formulation of the produced 

torque. They are linear and nonlinear analysis. 
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Linear analysis assumes that the inductance is independent of current (in fact they 

are dependent): that there is no magnetic saturation (see B-H curve in appendix for M19 

electric steel). 

Generally mutual coupling between phases is normally zero or small, and is 

ignored. The voltage equation for one phase is 

θ
ψωψ

d
dRi

dt
dRiv n+=+=  (2.1)
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Where v is the terminal voltage, i is the current, ψ  is the flux-linkage in volt-

seconds, R is the phase resistance, L is the phase inductance, θ  is the rotor position, and 

nw is the angular velocity in rad/s.  

The instantaneous electric power is 

θ
ω
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The rate of change in magnetic energy stored is 
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The mechanical power conversion enTP ω=  is what is after resistive loss and 

magnetic stored energy is eliminated from instantaneous power. Then the torque is 

θd
dLiTe

2

2
1=  (2.5)

This equation illustrates an important characteristic of variable-reluctance 

machines. Notice that the torque is proportional to the square of the phase currents and 

that as a result it depends on only the magnitude of the phase currents and not on their 

direction. Thus the motor drive which supplies the phase currents can be unidirectional, 

i.e., it is not required to supply bidirectional currents. Since the phase currents are 

typically switched on and off by solid-state switches such as transistors or thyristors and 

since each switch need only handle currents in a single direction, this means that the 

motor drive requires only half the number of switches (as well as half the corresponding 

control electronics) that would be required in a corresponding bidirectional drive. The 

result is a drive system which is less complex and may be less expensive. 
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Another fact about the machine is the mutual coupling between phases. In that 

point of view equation for all phases can be expressed as 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] 




⋅+




⋅+⋅=




+⋅=
θ

ωψ
d
dLi

dt
diLiR

dt
diRv n  (2.6)

For a regular pole winding SRM mutual couplings are generally quite 

insignificant with respect to self inductances (see Figure 4.33) therefore they are 

generally ignored. Besides the pole winding configuration generally requires that only 

one phase is active in a stroke, and this cancels the mutual couplings effects in torque 

production. There are efforts to utilize the contribution of mutual inductances. Those 

machines are called ‘mutually coupled winding SRM’. In this type of SRM generally 

two phases are excited at the same time an the torque produce is expressed as 

θθθ d
dLi

d
dLii

d
dLiT bb

b
ab

ba
aa

ae
22

2
1

2
1 ++=  (2.7)

Where ai  and bi are the current of phases a and b, aaL  and abL  are the self and 

mutual inductances. [MEKROW] 

Those linear approaches are valid only to a certain value, that the linearity 

between flux-linkage and current is cease to exist. Figure below shows an example of 

this situation.  

 

Figure 2.3 : Example of saturation phenomenon 

In this situation the torque can be calculated via 
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θ∂
∂

= c
e

WT  (2.8)

where cW  is the co-energy which is defined as in the figure 

 

Figure 2.4 : Co-energy 

2.2 Why SRM 

As it was stated before SRM is the simplest machine in the industry, especially by 

means of manufacturing. It has rotor and stator just from lamination. The rotor which is 

the moving part in the machine has no winding at all, this makes is quite easy to apply 

cooling since cooling the stationary stator is easy. This simplicity property was the main 

factor that leaded to the selection of producing this type as a prototype. 

In addition to that the machine is fault tolerant. As the number of phases increased 

even though one of the phases is gone it can still keep functioning. That property makes 

it a very preferable choice for aircraft and aerospace applications. 

Generally the necessity of electronic commutation was used to be taken as a 

disadvantage for this machine, but with today’s microcontrollers and power transistors 

it is no big deal at all. One thing about this matter is the fact that the rotor position has 

to be known. A mechanical rotary sensor can be used but a sensorless method would be 

much better. That part of this literature on SRM is still developing. 

Torque output of the SRM has big ripple. This could be a problem for a direct 

drive application generally. However as an in-wheel motor machine will be mounted to 
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a vehicle, and the equivalent inertia of this vehicle will make a huge fly-wheel effect 

and this will render this problem insignificant for the performance of the car.  
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3 PROBLEM DESCRIPTION 

3.1 Physical Constraints 

The motor in the focus of this material is in-wheel motor. It will be placed inside 

the wheel. Therefore, its overall dimensions are limited with the empty space available 

inside the wheel. The cross-sectional view of a standard wheel in Figure 3.1 may give a 

pretty good idea about the problem.    

 

Figure 3.1 : Sectional view of an automobile wheel 

Diameter-wise, because of the gnarled and wavy profile of the cross-section, 

generally for most of the wheel types only 80% of the diameter is available for 

insertion. There are efforts to increase this value with the help of new generation 

wheels. One of them is Michelin Pax system. This system was originally developed as 

zero pressure technology for puncture proof capability. However, because of its small 



13 

tire wall thickness and increased inside space made it quite popular for researchers 

working on in-wheel motors. The fact is that the diameter is everything in this ongoing 

research and since the torque produced is proportional to the radius, big space means 

higher torque values. 

For class-A, light weight cars, generally R13 and R14 size wheels are used by the 

manufacturers. These are equal to wheel diameters of 13” and 14”. In this case a 

standard R14 size wheel is used, and the available diameter for this wheel is measured 

as 29 cm. Therefore the outer diameter of the designed motor will be taken as such.  

Another constraint is the width of the available space inside the wheel. This is 

another parameter that effects the torque output of the system, since it constraints the 

maximum stack size that can be used. Moreover, strength-wise, that width represents 

the strength limits of the parts on vehicle’s side. Fastening on the knuckle of the car, 

where the wheel shaft is connected, must have been designed within a moment limit that 

it can carry. That moment is created by the loadings on the wheel (see Figure 3.2) and is 

directly proportional to the moment arm length, which in this case the shaft length. 

Therefore, when designing the shaft that maximum length must not be exceeded. 

Another issue about this length is that, it is an important parameter for the driving 

characteristics of the vehicle also. Changing it may result in higher scrub radius, and 

some other unexpected behaviors. 

In the end, under these circumstances it is decided that the shaft length will not 

exceed 16 cm.  

3.2 Mechanical Constraints 

 

Figure 3.2 : Forces acting on a tire 
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The motor in subject of design will be placed inside the wheel. Therefore, it must 

be able to withstand the every force that may act on a vehicle’s tire. These forces are 

visualized in Figure 3.2. 

 

Left side and right side forces are called lateral forces, while the brake force and 

the driving force are called longitudinal forces. These are important, because they are 

dependent. The magnitude of total traction a tire can supply is limited and is a function 

of vertical loading, road surface characteristic, and contact patch profile. This traction is 

shared between lateral and longitudinal tractions. If one of them, say longitudinal (such 

as in hard braking) uses up all the available traction, then since there is no lateral 

traction available the vehicle starts to skid towards the sides. This property is often 

visualized as a traction circle, but actually it is an offset ellipse.  

 

Figure 3.3 : An example gg data for a grand prix car 

Figure 3.3 shows the data captured in a grand prix car. On the figure traction 

circle can be clearly seen. A useful data that this figure reveals is that the tires have 

different traction capabilities during acceleration and deceleration. Because of the 

contact patch profile change during deceleration, braking has always a better 

performance. The data in the figure reads that for forward acceleration the traction value 

is upper bounded with 1g, whereas for braking this climbs up to 2g. Again for the 

cornering limits traction can be taken up to 2g also. 

Another important data source can be the data supplied by a major sensor 

company, Kistler.  The data supplied by the company belongs to a Class C car (mid- 

size) can be very useful to have an idea about the forces acting on a tire. 
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Figure 3.4 : Wheel load measurement (Kistler data) 

Figure 3.4 gives some very helpful information about the wheel load values may 

arise during driving. This data shows that on a bumpy road the vertical loads may climb 

up to10000N. And there are reasons to believe this is nothing at all. If you think about 

just a 4cm bump idealized in a triangular shape (to ease the calculations) may result in a 

vertical acceleration of 20000 m/s2 ( ≅ 2000 g) for the velocity of 100km/h, it would be 

much easier to think about multiple times this value, 10000N. Nevertheless, those 

conditions are impact conditions and handled different than static analysis. Therefore, it 

is not necessary to go for numbers like 50kN-90kN. 

Another thing that may help for getting a realistic number for limit condition is 

weight transfer that will occur during cornering. For a 1250 kg during a sharp cornering, 

the vertical load can easily climb 50% of the vehicle’s weight, which is around 6000 N. 

And if the road conditions are added to this number, to design the shaft for a vertical 

load of 12000N seems quite reasonable and safe. (safety factor=2) 

Yet again, that is not all. Another thing that needs to be handled is the moments 

that may be acting on the tyre. Figure 3.5 shows the moments acting in an ABS assisted 

braking.    
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Figure 3.5 : Breaking force distribution on ABS regulating process (Kistler data) 

The maximum moment is around 2200 Nm. This reveals another fact about the 

standard car; that is, since the ABS kicks in around that value, which means the slippage 

has just started, the maximum traction available is around that number also.  

This helps in getting a reasonable moment values that is caused by lateral forces 

that arise during cornering also. Since it is bounded by the maximum traction available, 

again that moment can not exceed 2200 Nm. 

As a result, design values for braking and cornering is taken as 3000 Nm. 

3.3 Electrical Constraints 

Although torque is a mechanical concept, the mechanism of torque production 

explained in this document is electro-magnetic-mechanic energy conversion. Therefore, 

the question of ‘how much torque and power’ will be handled in this section rather than 

in mechanical constraints section.  

3.3.1 Necessary Power Output 

There exist many resistive forces acting on a vehicle on the move. These are 

rolling friction, aerodynamic drag force, and internal frictional resistance in moving 
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parts such as gear boxes, differentials, and bearings. In this document only first two will 

be taken into account to calculate the necessary power to be developed per motor. 

Rolling friction depends on both tire and road surface characteristics, namely the 

interaction between these two. However, since the tires in focus of this material are 

conventional types, it can be said that it depends on the road type. 

Rolling friction acting on a tire can be calculated as the following; 

 

rtyreNroll FF µ._=  (3.1)

 

Of course, this is a quite simple approach, since there are also other more complex 

theories which include the effects of the rolling speed, and tire pressure as well. Rolling 

friction coefficients rµ values can be seen in Table 3.1. 

Table 3.1 :Rolling friction values 

Road Condition rµ  values 

Low rolling friction (good asphalt) 0.008 

Normal rolling friction 0.015 

Poor rolling friction  0.032 

Very poor rolling friction (loose sand) 0.15 

 

 Next step is to compute the air drag resistance on the vehicle. Formula for this is 

 
25.0 vACF vDairair ρ=  (3.2)

 

Again, DC  and vA  values for various models of vehicles already on the market 

can be seen in Table 3.2. 

Table 3.2 : Air drag coefficients 

Vehicle (Class) DC  vD AC

VW Polo (Class A) 0.37 0.636 

Ford Escort (Class B) 0.36 0.662 

Opel Vectra (Class C)  0.29 0.547 
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BMW 520i (Class D) 0.31 0.649 

Mercedes 300SE (Class E) 0.36 0.785 

 

Using these values together with some appropriate tire dimensions and vehicle 

mass, it is quite straightforward to calculate necessary torque and power as a function of 

road surface conditions and vehicle speed. A matlab script was written for this purpose 

(see Appendix) and the output comes out as the following figure. 
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Figure 3.6 : Power & Torque demand per wheel 

Looking at the Figure 3.6, one can easily state that under normal rolling friction 

conditions and using 185/75 R14 type tires, 2.5kW per wheel will be enough to reach a 

top speed around 90 km/h on a flat road. That also means that the in-wheel SRM has to 

be able to give a torque output of at least 35Nm at 800 rpm. The reason why 90km/h is 

selected as a target speed is that it’s top legal speed in most of the countries all around 

the world.  
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4 DESIGN PROCESS 

Design process includes mechanical design, electromagnetic design, and heat 

transfer design. These are placed successively in the chapter. However, reader must be 

aware of the fact that this work is iterative in nature. Although they are placed in order, 

that does not mean that the real design followed the same route; in fact it did not. Many 

times through out the process deciding on a dimension might need a parameter that can 

not be known exactly before that dimensioning part is over. Again, sometimes deciding 

on a parameter could render another part of the design inappropriate. Because of these 

reasons, it’s quite likely to find back and forth references in the following topics, which 

may be confusing to the reader. Whole design was converged into a set of parameters 

after several tries and iterations, but here it will only be placed the last one.    

4.1 Mechanical Design 

 

Figure 4.1 : 3D model of In-wheel motor 

The product of this project is not a commercial product. Not in any part of the 

documentation no effort has been made to sculpt the product into a more aesthetic look. 

The machine will be a first iteration of new designs, and most probably will be 
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subjected to many modifications partially or totally. Therefore the machine is designed 

quite ‘serviceable’. It means that to assemble and disassemble it will be easy. Again 

since it is an experimental early prototype no effort has be made to design it for 

minimum weight also. Front and rear disk will be aluminum alloy, while the two 

bushings inside can be out of thermal plastics of aluminum again. The shaft is carbon 

steel, and the magnetic laminations are silicon steel of M19 (M230-50A). 

4.1.1 Shaft 

Generally hub design is one of the most critical parts of the vehicles. They must 

withstand all the load conditions a vehicle can undergo. In this case it was the same.   

Shaft design for the motor does not differ too much from a classical hub shaft of 

vehicles on the market. On difference is that in general conventional hub shafts have a 

conical or tapered shape. This is optimum design in order to withstand the increasing 

stress towards the inner end of the shaft. In this case, that is not quite applicable, since 

stator of the motor is composed of laminations, and this stack type formation make it a 

complicated necessity to design each stack inside diameter separately. Other solution 

may be utilizing a collar on the shaft to cover the taper. Then again, that will increase 

the wasted space at the center, which will directly decrease the available space for coils. 

The proposed design can be seen in Figure 4.2. Since the motor under design 

process in the material is for experimental purposes, it is quite important to be able to 

assemble and disassemble it easily. Tapered bearings suits perfectly for this use (See 

Figure 4.10). In order to hold the bearings from moving along the force they will be 

under, this stair-like structure is proposed. Along the axis of the shaft there are four 

different diameters which were decided iteratively through out the design process in 

order to meet the desired strength characteristics under the dimensional constraints of 

the commercially available bearings on the market.  
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Figure 4.2 : Proposed Shaft Design for In-wheel Motor 

The grooves (or key ways) in the design are to transfer the torque to the shaft. 

This torque can be thought as breaking or driving torque. The inverse profile of these 

90° shifted grooves exist on the proposed stack lamination. Therefore, stator can slide 

on the shaft and can sit there locked on the rotation axis. Again four holes toward the 

outer edge of the shaft inside the grooves allow the wiring through. Those are placed 

toward the outer edge, because if they are placed inside, those will act as stress 

concentration areas and this can cause failure at this most stressed part of the shaft. 

4.1.1.1 Loading Condition 1 

Examining the Kistler data (see Figure 3.4), it can be stated that shaft must be able 

to withstand transverse loading more than 11 kN. This can be proved by from another 

point of view also. Thinking a 1250 kg vehicle in mind, according to driving conditions 

with the weight transfer phenomena, the transverse loading on one wheel can easily 

climb up to 40% of vehicle’s weight. Together with the road conditions that number and 

even a higher value seems logical to be taken into account. In this design this value will 

be taken 14kN. 

This force will be shared between the two bearings on the shaft. The question of 

‘with what percentage’ depends on the dimension of the wheel that will be used. 

Together with the width of the wheel rim, offset value of the wheel affects the value 

considerably.   
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Using a wheel type of 175/75 R14 with a negative offset value, sharing can be 

around 55% for the front side bearing. A finite element analysis was done using this 

loading condition. (See Figure 4.3) 

 

Figure 4.3 : Loading Condition 1 

The results of the FEA for loading condition 1 can be seen in Figure 4.4 below. 

The results consist of meshing on the part, translational displacement vectors, nodal 

Von Misses stress values, and principle stresses. 

Looking at the outputs, shaft stands safe for this loading condition. Some regions 

on the shaft have fine mesh whereas other regions have coarser. This is because the 

stress concentration areas needed to be analyzed much more carefully. Therefore, 

grooves, holes on the grooves, neck regions where diameter changes have locally finer 

mesh structure. Maximum Von Misses stress value occurs near the large neck towards 

the end of the shaft and around the groove end, as it was expected. However, the value 

is not dangerous. For the shaft to be failed, maximum Von Misses stress value has to 

exceed the yielding stress of the material used. In this case, maximum stress is given as 

147 MPa, whereas the yielding stress of carbon steel can be between 200-600 MPa. 

Therefore, it is safe at this stage. 

Another important parameter that has to be taken into account is the displacement. 

This value is important because the air-gap thickness in the design is 0.4mm. The 

displacement value at the mid-region of the shaft shows how this thickness changes and 

if there is any contact. In this case, the mid-region displacement is around 0.04, ten 

times smaller than the air-gap thickness. That is satisfactory. 
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a) 

 
 

b) 

 
c) 

 
d) 

Figure 4.4 : FEA Results for Loading Condition 1; a) Mesh Structure, b )Displacement, c )Von Misses 

Stress, d) Principle Stresses 

4.1.1.2 Loading Condition 2 

Another important parameter on the design is the moments that will act on the 

shaft due to cornering. (See Figure 4.7 a)) That moment is due to the available lateral 

traction at the moment. In this case, full traction availability is taken into account. This 

is the case the vehicle is cornering at a speed that causes the vehicle to skid and there is 

no longitudinal acceleration (If it skids outward the corner it means there is no 

longitudinal traction available anyway). For a performance car this acceleration can go 

up to 2g (even higher in Formula1 cars) (see Figure 3.3). This information and 

remembering the weight transfer phenomenon that was mentioned before can lead to 

coming up with a moment value of 2000Nm. Figure 4.5 represents this condition.  
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Figure 4.5 : Loading Condition 2 

The results of the FEA for loading condition 1 can be seen in Figure 4.6 below. 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 4.6 : FEA Results for Loading Condition 2; a) Mesh Structure, b) Displacement, c) Von Misses 

Stress, d) Principle Stresses 

Von Misses stress data shows that the shaft is still in safe region. The maximum 

stress occurs is 323 MPa. Likewise, the displacement data gives a value of 0.099 mm 

around the interested region. This is safe also. 
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4.1.1.3 Loading Condition 3 

The last loading condition considered is combination of all previous loadings plus 

brake or drive torque depending on the longitudinal traction available at the moment. 

The question is which one to use for the analysis; the brake torque or the drive torque. 

Looking at the gg data (see Figure 3.3), the reader may think that it should be the brake 

torque that should be considered, since generally the available longitudinal traction at 

breaking is higher than driving. However, in this case it’s a little different. Due to 

structure of the in-wheel motor, brake torque depends on the torque production 

capability of the motor, and has nothing to do with the available traction. Even if a 

mechanical disk brake is added to ensure safety, that will act through the rotor, and the 

motor can participate this, at most, with its maximum torque output. Therefore, the 

force acting on the shaft groove will be due to this maximum torque. 

 
 

a) 
 

b) 

Figure 4.7 : Loading Condition 3; a) A car cornering, b) Loading on the Shaft 

Here, the target design is 35-40 Nm at 800 rpm. Considering the torque versus 

rotational speed characteristic of the SRM, and with more current boosting for a short 

time, it’s reasonable to think about a maximum brake torque of 110Nm. 

This value was reflected as distributed forces acting on the groove walls in the 

FEA. Due to the nature of the software program that has been used, although there 

exists no contact on a region 20mm wide at both ends of the groove walls, the forces 

distributed on the entire wall surface. This has to be remembered while analyzing the 

results of the FEA. 
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a) 

 
 

b) 

 
c) 

 
d) 

Figure 4.8 : FEA Results for Loading Condition 3; a) Mesh Structure, b) Displacement, c) Von Misses 

Stress, d) Principle Stresses 

Looking at the results it can be clearly seen that the neck region is still dominating 

by means of stress concentration. Maximum Von Misses stress is 328 MPa and this 

occurs around the neck not on the groove corners. This magnitude of torque is quite 

harmless for the design. 

4.1.2 Bolts 

Another parameter to decide is the bolt diameter that will be used to clamp the 

front disk, rotor laminations, and rear disk together. It can be fatal because they will be 

under shear loading due to drive or brake torque. Here, since it’s almost clear that target 

output torque of the machine won’t be enough for emergency braking and it will be 

needed to add mechanical means, a disk break also. In that case, bolts have to withstand 

this torque’s effects. 

To be able to claim that the bolt is safe it must satisfy the following condition; 
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n
y

2
σ

τ <  (4.1)

where, τ  is the shear stress on the bolt, n is the safety factor, and yσ  is the yield 

stress of the bolt’s material. 

 

Figure 4.9 : Bolting 

Making the calculation accordingly (see Appendix) M10 size bolt will be a safe 

choice. 

4.1.3 Bearing Selection 

As it was mentioned before, since easy assembling and disassembling is a desired 

property in this context, tapered bearings were the natural choice for this mission.  

 

Figure 4.10 : Tapered Bearing 

Tapered bearings can take thrust loading in one direction; in fact it is a necessity 

for them in order to operate properly. Therefore, to ensure that motor can take lateral 

force in both directions, two of them are used in opposite orientation in face-to-face 

configuration. 

Looking at the loading specifications it was seen that bearings in the range of 

interest by means of their dimensions were already over-safe to use. Therefore, the main 

criteria for the bearing selection were the dimensional constraints that came out of the 

shaft design process, namely the inner bearing diameter and maximum width. 

F

F

db
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In the end, accordingly SKF 32008-X and SKF32016-X types of bearings were 

chosen to be used in the design. (see Appendix) 

4.2 Electromagnetic 

4.2.1 Dimensioning 

Flux linkage-voltage relation for a flat-topped phase current can be obtained, by 

neglecting the resistive voltage drop, as; 

t
iLL

dt
dV u

s
a

u

ua )()( −
=

−
=≅

λ
λλλ  (4.2)

and time t  can be expressed in terms of stator pole and rotor speed as: 

n

st
ω
β

=  (4.3)

If we, for simplicity, define two new parameters as the following;  

u
a

s
a

s L
L

=σ  (4.4)

and  

u
a

s
a

u L
L

=σ  (4.5)

where u
aL  is the ‘unsaturated phase of aligned’ inductance, s

aL  is the ‘saturated phase of 

aligned’ inductance, and uL  is the ‘unaligned’ inductance. Now, applied voltage can be 

re-expressed in those terms as;  

)1(
us

s
a

s

n iiLV
σσβ

ω
−=  (4.6)

Flux-linkage for the aligned position can also be expressed in different terms such 

that; 

2
ph

sphspph
s
a

T
BDLTBATiL βφλ ====  (4.7)

Here, spA  is the stator pole area, L is stack depth, B is the flux density at the aligned 

position.  
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 There is also another parameter which may help in the design process; 

D
imT

A ph
s π

2
=  (4.8)

sA is called the specific electric loading, here m stands for the number of phases 

conducting at the same time, which in this work is always 1. 

 Then comes the most important part; the power developed out of this machine: 

VimkkP ded =  (4.9)

ek  is the efficiency, it will be taken as 0.85 in this calculation, and dk is the duty 

cycle which can be expressed as; 

360
ri

d
qPk θ

=  (4.10)

Combining these, the power developed can be rearranged to give 

rsded LNDBAkkkkP 2
21=  (4.11)

where 

120

2

1
π=k  (4.12)

and 

us

k
σσ
112 −=  (4.13)

Having completed the derivations of the necessary equations, now it is time to 

start the iterative calculations. There are a few parameters that need answering. 

However, the problem with them is that they can not be known exactly unless the 

design is over. Therefore, those parameters must be guessed, this is what makes this 

process iterative and tricky in nature. 

Parameter 2k is related to the different characteristic inductances of the machine. 

The literature says that in general this parameter can be bounded as the following; 

75.065.0 2 << k  (4.14)

In this case it is taken as 0.65. 

Another parameter that needs initial guessing is the specific electric loading. 

Again it is stated that it is usually in the range of 

9000025000 << sA  (4.15)
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This is where a lot of modifications have been made. At first it feels like having a 

high specific loading is the best, but after a few iterations it turns out that, for the space 

available inside the motor, a low value of sA  fits better. It is simply a question of how 

many number of turns you can fit inside for a specific design current. Then a value of 

24000 is found the best.  

The duty cycle dk can be taken 1, since the current conduction angle iθ  is 

supposed to be maximum 15° for 6/8 machine. The reason behind this is as such; 

theoretically torque is produced only during an increasing inductance profile and this 

can occur only while the overlapping angle between the stator and the rotor increases 

(or decreases). Then another parameter comes on the scene, and that is stroke angleε . 

That can be defined as the phase shift between stator phase strokes. It is actually the 

angle swept during the time between a stator phase is excited and when the time comes 

to shut it and excite the other one. Stroke angle can be calculated as follows; 

rqP
πε 2=  (4.16)

where 
2

Psq = . In this case ε  is 15°. 

 This may lead the discussion into a new conclusion. Since for a SR machine with 

its rotor and stator pole numbers are known, its stroke angle is fixed also. This stroke 

can be applied only during increased inductance and that puts a lower bound on the 

stator arc dimension as the following;    

[ ]
r

s
s

PP
2

2min πβ =  
(4.17)

In this design of SRM with a 6/8 configuration [ ] �15min =sβ . Now it is necessary 

to come up with a number for sβ . It is a dimension that needs to be guessed 

unfortunately. Guessed and then iteratively correct again and again until it is decided 

that it converged to an optimum number for the particular design.  

There are publications on this matter, and they generally concentrated on a the 

ratio called ‘Stator Pole Enclosure’. Stator pole enclosure is defined as the ratio of sβ  to 

the pole gap, which is the angle between two successive poles. Then;  

EnclosureStatorPole
Ps

s
πβ 2=  (4.18)
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Krishnan’s empirical results haven been used in selection of proper 

StatorPoleEnclosure value. He claims that generally the best values lie between 0.35-

0.45. 

Through out the iteration many values have been tested, but for some reason, 

which will be clearer to the reader in the next few paragraphs, in the end a value of 0.30 

was decided. Then sβ  becomes 18°. 

Having decided the values of sβ , sA , and 2k , it is all down the hill from now on, 

if stator bore diameter D is known. D  can be calculated using equation 4.11. 

Accordingly then, stator pole thickness becomes; 








=
2

s
sp DSinw β

 (4.19)

Back-iron thickness for stator and rotor can be limited using some observation. In 

Figure 4.15 it can be seen that the flux lines fork into two and then enter their path way 

on back-iron band. Therefore the lower limit should be the width of the flux line, 

namely the stator pole thickness spw . 

spsysp wbw 5.0>>  (4.20)

  

sprysp wbw 75.05.0 >>  (4.21)

After the iteration it is decided that for both syb  and ryb  the best value is spw62.0 . 

Then comes the calculation of stator and rotor pole heights and they are as the 

following; 

( )
2

2 sys
s

bDD
h

−−
=  (4.22)

and 

( )
2

22 rygo
r

blDD
h

−−−
=  (4.23)

Another very important dimension that has to be decided on is the rotor pole arc. 

One can recall that during the shut down phase it is important to kill the phase current 

before it passes to the negative torque region. Here the rotor pole arc play an important 

role because for a particular inductance, stator resistance, and DC link voltage, it 

constraints the maximum amount of time for this killing phase. Therefore, it has to be 
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decided carefully to avoid undesired negative torque spikes at the designed speed. The 

lower and the upper bound for this dimension are as the following. 

)( frsrs θβββ +≤≤  (4.24)

Here frθ  is called the fall-angle, and calculated as ; 

fnfr Tωθ =  (4.25)

fT is the fall-time in seconds and can be calculated by solving the differential 

equation; 

i
dt

dL
dt
diLiRV sdc

)()( θθ ++=−  (4.26)

The reason why the applied voltage is minus can be found in chapter 2 and section 

3.3 of this chapter. Solving this equation for t and with pIi =)0(  ( pI is the peak 

current), the fall-time is found as; 
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IR
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where aτ  is in seconds and; 

s

a
a R

L
=τ  (4.28)

To be able to do the calculations value of stator phase resistance is needed, and for 

that it is necessary to know the exact coil dimensions. Therefore it is time to go on with 

that. 

 

Figure 4.11 : Coil dimensioning 
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Looking at the Figure 4.11, it is clear that for a cylindrical coil structure maximum 

coil width can be; 

[ ] 002.0
2
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2
2tan(max −−+= ss
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coil
wD

b
P

w π  (4.29)

2 mm gap is left a safety tolerance and for heat transfer purposes. Accordingly, 

upper safety gap height for the coil can be calculated as the following; 

002.0)
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
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−= sp
coilcs

w
wDDh  (4.30)

This is necessary for the winding not to interfere with the air-gap. 

 The number of turns per phase for a given power and specific current can be 

calculated via equation 4.8, but that is not necessarily the number that can fit the space. 

Proposed layering can be seen in the figure below. 

 

Figure 4.12 : Height of coil 

Maximum number of turns per phase that can be fitted inside the motor is given 

as; 
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Having phT and using length-wise resistance, mwireR _ (Ω/m), of the magnet wire in 

use sR can be calculated as; 

( ) phspsmwires TwLRR 2_≅  (4.32)
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From this calculations with the maximum 120=phT turns, and 3
_ 106.2 −×=mwireR  

Ω/m, sR is calculated as 0.06 Ω. 

Going back; fnfr Tωθ =  can be calculated around 5° for a speed of 900 rpm. 

According to the equation rβ  is decided as 22°. 

4.2.2 Maxwell FEA & Simulation 

Having completed the dimensioning, the next step is to make the necessary 

simulations and the analysis for this new designed machine. Maxwell equations and the 

virtual work method are the theory behind this. Although the Maxwell equations are 

quite important and useful, there exists a problem that it is not always possible to 

guarantee to have solution. Moreover, as it was stated before, SRM has a quite 

nonlinear nature and this makes it extra hard to come up with an analytical solution. In 

order to overcome this problem numerical methods and finite element tools are utilized 

many times. 

Maxwell 2D of ANSOFT is the software that is used for this purpose through out 

this work. The main procedure of this part of the works is as the following; 

1. Drawing the structure in the drawing module, 

2. Assigning the material properties of the materials in the simulation, 

3. Assigning the boundaries and the properties of them, 

4. Creating a parametric solution table to be followed, 

5. Running the simulation 

6. Post processing to analyze the results 

  

 
a) b) 

 
c) 

A

A
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C B
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Figure 4.13 : SRM's three distinctive rotor positions for PhaseA; a) Aligned , b) Unaligned ,c)Aligning 

just begins 

Designed motor is 6/8 type, which means it has 8 rotor poles, and 6 stator poles. 

As it was mention before generally SR motors have a symmetric topology and this 

symmetry brings the advantage of periodicity. In this case, since the machine has 8 rotor 

poles, it has 45° periodicity (or 22.5° half-periodicity). Therefore, a parametric solution 

that covers the rotor positions of a 45° range will be just enough. For instance, this 

means that the simulation will start from aligned position of phase A and rotor will be 

rotated step by step following the parametric table, and it will come to a stop phase A 

comes to aligned position with the next rotor pole. 

In the previous topic base current was designed as 45A, so it is necessary to make 

sure that the parametric solution covers at least two times of this value for all phases. In 

this case, it means 90A. 

Before running the simulation, it is important to make sure that the mesh structure 

is suitable for the purpose. In Figure 4.14 reader can see an example mesh used in 

Maxwell2D. That structure consists of around 8000 triangles and the more than half of 

these triangles are in the thin air-gap. That is because the air-gap plays a major role in 

the torque production. In the electromagnetic conversion most of the energy is stored 

within this thin band. This will be clearer when the results are available. 
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Figure 4.14 : An example of Maxwell2D mesh for SRM model 

Below in Figure 4.15 one of the result of the simulation can be seen. It is the flux 

distribution for aligned and just overlapping positions at 45 A with phase A excitation. 

a) b) 

Figure 4.15 : Flux line distribution with 45A phase A excitation; a)Aligned , b) Overlapping begins 

The results are coherent with the theory, and show that torque production is 

possible. Of course, there exist some flux paths not obeying the mainstream. That was 

also expected and this is called ‘the leak’. That is one of the factors which degrade the 

efficiency of the motor. It can be diminished, but never can totally be killed. 
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Next results are the flux density (B) and the flux intensity (H) field graphs. 

(Figure 4.16 and Figure 4.17) 

a) b) 

Figure 4.16 : Flux density (B) with 45A phase A excitation; a)Aligned , b) Overlapping begins 

They are both reasonable also. Looking at B graph, it can be seen that maximum 

values are within the coil region and air-gap. Also for the one in which the overlapping 

begins, contact zone has the maximum values. Flux path just finds a narrow way 

through, and flows in. Since the cross sectional area at the moment is small for the flux 

magnitude, B increases significantly in that zone. Another thing is that the maximum 

value of the B is given as 1.9 Tesla in the result. That shows that taking a value of 1.7 

Tesla for B during the process of dimensioning was not that bad at all. 

And for the flux intensity H, it can be seen that the maximum magnitudes are 

within the air-gap band, where the permeability is small. This is another prove of why 

air-gap is so important in the simulation.   

a) b) 
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Figure 4.17 : Flux intensity (H) with 45A phase A excitation; a)Aligned , b) Overlapping begins 

The next plots in this section have been generated by Matlab using the simulation 

outputs. First one is the flux linkage plot. There, it shows the flux linkage versus phase 

current A for different rotor positions between 0°-45°, namely the two aligned positions. 
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Figure 4.18 : Flux Linkage vs. Current for phase A between 0°-45° 

Saturation effect is quite obvious in the graph. After the current value of 15A 

medium starts to saturate and the inductance decreases significantly. 

As for the inductances, results are problematic. Theoretically, around 0 and 45 a 

flat inductance region should exist. This is dead region for torque production and can be 

used to kill the current in the coils before decreasing inductance profile starts. In this 

case the profile is like a triangle and there is no dead zone. This would probably will 

cause a instantaneous torque drop while trying to kill the current. 

The mutual inductance can be seen in the next figure also. The magnitudes show 

that, as it was stated theoretically, they are insignificant with respect to self inductances. 

Therefore even there exists a small time interval when both phases are excited the 

mutual torque produced out of it will be very small. 

Unaligned 

Aligned 0°-45° 

22.5° 
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Figure 4.19 : Self Inductances (Laa) vs. Rotor Position for currents 0-90 A 
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Figure 4.20 : Mutual Inductances vs. Rotor Position (Lab) for currents 0-90A 
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Torque generated is the most important result of all. After all, that is the main 

concern of this material. Figure 4.21 gives the results of the simulation for this concern. 

It says that, at 45A it is possible get torque value of 35N, and at 90A it’s able to 

supply a torque of 70Nm. It’s also clear that for two positions, aligned and unaligned, 

torque production is 0 Nm.  
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Figure 4.21 : Torque vs. Rotor Position for currents 0-90 A 

The general appearance of the graph may look quite like what the theory says. 

However, there is one thing that may not be comforting; there is no constant torque 

region at all. Actually, anyone who looks at the inductance profiles can tell this is 

expected. Inductances are ever-changing, there is no constant region. This means partial 

derivative of the inductance with respect to rotor position is never zero. Therefore, it is 

reasonable in that sense. The point is this unwanted because it will increase the torque 

ripple. However, in this case since the machine will be mounted to vehicle of 1250 kg, 

and the equivalent inertia of this mass most probably will render this ripple insignificant 

in the end.   

It is possible to see the continuous torque production in Figure 4.22. Continuous 

torque production is achieved by exciting all three phases with a phase difference. That 

phase difference is given byε  the stroke angle. In this case it is 15°.  
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 That magic moment, when one phase is shut down and the next one must be 

turned on, can be measured from the graph. It’s around 22°  
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Figure 4.22 : Continuous torque production (45 A) 

Another output of this simulation is the Torque-Current-Angle surface. (Figure 

4.23) This surface shows the torque as a function of current, and rotor position. Cutting 

this surface with various torque planes gives the Torque Contour graph.(Figure 4.24) 

These two data can be valuable in order to see the capabilities of the motor. For 

instance, looking at the Torque-Contours, it can be clearly seen that around 5° only it is 

necessary to climb to a current level of 90A, or before 5° it is almost impossible to get a 

torque of 50 Nm. Moreover, this data is used in offline schemes that are used to control 

SRM. [1]   

dive 

ripple
Average 
torque 
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Figure 4.23 : Torque-Current-Rotor Position surface 
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Figure 4.24 : Torque contours for various torque values 
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4.2.3 Simulink Model 

Simulation results of the previous section shows many useful information. 

However, they are the product of Maxwell2D magnetostatic solver. Generally it is 

required to know transient behavior of the motor, so that one can observe the current, 

derivative of the current, back-emf, and voltage profiles during the operation. 

A simulink model was prepared for this purpose.(Figure 4.30) The main idea 

behind this sort of ‘unique ’. System does not use a full analytical solution, but instead it 

uses the benefits of the FEA solution that has been created by the Maxwell 

magnetostatic solver. It utilizes look-up tables to embed those data in to the system and 

the rest is built on the equivalent electric circuit model of SRM. In a way, it can be 

called a hybrid model.  

First monomer necessary to build the block model was a module that would give 

the inductances for given rotor position, and the phase currents. A 4-D look-up table 

was used for this. The block uses the 4 dimensional data from matlab workspace which 

was imported from Maxwell2D parametric solution table. 

 

Figure 4.25: 4D Look-up table structure for inductance used in simulink 

If the equation 2.xxx is unfolded, it will look like this; 
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(4.33
) 

Therefore, those inductance matrixes have to be constructed by using the inductance 

monomer. Figure 4.26 shows the way to do this. One thing to keep in mind is that, 

Maxwell2D gives the inductance results per meter and uses Amper-Turn values in FEA. 
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Inductance values have to be corrected accordingly, by multiplying with stack depth of 

the motor and the number of turns per phase. 

 

Figure 4.26 : Inductance matrix structure used in simulink 

Torque can be read the same way the inductance is read. (See Figure 4.27) 

 

Figure 4.27 : 4D Look-up Table Structure used in Simulink for Torque 

 

Figure 4.28 : Block Structure Used to Simulate Switching  

Working principles of asymmetric half bridge was explained before in this 

chapter. When the switches of the phase opens, current drops to zero, and the diodes do 

not let it become negative. This can be achieved by using a saturation block in the 
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simulink. However, since this current is integrated from di, that can not be driven to 

zero as it happens in real life. Therefore, the effects of this unwanted derivative of the 

current have to be canceled out. The compensation module for this can be seen below in 

Figure 4.29 

 

Figure 4.29 : Block structure for AH -bridge diode characteristics compensation 

Entire system looks like as follows; 

 

Figure 4.30: Simulink block diagram of full system 

Doing the simulations with a current controller driving a current 45A in 

trapezoidal profile the following results are obtained: 
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Figure 4.31 : Controlled phase currents 
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Figure 4.32 : Torque Profile 

Torque results reveal the amount of ripple. It is more than 50%. However the 

maximum torque is around 35Nm and the average can be found as 32 Nm. These are 

coherent with the Maxwell results. The effect of ripple on the vehicles velocity can be 
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seen inFigure 4.36. It has actually no effect because of the high equivalent inertia of the 

car. 
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Figure 4.33 : Inductance Profiles (Self & Mutual) 
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Figure 4.34 : Back EMF 
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Figure 4.35 a) Theta in degrees b)Omega in rpm 

Moreover, vehicles model can be embedded into this simulation in order to get 

some idea about the performance. Below performance speeding performance of a 1250 

vehicle can be found. The torque reference for this test has be shaped so that for first 30 

seconds the current will be tripled and after the phase is over it will drop the double for 

10 seconds and in the end it will reach the base current. 

0 10 20 30 40 50 60
-20

0

20

40

60

80

100

120

140

V
el
oc
it
y 
(km
/h
)

time

 

Figure 4.36 : Speeding curve of a hypothetical vehicle 

  

4.3 Inverter-Driver Proposal 

There are many different inverter topologies that are being used for SRM. Some 

of them are; Asymmetrical Half Bridge Inverter, Miller Inverter, Six Switch Converter, 



49 

Buck Converter, Split Capacitor Converter. All the topologies have different advantages 

and disadvantages, but the most utilized scheme is Asymmetric Half Bridge structure.  

 

Figure 4.37 : Asymetric Half Bridge Inverster 

Even though it can not be argued that it uses the minimum number of power 

switches (which may be important to feasibility), it certainly capable of many actions 

may be needed to drive the machine.  It can energize and de-energize the winding for 

sure. It permits soft switching, so a zero voltage free wheeling state can be obtained. 

For this project, this structure has been selected. As for the half bridge modules, 

SKF 300 GAR 123D and SKF 300 GAL 123 D are chosen.  

4.4 Heat Transfer 

Through out the iterative process explained in dimensioning section, it turned out 

that the maximum current that can flow through the windings is the Achilles’ heel for 

this struggle. High value of sA  gives higher torque, but then requires high i or phT  for 

this. To be able to fit a high number of turns for the winding, the diameter of the coil 

wire (magnet-wire) must be small. Then the ampacity (current capacity) drops down. It 

needs a careful examination, but the main idea is to be able to push the ampacity as 

much as possible. 

No detailed heat transfer analysis has been applied for the design. Instead, 

standard rules of National Electric Code (NEC 2001 of NEMA (National Electrical 

Manufacturers Association)) were followed. These standards are compiled for every 
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possible branch of electric engineering and contain a chapter on motor winding 

regulations also. Their focus is to guarantee the safety, durability and the reliability of 

electrical systems. 

A software, WireTronic, was used to get necessary information on the magnet-

wire that will be used in phase windings. This program gives the diameter, isolation 

coating thicknesses, and the current capacity (ampacity) of the magnet-wire. 

It may be a good idea to give some information about the magnet-wire also. The 

term "magnet-wire" is used to describe solid conductor wire (usually copper), insulated 

with a polymer based film. The films are designed to provide a uniform dielectric 

coating while taking up as little space as possible. There are a variety of film insulations 

available for magnet wire offering different characteristics. The primary classification 

factor for magnet wire is "Thermal Class." Thermal class is the recommended 

maximum continuous operating temperature for the insulation. Standard thermal classes 

range from 105 degrees Celsius up to 220 degrees Celsius. The Institute of Electrical 

and Electronics Engineers (IEEE) define thermal classes of insulation by upper 

temperature limits at which the untreated insulation will have a life expectancy of at 

least 20,000 hours. 

Table 4.1 : Thermal Classes 

Thermal 

Isolation Class 

Temperature Limit 

(°C) 

Insulation Coatings 

O 80 cotton, paper, silk 

A 105 oleoresinous and formvar enamels, varnish-

treated cotton, polyurethane 

B 130 polyurethanes, polyurethane-nylons 

F 155 Polyurethane-155 

H 180 asbestos, mica, silicone varnishes, and 

polyamide, Teflon 
Source:  "McGraw-Hill Encyclopedia of Science & Technology", Vol. 10 LEP-MES, 8th Edition, 

(c) 1997, ISBN 9-07-911504-7 (set 
The basic ambient temperature rating point of most motors is 40°C. A motor rated 

for 40°C is suitable for installation where the normal surrounding air temperature does 

not exceed 40°C (104°F). This is the starting point. When the motor operates at full 

load, it has a certain temperature rise, which adds to the ambient temperature. For 
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example, U frame motors originally had Class A insulation and a maximum temperature 

rise of 55°C. In a 40°C ambient temperature, this gives an average winding temperature 

of 95°C. That's 40°C (ambient) plus 55°C (rise). Manufacturers use the 10° difference 

between 95°C and 105°C rating of Class A insulation to handle the hot spot allowance. 

Motors generally use these components for insulation; 

� Enamel coating on the magnet wire. 

� Insulation that comes to the conduit box. 

� Sleeving where leads connect to magnet wire. 

� Lacing string that binds the end turns of the motor. 

� Slot liners (in the stator laminations) that protect the wire from chafing. 

� Top sticks that hold the wire down in place inside the stator slots. 

� Varnish that manufacturers dip the completed assembly in, prior to baking it. 

The dipping varnish seals nicks or scratches that may occur during the winding 

process. The varnish also binds the entire winding together into a solid mass so 

it doesn't vibrate and chafe when subjected to the high magnetic forces. 

 

Since 45A is the rated current for this design, suitable conductor size must be 

selected for that current value. Ampacity tables generally give the current capacity of a 

single wire at a specific temperature. However, when the there is a bundle or a group of 

wires closely placed, that values decreases. Same applies for the temperature also. 

Ampacity table data are generally for ambient temperature of 20-35 C. If any of these 

conditions above is different in the particular design correction factors have to be used. 

 Those corrections factors are called derateing coefficients. In this design derating 

will be necessary only for the number of conductors. In the winding of a stator phase 

there will be 120 wires closely packed inside the motor. Their current capacity will be 

certainly lower than that of a single wire. Derating coefficient for a bundle increases 

with the number of wires in the bundle, but as the number of wires exceeds 25 the 

coefficient converges to a value of 0.45. In this design, it means that if a current of 45A 

is the target, a magnet wire capable of carrying 100A will do just fine. As for the 

temperature, there is no need for derating, since the ambient temperature for the 

designed motor will be more or less between 25 - 40 C, which are almost the values the 

NEC data are derived for. 

 Before jumping into the wire ampacities, there is one more thing to consider. This 

machine is a three phase machine, but never any of the two windings are excited at the 
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same time. According to the rotor position the phases are ignited one by one 

successively. This means that wires are not conducting with a 100% duty ratio. In fact, 

their duty ratio is %33,3 for a changing period of motoring cycle. This should somewhat 

relief the constrains on the ampacity. If not the duty ratio is used to re-rate the wire 

ampacity, at least RMS current can be used. RMS current for this 6/8 SRM is; 

  

3
pp

rms

I
q

I
I ==  (4.34)

 

As a result, a magnet-wire capable of carrying A60
3

100 ≅  is what is needed for 

the design.  

Wiretron can give the ampacity for a selected wire, along with its dimensions like 

diameter, insulation thickness, and its resistance value as Ω/m. Using the software 

magnet-wire of  9AWG has chosen for the motor. Some dimensions and properties can 

be seen in the table below. 

 

Table 4.2 : Chosen  Magnet-wire Properties 

Property Value Unit 

Wire size 9 AWG

Diameter (nominal)  2.9058 mm 

Resistance 0.002598 Ω/m 

Insulation type Heavy -- 

Insulated diameter 2.9896 mm 

Ampacity (40°C) 62.5 A 

 

This current limit is for safe use under continuous working conditions. However, 

it does not mean that this value can never be exploited. For short periods of time current 

driven can be doubled or tripled. Moreover, if any active cooling exist, motor can 

definitely be promoted to a higher power rank. 
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5 CONCLUSION & DISCUSSION 

In this work an experimental in-wheel motor prototype has been designed. The 

necessity emerged from a plan to work on electric vehicle’s control with 4-wheel 

independent drive configuration. Since it is much easier to use an already existing 

infrastructure, the proposed design had to be compatible with the class A cars on the 

market. The final product perfectly fits into a standard R14 wheel, and can be easily 

mounted to the knuckle of every class C car on the roads today. In addition the 

prototype will be able withstand the forces that were foreseen during the design. This 

means that with a proper control scheme, everything is ready to test it on the road. 

The prototype’s power can be argued to be its minus. Results of the simulink 

simulation show that it accelerates slower than a mediocre commercial IC engine 

vehicle. However, that performance criteria was never part of the design. Even it was, it 

might not be solved, at least with this configuration of SRM. A careful eye would catch 

it; the torque production zone, the laminations’ stack thickness id only a 33% of the 

available space inside the wheel. In order to boost the design into a more dexterous 

machine, that problem has to be solved.  

During the experimentation many aspects which were deliberately ignored in this 

thesis can be observed and considered as a data for the next design iteration. These are: 

acoustic noise level of the motor, effect of variation of air-gap thickness due to forces 

acting on the tyre and performance change of motor due to heat dissipation issues. 

In the end, motor was designed and the simulations tell that the design 

specifications and the outputs are coherent and comparable. By the time this thesis is 

being written, the parts of the motor are being produced and will be ready for 

experimenting in a week.  

Under these circumstances it can be counted as a successful and fruitful project. 
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6 APPENDIX  
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6.1 3D Model of the Motor 

 

Figure 6.1 : Isometric View of Motor (Front) 

 

Figure 6.2 : Isometric View of Motor (Rear) 
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Figure 6.3 : 3D Cutaway cross-section of full system 

 

Figure 6.4 : 'Motor only' 3D cross-sectional view 
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Figure 6.5 : Detailed cross-section 
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6.2 SPECIFICATIONS OF THE MOTOR 

Table 6.1 : Motor's specifications 

Number of Stator Poles 6 

Number of Rotor Poles 8 

Stator Pole arc sβ  18° 

Rotor Pole arc rβ  22° 

Air-gap thickness gl  0.4 mm 

Stack length L  50 mm 

Bore diameter D  200 mm 

Shaft diameter sD  45 mm 

Rotor outer diameter 290 mm 

Back-iron thickness 22mm 

Turn/phase 120 

Coil wire dimension 9 AWG 

Base current  45 A 

Lamination material M19 steel

Phase resistance 0.06 Ω 

Copper Loss (@base current) 120 W 

Average torque (900 rpm) 33 Nm 

Continuous Power  3.2kW 

Peak Power 9 kW 

Insulation Class B 
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6.3 B-H CURVE 
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