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Cyclicity of Elliptic Curves over Function Fields

Koray Karabina

Abstract

Let K be a global function field over a finite field F containing ¢ elements. Let
E be an elliptic curve defined over K. For a prime P in K we can reduce the elliptic
curve mod P and get an elliptic curve over a finite extension of F. The group of
points on the reduced elliptic curve is either a cyclic group or it is a product of two
cyclic groups. We determine the Dirichlet density of the primes in K such that the
reduced curve has a cyclic group structure.

Keywords: Function Fields, Zeta Functions, Elliptic Curves, Dirichlet Density.
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Fonksiyon Cisimleri Uzerinde Tamiml Eliptik Egrilerin Déngiiselligi

Koray Karabina

Ozet

K, q elemanli sonlu cisim F iizerindeki bir fonksiyon cismi olsun. E, K cismi
tizerinde taniml bir eliptik egri olsun. E eliptik egrisinin denklemi K i¢indeki bir asal
i¢in indirgendiginde elde edilen yeni eliptik egri sonlu bir cisim tizerinde tanimhidir.
indirgenen eliptik egri tizerindeki noktalarin olusturdugu grup ya dongiiseldir ya da
iki dongtisel grubun ¢arpimidir. Bu ¢aligmada, K cismi i¢indeki, indirgenmis eliptik
egri grup yapisini dongiisel yapan asallarin Dirichlet yogunlugu hesaplanmaktadir.

Anahtar kelimeler: Fonksiyon Cisimleri, Zeta Fonksiyonu, Eliptik Egriler, Dirich-
let Yogunlugu.
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CHAPTER 1

Algebraic Function Fields

1.1 Function Fields

In this section, we will investigate function fields and their basic properties. For
a general field I consider the extension F'(x) where x is a transcendental element
over F. This extension consists of elements in the form f(x)/g(x) where f(x), 0 #
g(x) € Flx] and it is called the rational function field. In general, a finite algebraic
extension, K, of a rational function field, F'(x), is called an algebraic function field.
We will denote it by K/F. Function fields are very important algebraic structures
because geometric objects are closely related to them. As we will see, it is possible
to provide a one to one correspondences between geometry and algebra through
function fields. Since the rational function field is easy to deal with, we will give
examples and prove theorems for the rational function field while just stating the
analogous material for more general function fields. The section follows [6] and [8]
very closely.

Let p(z) be an irreducible polynomial in F[x] and define

Oy — {% | f(), 9(x) € Flal, ge.d(f(2), g(2)) = 1, p(a) +g<x>}

Clearly, ' & Opuy & F(x) and Oy, is a ring. Note that, for any 0 # 2z € F(x),

either z € Oy or 271 € Oy, that is, the quotient field of Oy, gives the rational
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function field F'(z). Now, define a subset of this ring as

Py = { £ € 00 | pta) 50

We see that Pyu) = Opwy \ O;(x) where O;(m) is the set of units in O,,) and we
will show that Py, is in fact an ideal of O,). Let 2z = f(z)/g(x) € Opn) and
21 = fi(@)/g1(2), 22 = fo(x)/g2(x) € Pprzy. Then 221 ¢ Oy, since z1 & Oy, that
is, zz1 € P. As we remark above z1/2; or z3/21 is in Op(,). Assume 21/2 € Op(y).
Then, 21 + 2z = zg(j—; + 1) € P since z3 € P and (z—; +1) € Opr). Hence, P is
an ideal of O,y and it is the unique maximal ideal since P = O, \ (’);‘(x). Let
O = Opy) and P = P,,). We showed above that P is the unique maximal ideal of
O. In fact, it is a principal ideal and generated by p(z) and so P = p(z)O. Since

p(z) is a generator for P and if z € F(x) \ {0} either z or 27! is in O, we can write

z = p(z)"(f(z)/g(x)) for some n € Z with (f(x)/g(z)) € O, p(z) 1 f(z). In this

representation, we associate a function to P, vp : F(x) — Z U {oo}, as follows:
vp(z) = n for z # 0 and vp(0) = co. Clearly, v = vp satisfies the discrete valuation

properties. Namely,
i. v(f)=00< f=0, for any f € F(x).
ii. v(fg) =v(f) +wv(g) for any f, g € F(x).
iii. v(f +g) = minfu(f),v(g)} for any f, g € F(x).
iv. There exists an element f € F(z) with v(f) = 1.
v. v(a) =0 for any 0 # a € F.

Being defined by a discrete valuation on F(z), O is called a discrete valuation
ring of F(x).

We have similar situation for general function fields.

Definition 1.1.1. A valuation ring of the function field K/F is a ring O C K with

the following properties:

i. FSOSK, and



1. ForanyO#z2€ K, z€e O orz71 € O.

Proposition 1.1.2. ( /8], Proposition 1.1.5, p.2) Let O be a valuation ring of the
function field K/F. Then

i. O is a local ring, i.e. O has a unique mazimal ideal P = O\ O*, where

O ={2€ O| thereis aw € O with zw=1} is the group of units in O.
4. For, 0£x €K, re P& at¢0.

it5. For the field of constants of K/F, F = {z € K | z is algebraic over F}, we
have F C O and F N P = {0}.

Remark 1.1.3. Let O be a valuation ring of K/F and P its mazimal ideal. Then
by Proposition 1.1.2 we have O = {z € K | z=' ¢ P }. Therefore, we can write

Op = O to specify the valuation ring with its unique maximal ideal P.

Theorem 1.1.4. ( /8], Theorem 1.1.6, p.3) Let O be a valuation ring of the function
field K/F and P be its unique maximal ideal. Then,

t. P is a principal ideal.

it. If P =tO then any 0 # z € K has a unique representation of the form z = t"u

for some n € Z, u € OF.

1i5. O is a principal ideal domain. More precisely, if P =tO and {0} #1 C O is

an ideal, then I =t"O for somen € N.

Definition 1.1.5. A prime P of the function field K/F is the mazimal ideal of

some valuation ring O of K/F.

We note that any function field has infinitely many primes.

For each element in the set P = {P | P isa prime of K/F}, we define a
function vp : K — Z U {oo} such that if P = tO and for 0 # z € K, z = t"u
as in the Theorem 1.1.4 we have vp(z) = n and vp(0) = oco. We shall note that

this function is well defined, that is vp(z) does not depend on the choice of t. For



P =10 = t'O we have t = t'w for some w € Op so z = t"u = (t'w)"u = t"w"u
with w"u € Op. Hence, for any choice of ¢, we have the same function.
By using Theorem 1.1.4, it can be verified that the valuation ring Op for the
function field K/F is a discrete valuation ring with the discrete valuation vp of
Let z € K and P be a prime of K. We say that P is a zero of z of order n if

vp(z) =n >0 and P is a pole of z of order n if vp(z) =n < 0.

Remark 1.1.6. Suppose F is the algebraic closure of F in K then [F : F] = [F(x) :
F(z)] < [K(x) : F(z)] < oo, that is, from now on we can assume without loss of
generality that for a function field K/F, F is algebraically closed in K. In this case,
F is called the constant field of K.

Lemma 1.1.7. Ify € K\F then y is transcendental over F and [K : F(y)] < oc.

Proof. Since F' is the constant field of K, y is clearly transcendental over F'. For the
second part, note that y is algebraic over F(x) so there exists g(X,Y) € F[X,Y]
with g(x,y) = 0. Also, X is not a redundant variable in the polynomial g because
otherwise we would have y is algebraic over F' which is a contradiction. Thus, z is
algebraic over F(y) and finally, [K : F(y)] = [K : F(z,y)][F(z,y) : F(y)] < oo, as
required. O

For the function field K over its constant field F', let Op be a valuation ring
with its maximal ideal P. Then, we get the residue class field of P, Fp = Op/P.
Now, Propsition 1.1.2 (iii) yields us a canonical embedding of the field F' into the
field Fp and we define the degree of P as deg P = [Fp : F].

Proposition 1.1.8. deg P = [Fp : F] < c0.

Proof. Tt is enough to prove that for any y € P, [Fp : F| < [K : F(y)] because
right hand side of the inequality is finite by Lemma 1.1.7. We will prove this
inequality by showing that choosing a linearly independent set for Fp over F' leads
a linearly independent set for K over F(y). Now, choose uy,...,u, such that

1 = ui(mod P), ..., u,(mod P) are linearly independent over F' and suppose that
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Uy, -+ , Uy are not linearly independent over F(y). Then, there exists f;(y) € F(y)
for i =1,...,m not all zero and fi(y)us + -+ fi(y)un = 0. We can also assume,
after cancellation, not all f;(y) are divisible by y. Finally, reducing the equation
mod P gives us that #y,...,u, are not linearly independent over F', which is a

contradiction and the proposition is proved. O]

Example 1.1.9. Let F(z) be the rational function field with a valuation ring O =
Op(zyand with a prime P = Py,y. Consider the mapping

¢:Fla] — F(z)p
f(x) = [f(z) mod P

First, we will show that ¢ is onto. For z = f(x)/g(x) € O, let Z = z mod P €
F(z)p. Since z € O, p(x) 1 g(x) and so there exists a(x),b(x) € Flx] such that

a(z)p(x) + b(x)g(x) =1, or a(z)p(x) f(x) + b(x)g(z) f(x) = f(z). Now,

. 1) _ ) @)+ b)) el ()
9() 9(@) 9()

+ () f(x)

Hence, b(zx) f(z) € F[z] is a pre-image of Z and the map is onto. Clearly, the kernel
of ¢ is the ideal (p(x)) and so we have an isomorphism Fz]/ (p(x)) = F(z)p. Using

this 1somorphism we get
deg P = [F(z)p : F] = [F[z]/ (p(z)) : F] = deg p(z)

Now, define a subset for F(x)

0. = {% | F(2),g(a) € Flal, deg f(z) < deg g<x>}

It 1s easy to show that Oy is a valuation ring with maximal ideal

. {M | F(@), () € Flal, deg f(z) < deg g(a:)}

9()
called the infinite prime. Let z = f(x)/g(x) € Py. Then
1
z = _xf(x) with %&E)) € O

which shows Py, = (1/2)Ox.



Let L@ — ang"tania"idao o Oy C F(z) with m > n and a,, b, # 0.

9(z) bm @™ +bm 1™ by
Replacing the variable x by 1/x we get % € F(1/x). Note that F(x) = F(1/x)
and —58?3 = gm " ;)Oﬁjgfj;jiig; Alsom—n >0 andb,, #0 so f(1/x)/g(1/x) €

Opz) C F(x) with p(x) = x. Similar argument for Py, and Py concludes the one
to one correspondence between infinite prime Py, and Pyu)—,. Hence, the discrete

valuation of F(x) with respect to Py, is given by

oo (f(x)/g(x)) = deg g(x) — deg f(x)

and deg P, = 1.

We have observed the primes of F(x) which correspond to irreducible polynomials
p(z) and the prime, Py,. In fact, these are the only primes of F(z). ( [8], Theorem
1.2.2, p.10)

1.2 Divisors

In the previos section, we introduced the primes of a given function field K/F. Now,
we will define the divisor group of K generated by primes of K. Each element in
this group is associated to a vector space over F. Riemann-Roch theorem will be

the main result of the section.

Definition 1.2.1. The group of divisors of K, denoted by Dk, is the free abelian

group generated by the primes of K/F.

For a divisor D, in the group Dk we have a unique representation
D = Z npP, np € Z, almost all np =0
PePg

In this group, two elements are added coefficientwise (coefficients corresponding

to the same prime P are added) and the zero element is

0= anP, all np =0

PePg



The coefficients in the representation are uniquely determined by that divisor so
we define for D =" ,npP and for P € Pk, vp(D) = np. Also,
deg D = Z vp(D)deg P
PEPK

and by definition,
D <Dy & Up(Dl) < UP(D2> for all P € Py
A divisor D is called effective if D > 0.

Remark 1.2.2. The degree map deg : D + deg D from Dk to Z is a homomor-

phism and its kernel is the group of divisors of degree zero, which is denoted by

D

Definition 1.2.3. Let 0 # z € K. The divisor of z, the divisor of zeros of z and

the divisor of poles of z are defined respectively as,

(2) = > wp(2)P

The above definition makes sense because any 0 # z € K has only finitely many
zeros and poles. ( [8], Corollary 1.3.4, p.14).

Now, consider the homomorphism z — (z) from K* to Dg. The image of this
homomorphism is a subgroup of Dk and it is called the group of principal divisors of
K/F and denoted by Pk. The factor group Cx = Dy /Pk is called the divisor class
group. Two divisors Dy, Dy € D are said to be equivalent, or linearly equivalent if
Dy = Dy + (z) for some z € K*. In this case, we write Dy ~ Dy or [Dq] = [Ds] to

indicate that D; and D, represent the same divisor class.
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Remark 1.2.4. If Dy and D5y are two divisors in the same class, then deg D, =
deg Ds, since the degree of a principal divisor is zero ([8], Theorem 1.4.11, p.18).
Hence, generalizing the degree map from Ck to Z we get a homomorphism with

kernel equal to the group of divisor classes of degree zero, which is denoted by C%.

Example 1.2.5. Let K = F(z) be the rational function field and z = f(x)/g(z) €
K. We know that the primes of K are P,y and Py,. Then, writing z as a product

of irreducible polynomials over F

fl@) _ P (2)py* (2)..p" (2)
g(z) ¢ (2)gy*()...q" (2)

we find vp,(2) = ng, vg,(2) = —my, vo(2) = (Do m; — D> n;) where Py and Q; are

z =

the primes corresponding to p; and q;, respectively. Note that at any other prime P,

vp(z) = 0. Thus,

k ! ! k
(2) = ZniPi - ijQj + <ij — Zm> P
i=1 j=1 j=1 i=1
and deg (z) = 0.
Definition 1.2.6. For a divisor D € Dy we define
ZL(D)={xr € K* | (x)+D >0 }uU{0}.

Let z,y € Z(D) and D = ), d;P,. Then, vp,((z)) > —d; and vp,((y)) > —d,

for all 7. By the property of the valuation we can write

vr,(( +y)) 2 minfup,((x)), vr((y))} = —d;

that is v +y € Z(D). Also, for 0 # a € F we have ax € Z(D) since vp,((azx)) =
vp,((x)) > —d;. Hence, Z(D) is a vector space over F. In fact, it is a finite
dimensional vector space and its dimension is denoted by [(D) ( [8], Proposition
1.4.9, p.18).

Now, we will write the Riemann-Roch Theorem which will be very helpful to

classify function fields.



Theorem 1.2.7. (Riemann-Roch)( [6], Theorem 5.4, p.49) Let K be an algebraic
function field. Then, there is an integer g > 0 and a divisor class C such that for

C e€C and D € Dg we have
(D) =deg(D)—g+1+1(C - D)

The constant g in the above equation is called the genus of the function field K.
Suppose .Z(D) # {0}. Then, there exists x € K* such that () > —D implying
0 =deg((z)) >deg(—D) = —deg(D). Hence, we proved

if deg(D) < 0 then Z(D) = {0} and I(D) =0

If Dy and D, are linearly equivalent divisors then there exists x € K such that
Dy = Dy+(x). Let 25 € Dy and define xy = x9/x. Then, (x1) = (x2)—(z) > —(Dy+
(x)) = —D; proving that z; € D;. Similarly, for x; € D; we get o = x12 € Ds.

Hence, the map

Z(Dy) — Z(Dy)

r1T = T

is surjective. Clearly, this is a homomorphism with kernel 0 and proves for linearly

equivalent divisors D; and Dy
g(Dl) >~ .,E/ﬂ(Dg) and l(Dl) = l(DQ)

In the Riemann-Roch equation, putting D = 0 we get {(0) —(C') =deg 0—g+1,
that is

1(C) =g.
and putting D = C' we get
deg(C) =29 — 2.
Finally, if deg D > 2g — 2, then deg(C' — D) < 0, that is {(C' — D) = 0 and

(D) =deg D —g+1.



Example 1.2.8. Let F(x) be the rational function field with prime Py, of degree 1.
Suppose z = f(x)/g(x) € L (nPx), that is, vp_((2)) > —n and vp((2)) > 0 for any
prime P # P,,. If

fl@) _ pit(2)ps* (2)..pp* (2)

9(@) @ (@) (2)-.q" ()

for irreducible polynomials p; and q; over I, we must have Zj m; = 0, each n; is

z =

non-negative and Y .n; < n (cf. Erxample 1.2.5). Hence, z is a polynomial over
F of degree < n. Conwversely, if z is a polynomial of degree < n, it is clear that

z € L(nPx). Thus, £ (nPy) is generated by {1,x,--- 2"} and [(nPx) =n+ 1.

Example 1.2.9. Let F(z) be a rational function field of genus g with a prime divisor
Py, of degree 1. Choosing n € Z* big enough we guarantee that deg(nPy) = n >
29 — 2. Then, l(nPx) =n —g-+1 and by Example 1.2.8 [(nPx) = n+ 1. Hence,
the genus of a rational function field is g = 0. Now, suppose K 1is a function field
of genus 0 with a prime divisor P of degree 1. Then, deg P =1 > 2g — 2 = —2
and so l(P) = deg(P) — g + 1 = 2, that is, there exists a non-constant x € K such
that (x) + P > 0. Note that deg((x) + P) = 1 which implies () + P = Q for some
prime Q of degree 1, or (x) = Q — P. By ( [6], Proposition 5.1, p.47), we conclude
K : F(z)] =deg (x)g =1 and K = F(z).

1.3 Prime Decompositions in Function Field Ex-
tensions

In this section, we assume that K is a function field over its constant field F' which
is perfect and L is a finite, extension of K with constant field E. Let P be a prime
in K and Op the associated discrete valuation ring. Similarly, let 8 be a prime in
L with discrete valuation ring Op. We say B lies above P if Op = Op N K and
P =P N K. In this case, we get POp = ¢ and the integer e = e(P/P) > 1 is
called the ramification index. Also, we define f = [Op/P : Op /Y] and f = f(P/P)
is called the relative degree. If the extension L/K is Galois then its Galois group
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will be denoted by G = Gal(L/K). Now, let {1, ..., B,} is the set of all primes in
L lying above P such that each ; has the ramification index e; and the relative

degree f;. Then, we have

Proposition 1.3.1. ( /6], p.79) Assume L/K is a finite, separable extension of
fields. Then, Y7 e f; =[L: KJ.

B is unramified over P if e(*B/P) = 1. Otherwise, P is ramified over P. A
prime P in K splits completely in L if there are n = [L : K| primes in L lying above
P. Using the above proposition we conclude P splits completely in L if and only if
e; = fi =1for i =1,...,n. Our aim is to caharacterize the splitting behaviour of

primes in K over the Galois extensions [L : K].

Proposition 1.3.2. Let K be a function field over its constant field F'. Let L be a
finite Galois extension of K with Galois group G and constant field E.

t. The restriction map, which is obtained by restriction of automorphisms of G

to E, G — Gal(E/F) is onto and the extension E/F is Galois.

tt. If N is the kernel of this map then the fixed field of N is KFE, the maximal

constant field extension of K contained in L.

Proof. Let 0 € G and a € E. Because « is algebraic over F' and o fixes K we
get that oo is also algebraic over F, that is ca € E. Hence, the restriction of an
automorhism o to E gives an automorphism in Aut(E/F), say res(c). Now, the
fixed field of the set {res(oc) : o € G} is EN K = F and which proves part (i).

Let N’ be the fixed field of N. N fixes KE by definition so we have |[N| = [L :
N'] < [L : KE]. On the other hand, G/N = Gal(E/F) that is [L : K] = |G| =
|IN||Gal(E/F)| = |N|[E : F]. Finally, using [E : F] = [KE : K|( [6], Proposition
8.1, p.102) we get |[N| = [L : KE], that is N = KE. O

Next we look at the action of the Galois group on the primes of L lying above

P.

11



Proposition 1.3.3. ( [6/, Proposition 9.2, p.117) Let {1, ..., B,} be the set of
primes of L lying above P. The Galois group G acts transitively on this set.

Proposition 1.3.4. Let 0 € G, P be a prime ideal of K, P be a prime ideal in L

lying above P and 0B = P'. Then, 0O0p is a discrete valuation ring with mazimal

ideal o*B, that is 00p = Opr.

Proof. Let x € 0Op, that is 0~z € Op implying (c7'z)"t = o~ tz~! ¢ P. Tt follows
that 7' ¢ oP and so ¢ € O,p = Op .
Conversely, if € Op then 7! ¢ P = o', that is o'z = (¢7'2)! ¢ P

implying o'z € Op, or x € 0Op. This proves the proposition. n

Proposition 1.3.5. Let the number of the primes in L lying above P be g(P). We

have f(B:/P) = f(B;/P) = f(P), e(PBi/P) = e(P;/P) = e(P) for all 1 <i,j < g
and e(P)f(P)g(P) =n=[L: K].

Proof. For given ‘B; and PB; there is an isomorphism o such that o3, = B;. If
r € Op, then ox € 00p, = Op,. Also, if y € Op, = 00p, then oty € Op,.
Therefore, we have an onto homomorphism Op, — Op; given by x — oz.

Now, consider Op, — Op, /*B;, by x — &7 which is an onto homomorphism with ker-
nel, say N. Let z € N then o = 0, that is oz € ;. It follows that x € o', = B,
and N C *B;. Conversely, if x € B; then oz € o’B; = *B;, implying oz = 0. Hence,

N =B, and we have an isomorphism

Op,/B; — Op,/B,

i — oxr

Clearly, this is a well defined map and proves that f(;/P) = f(B;/P) = f(P).
Also, if POp, = Bf applying o to both sides we get POp, = P5. Finally, using
ffl” e(Bi/P)f(P,;/P) = n concludes e(P)f(P)g(P) =n=[L: K]. O

Definition 1.3.6. Let P be a prime of L lying above a prime P of K. Then, two
subgroups of G, the decomposition group of ‘B over P and the inertia group of B

12



over P are defined respectively as

Z(B/P)={oceG|oP =P}
I(B/P)={1 € G| 12 = x(modP) for all x € Op}

If we consider the group G as acting on the set of primes of L lying above P then
the decomposition group of P over P is the stabilizer of P and by ( [2], Theorem
4.3, p.89) we have [G' : Z(P/P)] = g(P). Now using Proposition 1.3.5 we conclude
the following

[Z(B/P)| = e(B/P)f(B/P) (1.1)

Proposition 1.3.7. Let M C L be the fized field of Z(B/P) and p the prime M
lying below PB. Then P is the only prime in L lying above p. Moreover, e(p/P) =
f(p/P)=1 and [M : K| = g(P).

Proof. The field extension [L : M] is a Galois extension with the Galois group
Z(B/P). We know by Proposition 1.3.3 that the set of primes of L lying above p
are of the form o' for 0 € Z(P/P). However, o' =PV o € Z(P/P). This proves
P is the only prime in L lying above p. For the rest of the lemma

Z(B/p) = Z(B/P)
= c(P/p)f(B/p) = e(B/P)f(B/P)
= e(B/p)f(B/p) = e(B/p)elp/P)f(B/p)f(p/P)
=e(p/P) = [fp/P)=1
and finally,
[L:K] = [L:M]|[M: K]
= |G| = |Z(B/p)|[M : K]
= [M:K] = g(P).
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Theorem 1.3.8. ( [6/, Theorem 9.6, p.118) Let Ep be the residue class field of
Op and Fp be the residue class field of Op. Suppose L/K is a Galois extension
with G = Gal(L/K) and that B is a prime of L lying over a prime Pof K. Then
the extension Ep/Fp is also a Galois extension. There is a natural homomorphism
from Z(B/P) onto Gal(Ep/Fp) and the kernel of this homomorphism is 1(/P).

The inertia group is a normal subgroup of the decompositon group and #1(B/P) =
e(P/P).

Corollary 1.3.9. If B/ P is unramified, then Z(B/P) = Gal(Ep/Fp).

Proposition 1.3.10. Suppose L/K is a Galois extension of function fields and
suppose B is a prime of L lying above a prime P of K. Let 0 € Gal(L/K). Then,
Z(oB/P)=0cZ(B/P)o~! and I(cB/P) = cI(P/P)o".

Proof. We have, 7 € Z(oB/P) & 70 = 0P & o 70P = P & o lro €
Z(B/P) < 1€ cZ(P/P)o!, as required. O

Recalling the Proposition 1.3.3, we conclude the following corollary

Corollary 1.3.11. All the decomposition groups of primes above P in L are conju-

gate and similiarly for the inertia groups.

Proposition 1.3.12. Let L/K be a Galois extension of function fields and M an
arbitrary intermediate field. Let B be a prime of L and p and P the primes of M
and K respectively which lie below B. Set H = Gal(L/M). Then,

6. Z(P/p) = HNZ(P/P) and I(P/p) = HNI(P/P).

Now, assume H is a normal subgroup and let res : Gal(L/K) — Gal(M/K)

be the restriction map. Then,

ii. res(Z(P/P)) = Z(p/B) and res(I(B/P)) = I(p/P).

Proof. i. Let o € Z(B/p). Then, by definition 0 € H. Also, o € Z(3/P) since
Gal(L/M) C Gal(L/K) and o fixes . Converse inclusion is clear.
(ii) Consider the map res : Gal(L/K) — Gal(M/K) and let 0 € Z(/P). Then

14



T =res(o) € Gal(M/K) and so 7p = p, that is 7 € Z(p/P). Thus, by restricting the
map res onto Z (P/P) we get res|z : Z(P/P) — Z(p/P) with kernel Z(P/P)NH =
Z(B/p). This gives,

#res|z(Z(B/P)) = e(B/P)f(B/P)/e(B/p)f(B/p)
= e(p/P)f(p/P)
= #Z(p/P)

and proves ii. O

Lemma 1.3.13. Let L/K be a Galois extension of function fields and B a prime
of L lying above a prime P of K. Then, P splits completely in L if and only if
Z(B/P) = (e).

Proof. Suppose P splits completely in L By definition, there are n = [L : K] primes
above it in L and using Proposition 1.3.5 we get e(3/P) = f(P/P) = 1 for all primes
B of L lying above P. Now, using Equation (1.1) we conclude Z(3/P) = (e) for
all such . Conversely, assume that Z(/P) = (e) for a prime B of L lying above
P. Then, by Equation (1.1) e(/P) = f(B/P) = 1. In fact, by Proposition 1.3.5,
this is true for all primes of L lying above P and so there are [L : K| primes of L
lying above P. O

Theorem 1.3.14. Let M; and M, be two Galois extensions of a function field K
and let L = MMy be the compositium. A prime P of K spilits completely in L if
and only if it splits copletely in My and Ms. A prime P of K is unramified in L if
and only if it is unramified in My and Ms.

Proof. Let B be a prime of L lying above P and p; and ps the primes of M; and
M, respectively, lying below 3. Suppose P splits completely in L, then Lemma
1.3.13 tells us that Z(*B/P) = (e). Now, using Propositon 1.3.12 (ii) we get
Z(p1/P) = Z(p2/P) = (e). Again by Lemma 1.3.13, P splits completely in M,
and M.

Conversely, suppose P splits completely in M; and Ms. Then, Z(p,/P) = Z(p2/P) =

15



(e). For any o € Z(B/P), the restriction of o to M, and M, is identity by Proposi-
tion 1.3.12. It follows that o is identity because L = M; My, that is Z(B/P) = (e)

or equivalently P splits completely in L.

Unramified case can be proven similiarly.
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CHAPTER 2

Global Function Fields and the Zeta Function

2.1 Global Function Fields

A function field over a finite constant field is called a global function field. From now
on, we will assume that K is a global function field over its constant field F with
q elements. In this section, we will invstigate the zeta function of K and conclude

with the Riemann Hypothesis for global function fields.

Lemma 2.1.1. For any integer n > 0 the number of effective divisors of degree n

18 finite.

Proof. We know that except for one prime, each prime of the rational function field
F(z) corresponds to a monic irreducible polynomial in F(z). This shows that there
are only finitely many primes of F(x) of a fixed degree. On the other hand, for any
prime P in F(x) there are only finitely many primes of P of K that lie above P
and we always have deg B > deg P. Hence, there are only finitely many primes
of K of any fixed degree. Now, let D = > ,vp(D)P be an effective divisor of
degree n. Then, for each prime P in the summand we must have deg P < n and
also vp(D) < n. Finally, using the above arguments, this combination gives finitely

many effective divisors of degree n. O]
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Lemma 2.1.2. The number of divisor classes of degree zero is finite.

Proof. Let D be a divisor of degree 1 and for a divisor, A of degree zero, consider the
vector space .Z (gD + A). By Theorem 1.2.7, (gD + A) = deg(¢D+ A)—g+1=1
and so there exists a nonzero f € Z(gD + A). Now, setting B = (f) + gD + A
we get A ~ B — gD where B is an effective divisor of degree g. This equivalence
relation shows that the number of divisor classes of degree zero is bounded above
by the number of effective divisors of degree g, say b,. We have already proved the

finiteness of b, in the above lemma, this completes the proof. n

The number of divisor classes of degree zero is called the class number of K and

it is denoted by hy.

Lemma 2.1.3. For a divisor A, the class of A, [A], contains effective divisors if

and only if [(A) > 0.

Proof. Suppose B € [A] is an effective divisor. Then, there exists f € K* such that
(f)+A=B >0, that is f € Z(A) and [(A) > 0. Conversely, supose I(A) > 0.
Then, there exists a nonzero f in Z(A), that is (f) + A > 0. Hence, B = (f) + A

is an effective divisor in [A], as required. O

¢ —1
q—1

Lemma 2.1.4. For any divisor A, the number of effective divisors in [A] is

Proof. By Lemma 2.1.3 we can assume [(A) > 0. Consider the mapping

¢ Z(A)-{0} —- {De[A]| D=0}
() — () + A
For any D € [A] with D > 0 we have D = A+ (z) > 0 and so x € .Z(A). This
shows the map is surjective. If ¢(z) = ¢(y) then (x)— (y) = 0 and that means z and
y differ by a nonzero constant. Equivalently, ¢ — 1 different elements are mapped to

one element under ¢. Hence, the cardinality of the image is -1 O

=1
Lemma 2.1.5. ( [6/, p.50) For any integer n > 0, there are exactly hy divisor

classes of degree n.
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2.2 The Zeta Function of a Global Function Field

In this section K is assumed to be a global function field with genus g over its

constant field F with ¢ elements and h = hk is the class number of the field K.

Definition 2.2.1. The zeta function of K is defined as

(k(s)=> ND™*

D>0

where s is a complex variable and the sum is taken over all positive divisors in Dy
and for D € D, ND = ¢%9(P).

We will see in Theorem 2.2.4 that (x(s) is convergent for R(s) > 1.

Lemma 2.2.2. Suppose n > 0 and let {[D1],[D2], -+ ,[Dxn]} be the divisor classes

of degree n. Define
by=#{D > 0 | deg(D) = n}

If n > 2g — 2 then,

Proof. First of all let n > 0 then by Lemma 2.1.4 and Lemma 2.1.5 we get

h  iDi) _ 1
q
b, = -
Now, assume also that n > 2g — 2. Then we get from the results following Theorem
1.2.7, I(D;) = deg(D;) —g+1=n—g+1forall i =1,---,h and the result

follows. L

We can rewrite the zeta function as

CK(S) _ Z q—sdeg(D) _ anq—ns
D>0 n=1

and making the change of variable t = ¢~° leads to the following equivalent definition

of the zeta function.
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Definition 2.2.3.
Ck(s) = Z(t) =D but"
n=0

Theorem 2.2.4. Let K/F be global function field with genus g. Then, Z(t) is
convergent for |t| < 1/q and one has

i. If g=0 then Zg(t) = qfll(L - 2)

1—qt

ti. If g > 1 then Zg(t) = F(t) + G(¢)

where
1
F(t) = —— 1([D]) ydeg D]
(t) p— > q
[D]
0 < deg(D) <2g—2
h 1 1
G t — 1—g t 29—2t o
(t) —q_l(q (qt) i

Proof. i. First, we will prove that if ¢ = 0 then every divisor of degree zero is a
principal divisor, that is, h = 1. Let D € Dk and deg(D) = 0. Then, (D) >
deg(D) 4+ 1 — g = 1 and so there exists 0 # x € Z(D), i.e, (x) > —D. Also, note
that deg((z)) = deg(D) = 0. Hence, we must have (z) = —D, proving our claim.

Now, using Lemma 2.2.2 with h = 1 and g = 0 we can write

1
<qn+1 _ 1)tn

Zi(t) = ;bnt” = Zq_l
- (e 3]
q n=0 n=0

1 1
= 7 _ for |qt| < 1.
g—1\1—qt 1-—1%

ii. Suppose g > 1. Then,
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) —1
_ }: n _ q deg[D)
Z(t) = b, t" = g 2 Tydeg

n=0
(D]
deg[D] >0
1 I([D]) ydeg| D
- deg(D]
Ly gy,
(D]
0 < deg[D] <29 -2
1 (D)) ydeg(D] 1 deg|D]
P DRRCEC S
(D] (D]
deg|D] > 2g — 2 deg[D] > 0

]

In the above equation, calling the first term F'(t) and calling the sum of the last

two terms G(t) we prove the theorem since

(1-1G(t) = 3 b0 -3 n

n=2g—1
°° 1
= h|qg" () ") —h—
(q (qt) ; (qt) -
and the above equation, therefore F'(t) + G(t), is convergent for |gt| < 1.

Theorem 2.2.5. The zeta function of a function field K over F has Euler product
Zk(t) = H (1- tdegp)fl for|t| < ¢t
PePg
Proof. Since
Z tdesP < thegD = Zk(t) < for |t < q!
PePy D>0

we get that []pep, (1 - tdegp)_l is absolutely convergent for |t| < ¢!
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Now,

IT -t = ] (itndegp>

PePy PePr \n=0
— H (itdeg(np)>
PePr \n=0
_ thegD
D>0
= Zk(t)

]

Example 2.2.6. In this example, we will investigate the zeta function of the rational
function field F(x) where F is a finite field with q elements. Recall that the primes,
P € F(x) (except for the prime at infinity, P ) are in one to one correspondence
with the monic irreducible polynomials p(x) € F[z]. We have deg P = deg p(x) and

deg Py, = 1. Then, we can write
Gwyls) = [ =gt

_ (1 _ q—s)—l H (1 . q—sdegp(x))—l
p(x) € Flz]

monic, irreducible

Now, define the norm of a function as | p(x) |= ¢%9 P@) . Using the multiplicativity of
this function and the unique decomposition of polynomials into product of irreducible

polynomials we get

Cay(s) = (1—q )" 1T (1= [ p(z) [7)~"
p(x) € Flz]
monic, irreducible
= (=g > | flx) 7
f(x) € Fla]

monic
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Note that there are exactly ¢¢ monic polynomials of degree d. Hence,
%  d

G (s) = 1—q*)" (Y %) — (=g ) (1—g"%)"

d=0
Theorem 2.2.7. Let K be a function field of genus g over its constant field F with
q elements. Let t = q=°. Then there is a polynomial Ly (t) € Z[t] of degree 2g such
that

_ Lg(¥)
S )

for all R(s) > 1. The function (k(s) has simple poles at s =0 and s =1, Lk(0) =1,

Li(1) =h and L (0) = a; — 1 — q where a; is the number of primes of degree 1 in
K.

qn g+1__ 1

Proof. We know that for n > 29 —2,b, =h . Then,
29—2 ng+1
Z = "
x (1) th+2h q—l
n=2g—1
29—2 291 [o¢]
SDEEL S S
292 29—1
ht=9 g 1
= > b+ (q - ) 2.1)
—~ qg—1 \1—qt 11—t
29—2 -1 )
1 -1y — at(1 e Y
_ thn+ht2g1( tat ) —qtl gt )
—~ (1—qt)(1—1)
Lt
() (2.2)
(1—qt)(1 1)

It follows that Lg(t) € Z[t] and deg(Lk(t)) < 2g.

Now, we will see that the exact degree of the polynomial Lk (t) is 2g. For this
it suffices to show 1797k (t) is invariant under the transformation ¢ with ¢='¢~!

because assuming the invariant transformation property we get

g t9L(t) () IL(gt)
e T (V) B e T e R
Li(t) = ¢ot* L (¢ 't (2.3)
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Finally, taking limit as ¢ — oo proves that Lg(t) is a polynomial of degree 2g
with the highest degree term ¢9t%.

For the rest of the proof let us write

(q— 1) Zk(t) = f:bntn

Sy
n=0 deg[D]=
. h
deg[D]=0
h
- U[D])ydegD] _ "7 U([D]) pdeg[D]
>« Tt 2 ¢
0<deg[D]<2g—2 deg[D]>2g—2
h qthQ—l
_ (D) ydeslD] _ 5
> 4 -

0<deg[D]<2g—2
For the last equation we used [([D]) =deg(|D]) — g+ 1 in the last summand. We

can rewrite the above equation as

(q— D' 9Zk(t) = R(t) + S(t)

949 tl—g
R(t) — Z ql(D)tdeg[D}—g-H’ S(t) —h ( q - )

1—qt 1-—1%
0<deg[D]<2g—2

Then, for a divisor class C,

R(qflfl) — Z ql([D])+g*1+deg([D])tgflfdeg([D])
deg[D]<2g—2

— Z ql(C*[D])tl(C*[D])*gH
deg[D]<2g—2

the last equality follows from the fact I[(C — [D]) =deg(C — D) — g+ 1+ ([D]) =
g — 1—deg(D]) + U([D)).

But the map [D] — C —[D] is a permuatation of the divisor classes of degree less
than 2g — 1. Hence, R(¢7't™!) = R(t). Also, it is easy to show S(¢~'t71) = S(t).
These two equality then give us #1797 (¢) is invariant under the tramsformation

t — ¢ 't as we need it above.
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For (x(s) to have simple poles at s = 0 and s = 1 we need to show Lg(1) and
Lk (q7') are nonzero. We have lim;_;(t — 1)Zg(t) = —h/(q — 1) and lim; (¢t —
1)Zk(t) = —Lk(1)/(q — 1) respectively from (3.1) and (3.2), which shows that
Lk (1) = h. Also, putting ¢ = 1 in (2.3) gives L(q)~" # 0.

Finally, taking the derivative of the equality L (t) = (1 —t)(1 — qt) Yooy bnt™

gives
L@ = (—(g+ 1) +p@t)+ (1 —qgt —t+qt*)(bs + bt +--))

where p(t) is a polynomial with no constant term. Putting ¢ = 0 in the above

equation and using b, = a; we get
Li(0)==(¢g+ 1) +b=a—q—1
O

Definition 2.2.8. The polynomial L(t) = (1 — t)(1 — qt)Zk(t) € Z]t] is called the
L-polynomial of K/F.

Corollary 2.2.9. The zeta function of a function field K over F, with genus g has

a functional equation

1
Zx(t) = ¢ 220 )
q

Since the L-polynomial of K /F has coefficients in Z it can be factored over the

complex numbers

29

Li(t) = [J(1 — wit)

i=1
In this representation, w; are called the inverse roots of Lk (t). Note that (x(s)

has no zeros in the region {t € C | |[t| < ¢~'} so we must have |w;| < ¢. In fact, the

following theorem tells much more about the zeros of (x(s) and the L-polynomial.

Theorem 2.2.10. ( [6/, Theorem 5.10, p.55) (The Riemann Hypothesis for Func-
tion Fields) Let K be a global function field whose constant field F has q elements.
All the roots of Ck(s) lie on the line R(s) = 1/2. Equivalently, the inverse roots of
L (t) all have absolute value \/q.
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CHAPTER 3

Elliptic Curves

3.1 Curves

Throughout this section, we fix a field F with its closure F. The affine n-space
over ', A" = A"(F), is the set of n-tuples (xy,zs,...,7,) with each z; € F.
The F-rational points of A™ is the set A™(F) = {(z1,x2,...,2,) | x; € F'}. Let
F[X] = F[Xy,...,X,] and I an ideal of this ring. Then the affine algebraic set of
I'is defined as V. =V(I) ={P € A" | f(P) =0 for all f € I} and the ideal of V is
defined as I(V) = {f € F[X] | f(P) = 0 for all P € V}. If the generators of I(V)
are all in F[X] then V is said to be defined over F and denoted by V/F. For an
algebraic set defined over F', V(F) = V N A™(F) is the set of F-rational points of
V.

An affine algebraic set V' is called an affine variety if I(V') is a prime ideal in
F[X]. Now, let V be a variety. Then, F[V] = F[X]/I(V) is an integral domain. The
quotient field of this integral domain is called the function field of V and denoted
by F(V). Similarly, if V/F is a variety defined over F then I(V/F) = I(V) N F[X]
is a prime ideal in F[X]| and so F[V]| = F[X]/I(V/F) is an integral domain and the
quotient field of this integral domain is called the function field of V/F and denoted
by F(V).
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Let V be a variety and [(V) =< fi,..., f;u >. The dimension of V is defined
to be the transcendence degree of the field extension F(V) over F. The variety V

is called non-singular(or smooth) at P if the matrix of the generators of I(V)

Sl >

has rank n—dim(V').

The projective n-space over F, P* = P"(F), is given by A" —(0,0,---,0)/ ~
where ~ is an equivalence relation on its defined set and (zo, ..., z,) ~ (Yo, .-, Yn)
if and only if there exists a A € F* such that x; = \y; for all . A representative in
each equivalence class is denoted by [zg : -+ : x,]. The set of F-rational points of
P is the set P*(F) = {P € P" | P° = P for all 0 € Gal(F/F)} where P’ = [y :

iwn]” = [o(z) oot oan)]

Let F[X] = F[Xo,...,X,]. Then, I is an homogenous ideal of F[X] if it is
generated by homogeneous polynomials. Similarly as above, we define the projective
algebraic set of I by V.=V (I) ={P € P" | f(P) = 0 for all homogenous f € I}
and the homogenous ideal of V by I(V) = {f € F[X] | f homogenous and f(P) =
0 for all P € V}. Again, if the generators of I(V') are all homogenous polynomials
in F[X] then V is said to be defined over I and denoted by V/F. For an algebraic
set defined over F', V(F) =V NP*(F) is the set of F-rational points of V.

Every point in A" can be embedded in P" as
¢; A" — P
(X1, ..y ) = Jrp . mig s Lo ay)

for 0 < ¢ < n. In this way, n + 1 copies of A" is contained in P". Conversely,

for a point [zg : -+ : z,] € P" there exists ¢ with z; # 0 and the map on the set
Ui={lzo: 2] | 2 # 0}
ViU — A"
[Xo: - 1my] — (wo/T4y ..., Ti /T is1/Tiy .., 0/ ;)

is the inverse of the above specified map, ¢;. Therefore, we have a bijection
{lwg - 12,) €P" | z; #0} > A" (3.1)
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and the left points in P", {[zg : -+ : x,] € P" | z; = 0}, are called the points of P"
at infinity.

The above argument shows that V' = U V; where V; = V N U;. Now, let
V = V(I) be a projective variety and suppose that V; # (). Then, the points of
V' are the union of points of V; and the points of V N H; where H; = {[xg : - :
x,] € P" | x; = 0} is the hyperplane at infinity. For each G € I, the zeros of the
polynomial, G(Xo, ..., X; 1,1, Xi11,...,X,), give the points of V;. The left points,
{lzg: -z, €P? |2, =0} NV , on VN H; are called the points of V at infinity.
Hence, using the bijection 3.1, every projective variety, V', except its points at
infinity, can be seen as an affine variety and the corresponding points are called the
affine points of V. We denote the affine part of V' by V N A”. Then, the dimension
of V, dim(V), and the function field of V, F(V) is defined as respectively, the
dimension of V' N A™ and the function field of V' N A™.

Example 3.1.1. Let V be the projective variety in P2, defined over a field F' by
VY Z =X+ XZ*+7°

Putting Z = 0 in the equation of V gives that X = 0 and Y € F so there is only
one point at infinity, namely [0 : 1 : 0]. For the affine points of V- we put Z =1 and
conclude that V ={[z:y:1] €P?* | y* =2+ +1}U[0:1:0].

We define a curve to be a one dimensional projective variety and the genus of
a curve is the genus of the function field F'(C)/F. Note that F(C)/F is a field

extension with transcendence degree 1.

3.2 Elliptic Function Fields and Elliptic Curves

A function field K/F of genus 1 with a prime O of degree 1 is called an elliptic
function field. For a positive integer n, consider the vector space £ (n0O). Then,
[(nO) = deg (nO) — g+ 1 = n since deg (nO) = n > 2g —2 = 0. In particular,

for D = O, I(D) = 1 and since .Z (D) already contains constant functions, there is
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no function in K with a single pole at O. Now, set D,, = nO and choose a basis
for Z(D,), say {1,z}. Then, x must have a pole of exact order 2 at O. We have
Z(Dy) C Z(Ds3) and I(D3) = 3 so choose {1,x,y} as a basis for £ (D3) where
x is the same as above. Again, y cannot have a pole of order one at O. Also it
cannot have a pole of order two at O since z and y must be linearly independent.
Hence, y must have a pole of exact order 3 at O. Consider the set of functions
{1,z,y,2% xy,y* 23}. Clearly, all these functions are contained in .#(Dg). The set

contains 7 elements but [(Dg) = 6. Hence, there is a linear relation
Al + AQIL‘ + Agy + A4ZL’2 + A5£L”y + A6y2 + A7ZE3 = 0

and A; € F. By ( [6], Proposition 5.1, p.47), [K : F(z)] =deg ()o = 2 and
K : F(y)] =deg (¥)s = 3 so that K = F(x,y). Also, we must have Ag # 0 and
A7 # 0 because otherwise we would have [K : F(x)] < 2 and [K : F(y)] < 3 which
leads a contradiction. Now, writing z = —AgAyz and y = AgA%y in the above
equation gives that x and y satisfy a cubic polynomial with coefficients in F' of the

form
Y24+ a1 XY +a3Y = X34+ a4 X? + au X + ag (3.2)

Equation (3.2) is called the Weierstrass equation. Considering this equation in P2,

we obtain a projective curve defined over F', namely
C:Y’Z+uXYZ+a3YZ? = X+ auX°Z + anXZ* + agZ°
and the points of C' is given by

C(F)={lz:y:1]€P?® | ¥’ +aiazy+asy = 2° + aga® + agz + ag} U[0: 1: 0]

The curve, C, defined by the Weierstrass equation is called the Weierstrass curve.
If char(F') # 2,3, some suitable change of variables for 2 and y gives the Weier-

strass equation in the form

Y2 = X3 —27¢, X — bdcg
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where

b2 = CL% + 4&2,
b4 = 2@4 + aias,
b6 = CL% + 4@6,
Cqy = b% — 24()4,

cg = —b3 + 36baby — 216bg.
We define the discriminant, A, and the j-invariant, j, for a Weierstrass equation
as
bs = a2 + ag + dasag — ajazas + axai — a3,
A = —b3bg — 8b3 — 2702 + 9bybyb,
j=ci/A
If a curve, C, is given by a Weierstrass equation, A gives information about the

smoothness of C.

Theorem 3.2.1. ( [7], Proposition 1.4, p.50) Let C' be a curve given by a Weier-

strass equation. Then, C is smooth if and only if A # 0.

In the case that the Weierstrass equation is smooth, the Weierstrass curve is
called the elliptic curve and it is denoted by E.

Let us turn back to the elliptic function field, K/F, with a prime O of degree 1.
Take a divisor D € DY and consider £ (D + O). Since deg(D+0) =1 >2g—2 =0
we get [(D + O) =deg(D + O) — g+ 1 = 1. Then, there exists a nonzero z € K
such that (z) + D+ O > 0. Note that (z) + D + O is a positive divisor and
deg(z) + D + O = 1. Therefore, (2) + D + O = Pp for some Pp € Py with
degPp =1 and D ~ Pp — O. Suppose now, (Jp is another prime of degree 1 such
that D ~ Qp — O. If Qp # Pp we get Pp ~ Qp implying Pp — Qp = (z) for some
0 # z € K. Then, by ( [6], Proposition 5.1, p.47), [K : F(z)] =deg(z)oo = 1 that
gives a contradiction. Hence, for any divisor D € DY there exists a unique prime,

Pp € Pk, of degree 1 such that D ~ Pp — O. Now, let ]P’%) be the set of all primes
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in K of degree 1 and define a map

O'ZD([)( — Pg)

Dl—>PD

The map is surjective, since for P € Pg) we can choose D = P — O € DY so that
o(D) = P. Now, let o(D;) = P, and 0(D3) = P,. Then, P, — Py, ~ D; — D —2 and
if P, = P, we get Dy ~ Dy. Conversely, if D; ~ Dy then P, ~ P, and using the
same uniqueness argument in the above, we conclude P, = P,. Hence, o induces a

bijection between Pﬁ? and the group of divisor classes of degree zero, C%. Namely,

O'IC?{ — ]P’g)

[D] = PD
Clearly, the inverse map of o is

/f:IP’g) — C%

P — [P-O0]
Now, for P and QQ € Pg) define
PoQ=oa(k(P)+r(Q)) (3.3)
Then, using definition of the map s we can deduce
PoQRQ=R<~=P+Q~R+O0 (3.4)

From the condition 3.4, it easily follows that (]P’%), @) is an abelian group with O as
the identity element and « is a group isomorphism.

In general, for every function field K/F, there exists a non-singular curve C' de-
fined over F such that the function field of C' is isomorphic to K, that is F/(C) = K,
( [8], Appendix B.9, p.247). Using this isomorphism, we get a one-to-one corre-
spondence between the F-rational points of C, C(F'), and the degree 1 primes of
K. Now, we can define the divisor group of C' as the formal group generated by

the F-rational points of C. Hence, a divisor of C'is of the form D = ZPGC(F) npP
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where np € Z and almost all np = 0. Because of the correspondence between the
points P € C(F) and the degree 1 primes of K, the degree of D is defined as deg
D=>" pec(r) Mp- In the case that K /F is the elliptic function field the corresponding
curve is the elliptic curve, F. In particular, the prime O of K corresponds to the
point [0 : 1 : 0] of E, ( [7], Proposition 3.1, p.63). Hence, applying the analogous
arguments in the above to F , we can define an addition operation on the F-rational
points of E and get that (E(F),®) is an abelian goup with O = [0 : 1 : 0] as the
identity element.

We can also define an addition operation on E(F) using geometry as follows.
Let P, Q € E(F) and L C P? be the line connecting P and Q. Since the equation
of E has degree 2, L intersects the curve F at a third point, say R. Let L' C P?
be another line connecting O and R on the curve E. Again, L’ intersects E at a
third point and we define this point as P @ (. It is easy to check that under this
operation F(F) is an abelian group. In fact, the two operations coming from algebra

and geometry turn to be the same. For more details, see ( [7], Chapter II1.3).

3.3 Reduction of Elliptic Curves

Let K be a field with discrete valuation v. Let O be the dicrete valuation ring and
P the unique maximal ideal of O and t a generator for P. The valuation v defines an
absolute value on K and we can complete the field K with respect to this valuation.
So we can assume K is a complete field with respect to v. Consider an elliptic curve

E/K with Weierstrass equation
y2 + a1y + azy = 3+ a2x2 + a4 + ag

After changing of variables (z,y) by (t72z,t 3y) in the equation, each a; becomes
t'a; and so each v(a;) increases. Repeating this process we get another equation for
E with coefficients in O. Consequently, we can assume F has an ellliptic curve with
coefficients in O, v(A) > 0. Since the valuation function is discrete, there exists one

equation with v(A) minimal called the minimal Weierstrass equation.
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Now, let E be an elliptic curve given by a Weierstrass equation. If v(A) = 0,
by reducing the coefficients a; € O to a; = a;(mod P) we get a new curve, E
over the residue field k = O/P and it is called the reduction of E modulo P. The
reduction process can also be applied to the points of F(K) for producing points of
E(k). Let P = [z, 10, 2] € E(K). Since v is discrete, we can choose i € Z such
that each t'mg, t'yy, t'2 is in O and at least one of them is in O* = O\P. Then,
P = [tixg, tiyy, tizg] € P? and satisfies the equation of E(k).

Now, let Ey(K) = {P € E(K) | P = O} of E(K). Then, F;(K) is a subgroup

of E(K) and we have an exact sequence of abelian groups

0— Ey(K)— E(K)— E(k)—0 (3.5)
and
Proposition 3.3.1. Let m be a positive integer relatively prime to char k.
i. E1(K) has no non-trivial points of order m.

1t. The reduction map
E(K)[m] — E(k) (3.6)
where E(K)[m] is the set of points of order m in E(K), is injective.
48 Multiplication by m map is an isomorphism on E;(K)

For details, see ( [7], Chapter IV, Chapter VII).

Now, let K/F be a global function field and E/K an elliptic curve defined over
K. For every P € K we can take the completion of K, say Kp with ring of integers
Ok, maximal ideal Pg,. Since K — Kp, we will consider F as defined over Kp
with having a minimal Weierstrass equation. Note that P | A for only finitely many
P € K, hence vp(A) > 0 for finitely many P € K and vp(A) = 0 for the rest of
infinitely many primes P € K. So, for all but finitely many P we get an elliptic
curve E and say E has a good reduction at P. The reduction of F modulo Pk, is

the curve E defined over the residue field ky = Ok, /pKk,. Note that, for k = Op/P
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we have kp = k Also, K is a finite extension of the rational function field F(x)
and so k is a finite extension of the residue field F[z]/p(z) where p(z) is the monic
irreducible polynomial over F corresponding to the prime p NF[z| € F[z]. Thus, kp

is a finite extension of I, say kp = F 4 for some d > 1 and we get an elliptic curve

E(kp) over a finite field.

Theorem 3.3.2. Let E be an elliptic curve defined over a finite field F. Then the

set of points on E is a finite abelian group with group structure
E(F)=Z/mZ x Z/nZ, n | m, ged(n,p)= 1.

Proof. In the finite group E(F) choose a point with highest order, say with order
m. Then, order of any point in the group divides m and so F(F) C E[m)|.
Case 1. ged(m,p)=1

E(F) C E[m] & Z/mZ x Z/mZ ( [7], Corollary 6.4, p.89). Hence, E(F)
Z/mZ x 7/nZ, for some n | m and ged(n, p)= 1 since ged(m, p)= 1.

Case 2. m = myp®, ged(my, p)= 1.

In this case F[m4| and E[p®] are non-empty subgroups of E[m| because by
assumption the group F(F), and so the group E[m| contains a point of order m;p®.
Hence, E[p®] =2 Z/p*Z and E[mq] = Z/miZ X Z/myZ which implies E(F) C E[m| =
Z/mip“Z X Z/m1Z and results in

E(F) = Z/mZ x Z/nZ, n | my, ged(n,p)= 1.
[

By the above theorem, E (kp) is either cyclic or it is product of two cyclic groups.
Let M = {P € K | E(kp) is cyclic}. We are interested in the Dirichlet density of the
primes in M. Since we have good reduction of E at P for all but finitely many primes

in K, §(M) = §(M') where M' = {P € K | E has good reduction and E(ky) is cyclic}.

Theorem 3.3.3. Let E/K be an elliptic curve defined over a field K. Let P be
a prime of good reduction and m € ZT with (m,p) = 1. Then, E(k) is cyclic if
and only if P does not split completely in any K([m]) which is the smallest Galois

extension of K in which the m-torsion points are defined.
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Proof. Suppose P splits in some L = K([m]). Let P be a prime of L lying above
P and Lp is the local complete field with respect to 8. Then, Z/mZ x Z/mZ C
E(Lp)[m] since all m-torsion points of £ are contained in L. Now, using injection

(3.6) and [Op /P : Op/P] = f =1 we get
Z/mZ x Z/mZ C E(Lp)[m] — E(Op/%) = E(Op/P) (3.7)

that is, £ (k) is not cyclic.
Conversely assume that E(k) is not cyclic. Then, there exists m such that Z/mZ x
Z/mZ C E(k). By our assumption, P is a prime of good reduction and by (3.5) we

have an onto homomorphism

E(Kp) — E(k)

Now, let P, € E(K,) be the pre-image of P; satisfying mP, = O for i = 1,...,m?2.
Then, we get mP; = mP; = O, that is mP; € FE,(Kp). By Proposition 3.3.1 there
exists Q; € E1(Kp), such that mP, = m@);. Hence, P, — Q; € E1(Kp) C E(Kp) is
a point of order m, for i = 1,...,m?. This implies Kp = Kp(E[m]) = Lp for some
B € L lying above P so that ef = [Lp : Kp| =1 and e = f = 1, which finishes the
proof. O]

35



CHAPTER 4

Dirichlet Density and Cyclicity of Elliptic Curves

Let E/K be an elliptic curve defined over a global function field K/F. In the
previous chapter, we showed that the reduced curve E is defined over a finite field
and the points on E is either a cyclic group or it is a product of two cyclic groups.
We also determined the necessary and sufficient conditions on the prime P in K
such that £ mod P has a cyclic group structure. In this chapter, we define the
Dirichlet density of a subset of primes in the global function field K/F. Then, we
finish by the Dirichlet density of primes P in K such that £ mod P has a cyclic
group structure, which is calculated in [1].

Let K be a global function field over the constant field F with ¢ elements. Let
L/K be a Galois extension. Define (L) to be the set of all primes in K that splits
in L. Consequently, (K) becomes the set of all primes in K. Let M C (K). Then
the Dirichlet density of M, 6(M), is defined by

S(M) = limg_1+0(s, M)

where

d(s, M) = 2pen NP~
7 ZPE(K) Np~s

and s approaches to 1 from above in the real line. If the limit does not exist we say

M does not have a Dirichlet density.
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Now, we will establish a relation of the zeta function of K with the Dirichlet

density of M. Recall that

=Y ND@ =[] a-nNP)!

D>0 PE(K)

Taking logarithms of both sides in the above equation we get

ks
log Ck(s) = Z log(l1— NP~* Z ZNP

Pe(K) Pe(K) k=1
NP ks
- Y ey Yy (41)
Pe(K) Pe(K) k=2

In the case that s is taking real values we can write

N pP—ks 1
< NP™* =NpP2__ < 9NP~2
Do < 5 <
k>2 k>2

so for the second sum in equation (4.1) we have

Z ZNP " <2 Z NP2 < 2Ck(2s)

Pe(K)

Note that (x(2s) is bounded as s — 1. Hence, we can replace the denominator
in Dirichlet density with log(x(s). Using the similar arguments above, we can

replace the numerator by Y,/ >-,~; NP~* /k and conclude

P P

. 7. PeM klepiks/k
Remark 4.0.4. i. O(M) = lim, 1+ Tog Crc (5)

ti. We proved in Theorem 2.2.7 that (x(s) has a simple pole at s = 1. Hence,
log(s — 1)k (s) = log(s — 1) 4 log Ck(s) is bounded as s — 11. Now, writing
f(s) = g(s) when f(s) — g(s) is bounded, we conclude

Z NP® = log(k(s) =~ —log(s — 1)

PeK
Proposition 4.0.5. Let L/K be a Galois extension of global function fields. Let
M = (L). Then

(L)) =

[L: K]
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Proof. Let [L : K| =n. By Remark 4.0.4 we can write log (1(s) = > p NPB~*. Also

Sp - XSy

PEK P|P
SDSED VL SRS oD 3 S
P|P P|P
Pe K Pe K
ramified unramified

There are finitely many ramified primes in K ( [6], p.83) and for an unramified
prime P € K there are g = n/ef = n/f primes in L which lie above P and for each
B | P we have N = NP/, Therefore,

SONPT = Oy ? S NP
P

fln

PeK
fB/P) =T
— CG+nY NP+ Y ; S NP
= fln Pek

2<f<n  fB/P)=f

= 01+02+TL Z NP™?
Pe(L)

for some positive constants C; and Cy which come from the sum of the terms over
finitely many ramified primes and the sum of the terms for f > 2, respectively, in
the above equation. Then, ) Pe(L) NP %~ %. Finally, dividing both sides by

—log(s — 1) and using Remark 4.0.4 we conclude

]

L(.Z) will denote the lattice of fields spanned by .# = { K, },enx which is a count-

able family of finite Galois extensions of K.

Theorem 4.0.6. ([1]) Let F' = { K, },en be a countable family of Galois extensions
of K, F, the algebraic closure of F in K,, and M the set of prime ideals in K that do
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not split completely in any of the fields in L(F'). Set n(v) = [K, : K], c(v) = [F, : F]
and define for a set of positive integers I = {vy,...,v.} K; = K,, ---K,, as the
compositum field. Suppose that the following conditions hold

i Yol = <00

o=1 1(v)

.o o0 1
. Y o, o < 00, and

i9i. There exists a constant C' such that g(K,) < C’Z((Z)) for all v.

Then, the Dirichlet density of M exists and is given by
(1)
o0(M) = g —
(M) - [K;: K]
where p(I) = (—1)1

Proof. We are looking for the density of primes in M which is the set of primes that
do not split completely in any of the fields in L(.7). Defining M,, =, ,,[(K)—(K,)]
we get M = lim,, .., M,, and deduce

d(M) = lim lim 0(s, M,) (4.2)

s—1+ n—oo

Recall that by Theorem 1.3.14 a prime P € K splits in the Galois extensions K,
and K, if and only if it splits in the compositium field K, K,,. Hence, using the

inclusion exclusion principle we obtain another equation for M,

Mn = (K) - Z(Kv) + Z (Kvaz) -t <_1)n(Kvl o Kvn)

v<n v1,v2<n
Now, suppose that the limits in Equation (4.2) can be interchanged. Then, using
the Proposition 4.0.5 we complete the proof of the theorem. Note that d(s, M) <
§(s, M) and 6(s, M,,) —0(s, M) < >_,.,9(s, (K,)). Thus, proving the convergence
of Y7, | d(s, (K,)) | will suffice for interchanging the limits. By Remark 4.0.4 we

have

et 2peiyy NPk
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Note that for P € (K,) there are n(v) primes, 3, in K, lying above P with e(/P) =
f(B/P) =1 and so NP — NP. Then, we can write the below inequality

NP ks Nphe 1
Z > Z > si < oy 108 (s)

k=1 Pe(K,) k=1
P e K,
deg’B =1
and we get
1 |log(xk, (s)
2l D 205 o o

By Theorem 2.2.7 we can write

1 IOg CKu<S) Z 1 log LKv(q—sc(v)) ‘
niv) | log Cx(s) () | log(k(s)
1 |log(1— q—SC(v)) 1 — q(l_s)C(v))—l
ZU: n(v) log (e ()

log Cr,, (x)(5)
v) | logCk(s)

. oy . o . . log(1—g—5c¢(¥))—=1(1—_g(1—s)c(v))—1
Using condition (i), it is convergent as s — 17 since og(1-¢ lo)g C1(< (S)q )

By Example 2.2.6 the second term in the above sum is equal to >

vn

18

also convergent as s — 17 by Example 2.2.6 and Theorem 2.2.7. For the first term,

using Theorem 2.2.10 and condition (iii)

29(Kv) < (1 4 se(v) 29(Ky) <) Cn(v)/c(v)
—sc(v —sc(v — q ) < (1 Tq 2 )
Li, (™) = ] (1 —wig™>)

i=1 >(1—-q

sc(v)

#2)20(K0) 5 (1 — g5 )On(@)/e®)

Now, using log(1 + ¢~

—log(1 —q~

we get
‘log LKv(q_SC(”))‘ <4C——=

and since (x(s) has a simple pole at s = 1

1 log Ly, (g~*")
n(v)  log((s) c(v)g s

Finally, condition (ii) guarantees the interchanging limits as we required. H
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Recall that we are looking for the Dirichlet density of primes, P of good reduction
such that E mod P is cyclic. By Theorem 3.3.3 we have to calculate the density
of the primes that do not split completely in any of the fields in L(F) where F =

{K 1) Yeprime -

Theorem 4.0.7. [1] Let K/F, be a global function field. The Dirichlet density 0
of the set of primes, P, such that E mod P is cyclic is given by
pu(m)
= S
2 TR () < K
Proof. We will show that the conditions in Theorem 4.0.6 are satisfied by F =
{E (1) Yeprime,isp-
(i) Let F, be the algebraic closure of F, and E the elliptic curve with j-invariant
j. Then, for G =Gal(F,(j)([])/F,(j)), we have an homomorphism

p: G — Aut(E[l]) = GL(2, Z/IZ)
a b
c d

g F—

where P? = aP + bQ, Q7 = cP + dQ for generators P and @ of E|l]. The Weil-¢,

pairing on an E is a map e; : E[l] x E[l] — p = ["" roots of unity ( [7], Chapter

lth

I11.8). Using the properties of this map and the fact that F, contains roots of

unity we get that
a(P, Q) =ea(P, Q)7 =ea(P?, Q7) = a(aP +0Q, cP+dQ) = e(P, Q)"

and ad — bc = 1. Hence, we have an injection G — SL(2, Z/IZ). In fact, this map

is onto ( [3]) and gives us the isomorphism
Gal(F, () ([1])/Fq(5)) = SL(2, Z/1Z)
Now, we can write

n(l) = | Gal(K([l]) - K) | =] Gal(Fy(5)([1])/Fq(5)) | /K - Fy(35)]
> | SL(2, Z/1Z) | K : Fy(5)]
= W=D+ 1)/[K :Fy(5)]
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and proves the condition (i).
(ii) Since E[l] ¢ E(K([l])), K([l]) contains the {"* roots of unity( [7], Corollary
8.1.1, p.98). Also, by definition, k; is the algebraic closure of k = F, in Kj. Then

c(l) =Tk k] > [kV1: k] =11

and condition (ii) is satisfied.

(iii) For the extensions of the fields we have the following diagram

KT, (7)1

e

I

~—

K([1])

\/

=

N

]

~—

Fy ()

Fq(5)

Now, let P8 be a prime in K ([l]) lying above the prime a € K with ramification
index e. Let p € Fy(7)([l]) be the prime lying below B, P € F,(5)([{]) N K the prime
lying below p, and p € F,(j) te prime lying below P. K([l])/K and F,(j)([]])/F,(j)
are Galois extensions. By ( [4], Theorem 1.12, p.266), F,(5)([1])/F,()([1]) N K is
also Galois and there is an isomorphism between Galois groups Gal(K ([]])/K) and
Gal(F,(5)([I))/F,(7)([{]) N K), which is simply through the restriction of automor-
phisms to F,(j)([/]). Then, the inertia groups I(/a) and I(p/P) are isomorphic
by ( [5], Proposition 9.4, p.169) and we write

=1(P/a) = 1(p/P)

But, F,(7)([]])/F,(j) is tamely ramified ( [3]), that is, char(F,) does not divide e.
So, K;/K is tamely ramified and from the Riemann-Hurwitz formula( [6], p.90) for
K([l])/ Kk where k; is the algebraic closure of IF, in K ([l]) we get

2g(K([1]) — 2 = [K([1)) : Kk)(29(Kks) =2) + Y (e(B/P) — 1)deg B.
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Also, n(l) = [K([l]) : K] = [K([l]) : Kk][Kk : K] = [K([l]) : Kk][k; : F]
[K([1]) : Kki]c(l), that is, [K([l]) : Kki] = n(l)/c(l). Hence, g(K([l])) < Cn(l)/c(

for some positive constant C' and so condition (iii) is satisfied.
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