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ABSTRACT 

 

Visual tracking has emerged as an important component of systems in several 

application areas including vision-based control, human-computer interfaces, 

surveillance, agricultural automation, medical imaging and visual reconstruction. The 

central challenge in visual tracking is to keep track of the pose and location of one or 

more objects through a sequence of frames. 

 

Implicit algebraic 2D curves and 3D surfaces are among the most powerful 

representations and have proven very useful in many model-based applications in the 

past two decades. With this approach, objects in 2D images are described by their 

silhouettes and then represented by 2D implicit polynomial curves.  

 

In our work, we tried different approaches in order to efficiently apply the 

powerful implicit algebraic 2D curve representation to the phenomenon of visual 

tracking. Through the proposed concepts and algorithms, we tried to reduce the 

computational burden of fitting algorithms. Besides showing the usage of this 

representation on boundary data simulations, use of the implicit polynomial as a 

representative of the target region is also experimented on real videos. 
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ÖZET 
 
  

Görsel izleme, görmeye dayalı kontrol, insan-makina arayüzü, gözetleme, 

tarımsal otomasyon, medikal imgeleme gibi birçok uygulama alanındaki sistemlerin 

önemli bir bileşeni olmaya başlamıştır.  Görsel izlemedeki temel sorun çerçeve dizisi 

boyunca bir veya birden çok nesnenin duruşunu ve yerini izleyebilmektir.   

 

Örtük cebirsel 2 boyutlu eğriler en güçlü şekil temsil yöntemleri arasındadır ve 

model tabanlı uygulamalardaki faydaları son yirmi yıllık süreçte kanıtlanmıştır. Bu 

yaklaşımla 2 boyutlu imgelerdeki nesneler silüetleriyle tanımlanıp 2 boyutlu örtük 

polinom eğrileriyle temsil edilirler.    

 

Bu çalışmada, güçlü 2 boyutlu örtük cebirsel eğriler yöntemini görsel izleme 

olgusu içerisinde etkin uygulamaya çalışan farklı yaklaşımlar denenmişitr. Önerilen 

kavramlar ve algoritmalar yoluyla, eğri uydurma algoritmalarının hesaplama 

karmaşıklığı azaltılmaya çalışılmıştır. Bu yöntemin kullanımı sınır veri 

benzetimleriyle gösterilmiş ve örtük cebirsel eğrinin hedef bölgenin tanımlanmasında 

kullanıldığı gerçek video deneyleri de gerçeklenmiştir.    
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1 INTRODUCTION 
 
  Implicit algebraic curves have proven very useful in many model-based 

applications in the past two decades. Implicit models have been widely used for 

important computer vision tasks such as single computation pose estimation, shape 

tracking, 3D surface estimation and indexing into large pictorial databases [1-6]. 

These models become important especially when the objects to be modelled are free-

form. When such objects are in motion, the lack of specific features, such as points or 

lines, that can be identified easily  at different times and in different locations can 

prevent accurate estimations of the rotational and translational velocities of the object. 

In such cases, sets of boundary data points can be used to construct “implicit 

polynomial” models of the object in any given position. Such models will then imply 

non-visual points that can be used for tracking purposes.  

 

Visual tracking can be described as the process of determining the location of 

a feature in an image sequence over time. Examples include tracking cars in an 

intersection via a traffic camera, or tracking the head of a computer user with a web-

cam. Another possible application is tracking multiple small features of interest, such 

as corners of an object, in attempt to determine its 3-dimensional geometry.  

 

The target to be tracked might be a complete object (e.g. a person) or a small 

area on an object (e.g. a corner). In either case, the feature of interest is typically 

contained within a target region. Ideally, a tracking algorithm would be able to locate 

the object anywhere within the image at any point in time. However typically only a 

limited region of the image is searched (usually the same size as the target region). 

Reasons for this are efficiency (especially necessary for real-time applications) and 

the fact that there might be many other similar-looking objects in the image. 
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Figure  1-1: Case : Tracking the object without position prediction might be           
successful, Case 2: Tracking without position prediction will fail 

 
The intuitive approach is to search within a region centered around the last 

position of the object. But as Figure 1 illustrates, this approach will fail if the object 

moves outside the target range. There are many possible reasons why the object might 

not stay within this region:    

 

• The object is moving too fast 

• The frame rate is too low 

• The searched region is too small 

 

These problems are related to each other and could be avoided by ensuring a 

high enough frame rate for example. But given other constraints, these problems are 

often unavoidable. 

 

In addition, even when the target can be located, it seldomly appears the same 

in all images. The appearance of the same target is continuously affected by changes 

in orientation, lighting, occlusions, and imperfections in the camera. So essentially, 

the true location of the target is very difficult to observe accurately under the usual 

circumstances. In summary, two major problems have been identified: 

 

1. The object can only be tracked if it does not move beyond the searched region. 

2. Various factors such as lighting and occlusions can affect the appearance of 

the target, thus making accurate tracking difficult.  
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The initial goal of this thesis research was to apply the implicit algebraic 2D curve 

representation framework to the problem of visual tracking. On this road, we have 

proposed 3 different approaches, all of which are aiming to reduce the computational 

burden of fitting algorithms and find solutions to the problems of visual tracking 

stated above.  

 

  

2 IMPLICIT POLYNOMIALS 

2.1 Literature Overview 

  Implicit polynomials have found wide application areas in computer vision 

being among the most effective and leading shape representations for complex free-

form object modeling and recognition. Although the underlying theory, ie. algebraic 

geometry has long been around, implicit polynomials could not find effective 

application areas until 1980's. Since then, independent research in a number of fields, 

including computer graphics, geometric modeling, and computer vision, has 

accumulated valuable insights into various properties of implicit polynomials 

important for solving practical problems. Research in geometric modeling brought to 

bear parametric to implicit conversion techniques which, in essence, is an elimination 

theory problem, and relative strengths of parametric and implicit representations were 

understood. Although computer graphic works proved that implicit polynomials can 

play an important role in visualization, their strengths, such as their interpolation 

property for handling missing data, smoothing property against noise and 

perturbations, Bayesian recognizers, and their algebraic invariants, made them much 

more suitable for computer vision, where the idea created an object representation and 

recognition paradigm.  

 

2.2 Geometry of the 2D Plane 

 

Many geometric terms will be used throughout the thesis, and this section is 

devoted to the explanation of these terms and their geometric interpretations. An 
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arbitrary coordinate system {  is chosen, in order to investigate the properties 

of a geometric shape (object). A point in 2D space is defined as 

}YXO ,,

),( yxr = .  Another 

coordinate system { }O X Y, ,  is related to the original coordinate system by coordinate 

transformations. As coordinate system and object coordinates are related to each 

other, a change in objects coordinates can be counted as a coordinate transformation. 

These coordinate transformations consist of Euclidean, affine, and projective 

transformations. 

 
 At this point, we need to give more formal definitions of the Euclidean, affine, 

and projective transformations. An Euclidean transformation is a rigid motion of the 

coordinate frame.  Thus it does not allow any scaling or skewing, and only rotation 

and translation are allowed.  For rotation, we need only one parameter which is θ  

whereas for translation we need two translation parameters tx  and t  along the x-axis 

and y-axis, respectively. Under Euclidean transformation the distance of two points 

and the angle between two lines are preserved. Equation 2.1 defines the Euclidean 

transformation.  

y
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A slight generalization of the Euclidean transformation is the similarity 

transformation. Similarity transformations include a uniform scale factorλ , to the 

Euclidean transformation defined above. Equation 2.1 defines the similarity 

transformation.  
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An affine transformation has 6 parameters and is a more general 

transformation then the Euclidian transformation. An affine transformation does not 
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preserve angles; therefore the coordinate axes are not necessarily perpendicular. 

Parallelism and the ratio of the length of a pair of line segments are preserved under 

affine transformation. Equation 2.3 defines the affine transformation. 
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Here, it is assumed that the following matrix in Equation 2.3 is non-singular. 

 
 

                        
a b
c d ≠ 0                                             (2.4) 

 
 
The most general linear transformation is the projective transformation.  The 

projective plane is constructed from the Cartesian plane by introducing homogeneous 

coordinates ′ ′ ′X Y Z, ,  for the plane points. 

 

x X Z= ′ ′/ ,   y Y Z= ′ ′/ ,  Z ≠ 0 
 

where x, y are the Cartesian coordinates of a point. This construction is augmented by 

adding points at infinity (improper points) for which at least one of ′ ′X Y,  is non-zero 

and ′ =Z 0. The plane so obtained is called the projective plane.  In this plane, 

proportional points ( , , )′ ′ ′X Y Z  and ( , , )kX kY kZ′ ′ ′  correspond to the same point, and 

points which are not proportional are different points.  Equation 2.5 defines the 

projective transformation of the projective plane in three variables. 
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because of the proportional point equivalence, projective transformations have 8 

parameters instead of 9.   
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In modeling image plane correspondences, the coordinate transformations 

defined above are mostly used. Different camera geometry assumption result 

modeling the image plane correspondence with different transformations.   

 

2.3 Implicit Polynomial Model 

 
Implicit polynomial (IP) curves and surfaces are mathematical models for the 

representation of 2D curves and 3D surfaces. An implicit algebraic curve is defined as 

the zero set of an implicit polynomial in 2 variables x and y. A more formal 

representation of a 2D IP curve of degree n is illustrated below 
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Here  is a homogenous binary (i.e., two variables) polynomial (form) 

of degree r in x and y. An nth degree IP surface has (n+1) (n+2)/2 coefficients. In 

vector notation the above equation can be represented as: 

),( yxH r

 

                                (2.7) ,),( AYyxf t
n =

 

 

where 
 
               (2.8) [ ]tnaaaaaaaA 002112001 1000 ... =
  
and  
 

                                  (2.9) [ ]tnnn yxyxxyxyxyxY 1322 ......1 −=
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Algebraic curves of degree 1, 2, 3, 4… are called lines, conics, cubics, quartics 

…etc. Quartics, have drawn much attention and their properties have been extensively 

studied.  

 

Objects in 2D images are described by their silhouettes and, in the thesis, then 

represented by implicit polynomial curves. Given { }Kmyx mm ,...1),(0 ==Γ  a set of 

data points along an object boundary, an implicit polynomial is said to represent this 

object boundary if every point Γ0  is sufficiently close to the zero set 

{ 0),(),( ==Ζ yxfyxf } of the implicit polynomial. Given such a data set , an 

implicit polynomial representation is obtained by implementation of a fitting 

algorithm such as 3L fitting or linear programming as discussed in Section 2.1. 

Γ0

 

2.4 Implicit Polynomial Fitting 

 
 The general IP fitting problem can be set up as follows. Given a dataset 

{ Kmyxp mmm ,...1),(0 ===Γ }, find the nth degree implicit polynomial  that 

minimizes the average squared distance from the data points to the zero set  of the 

polynomial. When the geometric distance from a point to the zero set of an implicit 

polynomial is minimized, an iterative process is needed because there is no explicit 

expression for this distance. This formulation requires non-linear optimization. 

Several geometric distance approximations have been used, such as the first order 

approximation, which speeds up the computation considerably, but iterative non-

linear optimization is still required.  

),( yxfn

Ζ f

 
The idea behind using implicit polynomials in vision is that boundaries of 

objects can be approximated as piecewise smooth surfaces and curves in three-

dimensional and two-dimensional cases, respectively. The approximation amounts to 

estimation of polynomial coefficients, which minimize the mean square distance from 

the data points to the polynomial defined by those coefficients. Bounded and 

unbounded fitting differ in some respects.   
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Fitting an unbounded polynomial to a set of data points is in essence an 

unconstrained optimization problem. The optimization criterion is the minimization of 

the total distance of the data points to the polynomial. At this point, the following 

problem arises: “Can the total distance of the set of data point D, to a polynomial p be 

described by means of a closed form expression?” 

 

As a first approximation, the distance term can be equated to Equation 2.10.  
 

  
               ( )
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∑

∈Dyx
yxp

00 ,
00

2 ,                          (2.10) 

 
Yet this is not an adequate measure of the distance. A better measure 

developed by Taubin [4] is given in Equation 2.11. 
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Where ( )00
2 , yx∇  stands for the norm of the gradient squared. Taubin 

approximates this expression with the following; 
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The objective function is minimized by generalized eigenvector fitting 

techniques. After this, an iterative algorithm improving the polynomial fit is applied. 

In bounded fitting, in addition to these, the necessary and sufficient conditions for 

boundedness are taken into account. 

 

Recently linear approaches to curve fitting have started to emerge, which 

overcomes many drawbacks of the previous algorithms. The objective of all linear IP 

curve fitting techniques is to approximate a given dataset with a polynomial as closely 

as possible by minimization of their algebraic distance. The 3L (see section 2.4.1) 

algorithm provides such a linear solution, however suffers from the global stability 
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and is not robust to handle fair amount of noise or missing data. A ridge regression 

regularization method can be used to boost the stability and robustness of 3L fitting 

algorithm. 

 

The line decomposition detailed in [2], provides an important simple geometric 

interpretation of the underlying geometry for a given implicit polynomial. Polynomial 

decomposition expresses the curve as a unique sum of products of (possibly) complex 

lines. Each real intersection of these lines, i.e. related-points, undergoes the same 

motion with the curve, leading to a pose estimation algorithm. This representation 

also allows the formulation of new invariants based on certain covariant 

characteristics such as conics centers because they map under an affine 

transformation. More detailed concept of related-points and their application in our 

work is presented in Chapter 2.4.2.    

 

2.4.1 3L Fitting 
 

As explained in Section 2.1, 3L Fitting is an explicit, linear, least squares 

fitting depending on whether the points are inside or outside the original data 

procedure that is implemented by augmenting each data point of a data set by a pair of 

synthetically generated points at a distance of c to either side of the data point in a 

direction perpendicular to the data surface or curve. An implicit polynomial is then fit 

to the entire data set, where the values assigned to the synthetic data points are +c or  

–c, points, respectively. The original data points are assigned a value of 0. This 

procedure is illustrated further in the following paragraphs.  

 

The polynomial  is an explicit function at all values of x, y  and 

usually fitting formulations take into account only 

),( yxfn

0Γ . We can get fast, stable, 

repeatable implicit polynomial surface fits by fitting the explicit polynomial  

to a portion of distance transform  of 

),( yxfn

),( yxd 0Γ . 3L fitting, besides the original data 

set  uses a pair of synthetically generated data sets 0Γ +Γc  and −Γc  consisting of points 

at a distance c to either side of . Note, 0Γ +Γc  and −Γc  are the level sets of  at 

levels +c and –c, respectively (Figure 2.4) [8]. As a result, estimating the vector of 

),( yxd
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coefficients A is the minimization of 0Γ , the Euclidean distance transform determines 

a point in  and another one in +Γc −Γc which are at a perpendicular distance c to each 

side of the original curve .  0Γ

 

                                 
Figure  2-1 Level set geometry in 2D 

 

 

Then estimating the vector of polynomial coefficients A is minimization of 

MA-d AYyxdK

m
t

mmm or )),((3

1
2∑ =

−  where [ ]KYYYM 321  ...    = , Ym is Y evaluated at 

pm=(xm,ym) and d as a vector whose mth component is d=(xm,ym), the distance of the 

point pm to (1). The least squares solution to this problem is: 0Γ

 
                          (2.13)  dMMMA TT 1)( −=

 

There are several advantages of introducing the two level sets as additional con-

straints. First, by fitting a polynomial to more data then just 0Γ , it makes the fitting 

more stable and consistent with regard to transformations of data sets, and more 

robust to noisy or missing data. The level sets bring in the additional benefit of 

forcing singularities away from the vicinity of the data set, as singularities occur at 

local extreme or saddle points, and use of +Γc  and −Γc  discourage the occurrence of 

singularities within the synthetic data ribbon. Second, as the fitted polynomial f(x, y) 

is an approximation to the distance transform d(x, y), given a new data point  

 is an approximation to the Euclidean distance from  to . 

Finally, since the implicit curve representation has been turned into the problem of 

studying the properties of the explicit polynomial f(x, y), the full arsenal of linear 

)ˆ,ˆ(|)ˆ,ˆ( yxfyx )ˆ,ˆ( yx 0Γ
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vector space theory and algorithms becomes applicable, and implicit polynomial 

curves can be further studied and manipulated in completely new ways. 

 

 
 

Figure  2-2  Comparison of least squares and the 3L fitting methods for fitting 
an implicit polynomial model for a given dataset. 

 

In Figure 2.3, the horizontal axis represents the Data Set and the vertical axis 

represents the IP Model Fitting Error [8].  In the graph, B is the point where the true 

data set lies. Nonlinear optimization and least square 1L fitting methods trying to 

reach to this solution, stop at point A with a zero set Z(fLS), which could be close or far 

away from the true data because no stability or robustness mechanism is employed. A 

is in a region which is very sensitive to the perturbation in the data such as noise, 

missing data or transformations. A small change in the position of A can result in a big 

change in the fitting error . However, point C, which is the solution of 3L fitting, 

is in a much more stable region. Even though its zero set Z(f3L) could be more far 

away from the true data set than other nonlinear or 1L algorithms, it is very robust to 

changes in true data.  is very small regardless of the change in the position of C 

[8].    

a∆

c∆
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2.4.1.1 Globally Stabilized 3L Fitting 
 

As discussed above, 3L fitting method improves the performance of nonlinear 

optimization and least square fitting algorithms. However, it can not provide globally 

stabilized fits for many cases and are not robust against perturbational effects like 

noise.  The reason for this is the MM t  matrix of the products of the monomials to be 

almost singular with some eigenvalues much smaller than the others. Small 

eigenvalues do not add to the fit around the dataset and cause extra open branches. A 

way to overcome these problems is to apply ridge regression regularization to the 3L 

fitting method as proposed in [9].  

 

Ridge regression is a computationally efficient method for reducing data 

collinearity and the resulting instability. By improving the condition number of 

MM t , this method moves the extra curves to infinity and a stable closed bounded fit 

is obtained. To apply the method, a Dκ  term is added to equation 2.13 as: 

 

         (2.14)  dMDMMA TT 1)( −+= κ
 

In equation 2.14, κ  is the ridge regression parameter. It should be increased 

from 0 to higher values until a stable closed bounded curve is obtained. The diagonal 

 matrix which is the other term added to the original equation has the same number 

of terms as the coefficient vector

D

A . The entries of  can be obtained by: D

 

                
)!(

!!
kj

kjD kjii +
= +β                                          (2.15) 

 

The index of each diagonal element in  depends on the variation of the 

degrees of x and y components in equation 2.8 as 

D

1
2

)1)((
+

+++
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kjkjki .  Also 

kj+β  is chosen to be: 
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When expanded:  
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                                                                  .      .      . 
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l
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lln yx )( 22β  

 

where  are the elements of the normalized object data and n is the degree of 

the resulting IP. In our simulations, radial distance normalization[9] is used, which is 

a linear process. Normalized data points are found by dividing every data 

point, , with the average radial distance of the set 

N
lll yx 1),( =

N
lll yx 1),( = ∑ +

l
ll yx

N
2/122 )(1  after the 

center of the data has been shifted to the origin. Inherent Euclidean invariance 

properties of fitting methods are also preserved by this method.  

 

2.4.2 Decomposed Quartics and Related Points 
 

It has been shown in [2,3,10] that algebraic curves can be decomposed as a 

unique sum of line factors, the intersection of which are examples of related-points. 

Considering an accordingly decomposed monic quartic curve:  
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The intersection point { }ppp yxd ,=  of any two non-parallel line factors, such 

as  and , can be defined by the matrix/vector 

relation:  

ijij
T
ij kylxXL ++= qrqr

T
qr kylxXL ++=

                 (2.19) )(
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In general, any two 4th degree curves defined by a monic  and a 

monic 

0),(4 =yxf

0),(4 =yxf  will be affine equivalent if for some scalar , 4s
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 Where A  represents the affine transformation. Two corresponding related-

points of the affine equivalent curves defined by 0),(4 =yxf  and 0),(4 =yxf , such 

as  and },{ ii yx },{ ix iy , respectively, will be defined by the condition that 
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 Any two corresponding related-points will satisfy the following relation 

according to the equations 2.18 and 2.19. 
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for a real scalar  and  monic line factors ∏=
=

q

i qiq ss
1

q XLT
qi , with   or 2. 

Hence, under an affine transformation

4=q

A , the implicit polynomial defined by equation 

2.17 will imply  
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γγ             (2.23) 

 

A unique monic polynomial that is affine equivalent to , is equal to  ),(4 yxf
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Each  of , and each corresponding ∏q
yx ),( ),(4 yxf ∏q

yx ),(  of an affine 

equivalent ),(4 yxf , will have the same number line factors. Moreover, according to 

equation 2.21, all of these factors will map to one another under affine 

transformations. Hence,  and ),(4 yxf ),(4 yxf  will have the same number of 

corresponding related-points, as defined by the intersections of their corresponding 

line factors. These related points can be determined from the IP equation and are 

suitable for the analysis of affine and rigid curve motion.  

 

 

  

3 FILTERING TECHNIQUES 

3.1 Kalman Filtering 

In 1960, R.E. Kalman published his famous paper describing a recursive 

solution to the discrete-data linear filtering problem [11]. Since that time, due in large 

part to advances in digital computing, the Kalman filter has been the subject of 



 16

extensive research and application, particularly in the area of autonomous or assisted 

navigation. 

 

Initially, the filter was designed for the application in spacecraft navigation, but 

its general nature allows it to be applied to many fields. The introduction to Kalman 

filtering by Simon [12] also mentions applications in instrumentation, demographic 

modeling, manufacturing, fuzzy logic, and neural network training. 

 

An example of a study of the applicability of Kalman filtering methods to 

navigation systems is provided by Brock & Schmidt [13]. They point out some of the 

advantages and problems associated with using this type of filtering for navigation. 

These also apply to visual tracking.  

 

The main problem with Kalman filtering that Brock & Schmidt identify, is that 

statistical models are required for the system and the measurement instruments. 

Unfortunately, they are typically not available, or difficult to obtain. The need for 

statistical models is also pointed out as a problem in many other papers [12, 13, 14]. 

From these papers, the two most commonly recommended methods of approaching 

this problem are: 

 

• Employ an adaptive algorithm which adjusts these unknown parameters 

(such as the measurement noise variance) after each time step based on 

the observed measurements. This also accounts for processes with 

changing parameters.  

 

• Perform an offline analysis of the system and measurement instruments 

prior to running the process (system identification).  

 

It should be noted however that the second approach will not always be 

applicable if the process can not be observed directly. In other words, if the 

measurements in the off-line analysis also contain errors, the process can not be 

accurately profiled. 
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It was recognized early on, that Kalman filtering does not stand alone as a 

unique technique for prediction. For example the work of Sorenson [15] points out the 

similarities between the Kalman filter, Bayesian and maximum likelihood estimation.   

3.1.1 Theory 
 

The idea behind Kalman filtering is modelling sequential data. In the context of 

visual tracking, images taken at discrete time steps form a sequence. The relationship 

between each of the images is based on a physical model of the scene.  

 

Figure 3.1 gives a typical representation of a state-space model. The nodes, 

for  represent the observable output data (or measurements), and  are 

the hidden nodes which are states of the dynamical system. The assumption is that the 

nodes are vectors of real values and the probability model is Gaussian.  

ty

Tt ,......,0= tx

 

 
Figure  3-1  A representation of a state-space model 

 

Each  contains an  mean vector  and an  tx 1×m x̂ mm×  covariance matrix , 

where  is the number of parameters that describe the state. A simple example of the 

parameters necessary for tracking are the  and  coordinates as well as the u  and  

velocity components. The  nodes are represented by an 

P

m

x y v

ty 1×n  vector which is 

nothing but the observed position of the target in the context of visual tracking. This 

method of describing the state through a finite set of parameters is known as the state-

space model (SSM). 
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This state space approach yields recursive formulas which describe each current 

estimate as a function only of the previous estimate and the new data sample. Thus 

only the last estimate must be stored. In addition to eliminating the need for extensive 

data storage, the Kalman filter is computationally more efficient than non-recursive 

techniques (e.g. Weiner filter) which require inversion of large matrices.  

 

As mentioned earlier, the state nodes are related to each other through the 

physics underlying object motion. The transition from one state to the next could be 

described in many ways. These different alternatives can be grouped into linear and 

non-linear functions describing the state transition. Although it is possible to handle 

either of these transition types, the standard Kalman filter employs a linear transition 

function. The extended Kalman filter (EKF) allows a non-linear transition, together 

with a non-linear measurement relationship. For the standard Kalman filter, the state 

transition from t  to  can be expressed with the equation 1+t

 

                                    ttt wAxx +=+1                                       (3.1) 

 

where A  is referred to as the state transition matrix and  is a noise term. This noise 

term is a Gaussian random variable with zero mean and a covariance matrixQ , so its 

probability distribution is 

tw

 

                                                                       (3.2) ),0(~)( QNwp

 

The covariance matrix Q  will be referred to as the process noise covariance 

matrix in the remainder of the thesis. It accounts for possible changes in the process 

between  and  that are not already accounted for in the state transition matrix. 

Another assumed property of  is that it is independent of the state .  

t 1+t

tw tx

 

 It is also necessary to model the measurement process, or the relationship 

between the state and the measurement. In a general sense, it is not always possible to 

observe the process directly (i.e. all the state parameters are observable without error). 

Some of the parameters describing the state may not be observable at all, 

measurements might be scaled parameters, or possibly a combination of multiple 



 19

parameters. Again, the assumption is made that the relationship is linear. So the 

measurement  can be expressed in terms of the state  with  ty tx

 

 ttt vHxy +=                                   (3.3) 

 

where H is the nm×  observation matrix which relates the states to the measurements. 

Much like  for the process,  is the noise of the measurement. It is also assumed 

to have a normal distribution expressed by  

tw tv

 

                                                                       (3.4) ),0(~)( RNvp

 

where R  is the covariance matrix referred to as measurement noise covariance 

matrix.  

 

3.1.2 Computational Origins of the Filter 
 

A priori state estimate given knowledge of the process prior to step , and a 

posteriori state estimate given measurement at step  is defined as   and , 

respectively. Then a priori and posteriori estimate errors are defined as  

k

kz k −
kx̂ kx̂

 

                                                                                        (3.5) −− −≡ kkk xxe ˆ

                                            kkk xxe ˆ−≡                                             (3.6) 

The a priori estimate error covariance is then  

 

     [ ]T
kkk eeEP −−− =                                                                                                                                                                                      (3.7) 

 

And the a posteriori estimate error covariance is 
 

     

          
[ ]T

kkk eeEP =                                                                                                                     (3.8) 

 

 

 

 

   

Writing the a posteriori state estimate  as a linear combination of the a 

priori estimate  and a weighted difference between an actual measurement  and 

kx̂

−
kx̂ kz
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a measurement prediction  is the main block of Kalman filtering equations. The 

resulting equation is given below. 

kxHˆ

                                 

                                      (3.9) 
residual

kkkk xHzKxx )ˆ(ˆˆ −− −+=

 

 The residual part of the equation 3.9 is also called the measurement 

innovation. The residual is a kind of measure of disagreement between the predicted 

measurement  and the actual measurement . If these two components are in 

full agreement then the residual becomes zero.  

−
kxH ˆ kz

 

 The matrix K  is called the Kalman gain or blending factor and has the role of 

modulating the update of the state vector  into  by appropriately weighting the 

measurement vector . Kalman gain tries to minimize the a posteriori error 

covariance (equation 3.8). One form of the resulting 

−
kx̂ kx̂

kv

K  that minimizes equation 3.8 is 

given by  
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                                        (3.10) 

 

 According to equation 3.10, the Kalman gain K  weights the residual more 

heavily as the measurement error covariance R  approaches zero. 

 

                 (3.11) 1

0
lim −

→
= HK kRk

 

 The Kalman gain weights the residual less heavily, as the a priori estimate 

error covariance  approaches zero.  −
kP

 

  0lim
0

=
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k
P

K
k

                                   (3.12) 
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 Another interpretation of the equation 3.9 is that, the actual measurement  is 

trusted more while the predicted measurement  is trusted less as the measurement 

error covariance 

kz

−
kxH ˆ

R  approaches zero. On the other side, the actual measurement  is 

trusted less while the predicted measurement  is trusted more as the a priori 

estimate error covariance  approaches zero.  

kz

−
kxH ˆ

−
kP

 

 Kalman filter keeps the first two moments of the state distribution, hence 

 

     [ ] kk xxE ˆ=                                        (3.13) 

    [ ] k
T

kkkk PxxxxE =−− )ˆ)(ˆ(                          (3.14) 

 

 The state distribution is a normally distributed Gaussian with the mean of a 

posteriori state estimate and the variance of the a posteriori estimate error covariance 

 

   [ ] [ ]T
kkkkkkk xxxxExENzxp )ˆ)(ˆ(,(~)|( −−          (3.15) 

                    ),ˆ( kk PxN=  

   

3.1.3 Discrete Kalman Filter Algorithm 
      

There are two types of equations in the Kalman filter algorithm: time update 

equations and measurement update equations. The time update equations can be 

thought of as predictor equations which produce a priori estimates of state and error 

covariance for the next time step. Measurement update equations, however is 

responsible from the correction of the priori estimates to obtain an improved a 

posteriori estimate by using the new measurement [16].  

 

 Figure 3.2 shows a roughly representation of the general algorithm of Kalman 

filter. The equations involved in these two stages will be explained below.  
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Figure  3-2  The general Kalman filter cycle 
 

 
 The time update stage has two distinct equations, which are projecting the 

state and covariance estimates forward from time step 1−k  to . Those two 

equations are as follows 

k

 

 

                                                   (3.16) 1ˆˆ −
− = kk xAx

                                              (3.17) QAAPP T
kk += −

−
1

 

 Measurement update equations, on the other hand have three distinct 

equations, in which the computation of the Kalman gain, comes first. After the 

measurement is taken at time step  a posteriori state estimate is calculated according 

to the new measurement. Finally, a posteriori error covariance estimate is obtained 

again by using the Kalman gain  calculated at the first step. Three equations of the 

measurement update stage is as follows 

kK

k

kK

 

                                                               (3.18) 1)( −−− += RHHPHPK T
k

T
kk

                                    (3.19) )ˆ(ˆˆ −− −+= kkkkk xHzKxx

                                             (3.20) −−= kkk PHKIP )(

 

 The process is repeated after each time and measurement update pair 

recursively. The complete algorithm of the Kalman filter is shown in figure 3.3. 
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    Figure  3-3  The complete Kalman filter cycle with all the equations 

 

3.2 Particle Filters 
 

Object tracking in our context is viewed as an optimal filtering problem of the 

state equations under a Bayesian framework. If the state equations are linear and the 

posterior density is Gaussian, the Kalman filter which we have used in previous 

sections provides an optimal solution [18]. However, where these assumptions do not 

hold, there exist no analytical solution and approximations have to be made. One 

example is the Extended Kalman filter (EKF) which assumes a Gaussian posterior 

density and adopts a first order Taylor expansion to provide local approximation 

within the current state. In practice where the state equations are highly non-linear and 

the posterior density is non-Gaussian, the EKF may give a large estimation error. An 

alternative algorithm is the approximate grid-based filter. The computational cost of 

the grid-based filter increases exponentially with the state dimension, thus limiting its 

widespread application.  

 

  Particle filters have become a useful and important tool for the task of object 

tracking due to the applicability to a wide range of cases. The basic idea behind 

particle filters is to approximate posterior probability of the states using a large 

number of samples (particles) with associated weights. These particles and weights 

are then updated sequentially along with the state evolution when new observations 
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become available. They make no assumption of Gaussian or linear behavior and are 

therefore more practical than its alternatives.  

 

3.2.1 Theory 
 

A state space model is defined by the following state and measurement 

functions  

 

                                                ),( 11 −−= kkkk wxfx                            (3.21) 

                                                   ),( kkkk vxhz =                                  (3.22) 

 

Where  is the time index and  is a non-linear function describing the 

evolution of the state with independent and identically distributed process noise, . 

is a non-linear function mapping the state space to the measurements with 

independent and identically distributed noise, .  Letting 

k kf

1−kw

kh

kv ),......1,(:1 kizz ik ==  be the 

measurement sequence and assuming the prior distribution  is known, the 

posterior probability can be obtained sequentially by prediction and updated as 

follows: 

)( 0xp
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The above equations are the optimal solution from a Bayesian perspective to the 

non-linear state estimation problem. One limitation is that the evolution of the 

posterior density can not in general be determined analytically. Thus, some 

approximation must be made. Particle filters approximate the posterior probability by 

a set of support points (particles)  with associated weights : Nixi
k ,.....1, = i

kw
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Where (.)δ  is an indicator function. The filtered state is taken as the mean of 

the posterior density. The weights are decided using importance sampling [21]. An 

importance density  is identified from which samples are drawn. The 

weights are then defined as being proportional to the ratio of  to 

. It has been shown [22] that if the importance density is selected 

appropriately and is only dependent on the current observation, , and the past state, 

, the weights can be updated as follows: 

)|( :1 kk zxq
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Two implementation issues should be considered. The first is that of 

degeneracy, where after some time steps, only one particle has significant weight. 

Thus considerable computational effort will have been spent updating particles whose 

contribution to the approximation of is negligible. Re-sampling can be 

used to eliminate those particles with small weights thereby focusing on particles with 

large weights. Re-sampling generates a new particle set by sampling with replacement 

from the original set  with . Here 

)|( :1 kk zxp

},......1,{ Nixi
k = i

k
i
k

j
k wxx == )Pr( j  is the particle 

index after re-sampling. The parent relationship is denoted, . The 

weights are reset to  as the samples are independent and identically distributed 

and are drawn from a discrete density function.  

ijparent =)(

N/1

 

The second issue is how to choose the importance density. A convenient choose 

is to use the prior, . A particle filter with this importance density and re-

sampling step is called a sequential importance re-sampling (SIR) filter [23]. 

However, as the importance density is independent of the current measurement, the 

state space is explored without knowledge of the observations, which makes the SIR 

filter sensitive to outliers. Recently the Auxiliary SIR (ASIR) filter [24] was proposed 

to obtain a more reliable importance density. It is defined as: 
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Where  can be the mean of  conditional on  or an associated sample. 

In addition Bayes’s rule shows that: 

i
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Considering the re-sampling step presented earlier, the particle  is assigned a 

weight a proportional to the ratio of the right-hand side of equation 3.28 to equation 

3.27 as: 
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The ASIR filter generates particles from the sample at time step  

conditional on the current observation, which can be closer to the true state compared 

with those obtained using the SIR filter. If the noise of state evolution is low, even 

with relatively high measurement noise, ASIR is less likely to be sensitive to outliers 

as  is well characterized by .  
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4 FILTER PARAMETER EXPERIMENTS 

4.1 Determination of Kalman Filter Parameters 
 

One problem of predictive filter identified in the literature is the requirement for 

prior  knowledge about the process and the measurement procedure. Specifically, the 

values of the process and the measurement error covariance matrices are needed. 

Before going into the details of how those parameters are determined, the 

measurement procedures for center of mass coordinates and orientation of the target is 

presented.  
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4.1.1 Orientation Measurement 
 

In the case of closed-bounded quartics, we have two pairs of complex-conjugate 

lines, i.e.  , the intersection points of which are real. For tracking, 

we will be using the centroid of the bounding curve and these two related points.  For 

the robust calculation of the orientation of the free-form curve, we follow [17] and 

form two vectors originating from the center of mass to the two related points. The 

sum of these two vectors is a new vector that is quite robust against noise throughout 

the whole trajectory. The angle between this sum vector and the positive x-axis is 

defined to be the orientation of the curve.   

*
4142 LL = *

4344 LL =

 
 

 
Figure  4-1  Object with the center of mass, two related points and the  

corresponding point used for orientation 
 

 

  

4.1.2 Measurement for Center of Mass  
 

Fourth degree implicit polynomials fitted to the boundary data is used to find 

the coordinates of the target’s center of mass directly. The points on the implicit 

polynomial curve are averaged to calculate the x and y coordinates of the center of 

mass.  

 

Definitely, the method used to calculate the orientation of the object contains 

noise creative procedures. The fitting process to the available boundary data points 
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can be one cause of this type of noise. Another noise term can be added from the 

calculation of related points. Although, the boundary data points are assumed to be 

reliable in the simulations here, in real situations they can be disturbed with noise 

coming from the boundary detection algorithm possibly. All of the possible noise 

creative terms are considered while calculating the measurement covariance matrices.  

 

4.1.3 Experiments for Measurement Errors 
 

In order to find meaningful values for measurement errors to set in the Kalman 

filter formulation, we have performed some experiments. Missing data condition, 

which is the representation of occlusion in real applications are experimented 

independently. Then, combination of this factor with perturbations is combined in 

order to obtain reasonable values for orientation measurement procedure. As can be 

seen from the performance results, the interpolation property of implicit polynomial 

representation and the method used for calculating the orientation is robust enough to 

be used inside such a prediction filter for measurement purposes.  

 

4.1.3.1 Orientation measurement under missing data and 
perturbation around data points 

 

8 arbitrary shapes shown in Figure 4.2 were used for the orientation 

measurement experiments. The performance of the method for orientation 

measurement under 5% and 10% missing data of the object boundaries is intended. 

 For systematic missing data analysis, approach proposed in Civi’s work[8] is 

adopted. The object boundaries were divided into 50 equal pieces and the boundary 

was traced clockwise each time starting from the beginning of the next piece and 

occluding some percentage of the whole data. Figure 4.3 shows examples of 5% and 

10% missing data.  
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          Figure  4-2  8 objects used in the orientation measurement experiments 

 

 
Figure  4-3  %5 and %10 occluded versions of the car and boot shapes 

 

 The performance of the orientation measurement algorithm for the car and 

boot shapes with 5% and 10% missing data under 80 degree orientation is presented 

in the following figures.   
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Figure  4-4  Orientation Measurement results for car shape with 5% missing 

data under 80 degree orientation 

 

 

 
Figure  4-5  Orientation Measurement results for car shape with 10% missing 

data under 80 degree orientation 
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Figure  4-6  Orientation Measurement results for boot shape with 5% missing 

data under 80 degree orientation 

 

 

       
Figure  4-7  Orientation Measurement results for boot shape with 10% missing 

data under 80 degree orientation 
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In order to obtain reasonable values for the measurement error covariance 

matrix, performances of the measurement algorithm for all 8 objects are obtained and 

summarized in Table 4.1 and  4.2.  

  

Object Orientation Error 

Butterfly 0.585 

Boot 0.984 

Car 0.843 

Airplane 0.452 

Tree 0.823 

Guitar 1.287 

Hand 1.957 

Mig29 1.235 

 

Table 4.1: Average measurement error for 8 objects with 5% missing data 

 

  

Object Orientation Error 

Butterfly 1.234 

Boot 1.980 

Car 1.845 

Airplane 0.762 

Tree 1.832 

Guitar 1.545 

Hand 3.854 

Mig29 2.745 

 

Table 4.2: Average measurement error for 8 objects with 10% missing data 

 

 For representing the problems in real computer vision and image processing 

applications, missing data and perturbations of data analysis are combined and a new 

set of errors are obtained. For the perturbation of the data each data point is perturbed 
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by a Gaussian noise with a standard deviation of 2 pixels. The results are shown 

below in Tables 4.3 and 4.4.   

 

 

Object Orientation Error 

Butterfly 0.620 

Boot 1.154 

Car 0.948 

Airplane 0.482 

Tree 0.915 

Guitar 1.313 

Hand 2.357 

Mig29 1.432 

 

Table 4.3: Average measurement error for 8 objects with 5% missing data + 

perturbation to data points with Gaussian noise 

 

  

Object Orientation Error 

Butterfly 1.312 

Boot 2.052 

Car 1.921 

Airplane 0.873 

Tree 1.987 

Guitar 1.712 

Hand 4.428 

Mig29 2.981 

 

Table 4.4: Average measurement error for 8 objects with 10% missing data + 

perturbation to data points with Gaussian noise 
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4.1.3.2 Center of mass measurement under missing data and 
perturbation around data points 

 
 The points on the implicit polynomial curve are averaged to calculate the x 

and y coordinates of the center of mass in the experiments. The translation 

measurement results are compared with the center of mass directly calculated with the 

data points available. Since implicit polynomials have interpolation property, the 

resulting center of mass calculated from the implicit function is less boundary data 

point dependent compared to other classical method.  

 
               Figure  4-8  Interpolation property of implicit polynomial representation. 

a) Polynomial fit of butterfly with 10% missing data  b) Polynomial fit of 

butterfly with whole data 

 

The center of mass experiments are performed with combination of boundary 

point perturbations with Gaussian noise and missing data.  Again, the systematic 

approach of dividing the data points into 50 pieces is used here. The error values are 

averaged to obtain reasonable values for error terms. The following tables show the 

performance results of 8 objects with 5% and 10% missing data and data point 

perturbations with Gaussian noise (standard deviation of 2 pixels).  
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Object 
Center of Mass 

Error (pixel) 

Butterfly 1.210 

Boot 0.454 

Car 0.231 

Airplane 0.523 

Tree 0.453 

Guitar 0.973 

Hand 1.249 

Mig29 1.102 

 

Table 4.3: Average measurement error for 8 objects with 5% missing data + 

perturbation to data points with Gaussian noise 

 

  

Object 
Center of Mass 

Error (pixel) 

Butterfly 1.420 

Boot 0.671 

Car 0.452 

Airplane 0.485 

Tree 0.529 

Guitar 1.108 

Hand 1.467 

Mig29 1.355 

 

Table 4.4: Average measurement error for 8 objects with 10% missing data + 

perturbation to data points with Gaussian noise 
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5 TRACKING EXPERIMENTS 

5.1 Introduction 
 

In our work, we tried different approaches in order to efficiently apply the 

powerful implicit algebraic 2D curve representation to the phenomenon of visual 

tracking. Different types of prediction methods were used in order to provide the 

trajectory and orientation predictions. Through the proposed concepts and algorithms, 

we tried to reduce the computational burden of fitting algorithms.  

 

The first approach was to do fitting only for certain frames in an image 

sequence and fill in the missing ones using Kalman filtering technique. A discrete 

steady-state Kalman filter is used to estimate the future positions and orientation of 

the target object. In second proposed method,  the fitting is done once offline and an 

algebraic curve space is calculated. Then, in every frame, one curve from the search 

region of curve space that has the smallest error according to some error metric is 

chosen to be the best fit for that frame. The third approach was to apply a region-

based method using using appearance-adaptive methods models and particle filters 

which make complete use of all available image insensity information. By employing 

implicit algebraic curves, the boundary of the target can be tracked and also the model 

can be adapted to fit inside an implicit curve rather than a rectangle or an apriori 

known geometric shape.   

 

5.2 Target Model 
 

In order to create a Kalman filter, an appropriate linear model of the target must 

be created. The model must describe the x and y coordinates of the target centroid and 

the orientation of the target. All three parameters are independent of each other. The x 

and y models are the same and based on Newton’s second law. The orientation is 

based on a moment equation. As it turns out this description simplifies to a model 

identical to the position representations.  

 

Each position coordinate is assumed to be linearly independent, hence 

according to Newton’s second law they can be partitioned as: 
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                                                    xx maF =                                          (5.1) 

                                                    yy maF =                                          (5.2) 

                                                    zz maF =                                           (5.3) 

 

The image only moves in two dimensions so the z component can be ignored. 

The masses of an object, in an image, is the sum of all its pixels. Since this model 

describes the centroid then its mass is unity. Therefore, the system reduces to: 

 

                               xx aF =                                           (5.4) 

                                                      yy aF =                                            (5.5) 

 

It is sufficient to examine a generalized system, aF =  since the two systems 

above are identical to each other. In this form, this system is second order with respect 

to position. However, when the force and accelaration vary with time the system is 

defined as . After taking the derivative of this equation the result is a third 

order equation that describes the jerk of the object. The state space represenation of 

this model is of the form: 
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 We can discretize this model into the following state space representation  
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where T  is the sampling period of the discretized system . Since the problem is to 

track a target with an unknown trajectory, the object moves solely due to disturbances. 

The final model for the  and  coordinates is  x y
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where  is the disturbance applied to the object. The model for the orientation is 

also a third order equation describing the angular jerk of the target.  

kw
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 After discretizing into the state space representation 
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 Since there are no known input, only disturbances the orientation model 

reduces to: 
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5.3 Method of Fitting Only at Certain Frames 
 

In this work, we used the steady-state form of the Kalman filter in order to 

estimate the position and orientation of the object between measurement frames. 

Since the system is steady-state a single equation is used to determine the filter.  

 

[ ] kkk KzxKHAx +−=+1                            (5.13) 

      kkk KzxAx +=+1                                   (5.14) 

 

Where KHAA −= . From now on the bars will be ignored so that A  

corresponds to A . Let us compute : 2+kx

 

                           112 +++ += kkk KzAxx                               (5.15) 

                                    [ ] 1+++= kkk KzKzAxA                     (5.16) 

                                                       (5.17) 1
2

+++= kkk KzAKzxA

 

Recall that for the filter, the measurement is constant until the feature 

extractor’s next time step. So 121 ... −+++ ==== nkkkk zzzz   Therefore 

 

       [ ] kkk KzIAxAx ++=+
2

2                                   (5.18) 

 

If we consider   3+kx

 

                                      223 +++ += kkk KzAxx                                 (5.19) 

                                              [ ][ ] kkk KzKzIAAxA +++= 2          (5.20) 

                                                [ ] kk KzIAAxA +++= 23                (5.21) 
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Hence, 
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The feature exraction algorithm, once every sample period, sends the 

measured values, which describe the target position and orientation to the filter. The 

filter will hold this value and use it as a measurement until it is updated by the feature 

extraction algorithm. The process of holding the measurement value has the effect of 

creating another input trajectory that operates on a higher frequency.  

 

 
Figure  5-1  An example of a new trajectory 

 

The filter uses the new input measurement function to determine the 

incremental estimates of the object.   

 

5.3.1 Experimental Results 
 
 

For our experiments we used a Boomerang shaped object undergoing a rigid 

motion with a relatively complex trajectory. Object boundaries have been modeled by 

quartic curves. The related points of these curves are obtained from the decomposition 

of the curve.  
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      Figure 5-2  Trajectory of the target 

 

Figure 5.3 shows the ability of the filter to predict the x-coordinate of the 

target’s centroid. There is an overshoot when tracking fast changes in the x direction. 

A clearer illustration of the performance can be seen in an error comparison. The 

objective is to track the measured signal, so it is assumed that the measure is the true 

coordinate position. So, the error is the difference between the prediction and 

measured value. The error values are low and within a band of +-3 pixels when the 

target performs relatively uniform motion. When the target makes a maneuver, error 

values shows rapid increases, however the values converge to normal error values 

when the manevuer finishes.   

 
Figure  5-3 X-Coordinate Tracking of the Target 
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Figure  5-4  X-Coordinate Tracking Error of the Filter 

 

The y-coordinate, on the other hand was exposed to higher speeds and sharp 

manevuers. Figure 5.5 shows the y coordinate position as a function of time, and it 

shows the predictor’s ability to track this trajectory.  Figure 5.6 illustrates the y 

coordinate tracking performance.  

 

          
Figure  5-5  Y-Coordinate Tracking of the Target 
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Figure  5-6  Y-Coordinate Tracking Error of the Filter 

 

Purposely, the trajectory under consideration implies large angle variations to test 

robustness of the proposed orientation estimation method. As can be seen from Figure 

5.7, orientation tracking error is within reasonable bounds.  

 

       
      Figure  5-7  Orientation Tracking of the Filter 
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         Figure  5-8  Orientation Tracking Error of the Filter 

 

 

 In order to test the robustness of the proposed algorithm against occlusion and 

noisy boundary data conditions, butterfly object is experimented in different trajectory 

than the boomerang-shaped object. Butterfly object without any noise and occlusion, 

with %5 occlusion and %10 occlusion and boundary data noise is experimented and 

the prediction error of each parameter is compared. 

  

 The following figures show the trajectory of x and y coordinates of the 

object’s centroid and the orientation of the object for the butterfly object during 250 

frame long video sequence. Those figures are indented to indicate the frames where 

the object makes a maneuver which are the times that the prediction errors are 

expected to increase suddenly.  Orientation measures are between degrees, 

however for the purpose of presentation under -180 degrees are not rounded to +180.  

180±
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                                 Figure 5-9 Centroid Trajectory of Butterfly Object 
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    Figure 5-10 Orientation Trajectory of Butterfly Object 

 
 
 As can be seen from the following figure the increase in prediction errors of 

centroid coordinates is among 0.5 pixels when a fair amount of occlusion (%5) and 

boundary data noise (Gaussian noise with std.: 2 pixels) is introduced. When %10 of 

the butterfly object is occluded and a Gaussian noise with standard deviation of 2 
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pixels is introduced into the boundary data set, errors can reach upto 2.5 pixels at 

maneuvering times.  
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Figure 5-11 X-Coordinate Tracking Error for Different Situations 
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Figure 5-12 Y-Coordinate Tracking Error for Different Situations 
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Figure 5-13 Y-Coordinate Tracking Error for Different Situations 

 

The orientation measurement method together with the interpolation property 

of implicit polynomials provides the robustness of predictions against occlusion and 

noisy boundary data.   

 

 

5.3.2 Assessment of Results 
 

A new method is proposed for tracking the position and the orientation of 2D 

free-form objects undergoing rigid motion. By using the fact that the related points 

undergo the same motion with the curve, we have employed a robust orientation 

measure for the curve. Tracking approach was aiming to reduce the number of 

computations and was quite successful.   
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5.4 Fitting Only at First Frame & Using Algebraic Curve 
Spaces 

 
 

In this part, a new method is proposed to do fitting once offline and calculate an 

algebraic curve space. Then, in every frame, algebraic curves from the search region 

of curve space are evaluated with the extracted edge points. The curve that has the 

smallest error according to some error metric is chosen to be the fit for that frame. The 

algorithm presented is for tracking a free-form shaped object, moving along an 

unknown trajectory, within the camera’s field of view (FOV). A discrete steady-state 

Kalman filter estimates the future position and orientation of the target object and 

provides the search area of curve space for the next frame. For initialization of the 

Kalman filter we used the “related points” extracted from the decomposition of 

algebraic curves which represent the target’s boundary and measured position of 

target’s centroid. Related points undergo the same motion with the curve, hence can 

be used to initialize the orientation of the target. Proposed algorithm is verified with 

simulations. The steps involved in the proposed scheme are summarized by the block 

diagram of Figure 5-9. 

 

 
Figure  5-9  Complete diagram for the proposed algorithm           
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5.4.1 Algebraic Curve Spaces 
 

Instead of fitting an algebraic curve to the boundary of the target at each 

frame, selecting a suitable curve among possible candidates decreases the 

computational complexity drastically. A curve space for the given target can found by 

first fitting an algebraic curve to the target’s boundary offline and computing all 

possible Euclidean transformations, rotations and translations, of that polynomial. 

Polynomials in the curve space is calculated using the Euclidean mappings of the first 

implicit polynomial fitted to the boundary data of the target.  

 

5.4.1.1 Euclidean Mappings of Algebraic Curve 
 

A Euclidean transformation, E is defined by both a rotation R and a linear 

translation T; i.e. 
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The mathematical relationship defined by (5.11) will be abbreviated as 

XEX
E
→ , where R is an orthogonal(rotation) matrix, so that IRRRR TT == . In 

general, any two n-th degree curves, defined by a monic  and a monic 0),( =yxfn

0),( =yxf n , which outline the boundary of the same object in two different 

configurations will be Euclidean equivalent if:  

 

( , ) 0 (cos sin ,sin cos ) ( , ) 0
E

n n x y n nf x y f x y p x y p s f x yθ θ θ θ= → − + + + = =   (5.24) 
 
 

Instead of using the whole curve space as the search region for the next frame, 

estimated translation and orientation values from the Kalman filter is used to reduce 

the search region.  
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Figure  5-10  Algebraic curves in the search region for frame 50 and the selected 

curve with smallest error term 
 

5.4.2 Error Metrics 
 

For the evaluation of algebraic curves within the search region of our curve 

space, we use the sum of squared distances from the data points to the algebraic 

curves. For a collection of data points Γ , error is calculated as 

 
                                                           ∑

Γ∈),(

2 ),(
yx

yxf                                        (5.25) 

 
Other distance measures can also be employed for the evaluation of curves. 

For example, the sum of absolute distances from data points to the implicit curve is 

given as 

 

                                                ∑
Γ∈),(

),(
yx

yxf                                        (5.26) 

 

Yet another distance measure which approximates the true geometric distance 

can be calculated as follows: 
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5.4.3 Experimental Results 
 

Again we have used the Boomerang shaped object undergoing a rigid motion 

with same trajectory for comparison purposes. Object boundaries have been modelled 

by quartic curves. For the initialization of the Kalman filter, related points of curves 

are obtained from the decomposition of the curve. X-coordinate of the target centroid 

is predicted with filter and the illustration of the trajectory of coordinates and the 

predicted values are shown in Figure 5.10. There is again an overshoot when tracking 

fast changes in the x  direction. A better illustration of the performance can be seen in 

an error comparison. The objective is to track the measured signal, so it is assumed 

that the measure is the true coordinate position. So, the error is the difference between 

the predicted and measured value. The error values are low and within a band of (-

/+)0.5 pixels when the target performs relatively uniform motion. Maneuver is again a 

problem with prediction filter. It takes some time for the error values to converge to 

normal values after the target makes a maneuver.  
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Figure  5-11  X-Coordinate Tracking of the Target 
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Figure  5-12  X-Coordinate Tracking Error of the Filter 

 

The -coordinate performance measure are shown in Figures 5.12 and 5.13. In this 

case errors may reach values of 2 pixels due to the sharp maneuvers that the object 

performs in direction. However, as in the case of 

y

y x -coordinate when the manevuer 

is over error values turn to their normal values.  

 

                      
0 50 100 150 200 250 300

0

100

200

300

400

500

600
Tracking of Position, Y-Coordinate

Time (frame)

P
ix

el
s

Measured
Predictor

 
Figure  5-13  Y-Coordinate Tracking of the Target 
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      Figure  5-14  X-Coordinate Tracking Error of the Filter    

 

Figure 5.12 shows the predictors ability to predict the orientation. Orientation 

prediction results are better in this method since we have eliminated the steps of 

orientation measurement which is noise producing by calculating all the possible 

curves offline.  
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    Figure  5-15  Orientation Tracking of the Filter        
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       Figure  5-16  Orientation Tracking Error of the Filter 

                          

5.4.4 Assessment of Results 
 

A new method is proposed for tracking the position and the orientation of 2D 

free-form objects undergoing rigid motion. By using the fact that the related points 

undergo the same motion with the curve, we have employed a robust initialization for 

the Kalman filter. Reducing the curve-space into a lower dimensional one and 

calculating the possible curves offline eliminate the computational burden of fitting 

algorithms. Results are promising and computational burden of the fitting algorithms 

is reduced more than the previous method since the fitting is done only once.   

 
 

5.5 Timing Considerations 
 

The main objective of the two proposed methods above was eliminating the need 

for computationally expensive fitting algorithm to be applied at each frame of the 

video sequence. While trying to decrease the number of times the fitting algorithms 

applied, the average time spend on each frame is decreased. For comparison purposes, 

the typical time requirements for each phase of the tracking procedure are presented in 

the following tables.  
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FUNCTION                               TIME (MSEC) 

Grab the Frame                                                       121 

Extracting the Boundary Data                                                         40 

3L Fitting to Data                                                     8260 

Parameters (orientation & cenroid) + 

Related Point Calculation 

  

102 

TOTAL 8523 

 

   Table 5.1: Timing Requirements for Fitting in Every Frame Method 

 

FUNCTION                               TIME (MSEC) 

Grab the Frame                                                       121 

Extracting the Boundary Data                                                         40 

3L Fitting to Data (frame average)                                                    1652 

Parameters (orientation & cenroid) + 

Related Point Calculation 

  

102 

Prediction (Kalman Filter) 52 

TOTAL  1967 

 

          Table 5.2: Timing Requirements for Fitting only in Certain Frames Method 

 

The first table represents the computational burden of the fitting algorithm if it 

is applied in every frame of the sequence for the calculation of orientation and center 

of mass for the target.  Table 5.2 indicates a decrease in the computational complexity 

by introducing a less time consuming prediction procedure, namely Kalman filtering. 

Average time spend for 3L fitting is presented since between the certain frames where 

measurement is taken fitting algorithm does not run. Average time spend for each 

frame decrease more when the method presenting the algebraic curve spaces are 

introduced. Time spend on fitting, related point and parameter calculations does not 

affect the computational complexity.  Yet, those phases of operation are done only at 

first and the second frames of the whole sequence. The only extra term added in terms 

of complexity is the evaluation of the polynomials in the search region with the 
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boundary data points. However, it is nearly %10 of the fitting algorithm comparing 

the timing results, decreasing the overall time drastically.    

 

FUNCTION                               TIME (MSEC) 

Grab the Frame                                                       121 

Extracting the Boundary Data                                                         40 

3L Fitting to Data (only 1St & 2nd  

frames) 

---  

Parameters (orientation & cenroid) + 

Related Point Calculation 

                                                        --- 

Evaluation of Boundary Data in the 

Search Region of Curve Space (avg. 

100 polynomials) 

850 

Prediction (Kalman Filter) 52 

TOTAL  1063 

 

Table 5.3: Timing Requirements for Fitting only for initialization of the 

Kalman filter 

 

5.6 Implicit Polynomials Used With Particle Filters & Online 
Appearance Model 

 

 In [19], Zhou et. Al. proposed a robust visual tracking algorithm that 

incorporates appearance-adaptive models in a particle filter. Online appearance 

model(OAM) proposed in [20] as an appearance adaptive model. The original 

algorithm in [19] is modified and the implicit polynomial representation is embedded 

as a representative of the target region. By this approach, boundary curve of the target 

region is tracked with the help of fitted implicit polynomial. Moreover, the points 

inside the polynomial are used to define the target model in order to obtain an exact 

representation of the region to be tracked.  
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5.6.1 Proposed Algorithm 
 

The approach we adopt here uses an appearance model, . The observation 

equation used is as follows 

kA

 

              kkkkk vAxYTz +== };{                                  (5.28) 

 

Where  is the image patch of interest in the video frame , parameterized by 

. Two extreme cases can be adopted with the template . One can choose a fixed 

template  and try to minimize a cost function in the form of sum of squared 

distance by comparing the fixed target with observations. On the other hand, the best 

patch of the previous frame can be used as a new template, i.e. , which 

becomes a rapidly changing model. While, a rapidly changing model is at the risk of 

drifting, a fixed template can not handle appearance changes in the video. Hence, 

there is a need for a template which can adapt itself to dynamic situations.   

kz kY

kx kA

0AAk =

1ˆ −= tk zA

5.6.2 Adaptive Observation Model 
 

The original OAM uses a mixture density of components for representation of 

a model. Three components are used, which are S-component, W-component and L-

component. S is the component for stable model, which is intended to capture the 

behavior of temporally stable image observations when and where they occur. W-

component, called the wandering component characterizes two-frame variations. L-

component referred as lost component accounts for data outliers, which are expected 

to arise due to occlusion. In stead of L-component, F-component which is a fixed 

template that is expected to observe most often is used.  

 

The appearance model at time , k },,{ kkkk FSWA = is a time-varying one that 

models the appearances seen in all observations up to that time. The appearance is a 

mixture of Gaussians, with  as mixture centers kkk FSW ,, },,;{ , fswiki =µ and the 

corresponding variances  and mixing probabilities . 

The components of the appearance model are images consisting of  pixels and can 

},,;{ 2
, fswiki =σ },,;{ , fswim ki =

d
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be represented with their mean, variance and mixing probabilities as 

. The observation likelihood is given as  },,;,,{ 2
,,, fswim kikiki =σµ

 

        (5.29) ∏ ∑
= =

==
d

j fswi
kikikkikkkk jjjzNjmxzpxYp

1 ,,

2
,,, ))}(),();(()({)|()|( σµ

 

Where represents a normal density distribution. The important 

issue in OAM is the model update stage. New mixing probabilities, mixture centers 

and variances for time ,  need to be computed in 

order to update the current appearance model  to  after the observation  

becomes available. Current appearance model is not updated according to all the past 

observations. The past observations are exponentially forgotten. Exponential envelope 

is denoted by  for 

),;( 2σµzN

1+k },,;,,{ 2
1,1,1, fswim kikiki =+++ σµ

kA 1+kA kẑ

))(exp()( 1 mkmk −−=Ε −τα tm ≤ , where 2loghn=τ ,  is the 

half-life of the envelope in frames, and .  

hn

)exp(1 1−−−= τα

 

Each pixel is treated separately in this model, since they are assumed to be 

independent of each other. The computations for updating the appearance model are 

as follows:  

Posterior responsibility probabilities are calculated as 

 

      ∑
=

==∝
fswi

kikikikkiki jofswijjjzNjmjo
,,

,
2
,,,, 1)(&,,,));(),();(ˆ()()( σµ     (5.30) 

 

 Where dj .........,,2,1= and  is the number of pixels in the appearance 

model. The mixing probabilities are updated as  

d

 

                fswijmjojm kikiki ,,);()1()()( ,,1, =−+=+ αα                    (5.31) 

 

 And the first and second moment images }2,1;{ 1, =+ pM kp  are evaluated as  

 

                        (5.32) 2,1);()1()()(ˆ)( ,,1, =−+=+ pjMjojzjM kpks
p
kkp αα
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 Finally, the mixture centers and the variances are updated as: 

 

 )(
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++ −=== µσµ       (5.33) 

                      (5.34) ),()(),(ˆ)()( 2
1,

2
1,1,1 jjjzjjW wkwkkwk σσµ === +++

                                  (5.35) )()(),()()( 2
1,

2
1,11,1 jjjFjjF fkfkfk σσµ === +++

  

 The initialization is done manually. User select a number of points on the 

boundary of the target and an implicit polynomial is fit at the first frame.  is 

initialized with  and . 

1A

oT 2
0

2
1,1,1,2,01,1,10111 , TmMTmMTFSW sss +===== σ

 

 Besides the adaptive appearance model, noise terms and the number of 

particles are adaptive parameters in the proposed algorithm. Noise term is changed 

adaptively according to the quality of prediction. Process noise  is used in the form 

of  where  is a function of error term

kw

0* wrw kk = kr kε . 

 

              ∑ ∑
= =

−
==

d

j fswi ki

kik
kikkk j

jjz
jm

d
Az

1 ,, ,

,
, )}

)(
)()(~

()({2),~(
σ

µ
ρφε         (5.36) 

 

 The quality of prediction can be represented by the value of kε . If the 

prediction is successful which means the value of kε  is small, time-update equation 

6.1 needs a noise term with small variance. On the other hand, if the prediction is 

unsuccessful implying a large kε  then a noise term with large variance is needed in 

order to compensate possible jumps in the motion state. Accordingly,  is calculated 

at each time step as follows 

kr

 

             )),,max(min( minmax0 rrrr kk ε=                       (5.37) 

 



 60

 Where    is aimed to give a lower bound for the sample coverage and  

is aiming to limit the computational load as an upper bound.  

minr maxr

 

 The number of particles are also adaptively changed according to . More 

particles need to be used when  is large. On the other hand, when noise variance is 

small less particles will be enough. Hence, the number of particles  is calculated 

each time step according to  

kr

kr

kJ

 

                   0)( rrJJ kkk =                                 (5.38) 

 

5.6.3 Experimental Results 
 

   
Motion in the experiments is represented with state vector ),,,,,( yx ttdcbax = ,an 

affine transformation in which  are deformation parameters and  are 

translation parameters. Image intensities are used in the computations. In order to 

compensate for contrast variations zero mean unit variance normalization is applied to 

the intensity values.  

},,,{ dcba },{ yx tt

 

The particle filter and appearance model is initialized by selecting boundary 

points of the target and fitting a fourth degree implicit polynomial to the points. The 

target region is well represented with the fitted polynomial and the region inside it. 

The image transformation in equation 5.28 is realized as applying the affine 

transformation defined in  to the implicit polynomial and then cropping out the 

region represented with the new polynomial.  

};{ xYT

x

 

A tank recorded from an air-vehicle is tracked with the proposed approach. The 

video is gray-scale and contains 250 frames. The trajectory of the centroid of the 

tracked tank is not smooth and arbitrary due to the motion of the camera with respect 

to the tank. Some of the frames from the tracking results are shown below. 
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Figure  5-177  Selected Frames of the Tank Tracking by Implicit Polynomial         

Representation 
 

 

Video includes not only tank but also other vehicles and people walking 

around the tank. The arbitrary 2D trajectory of the tank is drawn on to the first frame 

of the sequence and shown in the following figure.  
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                  Figure  5-18  2D Trajectory of the Tank’s Centroid 

 

Number of particles used in each frame as a function of frame number is also 

shown in figure 5.19. 120 particles were used to initialize the filter.  
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Figure  5-19  Number of Particle Variation as a Function of Frame Number 

 

 Second video used for testing contains a side view of a car moving along a 

road. The movement of the car is relatively linear. However, the tough part is that 

some objects by the road is very similar to the car in terms of color and pattern. 
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Hence, it was very probable that the tracker catches those objects instead of the car in 

some time and stuck there. However the tracking is still successful. Video is again 

gray-scale and contains 60 frames. Some of the frames from the tracking results are 

shown below. 

 

                          
        Frame 1 

 

                         
                   Frame 10 
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             Frame 30 

 

 

                          
             Frame 45 
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                         Frame 60 

Figure  5-20  Selected Frames of the Car Tracking by Implicit Polynomial 
Representation 

 

 

Video includes not only tank but also other houses with similar pattern and 

color with car and also trees and other objects. Although the movement of the car 

starts inside the scene, it goes out of the scene at the end of the sequence.  

 

The filter is initialized with 100 particles in this case and through the operation 

of the filter less number of particles is needed since the movement of the car is fairly 

linear and no outlier comes in front of the target object. When the target starts to leave 

the scene number of particles used increases adaptively.  
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Figure  5-21  Number of Particle Variation as a Function of Frame Number 

 

5.6.4 Assessment of Results 
 

We have proposed a different usage of implicit polynomials in the context of 

visual tracking in real videos. The target region is represented by the implicit 

polynomial fitted at the first frame. The points inside the polynomial are used to 

define the target model in order to obtain an exact representation of the region to be 

tracked. Boundary curve of the target region is also tracked with the help of fitted 

implicit polynomial.  
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6 CONCLUSION 
 

 

In this thesis, different approaches in order to efficiently apply the powerful 

implicit algebraic 2D curve representation to the phenomenon of visual tracking are 

experimented. Through the proposed concepts and algorithms, the computational 

burden of fitting algorithms is reduced. 

 

The first approach was to do fitting only for certain frames in an image 

sequence and fill in the missing ones using Kalman filtering technique. A discrete 

steady-state Kalman filter is used to estimate the future positions and orientation of 

the target object. The orientation measurement technique which is shown by 

experiments to be robust against different causes of noise allows the proposed 

approach to be succesful.  

 

In the second proposed method, the computational burden is tried to be 

reduced further. In order to achieve this, the fitting is done once offline and an 

algebraic curve space is calculated. Then, in every frame, one curve from the search 

region of curve space that has the smallest error according to some error metric is 

chosen to be the best fit for that frame. If the first fitted polynomial is proper, fitting in 

all other frames is guaranteed to be proper.   

 

The third aproach was to apply a region-based method using appearance-

adaptive models and particle filters which make complete use of all available image 

intensity information. By employing implicit algebraic curves, the boundary of the 

target could be tracked and also the model could be adapted to fit inside an implicit 

curve rather than a rectangle or a priori known geometric shape.  

 

Further work on trying to evolve the implicit algebraic curve during the 

tracking process as in active contour based applications will probably yield a more 

effective usage of this representation in this context.  

 

 

                              



 68

 

REFERENCES 
 

1. C.G. Gibson, Elementary geometry of algebraic curves, Cambridge University 
Press, Cambridge, UK, 1998. 

 
2. M Unel, W. A. Wolovich, “On the construction of complete sets of geometric                        

invariants for algebraic curves,” Advances in Applied Mathematics Vol. 24, No. 
1, pp. 65-87, January 2000. 

 
3. M. Unel, W. A. Wolovich, “A new representation for quartic curves and 

complete sets of geometric invariants,” International Journal of Pattern 
Recognition and Artificial Intelligence, December 1999. 

 
4. G. Taubin,  “Estimation of planar curves, surfaces and non-planar space curves 

defined by implicit equations, with applications to edge and range image 
segmentation,” IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 13, No. 11,  1991. 

 
5. D. Keren et al., “Fitting curves and surfaces to data using constrained implicit 

polynomials,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 
Vol. 23, No. 1, January 1999. 

 
6. H. Civi, C. Christopher, A. Ercil, “The Classical Theory of Invariants and 

Object Recognition Using Algebraic Curve and Surfaces,” Journal of 
Mathematical Imaging and Vision 19: 237–253, 2003.   

 
7. Z. Lei, M. M. Blane and D. B. Cooper, “3L Fitting of Higher Degree Implicit 

Polynomials ,” In proceedings of 3rd IEEE Workshop on Applications of 
Computer Vision, pp. 148-153, Florida 1996 

 
8. H. Civi, Implicit Algebraic Curves and Surfaces for Shape Modeling and 

Recognition,  Ph.D. thesis, Bogaziçi University, October 1997.  
 

9. T. Sahin, M. Unel, “Globally stabilized 3L curve fitting” Proceedings of 
International Conference on Image Analysis and Recognition (ICIAR 2004), 
Porto, Portugal, September 2004. 

 
10. W. A. Wolovich, Mustafa Unel, “The determination of implicit polynomial 

canonical curves,” IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 20, No. 10,pp. 1080-1089, October 1998. 

 
11. R.E. Kalman, “A new approach to linear filtering and prediction theory”  

Transactions of the ASME – Journal of Basic Engineering Vol. 82: pp.35-45, 
1960 

 
12. D. Simon, Kalman Filtering, Embedded.com, viewed on Jun. 28, 2005,  

http://www.embedded.com/showArticle.jhtml?articleID=9900168 (2005) 



 69

 
 
 

13. L.D., Brock, G.T. Schmidt, General questions on Kalman filtering in navigation 
systems, Chapter 10 of “Theory and Applications of Kalman Filtering” C.T. 
Leondes, Editor, NATO AGARD (1970) 

 
14. P. Gutman, M. Velger, “Tracking targets using adaptive Kalman filtering”  

IEEE Transactions on Aerospace and Electronic Systems Vol. 26, No. 5: pp. 
691-699 , 1990    

 
15. H.W. Sorenson,  Comparison of Kalman, bayesian and maximum likelihood 

estimation techniques, Chapter 6 of “Theory and Applications of Kalman 
Filtering” C.T. Leondes, Editor, NATO AGARD (1970) 

 
16. G. Welch, G. Bishop, “ An introduction to the Kalman filter” ACM 

SIGGRAPH 2001, Course 8  
 

17. M. Unel. “Polynomial Decompositions for Shape Modeling, Object Recognition 
and Alignment” PhD Thesis, Brown University, Providence, RI 02912, May 
1999. 

 
18. A. Jazwinski, “Stochastic Processes and Filtering Theory” Academic, New 

York, 1970 
 

19. S.  Zhou, R. Chellappa, and B. Moghaddam. “Visual tracking and recognition 
using appearance-adaptive models in particle filters” IEEE Transactions on 
Image Processing (IP), Vol. 11, pp. 1434-1456, November 2004. 

 
20. A. D. Jepson, D. J. Fleet, and T. El-Maraghi,, “Robust Online Appearance 

Models for Visual Tracking,” IEEE Transactions on Pattern Analysis and 
Machine Intelligence, Vol. 25, No. 10, pp. 1296-1311, October 2003. 

 
21. C. Robert, G. Casella,  “Monte Carlo statistical methods”  Springer, New York, 

1999 
 

22. M. Arulampalam, S. Maskell, N. Gordon, T. Clapp,  “A tutorial on particle 
filters for online non-linear/non-Gaussian Bayesian tracking,”  IEEE 
Transactions on Signal Processing, Vol. 50, No. 2, pp. 174-188, February 2002. 

 
23. N. J. Gordon, D. J. Salmond, A. F. M. Smith,  “Novel approach to 

nonlinear/non-Gaussian Bayesian state estimation,” IEE Proceedings for Radar 
and Signal Processing, Vol. 140, No. 2, pp. 107-113, April 1993. 

 
24. M. Pitt, N. Shephard, “Filtering via simulation: auxiliary particle filters,”  

Journal of American Statistical Association, Vol. 94 , 1999 
 
 
 

  



 70

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 


	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	INTRODUCTION
	IMPLICIT POLYNOMIALS
	Literature Overview
	Geometry of the 2D Plane
	Implicit Polynomial Model
	Implicit Polynomial Fitting
	3L Fitting
	Globally Stabilized 3L Fitting

	Decomposed Quartics and Related Points


	FILTERING TECHNIQUES
	Kalman Filtering
	Theory
	Computational Origins of the Filter
	Discrete Kalman Filter Algorithm

	Particle Filters
	Theory


	FILTER PARAMETER EXPERIMENTS
	Determination of Kalman Filter Parameters
	Orientation Measurement
	Measurement for Center of Mass
	Experiments for Measurement Errors
	Orientation measurement under missing data and perturbation 
	Center of mass measurement under missing data and perturbati



	TRACKING EXPERIMENTS
	Introduction
	Target Model
	Method of Fitting Only at Certain Frames
	Experimental Results
	Assessment of Results

	Fitting Only at First Frame & Using Algebraic Curve Spaces
	Algebraic Curve Spaces
	Euclidean Mappings of Algebraic Curve

	Error Metrics
	Experimental Results
	Assessment of Results

	Timing Considerations
	Implicit Polynomials Used With Particle Filters & Online App
	Proposed Algorithm
	Adaptive Observation Model
	Experimental Results
	Assessment of Results


	CONCLUSION

