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ABSTRACT 
 
 
 
 

Recently, a new international standard for video compression named H.264 / 
MPEG-4 Part 10 is developed. This new standard offers significantly better video 
compression efficiency than previous international standards. The variable block size 
motion estimation is the most compute-intensive part of an H.264 video encoder. The 
full search method is impractical for real-time implementations since it requires a high 
computational complexity. Therefore, many fast motion estimation algorithms have 
been developed for real-time implementations. In this thesis, we used an SAD reuse 
based hierarchical motion estimation algorithm for real-time H.264 / MPEG-4 Part 10 
video coding. This algorithm uses the Lagrangian cost parameter (SAD+λR) for 
selecting the best motion vector. We designed a high performance and low cost 
hardware architecture for real-time implementation of this algorithm. We have 
considered several alternative designs and decided on this architecture based on a 
cost/performance analysis. This architecture uses a novel data flow resulting in a low 
cost and high performance hardware. This hardware is designed to be used as part of a 
complete H.264 video coding system for portable applications. The proposed 
architecture is implemented in Verilog HDL. The Verilog RTL code is verified to work 
at 63 MHz in a Xilinx Virtex II FPGA. The FPGA implementation can process 25 VGA 
frames (640x480) or 76 CIF frames (352x288) per second. 
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ÖZET 
 
 
 
 
Son zamanlarda, video sıkıştırma için H.264 / MPEG-4 Bölüm 10 isimli yeni bir 

uluslararası standart geliştirildi. Bu yeni standart, önceki uluslarası standartlardan 
önemli derecede daha iyi bir video kodlama verimliliği sağlamaktadır. Değişken blok 
boyutu hareket tahmini, H.264 video kodlayıcının en işlemsel yoğunluktaki bölümüdür. 
Tam arama metodu gerçek-zamanlı gerçekleştirmelerde yüksek işlemsel karmaşıklık 
gerektirdiğinden dolayı, pratik değildir. Bundan dolayı, gerçek-zamanlı 
gerçekleştirmeleri sağlayabilmek için birçok hızlı arama algoritmaları geliştirilmiştir. 
Bu tezde, gerçek-zamanlı H.264 / AVC bölüm 10 video kodlama için SAD tekrar 
kullanma tabanlı hiyerarşik hareket tahmini algoritması kullandık. Bu algoritma, en iyi 
hareket vektörünü seçmek için Lagrangian değer parametresini (SAD+λR) kullanıyor. 
Bu algoritmanın gerçek-zamanlı gerçekleştirmesi için bir yüksek performanslı ve düşük 
maliyetli donanım mimarisi tasarladık. Çeşitli alternatif tasarımları göz önünde 
bulundurduk ve maliyet/performans analizine göre bu tasarımda karar kıldık. Bu mimari 
düşük maliyetli ve yüksek performanslı bir donanım ile sonuçlanan yeni bir veri akışı 
kullanmaktadır. Bu donanım, portatif uygulamalar için komple bir H.264 video kodlama 
sisteminin bir parçası olarak kullanılmak üzere tasarlandı. Arz edilen mimari Verilog 
HDL'de gerçekleştirildi. Verilog RTL kodu bir Xilinx Virtex II FPGA'de 63 MHz'de 
çalışmak üzere doğrulandı. FPGA gerçekleştirmesi, saniyede 25 VGA karesi veya 76 
CIF karesi işleyebilmektedir. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
 

Video processing is used in many applications. In most of these applications, the 

transmission mediums are not capable of transmitting uncompressed digital video in 

real-time and the capacity of storage mediums are not enough for storing uncompressed 

digital video. Video compression makes it possible to use digital video in transmission 

and storage that would not support uncompressed video [1]. Therefore, video 

compression systems are used in many commercial products, from consumer electronic 

devices such as digital camcorders, cellular phones to video teleconferencing systems. 

These applications make the video compression hardware devices an inevitable part of 

many commercial products.  

 

To improve the performance of the existing applications and to enable the 

applicability of video compression to new real-time applications, recently, a new 

international standard for video compression is developed [2, 3, 4]. This new standard, 

offering 50% better video compression efficiency than previous video compression 

standards, is developed with the collaboration of ITU and ISO standardization 

organizations. Hence it is called with two different names, H.264 and MPEG-4 Part 10. 

 

The top-level block diagram of an H.264 encoder is shown in Figure 1. Motion 

estimation generates a predicted macroblock (MB) for the current MB in the current 

frame based on temporal redundancy between the current and reference frames. Intra 

prediction generates a predicted MB for the current MB in the current frame based on 

spatial redundancy in the current frame. Mode decision compares the required amount 

of bits to encode a MB and the quality of the decoded MB for both of these modes (inter 

and intra), and chooses the mode with better quality and bit-rate performance. In either 
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case, the predicted MB is subtracted from the current MB to generate the residual MB. 

The residual MB is transformed, quantized, re-ordered in a zig-zag scan order and 

entropy encoded. This process is repeated for each MB in the current frame. The 

entropy encoded coefficients together with header information, such as MB prediction 

mode, motion vectors and quantization step size, form the compressed bit stream. The 

compressed bit stream is passed to network abstraction layer (NAL) for storage or 

transmission. 

 

Since a decoder never gets original images, but rather works on the decoded 

frames, the encoded frame is also decoded and reconstructed in the encoder to ensure 

that both encoder and decoder use identical reference frames for intra and inter 

prediction. The reconstructed residual data are generated by inverse quantization and 

inverse transform. The reconstructed residual data are added to the predicted pixels to 

create the reconstructed frame. A deblocking filter is applied to reduce the effects of 

blocking artifacts in the reconstructed frame. 

 

 
Figure 1. H.264 encoder block diagram 

 

The video compression efficiency achieved in H.264 standard is not a result of 

any single feature but rather a combination of a number of encoding tools. As it is 

shown in Figure 1, one of these tools is the variable block size motion estimation used 

in the baseline profile of H.264 standard. Motion estimation is the most computationally 

demanding part of the encoders implementing the previous video compression 

standards. Variable block size motion estimation achieves better coding results than the 
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fixed block size motion estimation used in the previous video compression standards. 

However, the amount of computation required by variable block size motion estimation 

is even more than the amount required by fixed block size motion estimation. Therefore, 

this coding gain comes with an increase in encoding complexity which makes it an 

exciting challenge to have a real-time implementation of motion estimation for H.264 

video coding. 

 

In this thesis, we present a high performance and low cost hardware architecture 

for real-time implementation of an SAD reuse based hierarchical motion estimation 

algorithm for H.264 / MPEG4 Part 10 video coding. This hardware is designed to be 

used as part of a complete H.264 video coding system for portable applications. The 

proposed architecture is implemented in Verilog HDL. The Verilog RTL code is 

verified to work at 63 MHz in a Xilinx Virtex II FPGA. The FPGA implementation can 

process 25 VGA frames (640x480) or 76 CIF frames (352x288) per second. 

 

The rest of the thesis is organized as follows. Chapter 2 explains motion 

estimation and presents several motion estimation algorithms. Chapter 3 explains our 

SAD reuse based hierarchical motion estimation algorithm. Chapter 4 describes the 

proposed hardware architecture in detail. The hardware implementation results are 

given in Chapter 5. Finally, Chapter 6 presents the conclusions and future work. 
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CHAPTER 2 
 
 

MOTION ESTIMATION  
 
 
 
 

As illustrated in Figure 2, motion estimation is the process of searching a search 

window in a reference frame to determine the best match for a block in a current frame 

based on a search criterion such as minimum sum of absolute difference (SAD) [1]. The 

location of a block in a frame is given using the (x,y) coordinates of top-left corner of 

the block. The search window in the reference frame is the [-p,p] size region around the 

location of the current block in the current frame. The SAD value for a current block in 

the current frame and a candidate block in the reference frame is calculated by 

accumulating the absolute differences of corresponding pixels in the two blocks as 

shown in the following formula: 

 

    (2.1) 

 

where Bmxn is a block of size mxn, d=(dx, dy) is the motion vector (MV), c and r are 

current and reference frames respectively. Since a motion vector expresses the relative 

motion of the current block in the reference frame, motion vectors are specified in 

relative coordinates. If the location of the best matching block in the reference frame is 

(x+u, y+v), then the motion vector is expressed as (u,v). 
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Reference frameCurrent frame

 
Figure 2. Motion estimation process 

 

The motion estimation and motion compensation flows in a video encoder and a 

video decoder are shown in Figure 3 [1]. Motion estimation is performed on the 

luminance (Y) component of a YUV image and the resulting motion vectors are also 

used for the chrominance (U and V) components. After the motion vector for a block is 

determined, the residual block (the difference between the current block and the 

reference block pointed by the motion vector) is calculated by the motion compensation 

module. The motion vector and the residual block ( I(x,y,t) – I(x-u, y-v, t-1) ) are coded 

in the encoder and transmitted. This process is repeated for all the blocks in the current 

frame. In the decoder, the motion vector and the residual block are decoded. Then, the 

reference block in the reference frame pointed by the motion vector ( I'(x-u, y-v, t-1) ) is 

determined by the motion compensation module, and it is added to residual block. The 

resulting reconstructed block is stored in the frame memory and it is used for motion 

compensation for the next frame. This reconstruction is also done in the encoder in 

order to ensure that encoder and decoder use identical reference frames for motion 

compensation. 

 

Search Range [-p,p] 

Block

(x,y) (x,y) -p
p 

-p

p

Reference frame

Search Region

(x,y)
mv(u,v)

(x+u,y+v)
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Figure 3. Motion estimation and motion compensation flow 

 

Motion estimation is the most computationally expensive part of the video 

encoders. Therefore, many fast motion estimation algorithms for real-time 

implementation have been developed. We will explain several widely used motion 

estimation algorithms and present a comparison of their computational complexity.  

 
 
 

2.1 Full Search Algorithm 
 
 
 

Full search algorithm finds the best motion vectors in a search window by 

searching all of the search locations in that search window. Therefore, it is the most 

computationally expensive algorithm. Because of this, it is used as a basis for evaluating 

the performances of the faster motion estimation algorithms. There are (2p + 1)2 search 

locations in a [-p,p] search window. For a 16x16 MB, the size of the search area is 

(2p+16)x(2p+16). The search window for p = 4, (2x4+1)2 = 81 search locations, are 

shown in Figure 4. The size of the search area for p = 4 is 24x24. 
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Search  
locations 

Full search with [-4,4] search range 
(2x4 + 1)2 = 81 search locations  
Figure 4. Full search algorithm 

 

In order to compare the computational complexity of the full search algorithm 

with the faster algorithms, we will calculate the number of operations per second needed 

for performing motion estimation for 30 VGA frames per second (fps) using the full 

search algorithm with p = 16. A VGA frame has 640x480 pixels corresponding to 

(640/16)x(480/16) = 1200 MBs. In order to process 30 VGA fps, 1200x30 = 36K MBs 

per second have to be processed. There are (2p + 1)2 = (2x16+1)2 = 1089 search 

locations for each MB. At each search location, three operations (subtraction, absolute 

value and addition) are performed for 16x16=256 pixels, resulting in 256x3=768 

operations per search location. Therefore, in total, (36K MBs per second) x (1089 

search locations per MB) x (768 operations per search location) = 30 Giga operations 

per second (Gops) have to be performed. 

 
 
 

2.2 Two Dimensional Logarithmic Search Algorithm 
 
 
 

Two dimensional (2D) logarithmic search algorithm speeds up the motion 

estimation process by using less number of search locations than full search algorithm. 

The algorithm works in several steps [1]. In the first step, for a [-p,p] search window, 
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the center point and the eight major points on the perimeter of the [-p/2,p/2] search area 

inside the search window are searched. The distance between these eight major points is 

d1 = 2k-1 where k = log2(p+1). In the second step, the search location that produced the 

best match in the first step is used as the starting point and the search is performed at 

eight major perimeter points with distance d2 = d1 / 2. This process is repeated until the 

k-th step where the eight perimeter search locations are spaced by a distance of one. 

Therefore, in total, 8k + 1 search locations (8 perimeter points in each step and one 

center point in the first step) are searched. The search locations for 2D logarithmic 

search algorithm with p = 7 are shown in Figure 5. In this example, k = 3 which means 

3-step search is performed with d1 = 2k-1 = 4 and d2 = d1 / 2 = 2 and d3 = d2 / 2 = 1. It 

can be noticed that d1+d2+d3 = p = 7. The size of the search area for p = 7 is 30x30. 

 

Search  
locations 

level1 
level2 
level3 

Larger ones 
are the  

selected 
points 

3-levels 2D logarithmic search 
Corresponds to [-7,7] search range

(3x8 + 1) = 25 search locations 
 

Figure 5. Two dimensional logarithmic search algorithm  

 

In order to compare the computational complexity of the 2D logarithmic search 

algorithm with the other motion estimation algorithms, we will calculate the number of 

operations per second needed for performing motion estimation for 30 VGA fps using 

the 2D logarithmic search algorithm with p = 15. For the 2D logarithmic search 

algorithm, only the number of search locations per MB is different than the full search 

algorithm. For p = 15, 4-step search is performed, and there are 8x4 + 1 = 33 search 
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locations. Therefore, in total, (36K MBs per second) x (33 search locations per MB) x 

(768 operations per search location) = 910 Mops have to be performed. 

 
 

 
2.3 Hierarchical Motion Estimation Algorithm 

 
 
 

Hierarchical motion estimation algorithm speeds up the motion estimation process 

by using less number of search locations and by computing the SAD at a search location 

using less number of pixels than full search algorithm. The algorithm reduces the 

number of pixels used at a search location by down-sampling the current MB and the 

search area and performing the search operation in lower resolution. A 3-level 

hierarchical motion estimation algorithm is shown in Figure 6 [1].  

 

The algorithm, first, generates the search area and the 8x8 current block in level1 

by down-sampling the search area and the current MB in level0 by 2. It, then, generates 

the search area and the 4x4 current block in level2 by down-sampling the search area 

and the current block in level1 by 2. If the location of the current MB in level0 is (x,y), 

the locations of the 8x8 current block in level1 and the 4x4 current block in level2 are 

(x/2,y/2) and (x/4,y/4) respectively. Then, the algorithm finds the motion vector 

mv2(u2,v2) by performing full search in level2 for the 4x4 block with a search range p2. 

It, then, finds the motion vector mv1(u1,v1) by performing full search in level1 at the 

location pointed by 2mv2, i.e. (x/2 + 2u2, y/2 + 2v2), for the 8x8 block with a search 

range p1. The algorithm, finally, finds the motion vector mv0(u0,v0) by performing full 

search in level0 at the location pointed by 2mv1, i.e. (x + 2u1, y + 2v1), for the 16x16 

current MB with a search range p0. The mv0 is the motion vector determined by the 3-

level hierarchical motion estimation algorithm. 
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Figure 6. Hierarchical motion estimation algorithm 

 

In order to compare the computational complexity of the hierarchical motion 

estimation algorithm with the other motion estimation algorithms, we will calculate the 

number of operations per second needed for performing motion estimation for 30 VGA 

fps using the 3-level hierarchical motion estimation algorithm with p2 = 4, p1 = 1, p0 = 

1. As we said before, in order to process 30 VGA fps, 36K MBs per second have to be 

processed. In level2, there are (2x4+1)2 = 81 search locations per 4x4 block and 

4x4x3=48 operations per search location. Therefore, in level2, (36K blocks per second) 

x (81 search locations per block) x (48 operations per search location) = 140 Mops have 

to be performed. In level1, there are (2x1+1)2 = 9 search locations per 8x8 block and 

8x8x3=192 operations per search location. Therefore, in level1, (36K blocks per second) 

x (9 search locations per block) x (192 operations per search location) = 62 Mops have 

to be performed. In level0, there are 9 search locations per 16x16 MB and 16x16x3=768 

operations per search location. Therefore, in level0, (36K MBs per second) x (9 search 

MB
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locations per MB) x (768 operations per search location) = 248 Mops have to be 

performed. Therefore, in total, 140 + 62 + 248 = 450 Mops have to be performed. 

 
 
 

2.4 Comparison of Motion Estimation Algorithms 
 
 
 

The computational complexity of the three motion estimation algorithms are 

summarized in Table 1. The full search method is in general not practical for real-time 

implementation. The 2D logarithmic search and hierarchical motion estimation 

algorithms have significantly lower computational cost than full search method. The 

number of operations 2D logarithmic search algorithm performs is 33 times less than 

the full search method. The number of operations 3-level hierarchical motion estimation 

algorithm performs is 66 times less than the full search method. Although the 2D 

logarithmic search and hierarchical motion estimation algorithms have a lower PSNR 

performance than full search method, they are usually preferred for real-time 

implementations because of their much lower computational complexity. 

 

 
Table 1. Computational complexity of motion estimation algorithms 
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CHAPTER 3 
 
 
SAD REUSE BASED HIERARCHICAL MOTION ESTIMATION ALGORITHM 
 
 
 
 

H.264 standard uses variable block size motion estimation for achieving better 

video compression efficiency than previous standards. Variable block size motion 

estimation allows dividing a 16x16 MB into different size partitions and using a 

different MV for each partition. A 16x16 MB can be divided into two 8x16 or two 16x8 

or four 8x8 partitions. Each 8x8 partition can further be partitioned into two 4x8, two 

8x4 or four 4x4 partitions. A variable block size motion estimation algorithm, therefore, 

has to find the best MVs for all partitions of the MB; [1 MV for 16x16 MB] + [2 MVs 

for 16x8 partitions] + [2 MVs for 8x16 partitions] + [4 MVs for 8x8 partitions] + [8 

MVs for 8x4 partitions] + [8 MVs for 4x8 partitions] + [16 MVs for 4x4 partitions] = 

total 41 MVs.  

 

The best partition for the MB is determined by a mode decision algorithm based 

on these 41 MVs. The smaller partitions can reduce the amount of residual data. 

However, using smaller partitions increases the number of motion vectors that have to 

be transmitted. Since each motion vector requires additional bits to be transmitted, this 

overhead may outweigh the benefit of reduced residual [2]. Mode decision algorithms 

usually adopt the partition size based on the frame characteristics, e.g. choosing large 

partitions in flat, homogeneous regions of a frame and choosing small partitions in areas 

with high detail and complex motion. 

 

The amount of computation required by full search method is not practical for 

real-time implementation even for fixed block size motion estimation. Therefore, 

efficient algorithms are needed to reduce the computational cost for variable block size 

motion estimation [5, 6, 7]. In this thesis, we have used the SAD reuse based 
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hierarchical motion estimation algorithm for variable block size motion estimation 

developed by Dr. Ates [7, 8]. The simulation results show that even though our 

algorithm has a much lower computational cost than full search method, it provides 

almost as good coding efficiency as full search method. 

 

 
Figure 7. Hierarchical motion estimation algorithm 

 

The algorithm is illustrated in Figure 7. It consists of the following four steps: 

 

1) A 3-level pyramid is constructed using averages of the current MB pixels and 

the search area pixels. A 4x4 block in level l2 corresponds to an 8x8 block in level l1 and 

a 16x16 MB in level l0. First, the search area and the 8x8 current block in level1 are 

generated by down-sampling the search area and the current MB in level0 by 2. Then, 

the search area and the 4x4 current block in level2 are generated by down-sampling the 

search area and the current block in level1 by 2. 

 

2) A MV, pl2, is predicted for the 16x16 MB in level l0 by performing full search 

in level l2 for the 4x4 block within a search range of [-R/4, R/4] ([-R, R] is the search 

range of the full search method). 

 

3) The MV prediction is refined by performing full search in level l1 for the 8x8 

block at the location pointed by the motion vector 2pl2 in level l1 within a search range 

of [-R/4, R/4]. The refined MV prediction is pl1. 

l2, 4x4 
Search range 4 

pl2 1 mv 

l1, 8x8 
Search range 4 

pl1 1 mv 

B1
4x4B16x16

l0, 16x16 
Search range 4 
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4) The MVs for the 16x16 MB and for all of its partitions are determined by 

performing full search in level l0 based on minimizing the Lagrangian cost (J(d)) for all 

the partitions at both the location pointed by the motion vector 2pl1 and location (0,0) in 

level l0 within a limited search range of ([-R/4, R/4]). The Lagrangian cost is computed 

using the following equations: 

 

    (3.1) 

    (3.2) 

 

where Bmxn is a partition of size mxn, (m,n) Є {(4,4), (4,8), (8,4), (8,8), (16,8), (8,16), 

(16,16)}, d=(dx, dy) is the MV, c and r are current and reference frames respectively, 

λM is the Lagrange multiplier for motion estimation, pmed is the MV prediction used by 

H.264 video coding standard during the coding process, and R(d-pmed) specifies the bit-

rate spent for coding MV difference information. 

 

The refined MV prediction in level l1 constitutes a good initial prediction for the 

16x16 MB and for all of its partitions in level l0 when scaled by 2. Therefore, 

hierarchical motion vector prediction, 2pl1 is used as a MV prediction for the 16x16 

MB and for all of its partitions. However, in some cases, 2pl1 is inaccurate for small 

partitions such as 4x4, using (0,0) vector as an additional MV prediction helps to 

alleviate this problem. 

 

The full search for a 16x16 MB and for all of its partitions performed in level l0 

requires computing the SADs for all MVs within the search range for all partitions. 

However, since the full search for a 16x16 MB and for all of its partitions are performed 

starting at the same location in level l0 (location pointed by the motion vector 2pl1 or 

location (0,0)) within the same size search range ([-R/4, R/4]), SADs computed for 4x4 

partitions can be reused to compute the SADs for larger partitions, e.g. 8x8, 16x16. In 
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other words, for a given MV d=(dx, dy), SAD of  Bmxn can be decomposed into the 

SADs of its 4x4 partitions: 

 

    (3.3) 

 

Since all summations on the right are evaluated at the same MV d, computing 

SADBmxn(d) requires computing the SADs of all its 4x4 partitions for MV d and adding 

them up. This SAD reuse technique decreases the total number of computations 

significantly. 

 

In order to compare the computational complexity of our algorithm with full 

search method, we will calculate the number of operations per second needed for 

performing motion estimation for 30 VGA fps using both our algorithm and full search 

method with R = 16. As we said before, in order to process 30 VGA fps, 36K MBs per 

second have to be processed. The SAD reuse based full search method with R = 16 

performs (36K MBs per second) x (2x16+1 = 33, 332 = 1089 search locations per MB) 

x (48 operations per search location) = 1.88 Gops for each 4x4 partition of a 16x16 MB. 

Therefore, in total, full search method performs 16 x 1.88 = 30.1 Gops. 

 

The total number of operations our algorithm performs for processing 30 VGA fps 

with R = 16 can be calculated as follows. In level l2, there are (2x4+1)2 = 81 search 

locations per 4x4 block and 4x4x3=48 operations per search location. Therefore, in 

level l2, (36K blocks per second) x (81 search locations per block) x (48 operations per 

search location) = 140 Mops have to be performed. In level l1, for each 4x4 partition of 

the 8x8 block same number of operations as the 4x4 block in level l2 is performed. 

Therefore, in level1, 140 x 4 = 560 Mops have to be performed. In level l0, for each 8x8 

partition of the 16x16 MB same number of operations as the 8x8 block in level l1 is 

performed. Therefore, in level l0, 560 x 4 = 2.24 Gops have to be performed. For (0,0) 

location search, same number of operations as the level l0 search is performed. 

Therefore, for (0,0) location search, 2.24 Gops have to be performed as well. Therefore, 

in total, our algorithm performs 0.14 + 0.56 + 2.24 + 2.24 = 5.18 Gops. 
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The number of operations our algorithm performs is 5.8 times less than the full 

search method. And, it still achieves almost as good coding efficiency as full search 

method. We can further reduce the computational cost of our algorithm by slightly 

reducing the quality and bit-rate performance. If we eliminate (0,0) location search, our 

algorithm will perform 10.25 times less number of operations than the full search 

method. If we use a search range of [-4, 4] in level l2 and a search range of [-2, 2] in 

levels l1 and l0, our algorithm will perform 30 times less number of operations than the 

full search method.  

 

The SAD reuse based hierarchical motion estimation algorithm is integrated into 

the Joint Model (JM) Reference Software Version 7.4 [9]. The updated software is then 

used to simulate the hierarchical motion estimation algorithm for R=16 using video 

sequences carphone (QCIF), foreman (CIF), mobile (SIF) and flowergarden (SIF) at 30 

fps. All frames except the first one are coded as P-frames. One reference frame is 

allowed. The Context Adaptive Variable Length Coding (CAVLC) entropy coder is 

used with quantization parameter values QP = 24, 28, 32, 36. For comparison to full 

search method, average PSNR loss in dB and percentage changes in bit-rate are reported 

in Table 2. In addition, at equal bit-rates, PSNR loss is observed to be less than 0.2 dB 

for all the tested sequences. These results confirm that even though our algorithm has a 

much lower computational cost than full search method, it provides almost as good 

coding efficiency as full search method. 

 

 
Table 2. Performance comparison with full search method 
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CHAPTER 4 
 
 

PROPOSED HARDWARE ARCHITECTURE 
 
 
 
 

In this chapter, the proposed hardware architecture for real-time implementation 

of the SAD reuse based hierarchical motion estimation algorithm described in chapter 3 

is explained. The proposed hardware implements the algorithm for the case where 

R=16, therefore the search ranges used in all 3 levels (l0, l1 and l2) are [-4, 4]. The 

search window for a [-4, 4] search range contains 9x9 = 81 search locations; 2x4 + 1 = 9 

rows and 2x4 + 1 = 9 search locations in each row. 

 
 
 

4.1 Current Macroblock and Search Window Storage 
 
 
 

The structure of the current and reference frames used for motion estimation are 

shown in Figure 8. In this thesis, CIF size frames are used. A CIF frame has 352x288 

pixels corresponding to 22x18 MBs. The motion estimation process is performed for 

each 16x16 MB in the current frame. For each 16x16 MB in the current frame, a 64x64 

search window from the reference frame is used for motion estimation which means the 

MVs will be in the range [-24,24]. The current MB and the 64x64 search window are 

stored in block RAMs in the FPGA. 
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352 352 

 
Figure 8. Current and reference frames 

 

The MV range can be calculated by considering the points on the perimeter of the 

search range in each level; MV2= 4 in level l2 corresponds to 16 in level l0, MV1 = 4 in 

level l1 corresponds to 8 in level l0, and level l0 has MV0 = 4. This corresponds to a MV 

range of [-28,28] (16+8+4=28), and a search area of 72x72 (16+28+28=72). However, 

one block RAM in a Xilinx Virtex II FPGA can store 64x32 pixels. If two block RAMs 

are used, 64x64 pixels can be stored. Clipping the search area from 72x72 to 64x64 is 

more efficient than using a third block RAM. Therefore, we reduce the search area from 

72x72 to 64x64 by clipping four pixels from left, right, top and bottom. This, in turn, 

reduces the MV range from 28 to 24. The clipping operation takes place before level l0 

search. It is only needed if the MV from level l1 points to a location outside the 64x64 

search area in level l0. According to our simulation results, this happens very rarely. 

Since, in most cases, the MV from level l1 points to a location inside the 64x64 search 

area, the clipping operation causes a negligible reduction in the performance. Therefore, 
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we preferred reducing the MV range from [-28,28] to [-24,24] by clipping, instead of 

using a third block RAM.  

 

As shown in Figure 8, when the current MB is located at the boundary of the 

current frame, the 64x64 search area exceeds the reference frame by 24 pixels. 

Therefore, the 352x288 pixels reference frame has to be extended by 24 pixels in each 

direction. This is done by using replication method. In order to construct the extended 

reference frame, in each direction, the closest pixel on the perimeter is replicated 24 

times producing the 400x336 pixels reference frame.  

 

After finishing the motion estimation process for a MB, we proceed to the motion 

estimation process for the next MB in the current frame. Therefore, the next MB from 

the current frame and the corresponding next search window from the reference frame 

have to be provided to the motion estimation hardware. As shown in Figure 9, the next 

search window and the current search window overlap by a ratio of 3/4. 64x48 pixels in 

the next search window overlap with the current search window, only 64x16 pixels of 

the next search window are different from the current search window. This overlap is 

exploited and only the non-overlapping 64x16 pixels are transferred for the next search 

window. 

 

 
Figure 9. Search window overlap  
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4.2 Averaging Unit 
 
 
 

The proposed hardware first constructs a 3-level pyramid by using the averaging 

datapath shown in Figure 10 [8]. The datapath is used for generating the current block 

and search window values in levels l1 and l2 by calculating the average of the 

corresponding pixels in the current MB and search window in level l0. Each averaging 

unit calculates the average of 4 pixels in level l0. The resulting values are stored in 

register files and they are used to perform full search for the 8x8 block in level l1 within 

a search range of [-4, 4]. As soon as the outputs of averaging units A1-A4 are ready, the 

averaging unit A5 calculates the average of the results produced by A1-A4 which 

corresponds to the average of 16 pixels in level l0. The resulting values are stored in 

register files and they are used to perform full search for the 4x4 block in level l2 within 

a search range of [-4, 4].  

 

 
Figure 10. Averaging datapath 
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The output of the averaging datapath is the current block pixels and the search 

window pixels required for search operations of levels, and these are the inputs to the 36 

processing elements (PE) in the hierarchical motion estimation datapath, shown in 

Figure 11. The output is provided by the register files. The challenging part of this 

design is providing the required pixels to the motion estimation search datapath at the 

right time. This challenge results in a complex control unit, especially for the register 

files. Although we could provide the pixels of the level l0 directly from the block 

RAMs, the pixels of the level l0 are also provided by the register files in order to reduce 

the complexity, since the register files already have the control flow algorithm to 

provide data, after these pixels are written to the register files from the block RAMs. 

This causes a slight increase in the number of clock cycles, but the gain of reducing the 

complexity is more important. As mentioned before, the averaging process takes place 

once and the values for both level l2 and level l1 are calculated together.  

 
The averaging process for all the pixels in the current MB and the search window 

takes 280 clock cycles. At the end of the averaging process, data for level l2 search is 

ready in the register files and do not need any further setup. The data setup in the 

register files for level l1 search takes 60 cycles. The data transfer from the block RAMs 

to the register files for level l0 search takes 150 cycles. Similarly, the data transfer from 

the block RAMs to the register files for (0,0) location search takes 150 cycles. In total, 

the averaging process and data setup for the motion estimation datapath take 

280+60+150+150 = 640 cycles. 

 
 
 

4.3 Hierarchical Search Hardware 
 
 
 

The proposed motion estimation hardware performs both the hierarchical MV 

prediction in levels l2 and l1, and motion estimation with SAD reuse in level l0 using the 

datapath shown in Figure 11 [8]. The datapath uses 36 PEs divided into four separate 

groups. Each group has an array of 9 PEs. As we will explain in this section, the reason 

for using 36 PEs divided into four separate groups is to have an efficient real-time 

implementation of the motion estimation with SAD reuse in level l0. The hierarchical 
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MV prediction in levels l2 and l1 are implemented by utilizing the hardware resources 

used for the motion estimation with SAD reuse in level l0. 

 

 
Figure 11. Hierarchical motion estimation datapath 
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Figure 12. Processing element group 

 

The architecture of a PE and the organization of PEs in a group are shown in 

Figure 12. Each PE in a PE group gets the current pixel and four search pixels as inputs 

and selects the appropriate search pixel by a multiplexer. Then, it calculates the absolute 

difference between the current pixel and the selected search pixel, and accumulates this 

difference in a register. This is repeated 16 times for the sixteen current block pixels and 

the corresponding search pixels in order to calculate the SAD value for one search 

location of a 4x4 block. Each PE sends the current pixel to the next PE, since the next 

PE starts calculating the SAD value for the same 4x4 block at the next horizontal search 

location in the search window with one cycle delay. Since there are 9 horizontal search 

locations in one row of the search window for a 4x4 block, 9 PEs in a PE group are used 

for calculating the SAD values for the same 4x4 block for all the horizontal search 

locations in one row of the search window in parallel.  

 
The datapath is first used for the hierarchical MV prediction in level l2 by 

performing full search for the 4x4 block in level l2 within a search range of [-4, 4]. All 

36 PEs in the datapath are used to perform the full search as follows. Each PE is used to 

calculate the SAD value for one search location in the search window. Since there are 9 

search locations in one row of the search window, a PE group is used to calculate the 

SAD values for the search locations in one row of the search window. After each PE 

group finishes calculating the SAD values for the search locations in one row of the 

search window, it starts calculating the SAD values for the search locations in another 

row of the search window. Therefore, each PE group together with a multiplexer and 
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comparator is used to find the minimum SAD in two rows of the search window. All 4 

PE groups are, therefore, utilized to find the motion vector pl2 with the minimum SAD 

in the search window. The level l2 search takes 42 clock cycles. 

 

The datapath is then used for the hierarchical MV refinement in level l1 by 

performing full search for the 8x8 block at the location pointed by the motion vector 

2pl2 in level l1 within a search range of [-4, 4]. Since there are four 4x4 partitions (a, b, 

c, and d) in a 8x8 block and there are 9 search locations in one row of the search 

window, each PE group is used to calculate the SAD values for a 4x4 partition for the 

search locations in one row of the search window. Each PE in a group calculates the 

SAD value for its 4x4 partition for one search location in one row of the search window. 

PE groups 0, 1, 2, and 3 are used for partitions a, b, c, and d respectively. After each PE 

group finishes calculating the SAD values for its 4x4 partition for the search locations 

in the current row of the search window, it starts calculating the SAD values for its 4x4 

partition in the next row of the search window. After the corresponding processing 

elements in each PE group, e.g. processing element 0 in each PE group, calculate the 

SAD value for a search location for its 4x4 partition, the 4x8 SAD adders and 8x8 SAD 

adders in the datapath are used to calculate the SAD value (SADa + SADb + SADc + 

SADd) for that search location for the 8x8 partition in the same cycle. The multiplexer 

and comparator at the outputs of the 8x8 SAD adders are used to find the minimum 

SAD for the 8x8 partition and the corresponding motion vector pl1 in the search 

window. The level l1 search takes 156 clock cycles. 

 

The datapath is finally used for the motion estimation with SAD reuse in level l0. 

It is used to perform full search based on minimizing the Lagrangian cost for the 16x16 

current MB and for all of its partitions at both the location pointed by the motion vector 

2pl1 and location (0,0) within a search range of [-4, 4] to determine the 41 best motion 

vectors for all partitions of the MB. The datapath is designed to use the SAD reuse 

technique for performing full search for a 16x16 MB and for all of its partitions within a 

search range of [-4, 4]. Each PE group in the datapath together with a multiplexer and 

comparator is used to perform full search for a 4x4 partition of the 16x16 MB within a 

search range of [-4, 4]. Since there are 9 search locations in one row of the search 

window, 9 PEs are grouped together to calculate the SAD values for a 4x4 partition for 
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the search locations in one row of the search window. Each processing element in a 

group calculates the SAD value for a 4x4 partition for one search location in one row of 

the search window. 

 

 
Figure 13. Data flow for processing elements PE0-PE17 
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As it is shown in Figure 13, in order to reduce the number of current block and 

search window register ports and number of accesses to these registers, each PE in a 

group starts calculating its SAD value one cycle later than the previous PE in that group 

so that PEs can reuse the current block value accessed by the first PE in the group and 

several PEs can use the same search window value in the same cycle [8]. Since PE0 

starts working in cycle 0, it finishes calculating its first SAD in cycle 15. The last PE in 

that group, PE8, finishes calculating its SAD in cycle 8 + 15 = 23. After each PE 

finishes calculating an SAD value for a 4x4 partition in the current row of the search 

window, it starts calculating an SAD value for the same 4x4 partition in the next row of 

the search window. Since there are 9 rows in the search window, the minimum SAD for 

a 4x4 partition and the corresponding motion vector is found in 8 + 9x16 = 152 cycles. 

 

 
Figure 14. Search window overlap of two neighboring 4x4 partitions 

 

Since the full search for a 16x16 MB and for all of its partitions are performed 

starting at the same location in level l0 (location pointed by the motion vector 2pl1 or 

location (0,0)) within the same size search range ([-4, 4]), the search windows of two 

neighboring 4x4 partitions (a, b) of the MB overlap as shown in Figure 14. The search 

window regions s1, s2 and s3 are used for partition a, and the search window regions s2, 

s3 and s4 are used for partition b. Therefore, the search window regions s2 and s3 are 

shared by both a and b partitions. In order to exploit this for reducing the number of 

search window register ports (from 3+3=6 to 4) and the number of accesses to search 

window registers, the full search for partitions a and b are performed simultaneously by 

using PE group 0 for partition a and PE group 1 for partition b. As it is shown in Figure 

13, the processing elements in PE group 1 starts calculating their SADs 4 cycles later 

than the corresponding processing elements in PE group 0 so that several PEs in group 0 

and group 1 can use the same search window value (in regions s2 or s3) in the same 

 a 
4x4

 b 
4x4

 s1  s2  s3  s4
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cycle. Therefore, the minimum SAD for partition b and the corresponding motion 

vector is found in 4+152 = 156 cycles. 

 

As the PE groups 0 and 1 perform the full search for partitions a and b, PE groups 

2 and 3 perform the full search for partitions c and d simultaneously based on the same 

data flow shown in Figure 13. Therefore, the minimum SADs for 4x4 partitions a, b, c, 

d and the corresponding motion vectors are found in 156 cycles. 

 

After the corresponding processing elements in each PE group, e.g. processing 

element 0 in each PE group, calculate the SAD value for a search location for its 4x4 

partition, the 4x8 SAD, 8x4 SAD and 8x8 SAD adders in the datapath are used to 

calculate the SAD values for that search location for the 4x8 (a+b and c+d), 8x4 (a+c 

and b+d), and 8x8 (a+b+c+d) partitions by reusing the SAD values of the 4x4 partitions. 

In other words, as the full search for 4x4 partitions a, b, c, and d are performed, the full 

search for two 4x8 (a+b and c+d), two 8x4 (a+c and b+d), and one 8x8 (a+b+c+d) 

partition are also performed in parallel by using the 4x8 SAD, 8x4 SAD and 8x8 SAD 

adders and the multiplexers and comparators at their outputs in the datapath. Therefore, 

by using the SAD reuse technique, the minimum SADs for two 4x8, two 8x4 and one 

8x8 partition and the corresponding motion vectors are found as well in the same 156 

cycles. 

 

After the full search for the first four 4x4 partitions are performed, the four PE 

groups are used to perform the full search for the next four 4x4 partitions of the MB. 

Again, by using the SAD reuse technique, the full search for the corresponding two 4x8, 

two 8x4, and one 8x8 partition are performed in parallel. Since there are four 8x8 

partitions in a MB, this process is repeated 4 times. Therefore, full search for all 4x4, 

4x8, 8x4 and 8x8 partitions are performed in 4x156 = 624 clock cycles. 

 

As the full search for the four 8x8 partitions are performed, the full search for 

8x16, 16x8 and 16x16 partitions are also performed in parallel by using the 8x16 SAD, 

16x8 SAD and 16x16 SAD registers, adders and comparators in the datapath. The SAD 

reuse operations for partitions larger than 8x8 are performed by using an adder for each 

partition, and the minimum SAD for each partition is obtained by using a comparator 

for each partition. For the first three 8x8 partitions, at the end of full search for each 8x8 
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partition, all 8x8 SADs are stored in a register file. During the full search for the second 

8x8 partition, first 8x16 SADs are calculated by reusing the first and second 8x8 

partition SADs, and they are stored in a register file. During the full search for the third 

8x8 partition, first 16x8 SADs are calculated by reusing the first and third 8x8 partition 

SADs. During the full search for the fourth 8x8 partition, second 8x16 SADs are 

calculated by reusing the third and fourth 8x8 partition SADs, second 16x8 SADs are 

calculated by reusing the second and fourth 8x8 partition SADs, and 16x16 SADs are 

calculated by reusing the first and second 8x16 partition SADs. Therefore, by using the 

SAD reuse technique, the minimum SADs for 8x16, 16x8 and 16x16 partitions and the 

corresponding motion vectors are found as well in the same 624 clock cycles. 

 

After the full search for the 16x16 current MB and for all of its partitions at the 

location pointed by the motion vector 2pl1 within a search range of [-4, 4] are 

performed, the full search for the same MB and for all of its partitions are performed at 

location (0, 0) within a search range of [-4, 4] by using the same datapath with the same 

data flow. This process takes 624 clock cycles as well. 

 

Finally, the first 41 motion vectors determined by the full search for the 16x16 

current MB and for all of its partitions at the location pointed by the motion vector 2pl1 

and the other 41 motion vectors determined by the full search for the same MB and for 

all of its partitions at location (0, 0) are compared based on the Lagrangian cost criterion 

(SAD+λ*R) and the 41 motion vectors with minimum cost are output from the motion 

estimation hardware. 

 
 
 

4.4 Bit-rate Cost (λR) Calculation Hardware 
 
 
 

Since the final 41 motion vectors are obtained in level l0, we use the Lagrangian 

cost criterion (SAD+λ*R) only in level l0 and (0,0) location search. For level l2 and l1 

search, we use minimum SAD criterion. Therefore, bit-rate cost calculation (λ*R) 

hardware is not used and λ*R is taken as zero in levels l1 and l2 search. In level l0 and 

the (0,0) location search, proper λ*R value is calculated and added to the SAD value 

before each comparator as shown in Figure 11.  
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λ is an input to the motion estimation module and same λ value is used for the 

entire frame. R represents the bit-rate cost (the number of bits required for coding the 

motion vector difference (pcand - pmed)) and proper R value for each SAD is calculated 

in the motion estimation hardware. pcand is the motion vector for the current search 

location and pmed is the predicted motion vector for the current search location. The 

pcand and pmed values for each search location is calculated and provided to the 

corresponding comparators in the proper cycles.  

 

After obtaining pcand and pmed, 4*(pcand - pmed) is calculated and the number of 

bits required for coding this motion vector difference is determined. Since we don’t 

perform sub-pixel (half-pixel and quarter-pixel) motion estimation, the difference is 

multiplied by 4 in order to create an interval of 4 between the consecutive integer pixels. 

The number of bits required for coding x and y coordinates of the motion vector 

difference are calculated separately, and they are added to obtain the number of bits 

required for coding the motion vector. If the motion vector difference is 0, then it is 

coded using only one bit. Otherwise, if the absolute value of the difference is n bits, 

then it is coded using 2n+1 bits [2]. The number of bits required for coding the motion 

vector difference (R) is multiplied by λ and added to SAD to obtain the Lagrangian cost 

criterion (SAD+λ*R).  

 

 
Figure 15. Motion vector prediction 

 

The pmed for a block depends on MVA, MVB and MVC (the motion vectors of 

three neighbor blocks A, B and C) as shown in Figure 15. MVA is the motion vector for 
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the partition of left neighbor block A including the top-right pixel of this block. MVB is 

the motion vector for the partition of top neighbor block B including the bottom-left 

pixel of this block. MVC is the motion vector for the partition of top-right neighbor 

block C including the bottom-left pixel of this block. These motion vectors are provided 

as inputs to the motion estimation hardware. The pmed is determined based on the 

availability of these motion vectors as follows [4]: 

 

1)  if MVC is not available, then MVC = MVD

2)  if MVA is not available, then MVA = 0 

     if MVB is not available, then MVB = 0 

     if MVC is not available, then MVC = 0 

3)  if MVB and MVC are not available, then pmed = MVA

     else pmed = median (MVA, MVB, MVC) 

 

 
Figure 16. Motion vector prediction for 8x8 blocks  

 

The pmed is calculated for each 8x8 block in a 16x16 MB before processing that 

8x8 block, and this value is also used for the smaller partitions (4x4, 4x8 and 8x4) of 

that 8x8 block. The motion vectors used to determine the pmed for each 8x8 block are 

shown in Figure 16. The motion vectors Aa, Ba, Ca and Da used for the 8x8 block a are 

the motion vectors for pixels 6, 2, 4 and 1 respectively. The motion vectors Ab, Bb, Cb 

and Db used for the 8x8 block b are the motion vectors for pixels a1, 4, 5 and 3 
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respectively. The motion vectors Ac, Bc, Cc and Dc used for the 8x8 block c are the 

motion vectors for pixels 7, a2, b1 and 8 respectively. The motion vectors Ad, Bd, Cd 

and Dd used for the 8x8 block d are the motion vectors for pixels c1, b1, 9 and a3 

respectively.  

 

The circle shaped motion vectors are the motion vectors of the neighbor MBs and 

they are provided as inputs to the motion estimation hardware. The square shaped 

motion vectors are the motion vectors of the partitions inside the current 16x16 MB and 

they are calculated during the motion estimation process. These motion vectors are 

always available. Since the motion vector for pixel 9 is from the next MB, it is never 

available. Therefore, due to the availability, the motion vector for pixel a3 is used for Cd 

instead of the motion vector for pixel 9. Since the motion vector for pixel b1 is always 

available for Cc, the motion vector for pixel 8 is never used. Therefore, 7 motion vectors 

from neighbor MBs are required for the current 16x16 MB and will be provided as 

inputs to the motion estimation hardware. In addition, 5 motion vectors from the 

partitions inside the current 16x16 MB are required and will be calculated during the 

motion estimation process.  

 

The pmed for 8x8 block a is calculated using the motion vectors from neighbor 

MBs. Then, motion estimations for the 8x8 block a and for all of its partitions are 

performed based on Lagrangian cost criterion (SAD+λ*R). Then, mode decision for this 

8x8 block is performed by comparing the SAD+λ*R values for the 4x4, 4x8, 8x4 and 

8x8 modes and selecting the mode with the minimum SAD+λ*R value. After the mode 

decision, the motion vectors for pixels a1, a2 and a3 (the motion vectors inside this 

block required for processing the following 8x8 blocks) are obtained based on the 

modes of the partitions including these pixels. This process is repeated for the 8x8 

blocks b, c and d. 

 

The pmed for 8x8 block b is calculated using the motion vector for pixel a1 and the 

motion vectors from neighbor MBs. Then, motion estimations for the 8x8 block b and 

for all of its partitions are performed based on Lagrangian cost criterion (SAD+λ*R). 

Then, mode decision for this 8x8 block is performed. After the mode decision, the 

motion vector for pixel b1 (the motion vector inside this block required for processing 

 31  



the following 8x8 blocks) is obtained based on the mode of the partition including this 

pixel. 

  

The pmed for 8x8 block c is calculated using the motion vectors for pixels a2 and 

b1 and a motion vector from a neighbor MB. Then, motion estimations for the 8x8 

block c and for all of its partitions are performed based on Lagrangian cost criterion 

(SAD+λ*R). Then, mode decision for this 8x8 block is performed. After the mode 

decision, the motion vector for pixel c1 (the motion vector inside this block required for 

processing the following 8x8 blocks) is obtained based on the mode of the partition 

including this pixel.  

 

The pmed for 8x8 block d is calculated using the motion vectors for pixels b1, c1 

and a3. Then, motion estimations for the 8x8 block d and for all of its partitions are 

performed based on Lagrangian cost criterion (SAD+λ*R). 

 
 
 

4.5 Performance Analysis 
 
 
 

Assuming that the current MB and search window pixels are ready in the FPGA 

block RAMs, the proposed motion estimation hardware determines the 41 best motion 

vectors for all partitions of a MB in 2100 clock cycles; 640 (averaging and data setup) + 

14 (transitions between the levels) + 42 (level l2 search) + 156 (level l1 search) + 624 

(level l0 search) + 624 ((0,0) location search) = 2100. It is possible to reduce this total 

cycle count significantly by increasing the area and/or slightly reducing the quality and 

bit-rate performance. We have reported the performances of several alternative 

architectures in Table 3.  
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Table 3. Performances of alternative architectures 

 

If 72 PEs are used in the datapath, instead of 36 PEs, the number of cycles spent 

for data setup and search operations in all levels will be reduced by half, but the 

averaging operations will still take 280 cycles. Therefore, if 72 PEs are used, the total 

cycle count will decrease to 1190; (2100-280) / 2 = 910 + 280 = 1190. If 144 PEs are 

used in the datapath, the total cycle count will further decrease to 735. 

 

If the (0,0) location search in level l0 is not performed, the total cycle count will 

be reduced by 770 cycles (146 cycles for data setup + 624 cycles for search). Therefore, 

the total cycle count will decrease to 2100-770 = 1330 cycles. In addition, if 72 PEs are 

used in the datapath, the total cycle count will decrease to 805. If instead 144 PEs are 

used in the datapath, the total cycle count will further decrease to 543.  

 

Before the motion estimation process for a MB can be started, the current MB and 

search window pixels have to be transferred to the block RAMs in the FPGA. The 

number of cycles needed for this transfer depends on the memory bandwidth available 

in the complete H.264 video coding system in which our motion estimation hardware is 

used. For example, if the H.264 video coding system is implemented on ARM 

Versatile/PB926EJ-S development board, we can transfer 32 bits on the bus in one 

cycle. Therefore, transferring 64x64 search window takes 64x64x8 / 32 = 1024 clock 

cycles. As we mentioned before, the search window for the next MB and the current 

search window overlap by a ratio of 3/4. Since we exploit this overlap and transfer only 
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the 64x16 non-overlapping pixels for the next search window, transferring the next 

search window takes 1024 / 4 = 256 clock cycles. We cannot exploit this overlap for the 

MBs in the first column of a frame, e.g. for 18 MBs in a CIF frame. Therefore, for a 

CIF frame, transferring the search window pixels into the block RAMs in the FPGA 

takes (256x378 + 1024x18) / 396 = 290 clock cycles per MB. 

 

We implemented a software model for the SAD reuse based hierarchical motion 

estimation algorithm in C. We measured the execution time of the software model on an 

ARM926EJ-S processor using ARM AXD debugger and ARMulator. We used 

ARMulator with the default memory model which models a zero wait state memory 

system. The ARM926EJ-S processor executes 1.6M instructions to perform the motion 

estimation for a MB and this takes 2.5M cycles. The averaging for a frame takes 4.2M 

cycles. Therefore, the total cycle count of the software model on an ARM926EJ-S 

processor for a frame is 2.5x396 + 4.2 = 1G. On the other hand, the total cycle count of 

our hardware architecture for a frame is (2100+290) x 396 = 950K. This means, in 

terms of total cycle count, our proposed hardware architecture is 1050 times faster than 

the software model. 

 
 
 

4.6 Comparison with Previous Work 
 
 
 

A hardware architecture for real-time implementation of a variable block size 

motion estimation algorithm for H.264 video coding is presented in [10]. This hardware 

architecture implements the SAD reuse based full search algorithm by using 256 PEs 

and it takes 1583 cycles for a search range of horizontal p = 24 and vertical p = 16. Our 

architecture, on the other hand, implements an SAD reuse based hierarchical motion 

estimation algorithm by using only 36 PEs and it takes 2100 cycles for a search range of 

[-24,24] (both horizontal and vertical p = 16). Their hardware architecture achieves 

higher performance than our hardware design at the expense of a much higher hardware 

cost; 256 PEs as opposed to 36 PEs. Our hardware design is a more cost-effective 

solution for portable applications. If we compare the two designs based on (Area x 

Speed) criterion, our design is (256 x 1583) / (36 x 2100) = 5.36 times better than their 

design. In addition, their design uses the SAD as the cost criterion for selecting the 
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motion vectors. In comparison, our design uses the Lagrangian cost criterion 

(SAD+λ*R) which produces better quality results.   
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CHAPTER 5 
 
 

HARDWARE IMPLEMENTATION  
 
 
 
 

The proposed architecture is implemented in Verilog HDL. The implementation is 

verified with RTL simulations using Mentor Graphics ModelSim SE. For the RTL 

simulation, a testbench is written for sending the current MB and corresponding search 

window pixels to the block RAMs before the motion estimation process for each MB, 

and for checking the motion vectors produced by the motion estimation hardware. A 

software model for the SAD reuse based hierarchical motion estimation algorithm is 

implemented in C. The software model is used for verifying the RTL design by 

comparing their outputs for a randomly generated CIF size current frame and a 

reference frame. Both the software model and the RTL design are simulated for all 396 

MBs in the current frame, and both the output motion vectors and the corresponding 

minimum SAD+λR values for all MBs are compared. The outputs of the software and 

hardware simulations for the entire frame exactly matched, verifying the RTL design. 

 

The Verilog RTL is then synthesized to a 2V8000ff1152 Xilinx Virtex II FPGA 

with speed grade 5 using Mentor Graphics Leonardo Spectrum. The resulting netlist is 

placed and routed to the same FPGA using Xilinx ISE Series 5.2i. The FPGA 

implementation is verified to work at 63 MHz under worst-case PVT conditions with 

post place and route simulations. The post place and route simulation is performed as 

explained in the Xilinx Synthesis and Simulation Design Guide [11]. First, a post place 

and route simulation model is generated. Then, a testbench specific to Xilinx Virtex II 

FPGA is written. The testbench instantiates a global module that declares the global 

signals and a startup module that deactivates the global set/reset and tri-state signals. 

Finally, the post place and route simulation is performed for an entire CIF frame using 

the same current and reference frames used for software and RTL simulations.  As in 
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the case of RTL simulation, the testbench sends the current MB and corresponding 

search window pixels to the block RAMs before the motion estimation process for each 

MB, and checks the motion vectors produced by the motion estimation hardware. The 

outputs of the post place and route simulation exactly matched the outputs of software 

and RTL simulations for the entire frame, verifying the placed and routed design. 

 

The FPGA implementation can process a VGA frame in 40 msec. (1200 MBs * 

2100 clock cycles per MB * 15.87 ns clock cycle = 40 msec) Therefore, it can process 

1000/40 = 25 VGA frames (640x480) per second. The FPGA implementation can 

process a CIF frame in 12.2 msec. (396 MBs * 2100 clock cycles per MB * 15.87 ns 

clock cycle = 13.2 msec) Therefore, it can process 1000/13.2 = 76 CIF frames 

(352x288) per second. 

 

The FPGA implementation including all datapaths and control units, input, output 

and internal RAMs and register files uses the following FPGA resources; 14255 

Function Generators, 7128 CLB Slices, 5220 Dffs/Latches, 13 Block RAMs, and 7 

Block Multipliers (used for calculating λ*R), i.e. %15.3 of Function Generators, %15.3 

of CLB Slices, %5.4 of Dffs/Latches, %7.7 of Block RAMs, and %4.1 of Block 

Multipliers. The equivalent gate count for the overall design is 1.18M. 

 

The averaging and hierarchical motion estimation datapaths shown in Figures 11 

and 12 use following FPGA resources; 5400 Function Generators, 2700 CLB Slices, 

2926 Dffs/Latches, 13 Block RAMs, and 7 Block Multipliers (used for calculating 

λ*R), i.e. %5.8 of Function Generators, %5.8 of CLB Slices, %3 of Dffs/Latches, %7.7 

of Block RAMs, and %4.1 of Block Multipliers. The equivalent gate count for the two 

datapaths is approximately 480K. 
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CHAPTER 6 
 
 

CONCLUSION AND FUTURE WORK 
 
 
 
 

In this thesis, a high performance and low cost hardware architecture is designed 

for real-time implementation of an SAD reuse based hierarchical motion estimation 

algorithm for H.264 / MPEG4 Part 10 video coding. This hardware is designed to be 

used as part of a complete H.264 video coding system for portable applications. The 

proposed architecture is implemented in Verilog HDL. The Verilog RTL code is 

verified to work at 63 MHz in a Xilinx Virtex II FPGA. The FPGA implementation can 

process 25 VGA frames (640x480) or 76 CIF frames (352x288) per second. 

 

Our hardware design can be integrated into a complete H.264 video coding 

system as a future work. The inputs to our design are the current MB and the search 

window pixels, therefore, during the integration only the memory bandwidth and bus 

speed in the specific implementation platform should be considered. The hardware 

design can be implemented as an ASIC in order to increase the operating frequency and 

the number of frames processed per second. 

 

Our hardware architecture can be extended to perform sub-pixel accurate motion 

estimation. It can also be extended to perform motion estimation using multiple 

reference frames. Improved motion estimation algorithms, e.g. algorithms with different 

motion vector selection criterion or with different search ranges, can also be 

implemented by using the proposed datapath with a new control unit. 
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