

PRIVACY PRESERVING DISTRIBUTED SPATIO-TEMPORAL DATA MINING

by

ALİ İNAN

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

July 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/11739755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PRIVACY PRESERVING DISTRIBUTED SPATIO-TEMPORAL DATA MINING

APPROVED BY

Asst. Prof. Yücel Saygın ……………………….

(Thesis Supervisor)

Asst. Prof. Erkay Savaş ……………………….

Asst. Prof. Albert Levi ……………………….

 Asst. Prof. Tonguç Ünlüyurt ……………………….

Asst. Prof. Özgür Erçetin ……………………….

DATE OF APPROVAL: ……………………….

© Ali İnan 2006

All Rights Reserved

iv

PRIVACY PRESERVING DISTRIBUTED SPATIO-TEMPORAL DATA MINING

Ali İNAN

Computer Science and Engineering, MS Thesis, 2006

Thesis Supervisor: Asst. Prof. Yücel SAYGIN

Keywords: Data mining, privacy, anonymization, spatio-temporal data

Abstract

Time-stamped location information is regarded as spatio-temporal data due to its time
and space dimensions and, by its nature, is highly vulnerable to misuse. Privacy issues
related to collection, use and distribution of individuals’ location information are the main
obstacles impeding knowledge discovery in spatio-temporal data. Suppressing identifiers
from the data does not suffice since movement trajectories can easily be linked to
individuals using publicly available information such as home or work addresses. Yet
another solution could be employing existing privacy preserving data mining techniques.
However these techniques are not suitable since time-stamped location observations of an
object are not plain, independent attributes of this object. Therefore, new privacy
preserving data mining techniques are required to handle spatio-temporal data specifically.

In this thesis, we propose a privacy preserving data mining technique and two
preprocessing steps for data mining related to privacy preservation in spatio-temporal
datasets: (1) Distributed clustering, (2) Centralized anonymization and (3) Distributed
anonymization. We also provide security and efficiency analysis of our algorithms which
shows that under reasonable conditions, achieving privacy preservation with minimal
sensitive information leakage is possible for data mining purposes.

v

DAĞITIK ZAMAN-MEKAN VERİLERİNDE GİZLİLİĞİ KORUYAN VERİ
MADENCİLİĞİ

Ali İNAN

Bilgisayar Bilimi ve Mühendisliği, Yüksek Lisans Tezi, 2006

Tez Danışmanı: Yar. Doç. Dr. Yücel SAYGIN

Anahtar Kelimeler: Veri madenciliği, gizlilik, anonimleştirme, zaman-mekan verisi

Özet

Zaman belirteçli konum bilgisi, doğası gereği art niyetli kullanımlara çok açık.
Kişilerin konum bilgilerinin toplanması, kullanımı ve dağıtılması ile ilgili gizlilik kaygıları
zaman-mekan bilgisi içeren verilerde veri madenciliği teknikleri uygulanmasının önündeki
tek engel. Kimlik belirteçlerinin veriden temizlenmesi kişisel gizliliğin sağlanmasında tek
başında yeterli olamıyor çünkü umuma açık ev ve işyeri adresleri kullanılarak kişilerin
hareket yörüngeleri ile kimliklerinin eşlenmesi mümkün. Varolan gizliliği koruyan veri
madenciliği teknikleri de yeterli olmuyor çünkü bu tekniklerin zaman-mekan bilgisi içeren
verilere uygulanabilmesi için ardışık konum gözlemlerinin kişilerin birbirinden bağımsız
nitelikleri olduğunu varsaymak gerekir. Ancak bu varsayım hatalı olacaktır. Bu nedenle
konum-zaman veritabanlarında veri madenciliğini mümkün kılmak, bu tip veriler için özel
olarak tasarlanmış algoritmalar gerektirir.

Bu tezde zaman-mekan nitelikleri olan veriler için bir gizliliği koruyan veri
madenciliği tekniği ve iki ön-işleme tekniği önerilmiştir: (1) Dağıtık kümeleme, (2)
Merkezi anonimleştirme ve (3) Dağıtık anonimleştirme. Önerilen tekniklerin güvenlik ve
performans analizleri de yapılmış ve sonuçta mantıklı varsayımlar altında minimum
mahrem bilgi kaybıyla veri madenciliğinin mümkün olduğu gözlemlenmiştir.

vi

To my family

vii

Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Yücel Saygın for his help

with this work as well as my graduate study. He has always been understanding and

supportive and given very good advice on any matter, including the decision on whether to

start working in the industry or continue studying at the university. Having been introduced

to the database and data mining concepts by Dr. Yücel Saygın, I consider myself very

lucky.

Dr. Erkay Savaş and Dr. Albert Levi have been practically my co-advisors. I am

indebted to them for helping the security analysis and reviewing the thesis very carefully.

Also I owe many thanks to Dr. Özgür Erçetin and Dr. Tonguç Ünlüyurt for their helpful

comments.

My colleagues Ayça Azgın Hintoğlu and Selim Volkan Kaya have been very

influential on me. I'm very grateful to them for on-board discussions that turned out to be

very fruitful since most ideas stem from those discussions.

I also want to thank my fellows, Abdülhakim, Alisher, Ayhan, Emre, Fırat, İlknur,

Cihan, Müge, Önsel, Özlem and Sinan, at the Cryptography & Network Security and

Human Languages & Speech Technologies Labs for their company and support namely.

Also I would like to thank my dear friends, Bahadır, Canan, Cenk, Güler, Mahmut, Onur,

Şahbey, from the dormitory with whom I enjoyed a campus far away from Istanbul.

Although I don't know how to express my gratitude, I'll try anyway. Thanks to my

family for their love and support. I know that they believe in my success by heart, that's

why I'm so confident and hopeful about the future.

viii

TABLE OF CONTENTS

1 INTRODUCTION ..1

2 BACKGROUND AND RELATED WORK ..4

2.1 Privacy Preserving Data Mining...4

2.2 Anonymization..6

2.3 Spatio-Temporal Data Mining ..8

2.3.1 Spatio-Temporal Clustering..9

2.3.2 Trajectory Comparison Functions ..10

2.4 Privacy in Spatio-Temporal Data ...12

2.4.1 Location Anonymity ...13

2.4.2 Trajectory Anonymity...14

3 PRIVACY PRESERVING DISTRIBUTED CLUSTERING15

3.1 Problem Definition ...15

3.2 Pseudo-Random Number Generator...16

3.3 Secure Distance Protocol for Numeric Attributes ..19

3.4 The Clustering Protocol ..21

3.4.1 Sharing Local Dissimilarity Matrices ...22

3.4.2 Secure Comparison of Trajectories...24

3.4.3 The Complete Protocol ...26

4 CENTRALIZED ANONYMIZATION..28

4.1 The Quad-tree Data Structure ...28

4.2 Spatio-Temporal k-Anonymity Definitions..30

4.3 Location Anonymity in Spatio-Temporal Databases..32

5 DISTRIBUTED ANONYMIZATION...36

5.1 Problem Definition ...37

ix

5.2 Local Anonymization Phase ...37

5.3 Sharing and Merging Phase ..39

5.4 Collaborative Anonymization Phase ..42

5.4.1 Secure Sum ...43

5.4.2 Secure Greater Than Function Evaluation..43

5.5 The Complete Protocol ...44

6 EXPERIMENTAL RESULTS ...47

6.1 Synthetic Data Generation ..47

6.2 Privacy Preserving Distributed Clustering ...50

6.2.1 Computation Cost Analysis ..50

6.2.2 Communication Cost Analysis ...55

6.3 Location Anonymity ...62

7 CONCLUSIONS AND FUTURE WORK...69

REFERENCES ...71

x

LIST OF FIGURES

Figure 2.1 Trajectories A and B. length(A) = 5 and length(B) = 4 ..8

Figure 3.1. Pseudo-random number generator..18

Figure 3.2. Naïve secure difference protocol..20

Figure 3.3. Secure difference protocol..21

Figure 3.4. Pseudo-code for local dissimilarity matrix construction....................................22

Figure 3.5. Possible inference in sharing local dissimilarity matrices..................................23

Figure 3.6. Pseudo-code of trajectory comparison protocol at site DHA..............................24

Figure 3.7. Pseudo code of trajectory comparison protocol at site DHB25

Figure 3.8. Pseudo-code of trajectory comparison protocol at site TP.................................26

Figure 3.9. Protocol management at site TP...27

Figure 4.1. Quad-tree of a set of spatial objects ...29

Figure 4.2. Possible attack against location observation anonymity31

Figure 4.3. Pseudo code of the location anonymization algorithm33

Figure 4.4. Pseudo code of the recursive quadrant partitioning algorithm...........................34

Figure 5.1. Pseudo code of specialization tree generation..38

Figure 5.2. Sample specialization tree ..39

Figure 5.3. Pseudo code of specialization tree merging ...41

Figure 5.4. Pseudo code of specialization tree merging ...41

Figure 5.5. Pseudo code of collaborative anonymization of a quadrant...............................42

Figure 5.6. Summation protocol ...43

Figure 5.7. Pseudo code of complete protocol at site DHC...45

Figure 6.1. Snapshot of Brinkhoff’s Data Generator..49

Figure 6.2. Computation cost of Euclidean comparison with varying number of objects ...51

Figure 6.3. Computation cost of DTW with varying number of objects52

xi

Figure 6.4. Computation cost of Euclidean comparison with varying number of
observations ..53
Figure 6.5. Computation cost of DTW with varying number of observations53

Figure 6.6. Computation cost of Euclidean comparison with varying number of partitions54

Figure 6.7. Computation cost of DTW with varying number of partitions55

Figure 6.8. Communication cost of Euclidean comparison with varying number of objects
..57
Figure 6.9. Communication cost of DTW with varying number of objects57

Figure 6.10. Communication cost of local dissimilarity matrices with varying number of
objects ...58
Figure 6.11. Communication cost of Euclidean comparison with varying number of
observations ..59
Figure 6.12. Communication cost of DTW with varying number of observations59

Figure 6.13. Communication cost of Euclidean comparison with varying number of
partitions ...60
Figure 6.14. Communication cost of DTW with varying number of partitions60

Figure 6.15. Communication cost of local dissimilarity matrices with varying number of
partitions ...61
Figure 6.16. Information content with varying anonymity requirements.............................64

Figure 6.17. Information gain with varying anonymity requirements..................................65

Figure 6.18. Information content with varying anonymity requirements.............................65

Figure 6.19. Information content with varying number of objects66

Figure 6.20. Information content with varying number of observations67

Figure 6.21. Information content with varying number of partitions68

xii

LIST OF TABLES

Table 2.1. Spatio-temporal data for trajectories A and B ...8

Table 6.1. Maximum processing speeds for the test cases ...62

Table 6.2. Information gain with varying number of objects ...66

Table 6.3. Information gain with varying number of observations67

Table 6.4. Information gain with varying number of partitions ...68

1

1 INTRODUCTION

Advances in wireless technologies gave rise to various wireless services such as

mobile communication, vehicle telematics and satellite navigation. Today personal digital

assistants (PDA), mobile phones and various other devices equipped with Global

Positioning System (GPS), Global System for Mobile Communications (GSM), Bluetooth

and finally Radio Frequency Identification (RFID) are a part of our daily life. Huge

amounts of time-stamped location data, regarded as spatio-temporal data due to its time and

space attributes, are being collected by wireless service providers and such data contains

valuable information that needs to be discovered.

Researchers designed powerful data mining techniques specifically for handling

spatio-temporal data. However, when the data miner and the data holder are different

entities or the data is distributed among various data holders, privacy concerns become a

determining factor. Collected location information is so precise that, even after removing

personal identifiers, binding movement trajectories to individuals is easily achievable using

publicly available information such as home or work addresses. Therefore the data can not

be shared with the data miner as it is. Sometimes even data mining results themselves

threaten privacy as described in [1].

Privacy issues are not restricted to spatio-temporal datasets and have been studied

extensively in the context of data mining. Yet, existing privacy preserving data mining

methods do not apply to spatio-temporal data because location observations are not plain,

independent attributes of an object but exhibit time-series features. Attack scenarios and

privacy requirements of individuals vary significantly over spatio-temporal data as well. In

this thesis, we propose three methods for enhancing privacy in spatio-temporal knowledge

discovery: (1) Distributed clustering through Secure Multi-Party Computation (SMC), (2)

Centralized anonymization and (3) Distributed anonymization. (1) and (3) apply to

horizontally partitioned spatio-temporal datasets where each partition contains trajectories

of distinct moving objects.

2

Our clustering method is based on building the dissimilarity matrix of object

trajectories, distributed among data holders, through a series of SMC-based comparisons. A

third party that is trusted only not to collude with the data holders is involved in the

protocol. We show that unless the third party has background information on the domain of

the location observations, our secure trajectory comparison protocol does not leak private

information.

We proposed a privacy preserving distributed clustering technique that was applied

specifically to spatio-temporal data. To start with contributions of this work are as follows.

Previous work on privacy preserving clustering proposes methods for partitioning

algorithms while any clustering algorithm except k-means can be applied by the third party

in our protocol, once the dissimilarity matrix is built. This technique also does not cause

any loss of accuracy in clustering. Regarding spatio-temporal data mining, our work is the

first to propose privacy preserving data mining solutions for distributed spatio-temporal

data. Finally, our protocol applies to most prominent trajectory functions and therefore has

diverse application areas in time-series data such as stock market analysis and disease

diagnosis, where privacy would certainly be a concern.

At the end of our distributed clustering protocol, the third party publishes the

clustering results to the data miner as sets of objects. However the data miner needs some

extra information to interpret these results. In order to solve this problem, we also

concentrate on location anonymization techniques that ensure time-stamped location

observations of any trajectory are indistinguishable from at least (k-1) other observations

with the same time-stamp, where k is a parameter of anonymity.

We first propose a centralized anonymization method, where every data holder

locally anonymizes its data. Our method improves the work in [2] by blocking certain

attack scenarios explained in [3] and extending the process from location anonymity in

Location Based Services (LBS) to location anonymity in spatio-temporal datasets,

especially for data mining purposes. The method employs the quad-tree structure described

in [4] to produce an anonymization scheme in a top-down fashion.

3

Yet, we also provide a distributed anonymization method because in case of

horizontally partitioned spatio-temporal datasets, data holders need to locally anonymize

their data according to the centralized method and aggregate the anonymized datasets,

which actually is the source of attacks in [3]. Depending on the number of partitions, the

distributed anonymization method employs either “Secure Sum” or “Secure Greater Than”

protocols, which are heavily studied in the SMC literature. Third parties are not required

for these protocols. We prove that our distributed anonymization technique yields the same

anonymization scheme as the centralized anonymization applied on the aggregation of the

partitions, which certainly is a very attractive property from the data miner’s viewpoint.

However, for the sake of increased privacy, data holders would volunteer to bear the costs

of our protocol as well since aggregation of locally anonymized datasets is vulnerable

against attacks.

Rest of the thesis is organized as follows: Chapter 2 focuses on necessary background

information and previous work in the area. Chapter 3 is dedicated to our privacy preserving

distributed clustering technique based on SMC. We provide definitions of anonymity and

our location anonymization method in Chapter 4. In Chapter 5, this local anonymization

method is extended to distributed datasets. Experimental results on communication and

computation costs of our distributed clustering protocol and information content of the

anonymization methods are presented in Chapter 6. Finally, we conclude in Chapter 7 and

designate future research directions.

4

2 BACKGROUND AND RELATED WORK

Our work lies in the intersection of various research areas related to privacy issues

and spatio-temporal data mining. We cover the related work on privacy preserving data

mining in Section 2.1 and anonymization techniques for protecting individual privacy in

Section 2.2. Then we provide background information on spatio-temporal datasets and

trajectory comparison functions in Section 2.3 and present previous work on spatio-

temporal clustering. Finally, related work on privacy protection methods in the context of

spatio-temporal data is presented in Section 2.4.

2.1 Privacy Preserving Data Mining

Privacy preserving data mining has become a popular research area in the past five

years. The aim of privacy preserving data mining is ensuring individual privacy while

maintaining the efficacy of data mining techniques. Agrawal and Srikant initiated the

research on privacy preserving data mining with their seminal paper on constructing

classification models while preserving privacy [6].

Mainly two approaches are employed to preserve privacy of individuals in the

process of data mining: data sanitization and Secure Multi-Party Computation (SMC).

Among these, sanitization methods achieve privacy by removing sensitive information

from the database. Association rule hiding method proposed by Saygin et al. in [7] is a

typical example, where sensitive association rules are hidden by introducing “unknown”

values to the dataset. Methods based on SMC rely on cryptographic protocols with multiple

participants. Therefore, these methods apply only to vertically or horizontally partitioned

datasets and have high communication and computation costs. A dataset is said to be

horizontally partitioned if each partition contains information of different entities with the

same schema. Vertical partitioning, on the other hand, occurs if different attributes of an

object are distributed among data holder parties. SMC-based methods are very significant

for two reasons: First, the level of privacy provided can be measured by the underlying

cryptographic tool and the amount of information revealed to each participant. Second, data

5

mining results of SMC-based protocol are highly accurate while sanitization techniques

usually degrade accuracy. Most data mining techniques, i.e. association rule mining and

classification, are well studied by followers of both approaches. [6] and [7] are data

sanitization techniques; [8], [9] and [10] are based on secure multi-party computation

techniques.

Privacy preserving clustering is not studied as intensively as other data mining

techniques. In [11] and [12], Oliveira and Zaïane focus on different transformation

techniques that enable the data owner to share the mining data with another party who will

cluster it. In [13], they propose methods based on “dimensionality reduction and object

similarity based representation” for clustering centralized data. Methods in [13] are also

applicable to vertically partitioned data, in which case each partition is transformed by its

owner and joined by one of the involved parties who will construct a dissimilarity matrix to

be input to hierarchical clustering algorithms. [14] and [15] propose model-based solutions

for the privacy preserving clustering problem. Data holder parties build local models of

their data which is subject to privacy constraints. Then a third party builds a global model

from these local models and clusters the data generated by this global model. All of these

works follow the sanitization approach and therefore trade-off accuracy versus privacy.

Except [14], none of them address privacy preserving clustering on horizontally partitioned

data.

Clifton and Vaidya propose a SMC version of k-means algorithm on vertically

partitioned data in [16]. More recent work in [17] by Jha et al. proposes a privacy

preserving, distributed k-means protocol on horizontally partitioned data. Inan et al.

propose another privacy preserving clustering algorithm over horizontally partitioned data

that can handle numeric, categorical and alphanumeric attributes [18]. In this thesis, we

propose a method that allows clustering horizontally partitioned datasets with any

clustering method but k-means, which is well known for its tendency towards identifying

spherical clusters. On the other hand, clustering results of density-based and hierarchical

clustering algorithms are of arbitrary shape. These algorithms are also resistant to outliers.

6

Our distributed clustering method is most related to [13], [17] and [18] since we

consider the problem of privacy preserving clustering over horizontally partitioned data by

means of secure multi-party computation of the global dissimilarity matrix which can then

be input to hierarchical clustering methods. Our dissimilarity matrix construction algorithm

is also applicable to privacy preserving record linkage and outlier detection problems.

2.2 Anonymization

Anonymization techniques rely on the fact that privacy of sensitive data is a concern

only if the individuals related to this data can be identified. However, removing personal

identifiers does not always protect individuals against disclosure of identity. Sweeney

shows in [19] that using publicly available sources of information such as age, gender and

zip-code, data records can be de-identified accurately. The most popular solution to

anonymity problem is k-anonymity, which requires that an individual should be

indistinguishable from at least (k-1) others in the anonymized dataset [20, 21]. Two

individuals are said to be indistinguishable if their records agree on the set of quasi-

identifier attributes, which are not unique identifiers by themselves but may identify an

individual when used in combination [22].

In [23] Meyerson and Williams reduce the k-anonymity problem to the k-

dimensional perfect matching problem, proving that finding the perfect anonymity scheme

is NP-hard. Aggarwal et al. strengthen this proof to include ternary attributes [24]. That’s

why previous work on the area proposes heuristic solutions.

The work by Samarati and Sweeney employs generalization and suppression over a

Value Generalization Hierarchy (VHG) in a bottom-up fashion [19, 20, 21]. As long as k-

anonymity is not achieved, an element of the quasi-identifier is chosen and generalized. An

attribute generalized to the root of VGH is said to be suppressed, i.e. contain no

information. Iyengar presents a solution using genetic algorithms for increasing the

accuracy of classification models, trained on anonymized datasets [25]. Winkler’s solution

to the same problem uses simulated annealing [26]. Fung et al. proposes the reverse

procedure of [19], starting from the most general case and specializing down the VGH.

7

Recent work in the area extends the k-anonymity notion. In [27], LeFevre et al.

propose multidimensional k-anonymity where quasi-identifier attributes generalized to

different levels of VGH appear together in the anonymized dataset. The work in [28]

extends k-anonymity to ℓ-diversity arguing that lack of diversity in sensitive attributes may

leak identifying information if the attacker is equipped with background information.

Therefore new methods for anonymization that also consider diversity in sensitive

attributes are proposed. Truta and Vinay address a problem very similar to [29] that of

protecting both individual identities by k-anonymization and sensitive attributes by

diversification.

In [30], Jiang and Clifton propose a k-anonymization method for datasets vertically

partitioned into two using Secure Set Intersection protocols from the SMC context. In this

method both data holders first locally anonymize their data and then test if the join on the

global identifier is k-anonymous. Zhong et al. propose two methods for distributed k-

anonymization of a dataset partitioned horizontally among customers, each holding only

one data record [31]. The first method for extracting the k-anonymous part of a dataset is

based on distributing a secret among customers so that this secret can be reconstructed from

k shares. Customers simply encrypt their data with this secret and send the ciphertexts to

the data miner who can only open the messages if there are at least k shares of the secret,

meaning that only k-anonymous data is visible to the data miner. In the second method,

distributed data is k-anonymized by suppressing some quasi-identifier attributes. However,

this method leaks the distance between each pair of rows, i.e. the number of non-matching

quasi-identifier attributes.

Our distributed anonymization method is most relevant to [5] and [31] since we

study the problem of location anonymization of horizontally partitioned data with a top-

down approach similar to [5]. However, in our problem setting data holders are not

individuals with their own data but store multiple data records and we address spatio-

temporal data.

8

2.3 Spatio-Temporal Data Mining

Spatio-temporal datasets are composed of time-stamped location observations of

moving objects. Each entry in the dataset, called an observation, is a triplet in the form:

(oid, tid, d) where oid is the id of the moving object, tid is the time-stamp and d is the

spatial component. Trajectory T of a moving object A is the set of all observations where

oid = A. Number of observations for this trajectory is denoted as length(A) and ith element

of TA is denoted by TA(i). Figure 2.1 depicts these notions for the sample one dimensional

spatio-temporal data provided in Table 2.1.

Table 2.1. Spatio-temporal data for trajectories A and B

Time Object A 1 4 7 10 16
x 0.3 1.9 3.1 5 6.7 Location y 2.1 3.8 4.2 5.6 6.3

Time Object B 2 4 6 8
x 1.2 3.4 5.7 7.3 Location y 7.4 8.1 9.8 10.7

Figure 2.1 Trajectories A and B. length(A) = 5 and length(B) = 4

We consider two dimensional spaces, as is the case with GPS data, neglecting altitude

component. Longitude of the location observation from GPS is referred as x dimension and

latitude as the y dimension. Yet, different interpretations of the spatial component of these

t =2 t = 4
t =6 t =8

t =1

t = 4 t =7
t =10 t =16

9

observations result in various different applications of the methods of spatio-temporal data

mining. For example, the two-dimensional space presented above may be temperature and

atmospheric pressure values of a static sensor in a weather station. In stock market analysis,

data analysts may be interested in tracking the price fluctuations of particular stocks,

defining the stock value as the space. In this thesis we particularly consider moving objects.

Yet, the methods discussed here are completely suitable for knowledge discovery in

datasets of varying dimensionalities.

Most data mining methods make sense in the spatio-temporal context. Among these,

spatio-temporal clustering groups similar object trajectories, classification identifies

behavior rules to predict future movement of objects [32] and association rule mining

discovers frequently followed patterns [33, 34, 35].

2.3.1 Spatio-Temporal Clustering

When applied to spatio-temporal data, traditional data mining techniques tend to

ignore the temporal component of location observations, treating a trajectory as a two-

dimensional vector of geo-references in x and y coordinates. Nanni presents the problems

caused by such approaches with an elegant example on clustering animal trajectories to

identify herds [36]. According to this example, traditional clustering techniques would

reconstruct the total area visited by animals and cluster trajectories with respect to this

attribute. However, predator and prey would typically live in the same area and therefore be

clustered with each other. Yet they certainly do not form up a herd. If the temporal

component was taken into account, one would have observed that predator and prey almost

never appear together.

Spatio-temporal clustering is usually studied in the context of time-series data

without special emphasis on clustering moving object trajectories. Gaffney and Smyth

propose a model-based approach in which members of a cluster are chosen with respect to

the amount of noise that must be added to transform them into the core trajectory of the

cluster [37]. This method is extended to resist temporal and spatial shifts in [38]. Ketterlin

10

considers the problem of hierarchical clustering of generic sequences in [39]. Nanni

proposes k-means and hierarchical agglomerative clustering methods for spatio-temporal

data in [36] and a density-based clustering method in [40].

2.3.2 Trajectory Comparison Functions

Clustering moving objects requires robust trajectory comparison functions for

measuring the similarity between object trajectories. However, trajectory comparison is not

an easy task since spatio-temporal data is usually collected through sensors and therefore is

subject to diverse sources of noise. Under ideal circumstances, object trajectories would be

of the same length and time-stamps of their corresponding elements would be equal. The

distance between two trajectories satisfying these conditions could be computed using

Euclidean distance, simply by summing up the distances over all elements with equal time-

stamps. In real world, on the other hand, non-overlapping observation intervals, time shifts

and different sampling rates are common. Although various trajectory comparison

functions have been proposed to cope with these difficulties, this topic is still an ongoing

research area.

Most trajectory comparison functions stem from four basic algorithms: (1) Euclidean

distance, (2) Longest Common Subsequence (LCSS), (3) Dynamic Time Warping (DTW),

and (4) Edit distance. We classify these algorithms into two groups with respect to penalties

added per pair-wise element comparisons: real penalty functions and quantized penalty

functions. Real penalty functions measure the distance in terms of the Euclidean distance

between observations while quantized penalty functions increment the distance by values 0

or 1 at each step depending on spatial proximity of the compared observations. We now

explain crucial trajectory comparison functions briefly and provide the reasoning behind

this classification. You may refer to [41] for a detailed discussion on characteristics of these

algorithms.

11

Euclidean distance, Edit distance with Real Penalty (ERP) and DTW are the

comparison functions with real penalty. Euclidean distance is a naïve method based on

comparing the corresponding observations of trajectories with the same length, denoted as

n. The algorithm terminates in O(n) time, returning the sum of real penalties. Euclidean

distance function is sensitive to time shifts and noise but the output is a metric value.

ERP measures the minimum cost of transforming the compared trajectory to the

source trajectory using insertion, deletion and replacement operations [42]. Cost of each

operation is calculated using real spatial distance values. Cost of replacing observation i

with observation j is dist(i, j), where dist is the Euclidean distance. However in case of

insertion (or deletion), added cost is the distance between the inserted (or deleted)

observation and a constant observation value g, defined by the user. ERP compares all pairs

of elements in the trajectories, returning a metric value in O(n2) time. The algorithm is

resistant to time shifts but not to noise.

DTW was initially proposed for approximate sequence matching in speech

recognition but is generalized to similarity search in time series by authors of [43]. The

algorithm is very similar to Edit distance but instead of insertions and deletions, stutters are

used. The ith stutter on x dimension, denoted as stutteri(x), repeats the ith element and shifts

following elements to the right. Computation cost is O(n2) as expected and resultant

distance value is non-metric. Allowing repetitions strengthens the algorithm against time

shifts but not against noise.

Trajectory comparison functions with quantized penalty are LCSS [44] and Edit

distance on Real Sequence (EDR) [41]. Both algorithms try to match all pairs of elements

in the compared trajectories and therefore have a computation cost of O(n2). A pair of

observations is considered a match if they are close to each other in space by less then a

threshold, ε. LCSS returns the length of the longest matched sequence of observations

while EDR returns the minimum number of insertion, deletion or replacement operations

required to transform one trajectory to the other. Although these algorithms are resistant to

time shifts and noise, distance values are not metric.

12

Notice that in order to measure the distance between two trajectories with any

comparison function, a matrix of pair-wise observation comparisons, storing the Euclidean

distance in x and y dimensions, is sufficient. Our distributed clustering protocol applies to

all comparison functions because we build this matrix in a privacy preserving manner.

2.4 Privacy in Spatio-Temporal Data

Previous work on ensuring privacy of individuals in spatio-temporal data mostly

consists of anonymization methods, accompanied with some perturbation and obfuscation

techniques. We present the related work on the latter first and reserve Section 2.4.1 and

Section 2.4.2 for a detailed discussion on two directions of research on anonymization of

spatio-temporal datasets, location anonymization and trajectory anonymization, since our

methods are based on anonymization as well. Access control methods are not taken into

consideration in this section because they are related to confidentiality of the data rather

than privacy.

In [45], the authors propose the “path confusion” algorithm for perturbing object

trajectories so that if the proximity of two non-intersecting paths falls below the threshold

called perturbation radius, these paths are crossed and their ids are interchanged after the

intersection point. The key idea is that an adversary can not identify whether these two

paths were intersecting in the original dataset or not since path confusion is only applied to

non-intersecting paths. Kido proposes two obfuscation methods for hiding the current

location and the complete trajectory of a user [46]. In these methods users send fake

location messages together with the exact location to Location Based Service (LBS)

provider and choose the appropriate message among the responses of the provider without

disclosure of sensitive location information. A similar approach in [47] builds a graph of

locations connected to the user’s location and chooses fake messages from this graph.

13

2.4.1 Location Anonymity

Anonymity requirement of a user depends on the type of disclosed data. In the

context of LBS, this corresponds to the classification of the provided service as tracking

LBS and non-tracking LBS. For example, a user who is querying the coffee shops nearby

certainly is concerned about revealing his current location while in vehicle telematics

applications, querying and therefore tracking is continuous and thus trajectories should be

anonymized rather than location observations [3]. In this section, we concentrate on the

first, i.e. location anonymity.

Gruteser and Grunwald propose “spatial and temporal cloaking” methods in [2],

which is the first work towards achieving k-anonymity of location observations. These

methods are based on reducing the spatial and temporal granularity of the observations,

representing each with intervals, rather than points. Temporal cloaking method defers the

response to a LBS request at time t1 until at least (k-1) other users visit the same area. When

this condition is met, at t2, time-stamps of location observations are replaced with the

interval [t1, t2] minus a random cloaking factor. Spatial cloaking method employs the quad-

tree data structure of [4], proposed initially for efficient indexing and storage of geo-

referenced objects. We explain the quad-tree data structure in Section 4.1. The set of all

possible requester users are inserted into the root of the quad-tree and the root is partitioned

into child nodes as long as the observations remain k-anonymous. When no more

partitioning is possible, the area covered by the quadrant that contains the user request

determines the interval that the spatial component is represented with. We extend the

spatial cloaking algorithm in Chapter 4 to handle spatio-temporal datasets rather than single

LBS requests and block the attacks identified in [3] against this algorithm.

Gedik and Liu propose another location anonymization method, “CliqueCloak”, in

which every LBS request can set different anonymity requirements using the parameter k

and the coarsest granularity of the spatial and temporal component [48]. Representing the

granularities as intervals, a three dimensional cloaking box is built. Then the Minimum

Bounding Rectangle of the messages that are not yet anonymized built and if the

anonymization requirements of all messages are satisfied, the messages are transformed.

14

2.4.2 Trajectory Anonymity

Beresford and Stajano introduce the concept of “mix zones”, in which identification

of users is blocked and fake identifiers (pseudonyms) of incoming user trajectories are

mixed up while leaving these mixed zones [3]. The authors distinguish these mix zones

from the “application zones” where location information of users can be traced by the

pseudonym. Yet, in the proposed method users are allowed not to report until a certain level

of anonymity is reached, measured by Shannon’s entropy definition. Since the pseudonyms

are garbled in the mix zones, anonymity of movement trajectories can be achieved after a

sufficiently large amount of other users enter the mix zone.

In [49], Bettini et al. propose a trajectory anonymization method similar to the

location anonymization method of [48]. In this method, for each location observation of a

trajectory, the three dimensional Minimum Bounding Rectangle (MBR) that is crossed by

at least (k-1) other users is built and remaining observations of these k trajectories are

anonymized by generalizing to the area of the MBR.

Another trajectory anonymization method that interprets k-anonymity quite

differently than the others is proposed in [50]. Given a set of sensitive locations, that the

users do not want to be observed at, a “sensitivity map” is built. Outside the sensitive

zones, location observations are released as they are. Three algorithms are proposed to deal

with location updates of users within sensitive zones: In the “Base” algorithm sensitive

observations are suppressed. In the “Bounded-Rate” algorithm frequency of location update

messages is restricted with a threshold value. Finally in the “k-Area” algorithm insensitive

location updates are generalized such that an adversary can not distinguish which of at least

k sensitive areas the user entered or exited.

15

3 PRIVACY PRESERVING DISTRIBUTED CLUSTERING

In this chapter, we propose a privacy preserving clustering technique for horizontally

partitioned spatio-temporal data where each horizontal partition contains trajectories of

distinct moving objects collected by a separate site. Consider the following scenario where

the proposed techniques are applicable: In order to solve the traffic congestion problem of a

city, traffic control offices want to cluster trajectories of users. However, the required

spatio-temporal data is not readily available but can be collected from GSM operators.

GSM operators may not be eager to share their data due to privacy concerns. The solution

is to apply a privacy preserving spatio-temporal clustering algorithm for horizontally

partitioned data.

Our method is based on constructing the dissimilarity matrix of object trajectories in

a privacy preserving manner which can then be input to any clustering algorithm except k-

means. This is because k-means clustering requires measuring the distance between cluster

means and objects where cluster means are not necessarily chosen from the dataset, as is

the case in k-medoids clustering. Main contributions are introduction of a protocol for

secure difference and its application to privacy preserving clustering of spatio-temporal

data.

3.1 Problem Definition

Suppose that there are N data holders, such that N ≥ 2, which track locations of

moving objects with unique object id’s. The number of objects in data holder n’s database

is denoted as size(n). Data holders want to cluster the trajectories of their moving objects

without publishing sensitive location information so that clustering results will be public to

each data holder at the end of the protocol. There is a distinct third party, denoted as TP,

that provides computation power and storage space. TP’s role in the protocol is: (1)

Managing the communication between data holders, (2) Privately constructing the global

dissimilarity matrix, (3) Clustering the trajectories using the dissimilarity matrix, and (4)

Publishing the results to the data holders.

16

Involved parties, including the third party, are assumed to be semi-honest which

means that they follow the protocol as they are expected to do, but may store any

information that is available in order to infer private data in the future. Another assumption

is that, all parties are non-colluding, i.e. they do not share private information with each

other. TP is trusted only on non-colluding with other parties. Therefore TP is not a trusted

third party according to the semi-honest model, in which case data holders could simply

share their private data with TP to carry out the necessary computation locally.

Prior to the protocol we assume that every involved party, including TP, has already

generated pair-wise keys. Diffie-Hellman key exchange protocol is perfectly suitable for

key generation [51]. These keys are used as seeds to pseudo-random number generators

which disguise the exchanged messages. We explain the details of our pseudo-random

number generator in the next section. Similar generators have been used in various contexts

and are proven to be cryptographically secure [52].

3.2 Pseudo-Random Number Generator

Random numbers are of utmost importance for cryptography, since almost any

cryptographic system depends on a random input at some level. For example, the only

provably secure encryption scheme, One-Time Pad, depends totally on random bits.

Similarly, secret keys in symmetric encryption schemes, and private keys in asymmetric

encryption schemes should be chosen randomly. Otherwise, if orderly sequences are used

as if they were random, one may face the unpleasant surprise of sending practically

plaintext messages, with 128 bit encryption schemes, as in the case of Secure Socket Layer

(SSL) implementation of Netscape Communications [53]. Netscape’s “random” key was

composed of easily predictable components: the time of the day, the process id and the

parent process id. In 1996, two PhD students, Ian Goldberg and David Wagner, broke the

encryption scheme by reverse engineering the program and extracting this orderly key

generation algorithm.

17

Although truly random numbers do exist in the nature, sampling these numbers

require additional hardware components to make powerful measurements, i.e. events in the

quantum level, elapsed time between emission of particles during radioactive decay,

thermal noise from a semiconductor diode or resistor [54]. However, since almost any

computer needs random sequences for some reason (not necessarily cryptographic),

researchers developed Pseudo-Random Number Generators (PRNG) that generate

seemingly random sequences given a truly random key (a.k.a. seed). PRNGs are considered

to be cryptographically secure if they pass certain statistical tests on predictability and

equal distribution of possible values. However, every PRNG has a period indicating the

number of distinct values that can be generated without repeating any sequence. That’s

why, in order to generate a large sequence of random numbers, PRNGs with long periods

should be used.

The PRNG that we use is based on block ciphers that encrypt a plaintext block given

a key. Block ciphers have different modes of operation, each with unique properties. We

list the most important modes here:

- Electronic Code Book (ECB) mode: ECB is one of the earliest modes. Ciphertexts

of identical plaintexts are the same, since consecutive blocks of a long message are

encrypted independently.

- Cipher Block Chaining (CBC) mode: In CBC, plaintexts are XORed with the

ciphertext of the previous block. Since there is no ciphertext for the first block, an

Initialization Vector (IV) is required to XOR the first plaintext block.

- Cipher Feedback (CFB) mode: CFB is very similar to CBC. In CFB, the ciphertext

of the previous block is encrypted and the result is XORed with the plaintext.

Again, an IV is needed for the first plaintext block.

- Output Feedback (OFB) mode: OFB acts practically like stream ciphers, generating

keystreams initially from the IV and then repeatedly, its ciphertext. Plaintext is

encrypted by XORing with the keystream block.

- Counter (CTR) mode: This mode is similar to OFB mode. Instead of encrypting

successive ciphertexts, a counter is used to generate the keystream.

18

Among these modes of operation, OFB and CTR are the most suitable ones for

generating pseudo-random sequences, due to their keystream property [54]. Only three

parameters are required to build a PRNG cipher in these modes: key, IV and plaintext. In

our protocols, we assume that IV and plaintext are public values, globally known to every

party. The key is the seed of our PRNG and should be secretly shared among the parties

that want to generate the exact sequence of pseudo-random.

We used Data Encryption Standard (DES) cipher in OFB mode (for practical

purposes) to implement a PRNG with a long period, depicted in Figure 3.1. Since the block

size in DES is 56 bits, ideally DES would generate 256 different ciphertexts, each consisting

of 56 bits. In order to generate a pseudo-random integer, we use the last 32 bits of the

ciphertext. Similarly, to generate a pseudo-random double, we generate two pseudo-random

integers, divide the first with the second and multiply with some large number. Although

such usage of ciphertexts would restrict the period even more compared to the ideal case,

even 230 pseudo-random ciphertexts are sufficient for a very large spatio-temporal dataset.

Alternatively, Advance Encryption Standard (AES) cipher with 128 bit key size can be

used to increase the period of the PRNG.

Figure 3.1. Pseudo-random number generator

DES
Cipher

Plaintext

IV

Ciphertext

Key DES
Cipher

Plaintext

Ciphertext

Key

Pseudo-Random
Integer / Double

Pseudo-Random
Integer / Double

19

3.3 Secure Distance Protocol for Numeric Attributes

Suppose that there are two parties, Alice and Bob, that want to measure the distance

between their secret inputs, x and y respectively. Since the distance should be symmetric,

we define the distance between x and y as the absolute value of the difference, |x - y|. Notice

that revealing this distance value to Alice would certainly leak private information because

knowing x as well, Alice would easily infer that either y = x + |x - y| or y = x - |x - y|,

depending on whose input is larger. Using her background information on the field that

values x and y chosen are from, she might even be able to infer the exact value of y.

Consider the case where the inputs are age values and x = 100. If |x – y| = 50, then y = 50

since it is very unlikely that anybody be at the age of 150.

Reasoning from the above inference channel, it is evident that the secure distance

protocol requires a third party that does not collude with Alice or Bob. This third party

should also be unaware of the field that the secret inputs are chosen from, i.e. has no

background information. Otherwise another attack by the third party is realizable: Again,

suppose that Alice and Bob are comparing age values and the distance turned out to be 120.

If the third party knows that age values are being compared and that the oldest person alive

is 120 years old, which is public information, in that case one of the inputs should be 0

while the other is 120. Of course, since distances are symmetric, it is not possible to find

out whose input is which one of these two values.

Let us first consider a naïve approach to measure the distance between two private

inputs and analyze its security. In this first attempt, depicted in Figure 3.2, Alice disguises

her values using the pseudo-random values generated by a pseudo-random number

generator RAT, whose seed she shares with the third party (TP). Alice adds the random

number generated by RAT, adds it to her private input x and sends the result to Bob. Bob

subtracts his input from Alice’s message and sends the result to TP. Now that TP have

received ((RAT + x) - y), he can generate the exact pseudo-random as Alice did, since they

are sharing the seed. After removing the disguise value, RAT, TP can compute (x - y). Since

we need |x - y|, he should also compute the absolute value in order to find out the distance.

20

Figure 3.2. Naïve secure difference protocol

This protocol might seem secure at the first sight. The message Bob receives from

Alice (mA) is completely random since a random number plus another number remain

random. The message TP receives from Bob (mB) is the final result that we want to convey

to TP. However there are two privacy implications: (1) Channels between these parties

should be secured since anybody listening to Alice and Bob can easily compute y = mA -

mB. Similarly TP can compute x if it learns mA, since x = mA - RAT. And (2) TP learns whose

input is larger. If mB - RAT > 0, then x > y or vice versa. This is because we are computing x

- y in this protocol, rather than | x – y |. Consider the case that private inputs are net profits

of two companies. In this case, revealing the information, which company is more

profitable, should certainly be regarded as a privacy breach.

In order to solve the second problem with the naïve protocol, we introduce a pseudo-

random bit generator, BAB, whose seed is shared between Alice and Bob. If the bit b,

generated by BAB is 0, Bob negates his input. Otherwise, Alice does. Since TP does not

know whose input is negated, it can not infer whether the final value, mB - RAT, is (x - y) or

(y - x). Messages transferred in this updated protocol are depicted in Figure 3.3.

The channels between the participants of the protocol still need to be secured,

although an adversary observing the messages has only 50% confidence in the values he

infers. mB - mA may either be y or -y, depending on the value of b. Similarly, mA - RAT may

Alice Bob TP

RAT
x

y RAT

mA = RAT + x

mB = mA - y
| x - y |
 = | mB - RAT |

21

Figure 3.3. Secure difference protocol

either be x or -x. The obvious question to ask at this point is, what if x = y? TP can

definitely identify such cases, since | x - y | would be measured as 0. However we do not

consider such cases as leakage of private information, since blocking such inference would

be controversial to the aim of the protocol, i.e. computing the correct distance.

3.4 The Clustering Protocol

Dissimilarity matrix is an object by object structure storing the distances between

each pair of objects. Most clustering algorithms, such as k-medoids, hierarchical clustering

algorithms and density based clustering algorithms; only require the dissimilarity matrix as

input. You may refer to [55] for a detailed discussion on these algorithms. Our method to

achieve privacy preserving clustering on horizontally partitioned spatio-temporal data is

based on building the global dissimilarity matrix through a series of secure distance

protocol invocations, discussed in Section 3.3.

In the case of spatio-temporal data, an entry D[i][j] of the dissimilarity matrix D is

the distance between trajectories of objects i and j calculated using a trajectory comparison

function. We have two different scenarios, regarding the way a distance is calculated: (1)

Objects i and j are either at the same data holder’s dataset or (2) Each is at a separate site.

In the first case, the data holder can locally compute the distance between these objects and

simply send the value to TP. We defer the discussion on the second case for now, and

concentrate on collecting locally computed distance values.

Alice Bob TP

RAT
BAB
x

BAB
y

RAT

mA = RAT + -1b * x

mB = mA + -1(b+1%2) * y
| x - y |
 = | mB - RAT |

22

3.4.1 Sharing Local Dissimilarity Matrices

Since all distance values are to be collected by TP, every data holder first computes

its local dissimilarity matrix and sends it to TP. Of course this requires that the data holders

agree on a trajectory comparison function prior to starting the clustering protocol. We

provide the pseudo-code for constructing the local dissimilarity matrix in Figure 3.4, where

size(DH) denotes the number of trajectories at data holder DH and distance(x, y) denotes

the chosen trajectory comparison function.

Begin
 For m=0 to size(DH)-1
 For n=0 to m-1
 D[m][n]= distance(DH[m], DH[n]);
End

Figure 3.4. Pseudo-code for local dissimilarity matrix construction

In Theorem 3.1, we prove that sharing local dissimilarity matrices of continuous

variables does not leak any private information unless TP knows the maximum and

minimum values the variable can assume. Oliveira and Zaiane provide a similar proof

based on the assumption that given the distance between two points, there are infinitely

many pairs of points that are equally distant [2]. However, their proof lacks the important

property about TP having background information or not. In Theorem 3.2, we further prove

that if TP has background information, sharing local dissimilarity matrices may leak private

information.

Theorem 3.1. Sharing the local dissimilarity matrix of a continuous variable with a third

party does not leak private information if this third party has no background information

about the field that the compared values are chosen from, i.e. the maximum and minimum

values the variable can assume.

Proof: We provide a proof by contradiction. Suppose that given a dissimilarity matrix D,

the third party can infer the value of a point p, denoted as x. If we increment the value of

every point in the original dataset by some value ε, then the new dataset would have exactly

23

the same dissimilarity matrix, D. Notice that since the third party does not know what the

largest possible value of the variable is, there are infinitely many values for ε. After this

simple transformation, the new value of the point p would be (x + ε). However, since x ≠ (x

+ ε), the third party could not have inferred the exact value of p. Prior probability, P(p = x)

= 0, because there are infinitely many values that p can assume. Given the dissimilarity

matrix, D, the posterior probability is P(p = x | D) = 0 again, because for infinitely many

values ε, we have infinitely many points (x+ ε) that result in the same dissimilarity matrix

D. Therefore publishing D does not help the third party infer any point p. □

Theorem 3.2. Sharing the local dissimilarity matrix of a continuous variable with a third

party may leak private information if this party has background information about the field

that the compared values are chosen from, i.e. minimum and maximum possible values.

Proof: Now suppose that the third party knows the maximum and minimum values the

variable can assume. In this case, the third party would also know the maximum possible

distance between any pair of points. If this distance value appears in the entry D[p][q] of

D, the third party directly infers that either p has the minimum value (min) and q has the

maximum value (max) or vice versa. There are only two datasets that the third party should

consider, the original dataset and its mirror image as depicted in Figure 3.5. This time the

third party knows the value of each point with 50% confidence. Assuming integer values,

our prior probability for this case is P(p = min) = 1 / (max - min) and our posterior

probability is P(p = min | D) = 0.5. Unless (max – min) = 2, background information

certainly helps the third party infer the values of all points. □

Figure 3.5. Possible inference in sharing local dissimilarity matrices

P Q M N

Q P

maxmin

N M

24

According to Theorem 3.2, data holder sites should ensure that TP does not have any

background information on the values being compared. This turns out to be a reasonable

assumption in the context of spatio-temporal data mining because the maximum distance

between any pair of trajectories depend on the geographical area that location observations

are collected from and the number of observations, which needn’t (and certainly shouldn’t)

be shared with TP.

3.4.2 Secure Comparison of Trajectories

Now that we have proven the security of sharing local dissimilarity matrices, we turn

our attention to computing the distance for trajectory pairs that are hold by different data

holders. Building on the secure distance protocol described in Section 3.3, we describe a

protocol for computing the distance between a trajectory TA of data holder DHA and

trajectory TB of data holder DHB.

Assume that the protocol starts with DHA, who initializes two pseudo-random

number generators, rngAB and rngAT. The seed for rngAB is the key shared with DHB and

the seed for rngAT is the key shared with TP. Then, for each dimension of spatial

component of TA’s elements (i.e. x-coordinate and y-coordinate), DHA disguises its input as

follows: if the pseudo-random bit generated by rngAB is 1, DHA negates its input and

increments it by the pseudo-random number generated by rngAT. Finally, DHA sends the

disguised values to DHB. Pseudo-code of the protocol at site DHA is provided in Figure 3.6.

Begin
 Initialize rngAB with the key KAB;
 Initialize rngAT with the key KAT;
 For m=0 to length(TA)-1
 TA[m].x =rngAT.Next + TA[m].x * -1^rngAB.Next;
 TA[m].y =rngAT.Next + TA[m].y * -1^rngAB.Next;
 Send TA to DHB;
End

Figure 3.6. Pseudo-code of trajectory comparison protocol at site DHA

25

DHB’s role in the protocol depends on the comparison function that is to be

employed. As described in Section 2.4.2, while all comparison functions require computing

the pair-wise distance between all pairs of locations observations in TA and TB, Euclidean

distance only compares corresponding location observations.

Therefore in the case of Euclidean trajectory comparison, length(TB) = length(TA) and

DHB’s output should be of size length(TA). DHB initializes a matrix M of size length(TA) × 2

and a pseudo-random bit generator rngAB with the key shared with DHA. DHB then negates

its inputs in a fashion similar to DHA, this time negating only when the generated bit is 0.

An entry M[n] of M is TA’s nth observation compared to TB’s nth observation in the two-

dimensional space. DHB simply adds its input to the input received from DHA. At the end,

M is sent to TP by DHB.

If the trajectory comparison function is not Euclidean, DHB initializes a matrix M of

size length(TB) × length(TA) × 2. An entry M[m][n] of M is TA’s nth observation compared to

TB’s mth observation in the two-dimensional space. DHB should re-initialize rngAB with the

secret seed after processing each location observation of TA so that location observations

are negated correctly. Figure 3.7 depicts the role of DHB in the protocol.

Begin
 Initialize rngAB with the key KAB;
 If(Comparison is Euclidean)
 Initialize M = {length(TA)*2};
 For n=0 to length(TA)-1
 M[n].x += TB[n].x * -1^(rngAB.Next+1)%2;
 M[n].y += TB[n].y * -1^(rngAB.Next+1)%2;
 Else
 Initialize M = {length(TB)* length(TA)*2};
 For m=0 to length(TB)-1
 Re-initialize rngAB with the key KAB;
 For n=0 to length(TA)-1
 M[m][n].x +=TB[m].x * -1^(rngAB.Next+1)%2;
 M[m][n].y +=TB[m].y * -1^(rngAB.Next+1)%2;
 Send M to TP;
End

Figure 3.7. Pseudo code of trajectory comparison protocol at site DHB

26

TP subtracts the random numbers added by DHA using a pseudo-random number

generator, rngAT, initialized with the key shared with DHA. Now, the absolute value of any

entry M[n] is | TA[n] - TB[n] | for Euclidean trajectory comparisons and the absolute value of

any entry M[m][n] is | TA[n] - TB[m] | for the other types of trajectory comparisons. These

values are all that are needed by any comparison function to compute the distance between

trajectories TA and TB. In Figure 3.8, we provide the pseudo-code of the protocol at TP.

Begin
 Initialize rngAT with the key KAT;
 If(Comparison is Euclidean)
 For n=0 to length(TA[i])-1

 M[n].x = |M[n].x – rngAT.Next|;
 M[n].y = |M[n].y – rngAT.Next|;

 Else
 For n=0 to length(TB)-1
 Re-initialize rngAT with the key KAT;
 For m=0 to length(TA)-1
 M[n][m].x = |M[n][m].x – rngAT.Next|;
 M[n][m].y = |M[n][m].y – rngAT.Next|;
End

Figure 3.8. Pseudo-code of trajectory comparison protocol at site TP

The trajectory comparison protocol is not symmetric with respect to the roles DHA

and DHB. Complexity of the protocol at site DHA is O(m) where m is the length of

trajectory TA and complexity of the protocol at site DHB is O(mn) where n is the length of

TB. In order to balance the difference between these workloads, TP should ensure that the

data holders undertake the roles DHA and DHB interchangeably.

3.4.3 The Complete Protocol

After presenting all building blocks of the clustering protocol, in Figure 3.9, we

provide the big picture on how TP manages the communication between the data holders

and finally cluster the data. Notice that since we compute the distance between pair-wise

trajectories of all pairs of data holders, every party, including TP, should share pair-wise

keys with each other in order to run the secure distance protocol of Section 3.3.

27

Begin
 For i=0 to numDHs-1
 Request the local dissimilarity matrix of DHi;
 For i=1 to numDHs-1
 For j=0 to i-1
 For m=0 to size(DHi)-1
 For n=0 to size(DHj)-1
 Compute the distance DHi[m] and DHj[n];
End

Figure 3.9. Protocol management at site TP

Once the distances between all pairs of trajectories are collected at TP, TP builds the

global dissimilarity matrix G and clusters according to G. Then the clustering results, in the

form of sets of object ids, are conveyed to any party P that is authorized by the data

holders. Of course party P would also need accompanying information to interpret the

clustering results. Chapter 5 on distributed anonymization addresses this problem.

In Theorem 3.2, we have proven that unless TP has background knowledge on the

field that the compared values are chosen from, sharing local dissimilarity matrices does

not breach privacy. Our secure distance protocol also makes a similar assumption. For the

special case of spatio-temporal data this assumption is easily realized: The range of x and

y-coordinates of moving object locations constitute this background information and if the

data holders do not collude with TP, inferring these values from the local dissimilarity

matrices is not possible. Yet, none of the data holders would collude with another data

holder or the third party because collusion requires disclosing private information.

Therefore our assumption on non-collusion between participants is very likely to hold.

28

4 CENTRALIZED ANONYMIZATION

Anonymity of spatio-temporal data has previously been researched in the context of

Location Based Services (LBS). In contrast, we consider the anonymity of historical spatio-

temporal data. The difference between anonymity in LBS and historical data is that, LBS

providers should respond to spatial or spatio-temporal user queries in real-time while data

mining applications apply offline anonymization, without user interaction. Exploiting this

advantage, we overcome some problems that anonymization techniques of LBS face, i.e.

negation, subtraction and linear inference attacks defined in [3].

We achieve the anonymity of a spatio-temporal database by reducing the spatial

granularity of location observations. The anonymized location observations are not

represented by points any more but by spatial containers which are nodes of the quad-tree

structure of [4], explained in the next section.

In [2], Gruteser and Grunwald propose anonymization techniques based on

generalizing the temporal attributes as well. Their method is based on deferring an LBS

request’s response message until a sufficiently large number of similar requests are made

by other users. However, although such an approach is suitable to LBS systems, it would

inadvertently decrease the number of location observations of users, which might

deteriorate the data miner’s confidence in the anonymized database. Therefore, we do not

consider temporal cloaking in our methods.

4.1 The Quad-tree Data Structure

Quad-tree data structure was initially proposed for efficient indexing of geo-

referenced objects. Any node of the quad-tree, called a quadrant, has two important

attributes: the area it covers and the set of location observations it contains. The area of a

quadrant q, denoted by area(q), is a rectangle described by two intervals, (Xmin, Xmax] in

the x-coordinate and (Ymin, Ymax] in the y coordinate. A location observation ℓ can be

inserted into q if Xmin < ℓ.x ≤ Xmax and Ymin < ℓ.y ≤ Ymax. We define the total number

29

location observations that quadrant q contains as its size, denoted by size(q). The root of the

tree bounds the total area that the objects reside in. In the context of spatio-temporal data

mining, this area is either defined by the data miner through spatial queries or is the domain

of all possible location observations, i.e. the domain of the GPS data. The root and each

intermediate node has 4 four children: northwestern (NW), northeastern (NE), southwestern

(SW) and finally southeastern (SE). Each quadrant covers 1/4th of the area that its parent

covers and this area does not overlap with any other node at the same depth. Without loss

of generality, we assume that the lower bounds for the root node of the quad-tree are 0.

Figure 4.1 depicts a set {a, b, c, d, e} of geo-referenced objects and its corresponding quad-

tree of depth 2. The root node covers the area [(0, XR], (0, YR]] and its children NW, NE,

SW and SE cover [(0, XR/2], (YR/2, YR]], [(XR/2, XR], (YR/2, YR]], [(0, XR/2], (0, YR/2]],

[(XR/2, XR], (0, YR/2]] respectively. In the figure, quad-tree links are denoted with straight

lines while members of leaf nodes are denoted with dashed lines.

Figure 4.1. Quad-tree of a set of spatial objects

The depth of a quad-tree depends on the number of objects it contains and the balance

between the child nodes. Every node has a bucket size defining the maximum number of

objects it can store. If an object is to be inserted into a full leaf node, then this node is split

and its objects are partitioned into its child nodes. Optimally, a quad-tree storing n objects

would be of depth log4 n. However, since we build quad-trees to organize the spatial

ROOT

NW NE SW SE

 a

x
XR

NW NE

SESW

y

(0, 0)
XR/2

YR/2

YR

e

d

a
b

c

 b d e

 c

ROOT

30

granularities at which geo-referenced objects are represented, we omit the bucket size

property. In other words, buckets have infinite capacity and the decision of partitioning

depends on other criterion. Yet, this new criterion does not affect the O(n) complexity of

traversing all leaf nodes.

4.2 Spatio-Temporal k-Anonymity Definitions

Before explaining our anonymization methods, we provide necessary definitions in

this section. Our anonymization technique relies on the k-anonymity method, which

requires proper identification of quasi-identifiers and their corresponding value

generalization hierarchies (VGH). Quasi-identifiers of spatio-temporal data are location

observations, since, after removing personal identifiers, the only possible attack is linking a

location observation with an object through cross-matching geo-references against publicly

available home and work addresses. For example, suppose that the attacker knows that geo-

reference G corresponds to the publicly available address of a detached house A. Without

any anonymization, G would be revealed to the attacker as it is, who can directly infer that

any trajectory containing the geo-reference G should be the trajectory of someone related to

the owner of the house at this address, A. Therefore we should anonymize location

observations before publishing any spatio-temporal data.

Once quasi-identifiers are determined, one should provide the value generalization

hierarchies for anonymization. Similar to [2], we propose using the quad-tree structure as

the generalization hierarchy, representing the spatial components of location observations

with the area of the quadrant which contains it. That’s why, the terms quadrant and spatial

container are used interchangeably in the definitions. We first define the k-anonymity of a

location observation in Definition 4.1.

Definition 4.1: (k-anonymity of location observations) Given a spatio-temporal database S,

location observation ℓ instantiated at time point t is k-anonymous if there are at least (k-1)

other location observations instantiated at t that are in the same spatial container as ℓ.

31

Anonymizing location observations may not be sufficient to protect individual

privacy against complex attackers. Suppose that trajectories of the moving objects are

anonymized and published. Although every location observation of a trajectory is

anonymous by itself, combining the result of multiple geo-reference-to-address lookups, a

trajectory can be linked to a unique individual whose privacy would then be breached. In

Figure 4.2, we represent such attacks with trajectories of four objects (A-D) with two

location observations each where At denotes the location observation of object A with time-

stamp t. Notice that the number of observations in spatial containers H and W are at least 2,

therefore the observations are 2-anonymous.

Figure 4.2. Possible attack against location observation anonymity

The attack scenario is as follows: Many home addresses are mapped to the area

covered by container H. Similarly many work addresses are mapped to the area covered by

container W. However, among all users, object A is the only one who lives in H and works

in W. Similar arguments also hold for object C. Therefore, given the anonymized location

observations, it is possible that objects can still be linked with trajectories. In accordance

with this corollary, anonymizing complete trajectories rather than location observations

provides more privacy.

Definition 4.2: (k-anonymity of trajectories) Given a spatio-temporal database S, trajectory

T of a moving object is k-anonymous if there are at least (k-1) other trajectories such that

all location observations of these trajectories with the same time-stamp are in the same

spatial container as T.

t = 1 t = 2

H H

WW

A1 B1

C1 D1

B2 C2

A2 D2

32

Achieving the anonymity of trajectories is a more complex problem compared to the

anonymity of location observations. As a first step towards achieving anonymity in spatio-

temporal databases, in this thesis, we try to solve the location anonymization problem by

blocking inference channels against the methods of [2]. These inference methods, formally

discussed in [3], are explained in the next section.

4.3 Location Anonymity in Spatio-Temporal Databases

Finding the optimal anonymization is an NP-hard problem, as proven by Meyerson

and Williams in [23] through reduction from the k-dimensional perfect matching problem.

Therefore, anonymization techniques usually propose heuristic methods rather than

exhaustively searching for optimal solutions. Our method to achieve location anonymity in

spatio-temporal databases follows the top-down specialization approach of [5], starting

from the most general case where every location observation with the same time-stamp is

in the quad-tree root, and specializing down the tree as long as the location anonymity

condition is not violated.

Beresford shows in [3] that Gruteser and Grunwald’s spatial cloaking algorithm is

vulnerable to different types of attacks that are realizable because of the container choices

the algorithm makes. Every location observation is anonymized independently which

introduces overlapping quadrants to the anonymized data. In other words, both an

intermediate quadrant and its child node become leaf nodes. By inspecting the number of

location observations contained in these quadrants, an attacker can breach individual

privacy by invalidating the k-anonymity condition. Three attacks are identified in [3]:

i. Subtraction attack: The number of location observations contained in a child of

some leaf quadrant (i.e. size of the child node) is revealed to the attacker. Since

the revealed quadrant is of finer granularity than the leaf node, its location

observations are certainly not k-anonymous. Yet, the attacker can infer this

private information.

33

ii. Negation attack: The attacker infers that a quadrant is empty. Such inference is

only possible if a parent quadrant and some (but not all) of its four children are

leaf nodes and the sum of sizes of these child leaf nodes is equal to the size of the

parent leaf node. All non-leaf children of the parent should be empty in such a

case.

iii. Linear inference attack: If multiple parameters, k, are applied in parallel for

different services. By solving linear equations based on different anonymizations,

an attacker can infer the size of the child nodes of a leaf node.

Our method improves the methods of [2] by both blocking these attacks and

extending the anonymization process to spatio-temporal databases. In order to prevent

overlapping quadrants, we anonymize all observations at a specific time t at once, rather

than anonymizing them separately. Figure 4.3 presents the pseudo code of the location

anonymization algorithm which returns the anonymized spatio-temporal database given the

original database and the anonymity parameter, k.

LocationAnonymizer(Spatio-temporal Database S, Int K)
Begin
 For Each Timestamp T∈S
 L = Set of observations at T;
 Initialize Quad-tree Root;

 Set the total area covered as Root’s area;
 If |L| > K
 Insert L into Root;
 PartitionRec(Root, K);
 For Each Observation X ∈ S
 Replace spatial component of X with its container;
 Else
 L = Ø;
 Return S
End

Figure 4.3. Pseudo code of the location anonymization algorithm

The algorithm requires indexing observations with respect to their time-stamps since

an observation O is anonymized only with those observations instantiated at the same time

as O. If, for any time-stamp, the number of observations is less than the parameter k, then

34

corresponding observations are suppressed, because otherwise, k-anonymity property

would be violated. For the set L of location observations with identical time-stamps, we

initially build a quad-tree whose root is as large as the total area covered by the database.

Then, all location observations of L are inserted into the root node. Since we assume

infinite bucket size for the quadrant, we assume here that L fits in the memory and can be

inserted into the root at once. Afterwards, location observations of the root are partitioned

recursively to obtain finer granularity spatial containers, moving down in the quad-tree and

specializing location observations. Therefore we keep decreasing the area that each location

observation is represented without violating the k-anonymity constraint. Finally, if none of

the quad-tree’s leaf nodes can no more be partitioned, spatial component of the original

location observations are replaced with the area covered by their containers.

Given a quad-tree, the recursive partitioning algorithm, summarized in Figure 4.4,

tries to partition the root node by inspecting whether any of the four children would violate

the k-anonymity property. If this is not the case, we then recursively try partitioning the

child nodes so as to specialize the location observations as much as possible.

PartitionRec(Quad-tree Root, Int K)
Begin
 Quad-tree Temp = Root;
 Partition Temp into 4 quadrants and set their members;
 If(|Temp → NW| ≥ k and |Temp → NE| ≥ k and
 |Temp → SW| ≥ k and |Temp → SE| ≥ k)
 Root = Temp;
 PartitionRec(Root → NW, k);
 PartitionRec(Root → NE, k);
 PartitionRec(Root → SW, k);
 PartitionRec(Root → SE, k);
End

Figure 4.4. Pseudo code of the recursive quadrant partitioning algorithm

35

Our partitioning algorithm ensures that none of the spatial containers overlap with

each other by disallowing a child quadrant and its parent to co-exist in the final quad-tree

structure. This property is enforced by either partitioning all location observations of a

quadrant into its child nodes or not partitioning the quadrant at all. Since there is no

overlapping between quadrants, subtraction, negation and linear inference attacks can not

be realized. As a final remark, notice that the partitioning algorithm does not impose a

balanced quad-tree and leaf nodes can be at different depths of the tree.

36

5 DISTRIBUTED ANONYMIZATION

Anonymization of horizontally partitioned data can easily be achieved by locally

anonymizing the partitions and aggregating these anonymized partitions. However, the

global solution to the anonymization of such distributed data tends to contain far more

information compared to the aggregation of local solutions. In this chapter, we propose a

Secure Multi-Party Computation (SMC) protocol for distributed anonymization of

horizontally partitioned spatio-temporal data with the aim of minimizing the information

loss caused by generalizations and increase the data quality as much as possible while

achieving k-anonymity. We prove that our method returns the same anonymization scheme

as the centralized case explained in Chapter 4.

The information content of our distributed anonymization protocol is much larger

compared to aggregated local anonymization since lack of similar quasi-identifier attributes

(i.e. location observations) may force the data holders to generalize more than required.

Consider the following scenario where benefits of distributed anonymization are obvious:

Every data holder has (k-1) tuples where k is the global anonymization parameter. All data

holders would have to suppress their local datasets and share no data at all, while a better

solution would very likely to exist if these data holders could collaborate while

anonymizing.

Our distributed anonymization protocol consists of three phases: (1) In the local

anonymization phase, every data holder locally anonymizes its data according to the top-

down centralized algorithm of the previous chapter. (2) Then, in the sharing and merging

phase, the data holders share their specialization trees with each other. (3) Finally, in the

collaborative anonymization phase, data holders further specialize through either secure

“greater than” function evaluation or secure sum protocols.

37

5.1 Problem Definition

Suppose that there are N parties, such that N ≥ 2, each party holding a horizontal

partition of a spatio-temporal dataset. Rather than aggregating their locally anonymized

datasets, the data holders want to anonymize their data collaboratively such that the

information content of the collaboratively anonymized dataset will be the same as the

information content of the dataset that is first aggregated and then locally anonymized

using the centralized anonymization method described in Section 4.

Participants of the protocol are assumed to act according to the semi-honest model.

One of the data holders is designated as the coordinator data holder who collects and

merges the local specialization trees, shares the merged tree with other data holders and

notifies them of SMC protocol results. We choose the first data holder for this task,

denoting the coordinator data holder as DHC or DH1 interchangeably.

Data holders should share pair-wise secret keys in two-party settings to encrypt

messages. They should also globally set the parameter k of anonymization which will be

known by each party and agree on the total area covered by the roots of their quad-trees.

5.2 Local Anonymization Phase

The outcome of the local anonymization phase is a summary structure that we call

“specialization tree” referring to the top-down approach of anonymization. Since the

centralized anonymization method is discussed extensively before, in this section we

concentrate on the structure of specialization trees and explain how they are built from

anonymized data.

The quad-tree structure corresponds to Value Generalization Hierarchies (VGH) in

the location anonymization process. The function of quad-trees is providing generalization

values at different granularities and efficient indexing of location observations. On the

other hand, a specialization tree indicates the quadrants of finest granularity that location

observations can be specialized to in a top-down manner. Therefore nodes of a

specialization tree are in fact quadrants of the quad-tree. However, specialization trees do

38

not contain actual location observations since we only need the spatial partitioning of the

total area covered by the root of the quad-tree in the sharing and merging phase. Even the x

and y-coordinate intervals representing these areas can be omitted since every data holder

can calculate the area of a quadrant using its depth and the area of the quad-tree root, which

was agreed on in advance. Notice that a data holder builds as many specialization trees as

the number of distinct time-stamps in its dataset. This is due to the fact that every location

observation is anonymized within the set of location observations with identical time-

stamps.

In order to build the specialization tree of a set of anonymized location observations,

we start with the root of the quad-tree. If the root contains any location observations, or

equivalently if there are at least k location observations in the original dataset, then a

corresponding node for the root is created in the specialization tree. Then for all non-empty

nodes of the quad-tree, a corresponding node is created recursively in the specialization

tree. Pseudo code of this algorithm is provided in Figure 5.1 below.

SpecTree BuildSpecTree(QuadTree Root)
Begin
 If(|Root| ≥ k)
 SpecTree Result = new SpecNode;
 Return BuildSpecTreeRec(Root, Result);
End
SpecTree BuildSpecTreeRec(QuadTree Root, SpecTree Result)
Begin
 If(Root has children)
 Create child nodes of Result;
 Result → NW = BuildSpecTreeRec(Root → NW,

Result → NW);
 Result → NE = BuildSpecTreeRec(Root → NE,

Result → NE);
 Result → SW = BuildSpecTreeRec(Root → SW,

Result → SW);
 Result → SE = BuildSpecTreeRec(Root → SE,

Result → SE);
 Return Result;
End

Figure 5.1. Pseudo code of specialization tree generation

39

Figure 5.2 depicts a small set of 2-anonymous location observations and its

corresponding specialization tree. Figure 5.2.a is a two-dimensional representation of all

location observations within their finest granularity containers and Figure 5.2.b is the

specialization tree. The depth of the specialization tree is 3 because the quadrant of finest

granularity in the quad-tree covers 4-3 = 1/64 of the root’s area. Leftmost and rightmost

children of the specialization tree’s root are non-leaf nodes because the northwestern and

southeastern quadrants of the quad-tree’s root are partitioned.

Figure 5.2. Sample specialization tree

(a) Two dimensional set of location observations
(b) Specialization tree of the 2-anonymous dataset

5.3 Sharing and Merging Phase

Sharing and merging phase utilizes the fact that if a quadrant is locally k-anonymous

in one of the data holders’ dataset, it should be k-anonymous globally since the parameter k

denotes the global anonymity requirement for privacy. Therefore all data holders can safely

specialize their data up to the finest granularity leaf node of the merged specialization tree

without violating global k-anonymity. As discussed before, specialization tree is a summary

of the anonymized data. Since even sharing the anonymized data itself is safe in terms of

privacy, publishing the specialization tree does not leak private information as well.

depth 3

depth 2

depth 1

depth 0

(a) (b)

(Legend)
NE SE SW NW

40

We provide a particular scenario that demonstrates the necessity of merging. There

are two telecommunication companies, DHA and DHB, who want to anonymize their data

collaboratively. Most of DHA’s costumers live in the northern side of the city while DHB’s

costumers are from the southern side. When these parties locally anonymize their datasets,

DHA’s specialization tree will be unbalanced towards left since only a small portion of all

costumers live to the south. Similarly, the depth of DHB’s specialization tree will be much

larger on the right compared to the left. Now suppose that sharing and merging phase is

omitted. The intersection of the local quadrants would consist of containers in very coarse

granularities. Therefore many iterations of SMC based collaborative anonymization would

be required to achieve the quad-tree that would easily be attained after the merging phase.

The data holders would also have to put considerable amount of effort to harmonize the

granularities of their spatial containers so as to prevent the attacks.

The advantage of specialization according to the merged tree is three-fold: First, the

number of specializations in the collaborative anonymization phase is minimized.

Collaboration requires Secure Multi-Party Computation (SMC) and is the most costly phase

of our distributed anonymization protocol. Second, easy traversal of local specialization

trees in the third phase is facilitated. Without identical specialization trees, data holders

would have to identify the intersection of their trees. Hence we propose sharing and

merging before collaborative anonymization. Finally, the attack scenarios against [2] are

prevented by synchronizing the quad-trees among data holders. After merging the

specialization trees, every party specializes its data according to the merged tree, which

ensures that aggregated anonymized data does not contain any overlapping container. A

detailed discussion of these attacks is provided in Section 4.3.

The sharing and merging phase starts with every data holder sharing its specialization

tree with the coordinator data holder, DHC. Once the sharing is completed, DHC merges all

trees according to the algorithm of Figure 5.3 and sends the resultant tree to all data

holders. The merge algorithm recursively merges two input trees by replacing any container

with its counterpart if the counterpart is of finer granularity.

41

SpecTree Merge(SpecTree S1, SpecTree S2, SpecTree Result)
Begin
 If(Both S1 and S2 has children)
 Create child nodes of Result;
 Result → NW = Merge(S1 → NW, S2 → NW, Result → NW);
 Result → NE = Merge(S1 → NE, S2 → NE, Result → NE);
 Result → SW = Merge(S1 → SW, S2 → SW, Result → SW);
 Result → SE = Merge(S1 → SE, S2 → SE, Result → SE);
 Else If(S1 has children)
 Result = S1;
 Else //S2 has children
 Result = S2;
 Return Result;
End

Figure 5.3. Pseudo code of specialization tree merging

Upon receiving the merged specialization tree, all data holders further specialize their

local data according to the merged tree. The algorithm for updating the quad-tree, given a

specialization tree, is provided in Figure 5.4.

QuadTree UpdateQuadTree(QuadTree QRoot, SpecTree SRoot)
Begin
 If(SRoot has children & QRoot does not have children)
 Partition QRoot into 4 quadrants and set
 their members;
 If(SRoot has children)
 QRoot → NW = UpdateQuadTree(QRoot → NW, SRoot → NW);
 QRoot → NE = BuildSpecTree(QRoot → NE, SRoot → NE);
 QRoot → SW = BuildSpecTree(QRoot → SW, SRoot → SW);
 QRoot → SE = BuildSpecTree(QRoot → SE, SRoot → SE);
 Return QRoot;
End

Figure 5.4. Pseudo code of specialization tree merging

Quad-tree updating through a specialization tree is essentially the reverse of the

specialization tree building algorithm of Figure 5.2. For any quadrant whose correspondent

in the specialization tree has children, we first partitioned the quad-tree if it is not already

partitioned. Then every child node of this quadrant is updated recursively with the

appropriate node of the specialization tree.

42

5.4 Collaborative Anonymization Phase

In the collaborative anonymization phase, data holders traverse the leaf nodes of the

merged specialization tree simultaneously, searching for any quadrant that can be

partitioned into child quadrants of finer granularity while preserving k-anonymity.

Extending the notation of Section 4.1, we denote the number of location observations

contained in quadrant q at a data holder DHi as localSize(DHi, q). Similarly, the global set

size of a quadrant, which is the sum of all local sizes, is denoted as globalSize(q).

Quadrant q can be partitioned if and only if globalSize’s of all of its children are

greater than k. However evaluating the predicate globalSize(q) ≥ k is not trivial. Local sizes

should be considered private information because the data holders do not yet know whether

k-anonymity property will hold after partitioning. That’s why we propose two methods for

evaluating this predicate in Section 5.4.1 and Section 5.4.2, based on which we outline the

algorithm for collaborative anonymization of a quadrant in Figure 5.6.

CollaborativeAnonymization(QuadTree QRoot)
Begin
 If(globalSize(QRoot → NW)≥ k

 and globalSize(QRoot → NE)≥ k
 and globalSize(QRoot → SW)≥ k
 and globalSize(QRoot → SE)≥ k)

 Partition QRoot into 4 quadrants and set
 their members;
 CollaborativeAnonymization(QRoot → NW);
 CollaborativeAnonymization(QRoot → NE);
 CollaborativeAnonymization(QRoot → SW);
 CollaborativeAnonymization(QRoot → SE);
End

Figure 5.5. Pseudo code of collaborative anonymization of a quadrant

DHC’s mission in this phase is initiating collaborative anonymization on appropriate

quadrants of the merged quad-tree. If a partition is to be partitioned, DHC informs all data

holders so that quad-trees at different sites remain identical. Such synchronization while

merging and collaboratively anonymizing ensures that leaf quadrants do not overlap,

preventing the attacks scenarios discussed in Section 4.3.

43

5.4.1 Secure Sum

If the number of data holders, N > 2, we use a secure sum protocol based on Pseudo-

Random Number Generators (PRNG), similar to [56]. The PRNG we proposed in Section

3.2 is perfectly suitable for this purpose. The coordinator data holder, DHC, disguises its

private input by adding the next pseudo-random of the generator and the disguised value is

circulated among the other data holders. Each data holder adds its local size to the value it

receives and passes the result to the next data holder until the disguised sum eventually

returns it to DHC, who removes the pseudo-random number and obtains the sum. Then DHC

checks if the sum is greater than k and notifies every data holder. We describe the protocol

in Figure 5.5 below. In the figure, DH1 is the coordinator, r is the pseudo-random number

generated by the PRNG and the local size of the data holder DHi is denoted as size(DHi).

DHC can not infer any private information unless the sum equals size(DHC) in which

case all other private inputs should be 0. However such inference is unavoidable by the

nature of the problem. Notice that this protocol requires secure channels among data

holders.

Figure 5.6. Summation protocol

5.4.2 Secure Greater Than Function Evaluation

In two-party scenarios, secure sum protocol leaks private information since the

coordinator data holder (DHC) can easily infer the other data holder’s local size of the

current quadrant by subtracting its local size from the sum. That’s why we propose another

method based on secure greater than function evaluation for cases where N = 2.

m = r + ∑
i

iDHsize)(
DHC

DHk-1DHk

mk-1 = mk-2 + size(DHk-1)

mG = r + size(DHC)

44

We reduce the problem of checking whether the global size of a quadrant is larger

than k to the well known “millionaire problem” introduced by Yao [57] where two

millionaires want to find out who is richer without disclosing how much they are worth. In

our setting, DH1 has (k - size(DH1)) millions and DH2 has size(DH2) millions. At the end of

the protocol, if DH2 turns out to be richer, then k - size(DH1) < size(DH2) which implies the

sum is larger than k.

Yao’s solution to the millionaire problem has a complexity of the domain size of

compared inputs. Therefore greater than protocols are considered inefficient for comparing

numeric values with large domains. However, in our case, size of a quadrant is limited to

the number of trajectories which is relatively small with respect to the total assets of

millionaires.

5.5 The Complete Protocol

Distributed anonymization protocol at site DHC is provided in Figure 5.7. The data

holders should run this protocol for all time-stamps in the global spatio-temporal dataset.

The first phase of the protocol is the same for all data holders. In the second phase, all data

holders send their specialization trees to DHC, who merges them with its tree and broadcast

the merged tree. Finally, in the last phase, data holders try to further specialize the merged

tree through collaborative anonymization. We prove in Theorem 5.1 that our protocol’s

anonymized output is identical to the centralized anonymization of aggregated horizontal

partitions.

Begin
Phase 1:
 QuadTree QRoot = Locally anonymize the dataset
 SpecTree MergedTree = BuildSpecTree(QRoot);
Phase 2:
 For i=2 to numDHs-1 // DHC=DH1
 SpecTree S1 = Request SpecTree of DHi;
 SpecTree S2 = MergedTree;
 Merge(S1, S2, MergedTree);

45

For i=2 to numDHs-1
 Send MergedTree to DHi;
 UpdateQuadTree(QRoot, MergedTree);
Phase 3:
 For Each Quadrant Q∈QRoot such that Q is a leaf node
 CollaborativeAnonymization(Q);
End

Figure 5.7. Pseudo code of complete protocol at site DHC

Theorem 5.1. Output of the distributed anonymization protocol is identical to the output of

centralized anonymization protocol over the aggregation of horizontal partitions.

Proof: We present a proof by induction on the quadrants of the final quad-tree. Notice that

anonymized datasets are generated using the quad-tree structure. Therefore if quad-trees of

two anonymizations of the same dataset are identical, then anonymization outputs should

be identical assuming no faulty partitioning of location observations into child nodes.

As the base case, consider a very small set of location observations distributed among

data holders which can not be specialized further than the root. There are only three

scenarios that this can happen: (1) Every data holder has strictly less than k observations,

(2) At least 1, at most (n-1) data holders has less than k observations, where n is the number

of horizontal partitions and (3) Every data holder has at least k observations.

Showing that outcome of the distributed anonymization contains the root quadrant is

easy since the root should already be identified in the local anonymization phase. In the

second scenario, the problem is solved in the sharing and merging phase since at least one

of the data holders’ dataset size is larger than k. Finally, in the third scenario, DHC checks

whether the number of observations in the root is larger than k in the collaborative

anonymization phase and notifies all data holders not to suppress their datasets.

For the inductive part of the proof, assume that a quad-tree node q is partitioned

correctly with the distributed anonymization technique. We have three scenarios again: (1)

q appears in specialization trees of all data holders, (2) At least 1, at most (n-1)

specialization tree contains q and (3) None of the specialization trees contain q.

46

Local anonymization phase of the distributed technique handles the first scenario. In

the second scenario, q appears in the merged specialization tree and therefore is generated

in quad-trees of all data holders after the update. In the third scenario, if the global size of q

and all its siblings are larger than k, all local quad-trees are partitioned to q in some pass of

the recursive collaborative anonymization phase. Otherwise, if the global size of q’s at least

one sibling is strictly smaller than k, q should not be in the anonymization of the

aggregation of horizontal partitions as well. □

47

6 EXPERIMENTAL RESULTS

In this chapter, the experiments we made for measuring the performance of the

proposed techniques are explained and discussed in detail. Our distributed clustering

protocol does not result in any loss of accuracy therefore we performed only two tests:

communication cost analysis and computation cost analysis. For the anonymization

methods, information content of the anonymized datasets is measured. The experiments

were conducted on an Intel Dual-Core Centrino PC with 2MB cache, 2GB RAM and

1.83GHz clock speed. We used C# programming language to implement the algorithms.

6.1 Synthetic Data Generation

Scarcity of publicly available spatio-temporal datasets indicates the need for privacy

preserving spatio-temporal data mining methods that we proposed. Only very small

datasets collected by tracking animals and mass transportation vehicles can be found.

However, even if these datasets were sufficiently large, using such data in anonymization

experiments would not be appropriate because animals move in herds and mass

transportation vehicles always follow predefined trajectories. That’s why, we carried out

the experiments on synthetic datasets generated by Brinkhoff’s “Network-based moving

object generator” [58].

The data generator requires a road network as input, upon which randomly created

moving objects move. Various different network formats can be loaded to the generator

among which are files in TIGER/Line format, ESRI Shapefile format or any other random

or manually built graph convertible to these. Our road network is one of the samples within

the generator package, from the Oldenburg city, Germany. The network consists of 6105

nodes, 7035 edges with a width of 23572 and height of 26915 units.

The generator can be controlled through various parameters that are the number of

objects, the duration of location observation, maximum movement speed of the objects, the

number of classes of objects and location report probability. Among these, lower the report

48

probability, lower the number of observations for an object that has not yet disappeared will

be. Maximum speed alters the displacement of objects between consecutive observations.

Duration of observation parameter adjusts the length of trajectories of objects.

Two types of objects are identified: moving objects and external objects. Pedestrians

and human controlled vehicles are the moving objects represented as points. While moving

objects are constrained to follow the edges of the network, external objects are not since

these are supposed to represent moving events. External objects are depicted as rectangles,

showing the area that the event they represent affects. Traffic congestion, bad weather

conditions are some samples of external objects which tend decrease moving object density

under the area it covers. We do not consider external objects in our experiments since the

aim of our methods is ensuring privacy rather than reasoning about the data mining results.

The number of moving objects that is generated depends on the number of objects

that are assumed to exist in the network prior to starting the generation process and the

number of objects that are introduced at each time point. We always set the number of

objects at the beginning, blocking the introduction of new objects during the generation.

Generated data contains three types of observations: introduction of a moving object

labeled newpoint, location observations labeled point and deletion of a moving object

labeled disappearpoint. Each observation contains the following information: id of the

object, sequence number of the observation, id of the object class, time-stamp of the

observation, x-coordinate of the object location, y-coordinate of the object location, current

speed of the object, x-coordinate of the next node that the object will be passing and y-

coordinate of the next node. Among these, we only use the x-coordinate, y-coordinate,

time-stamp, and object id, and delete the others. Sorting all location observations first with

respect to the object id and then with respect to the time-stamp, trajectory of a moving

object can easily be built.

49

Figure 6.1. Snapshot of Brinkhoff’s Data Generator

Figure 6.1 above is a snapshot of Brinkhoff’s generator at the 5th time point, with the

parameters that we used throughout our experiments. The outcome of this generation is

referred as 100 objects over 20 observations data.

50

6.2 Privacy Preserving Distributed Clustering

Three test cases are identified to measure the performance of our distributed

clustering protocol. These are (1) number of moving objects (trajectories), (2) length of

object trajectories (duration of observation) and (3) number of horizontal partitions. For

each of these experiments, we measure the communication and computation overhead of

our protocol against a baseline protocol. Similar to the privacy preserving protocol, every

data holder builds its local dissimilarity matrix and shares it with the third party. However,

for the pair-wise comparisons among trajectories of distinct data holders, private

information is sent to the third party as plaintext, without any disguise.

Among all suitable clustering algorithms that only require the dissimilarity matrix as

input, we’ve conducted the experiments using Agglomerative Nesting (AGNES) described

in [59] that has O(n2) complexity to cluster n objects.

Except for the experiments on the number of partitions, we partitioned the generated

spatio-temporal datasets into two by distributing object trajectories into two datasets evenly

so that each data holder has a balanced share.

6.2.1 Computation Cost Analysis

Computational complexity of distributed clustering depends highly on the choice of

the trajectory comparison function. As we explained in Section 2.3.2, Euclidean trajectory

comparison is the only comparison function that has O(n) complexity, where n is the

trajectory length of both trajectories that are compared. The other comparison functions

require O(n*m) time to measure the distance between two trajectories of length n and m.

Because of this distinction, we provide two sets of figures for all tests. In the first set we

compare trajectories with Euclidean comparison function while in the second set, DTW is

used as the representative of all O(n*m) comparison functions. We denote our protocol as

“Protocol” and the baseline protocol as “Baseline” in the figures.

Computation cost of our protocol is always higher than that of the baseline protocol.

In our protocol, each private input of the data holders is disguised with two pseudo-random

51

numbers that are actually ciphertexts of DES. As expected, encryption is not free and the

gap between the two protocols in each figure is the price paid for privacy.

Both protocols have quadratic complexity with respect to the total number of objects,

n, since O(n2) comparisons are required to fill in the dissimilarity matrix and the

complexity of AGNES is O(n2) as well. The experiments conducted on varying number of

object trajectories, each consisting of 50K observations, complies with this reasoning, as

shown in Figure 6.2 and Figure 6.3. The situation is pretty much similar for both linear (i.e.

Euclidean) and quadratic (i.e. DTW) trajectory comparison functions. The straight lines

denote the total execution times including the clustering of the dissimilarity matrix while

the time spent on clustering is not included in the measurements of the dashed lines.

Computation Costs - Euclidean

0

5000

10000

15000

20000

25000

2000 4000 6000 8000 10000

Number of Objects

CP
U

 T
im

e
(s

ec
.)

Protocol Baseline Protocol w/o Clustering Baseline w/o Clustering

Figure 6.2. Computation cost of Euclidean comparison with varying number of objects

52

Computation Costs - DTW

0

50000

100000

150000

200000

2000 4000 6000 8000 10000

Number of Objects

C
P

U
 T

im
e

(s
ec

.)

Protocol Baseline Protocol w/o Clustering Baseline w/o Clustering

Figure 6.3. Computation cost of DTW with varying number of objects

In order to measure the correlation between the number of observations and the

execution time, we generated 1K trajectories with varying lengths. The total execution

times of the protocols are depicted in Figure 6.4 and Figure 6.5 below. Since the number of

objects is fixed, the CPU time spent on clustering does not change. That’s why we only

present the execution times without clustering. Execution times of the protocol with

increasing trajectory lengths are supposed to increase linearly using Euclidean comparison

and quadratically using DTW.

However, the results are contradictory for large trajectory lengths due to a property of

the generator: Each moving object is assigned a destination node after reaching where the

object disappears, irrespective of the duration of observation. Consequently, even if the

duration of observation is set as 1K time points, objects start disappearing much earlier. We

solved this problem by slowing down the objects and decreasing the duration of test cases

by a factor of 100. That’s why the numbers of observations vary between 10 and 50, which

are pretty low values for testing complexity.

53

Computation Costs - Euclidean

0

10

20

30

40

50

60

10 20 30 40 50

Number of Observations

CP
U

 T
im

e
(m

se
c.

)

Protocol w/o Clustering Baseline w/o Clustering

Figure 6.4. Computation cost of Euclidean comparison with varying number of
observations

Execution times of the baseline protocol using DTW seems to increase somewhat

linearly with respect to increasing trajectory lengths in Figure 6.5, which is most probably

due to linear processing of 1K objects dominating quadratic comparison complexity for

trajectories of length 10 to 50.

Computation Costs - DTW

0

500

1000

1500

2000

10 20 30 40 50

Number of Observations

CP
U

Ti
m

e
(s

ec
.)

Protocol w/o Clustering Baseline w/o Clustering

Figure 6.5. Computation cost of DTW with varying number of observations

One of the most interesting experiments is on the number of data holders or

equivalently, the number of partitions. For this experiment, we generated a spatio-temporal

54

dataset of 2K objects, observed for duration of 50K time points. This dataset is then

horizontally partitioned by distributing the complete trajectories over the data holders so

that each party holds the same number of trajectories. The results are depicted in Figure 6.7

and Figure 6.8, excluding the time spent on clustering.

The results in Figure 6.7 capture the expected behavior of our protocol very well.

Denoting the number of objects as c and the number of partitions as k, complexity of the

global dissimilarity matrix construction is O(c2) and complexity of each local dissimilarity

matrix construction is O(c2/k2), assuming balanced shares at each data holder. After

receiving the local dissimilarity matrices, TP should fill in O(c2-k*(c2/k2)) pair-wise

trajectory distances to obtain the global dissimilarity matrix. These pair-wise comparisons

are the most time consuming part of the whole protocol because building a local

dissimilarity matrix is rather fast compared to pair-wise comparisons involving

troublesome pseudo-random number generation. Therefore, although the execution time

increases with increasing number of partitions, the corresponding curve is similar to that of

a function of the order O(c2-c2/k). On the other hand, the baseline protocol’s complexity

does not depend on the number of partitions because different distribution of objects to data

holders only changes the sender of trajectories to TP.

Computation Costs - Euclidean

0

100

200

300

2 4 6 8 10

Number of Partitions

CP
U

Ti
m

e
(s

ec
.)

Protocol w/o Clustering Baseline w/o Clustering

Figure 6.6. Computation cost of Euclidean comparison with varying number of partitions

55

Computation Costs - DTW

0

1000

2000

3000

4000

2 4 6 8 10

Number of Partitions

C
PU

 T
im

e
(s

ec
.)

Protocol w/o Clustering Baseline w/o Clustering

Figure 6.7. Computation cost of DTW with varying number of partitions

The execution times that we provide in the figures are measured without

parallelization, simply by summing the execution times at each site. However, the actual

execution time of the protocols would be much smaller since parallel computing at different

sites is possible. For example, while comparing trajectories with DHB according to Figure

3.6, DHA does not have to wait DHB to complete its processing after sending the output but

can start preparing the next output. Ideally, complexity of the protocol would boil down to

the complexity of the third party, assuming no network delay. We discuss the network

requirements to realize this improvement after presenting the communication costs.

6.2.2 Communication Cost Analysis

We discuss the communication cost of our protocol by providing three sets of tests on

(1) Communication cost of transferring dissimilarity matrices to TP and communication

cost of pair-wise trajectory comparisons among different data holders using (2) Euclidean

trajectory comparison functions and (3) Quadratic trajectory comparison functions.

Although we had to choose a representative function for computation analysis, results of

the communication cost tests apply to all quadratic comparison functions.

In both our protocol and the baseline protocol, cost of transferring local dissimilarity

matrices is always much smaller than the cost of pair-wise comparisons because of the

lengthiness of generated trajectories, which is the reason we are providing separate figures

56

for the communication cost of sending local dissimilarity matrices and pair-wise

comparisons. Since there is no difference between our protocol and the baseline protocol

concerning transferring local dissimilarity matrices to TP, we do not make a distinction

between the two protocols in dissimilarity matrix figures.

Pair-wise comparison of trajectories by Euclidean comparison function requires

trajectories of equal length, denoted by n. In our clustering protocol, DHA transfers a vector

of size O(n) to DHB who, after processing this vector, sends a vector of size O(n) to TP.

The overall communication complexity is O(n). In the baseline protocol, both DHA and

DHB send their trajectories to TP, transferring O(n) location observations in total.

Therefore, the communication cost of comparing two trajectories with the baseline protocol

always equals that of our protocol when the distance between trajectories is measured by

the Euclidean comparison function.

Baseline protocol’s communication complexity does not depend on the comparison

function because the data holders always send their trajectories directly to TP. On the

contrary, while comparing a trajectory of length m using quadratic comparison functions,

DHB’s output size increases to O(n*m) in our protocol compared to O(n+m) complexity of

the baseline protocol.

The first set of figures on local dissimilarity matrix costs contain only one curve

labeled as “Both protocols” because the results are the same with our protocol and the

baseline protocol. For the other set on communication costs of Euclidean pair-wise

comparison and quadratic pair-wise comparison, we denote our protocol as “Protocol” and

the baseline protocol as “Baseline”.

Falling in line with the communication complexity analysis, our protocol and the

baseline protocol has the same communication cost in case of Euclidean trajectory

comparisons. On the other hand, due to O(m*n) output at DHB per trajectory comparison,

communication costs of our protocol are quadratically larger compared to the baseline

protocol when the distance between trajectories is measured by quadratic comparison

57

functions. Figure 6.8 and Figure 6.9 depicts these costs with varying number of objects,

observed an interval of 50K time-points. Local dissimilarity matrices grow quadratically

with respect to the number of objects. Therefore cost of transferring the matrices increases

quadratically in both protocol as shown in Figure 6.10.

Communication Costs - Euclidean

0

10000

20000

30000

40000

2000 4000 6000 8000 10000

Number of Objects

Co
m

m
un

ic
at

io
n

Co
st

(M

B)

Protocol Baseline

Figure 6.8. Communication cost of Euclidean comparison with varying number of objects

Communication Costs - Quadratic

0

100000

200000

300000

400000

2000 4000 6000 8000 10000

Number of Objects

C
om

m
un

ic
at

io
n

Co
st

(M

B
)

Protocol Baseline

Figure 6.9. Communication cost of DTW with varying number of objects

58

Communication Costs - Local Dissimilarity Matrices

0

50000

100000

150000

200000

2000 4000 6000 8000 10000

Number of Objects

C
om

m
un

ic
at

io
n

Co
st

(K

B)

Both protocols

Figure 6.10. Communication cost of local dissimilarity matrices with varying number of
objects

Figure 6.11 and Figure 6.12 depict the correlation between the duration of

observation and communication costs on test datasets consisting of 1K objects. As

expected, costs of both protocols are identical when Euclidean trajectory distances are used

and our protocol transfers quadratically larger amount of information with quadratic

comparison functions. The figures imply that increasing trajectory lengths require O(n)

communication with linear comparison and O(m*n) in case of quadratic comparison

functions. We do not provide figures for costs of transferring local dissimilarity matrices

since the number of objects in each dataset is constant.

59

Communication Costs - Euclidean

0

100

200

300

400

10 20 30 40 50

Number of Observations

C
om

m
un

ic
at

io
n

C
os

t
(M

B
)

Protocol Baseline

Figure 6.11. Communication cost of Euclidean comparison with varying number of
observations

Communication Costs - Quadratic

0

1000

2000

3000

4000

5000

10 20 30 40 50

Number of Observations

C
om

m
un

ic
at

io
n

Co
st

(M

B)

Protocol Baseline

Figure 6.12. Communication cost of DTW with varying number of observations

Analysis of varying communication costs with respect to different number of

partitions is similar to our computation cost analysis. Both Figure 6.13 and 6.14 imply the

communication complexity of O(c2-k*(c2/k2)) due to increasing amount of pair-wise

trajectory comparisons. A dataset containing 2K objects with 50K observations was evenly

distributed among data holders in these tests.

60

Communication Costs - Euclidean

0

500

1000

1500

2000

2 4 6 8 10

Number of Partitions

Co
m

m
un

ic
at

io
n

C
os

t
(M

B)

Protocol Baseline

Figure 6.13. Communication cost of Euclidean comparison with varying number of
partitions

Communication Costs - Quadratic

0

2000

4000

6000

8000

10000

12000

2 4 6 8 10

Number of DHs

C
om

m
un

ic
at

io
n

C
os

t
(M

B)

Protocol Baseline

Figure 6.14. Communication cost of DTW with varying number of partitions

Since the number of objects in the dataset is the same for each test, the number of

trajectories in each partition decreases linearly with increasing number of data holders.

Consequently, cost of transferring local dissimilarity matrices decreases quadratically as in

Figure 6.15.

Figure 6.14 can be interpreted through Figure 6.15 as well. The number of trajectory

distances required to fill in the global dissimilarity matrix remains constant and local

dissimilarity matrices shrink quadratically with varying number of partitions. This

61

necessitates more pair-wise comparisons among data holders which is highly costly in

terms of both computation and communication. Therefore costs of both protocols increase

when the data is distributed among more data holders.

Communication Costs - Local Dissimilarity Matrices

0

2000

4000

6000

8000

2 4 6 8 10

Number of Partitions

C
om

m
un

ic
at

io
n

C
os

t
(K

B
)

Both protocols

Figure 6.15. Communication cost of local dissimilarity matrices with varying number of
partitions

We now return to the discussion on the required bandwidth that should be attained

between involved parties so as to realize the “no communication overhead” assumption of

the computation cost analysis. Obviously, the calculations presented here are highly

correlated with the computing power of the PC that the experiments are conducted on. If

the participants have more powerful machines, their connections with each other should be

faster. Our formulation of minimum necessary bandwidth relies on the data processing

speed of the third party who would certainly be the bottleneck due to high incoming data

rate in case of slow network connections. Data processing speed is defined as the average

amount of data consumed per unit time. Table 6.1 provides the maximum processing

speeds of the third party for each test scenario. According to the table, clustering with

Euclidean comparison function requires 107Mb/sec. bandwidth at least, while the time

consumed in DTW comparisons decreases the bandwidth requirement to 47Mb/sec.

62

Table 6.1. Maximum processing speeds for the test cases

Test Case Comm. Cost
(MB)

Comp. Cost
(sec.)

Processing Speed
(Mb/sec.)

Number of objects (Euclidean) 34500 2586 106
Number of objects (DTW) 384787 70465 43
Number of observations (Euclidean) 375 28 107
Number of observations (DTW) 4560 774 47
Number of partitions (Euclidean) 1540 124 99
Number of partitions (DTW) 10904 1875 46

6.3 Location Anonymity

Apart from the three test cases of our distributed clustering technique, experiments on

the parameter k were conducted as well for the location anonymization methods. We are

particularly interested in the information content after the anonymization which we

measure by a formula derived from Shannon’s entropy formulation, tailored specifically to

the quad-tree structure [60]. We define the information content of an anonymized spatio-

temporal database in Definition 6.1, based on the information content of its quad-trees

formulated in Definition 6.2.

Definition 6.1: (Information content of a k-anonymized spatio-temporal database) Given

an anonymized spatio-temporal database S, information content H(S) of the database is

defined as the sum of information contents of its quad-trees over all time points t∈T,

denoted as H(QTt).

∑
∈

=
Tt

tQTHSH)()(

Definition 6.2: (Information content of a quad-tree) Given the quad-tree QT of an

anonymized set of location observations L, information content H(QT) of the quad-tree is

defined as the sum of self-information of all leaf nodes in QT, denoted as Leaf(QT).

∑
∈

×−=
)(

)
||

)(log(
||

)()(
QTLeafq L

qsize
L

qsizeQTH

63

In order to measure the quality of anonymization, we provide two sets of experiments

for each test case. Results of the first set are labeled “Local” because we provide

information content measurements of locally anonymized and then aggregated data. In the

second set labeled “Distributed”, data is anonymized with our distributed anonymization

protocol. For the experiments that are conducted with multiple values of k, the labels

“Local, k = k” and “Distributed, k = k” are used. Since the information content of the

distributed protocol is actually that of our centralized anonymization technique applied to

the aggregation of partitions, the discussion on the experimental results labeled

“Distributed” directly applies to our centralized anonymization method. Therefore we do

not present any separate discussion on centralized anonymization in this section.

In our experiments, we also measure the improvement in information content

between the locally anonymized and aggregated dataset SL and the collaboratively

anonymized dataset SD in terms of the information gain G(SL, SD), defined as the percentage

of extra information SD contains: G(SL, SD) = (H(SD) - H(SL)) / H(SL) * 100.

The parameter k of anonymization is vital for the test cases concerning the

distribution and size of the spatio-temporal dataset. That’s why we first discuss the

correlation between anonymity requirement and information content with varying k. Figure

6.16 depicts the results on a dataset containing 100 location observations of 10K moving

objects distributed evenly to 2 data holders. According to this figure, information content of

an anonymized dataset decreases logarithmically with increasing anonymity requirements,

identified by k.

64

Anonymization

0

200

400

600

800

1 10 100 1000 10000

k

In
fo

rm
at

io
n

Co
nt

en
t

Local Distributed

Figure 6.16. Information content with varying anonymity requirements

The reason why the correlation is logarithmic can be explained through a simple

example. Consider a k-anonymized set of n location observations, in which every leaf

quadrant contains exactly k observations. Information content would be calculated as -

log(k/n) since there should be n/k leaf quadrants. If the anonymity requirement was 2k,

information content would drop down to -log(2*k/n) changing logarithmically with respect

to k, considering constant number of observations as in our case.

In Figure 6.17, we provide the amount of information gain achieved by the

distributed anonymization algorithm with varying values of k. According to the figure,

information gain increases exponentially until k = 100 which turns out to be an important

threshold value for the generated test dataset. Consider the detailed test results in Figure

6.18. In order to 100-anonymize the dataset locally, data holders 540-anonymize the data.

Therefore information content of the local anonymization experiment does not change until

k = 540 while distributed anonymization method’s information content keeps decreasing

logarithmically till k = 180, which explains the logarithmic decrease in information gain.

Between k = 200 to k = 440, information contents of the two techniques are the same

because each dataset is over-anonymized. After k = 440, information gain increases

exponentially. Also notice that local anonymization method suppresses all location

observation at for k ≥ 640 while distributed anonymization can resist until k = 1200.

65

Anonymization

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450 500 550 600

k

In
fo

rm
at

io
n

G
ai

n
(%

)

Figure 6.17. Information gain with varying anonymity requirements

Anonymization

0
100
200
300
400
500
600

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

k

In
fo

rm
at

io
n

C
on

te
nt

Local Distributed

Figure 6.18. Information content with varying anonymity requirements

We now provide the experimental results related to the structure of the spatio-

temporal dataset, over constant values k = 10 and k = 100. Lower anonymity requirement, k

= 10, ensures that over-anonymization does not occur and the higher requirement is a local

maxima of the information gain in Figure 6.17.

According to the results of Figure 6.19, as the number of objects in a dataset

increases, anonymity can be achieved within quadrants of finer granularity. Therefore the

anonymized dataset is less generalized and contains more information. The experiments of

Figure 6.19 were conducted over 100 time points and the data was partitioned into 2.

66

Notice that the information content of aggregation of locally anonymized datasets does not

change because of over-anonymization at k = 100. Table 6.2 provides the information gain

of our protocol in the experiments of Figure 6.19. Our protocol performs %12 and %74

better than the local anonymization for k = 10 and k = 100 respectively in terms of the

information content.

Anonymization

0

100

200

300

400

500

600

2000 4000 6000 8000 10000

Number of Objects

In
fo

rm
at

io
n

C
on

te
nt

Local, k=10 Distributed, k=10 Local, k=100 Distributed, k=100

Figure 6.19. Information content with varying number of objects

Table 6.2. Information gain with varying number of objects

Information Gain (%)# of Objects k = 10 k = 100
2000 30,30 151,38
4000 6,73 0
6000 7,78 31,86
8000 7,64 79,34
10000 7,63 108,15

Average 12,02 74,15

Information content varies linearly with respect to the number of observations since

the information content of a spatio-temporal database is the sum of information contents

over each time point. Figure 6.20 depicts this correlation for k = 10 and k = 100 on datasets

of 10K objects each, partitioned into 2. Since larger anonymity requirements imply more

67

generalization and less information, measurements for k = 100 are below k = 10. Table 6.3

provides the information gain of our protocol in the experiments of Figure 6.20. Our

protocol performs %9 and %112 better than the local anonymization for k = 10 and k = 100

respectively.

Anonymization

0

50

100

150

200

250

300

10 20 30 40 50

Number of Observations

In
fo

rm
at

io
n

C
on

te
nt

Local, k=10 Distributed, k=10 Local, k=100 Distributed, k=100

Figure 6.20. Information content with varying number of observations

Table 6.3. Information gain with varying number of observations

Information Gain (%)# of Observations k = 10 k = 100
10 7,93 114,28
20 9,56 102,43
30 8,43 123,21
40 10,50 106,66
50 9,62 115,05

Average 9,21 112,33

The results in Figure 6.21, conducted on a dataset containing 10K objects over 100

time points with varying number of partitions, comply with the proof of Theorem 5.1.

Information content of our protocol does not change with respect to the distribution of the

data, while the total information content of locally anonymized datasets either decrease

logarithmically (k = 10) or stay constant (k = 100) due to shrinking dataset sizes and over-

68

anonymization respectively. Table 6.4 provides the information gain of our protocol in the

experiments of Figure 6.21. Our protocol performs %23 and %281 better than the local

anonymization for k = 10 and k = 100 respectively.

Anonymization

0

100

200

300

400

500

600

2 4 6 8 10

Number of Partitions

In
fo

rm
at

io
n

C
on

te
nt

Local, k=10 Distributed, k=10 Local, k=100 Distributed, k=100

Figure 6.21. Information content with varying number of partitions

Table 6.4. Information gain with varying number of partitions

Information Gain (%)# of Partitions k = 10 k = 100
2 7,63 281,68
4 17,01 325,31
6 22,08 267,97
8 29,66 270,69

10 37,90 278,97
Average 22,86 281,68

69

7 CONCLUSIONS AND FUTURE WORK

In this thesis, we studied privacy aspects of horizontally partitioned spatio-temporal

data from the data mining perspective. We specifically focused on clustering moving object

trajectories and anonymizing location observations both locally and collaboratively.

Our distributed clustering method is based on sharing local dissimilarity matrices

with a third party, who builds the global dissimilarity matrix of the distributed spatio-

temporal data using local dissimilarity matrices and a series of secure trajectory

comparisons among the data holders. Security analysis implies that unless the third party

has background information on the domain of the spatial components of location

observations, sharing local dissimilarity matrices does not leak private information.

However, considering that the distance between any pair of trajectories depend on the

geographical area that location observations are collected from and the number of

observations, such background information is not readily available if not provided by the

data holders.

In order to measure the communication and computation costs of our protocol, we

used the synthetic spatio-temporal data generator of [58] and designed a simple baseline

protocol in which privacy is disregarded. In compliance with the complexity analysis, the

experiments show that if the distance between trajectories is measured by Euclidean

comparison function, the communication costs of our protocol are the same as the baseline

protocol, i.e. there is no communication overhead. On the other hand, when quadratic

comparison functions are used, our protocol has quadratically larger communication costs.

As expected, computation costs of our protocol are much higher than the baseline protocol

due to expensive pseudo-random number generation process. Yet such costs are the price

paid in return for privacy and therefore are justifiable.

We provided two definitions of anonymity concerning spatio-temporal datasets and

attacked the first one, location anonymity, in our anonymization methods. Proposed

70

centralized anonymization method improves the previous work in [2] by blocking the

inference channels identified in [3] and extending the work from anonymity in Location

Based Services (LBS) to anonymity for data mining purposes. For horizontally partitioned

spatio-temporal datasets, we proposed a method for collaborative anonymization based on

sharing specialization trees of locally anonymized datasets and further specializations

through two Secure Multi-Party Computation (SMC) protocols, Secure Sum and Secure

Greater Than function evaluation. Our distributed anonymization protocol is proven to

return the same anonymization scheme as the centralized anonymization method would,

given the aggregation of horizontal partitions as input.

The experiments on the anonymization methods measure the information content of

locally anonymized and aggregated spatio-temporal datasets versus that of collaboratively

anonymized datasets. We were particularly interested in the information gain of distributed

anonymization which is, although very dependent on the synthetic data, on average around

%12 for small values of the anonymity requirement, k, and %100 for larger values. As

observed in the experimental results, for larger numbers of partitions, information gain

increases logarithmically.

The methods proposed in this thesis imply that preserving privacy of individuals over

spatio-temporal data is possible for data mining purposes, considering the studied example

of trajectory clustering. We believe that privacy concerns related to collection and use of

spatio-temporal data will be voiced more loudly in the near future and therefore research in

the area is of utmost importance. As future directions of research, we plan to study the

trajectory anonymization problem that is much harder compared to location anonymization.

We think that generalizing the proposed distributed anonymization would be an interesting

work as well. In this general case, quad-trees would be replaced with Value Generalization

Hierarchies (VGH) defined by domain experts, while the rest of ideas presented would

remain after simple transformations, i.e. specializing according to VGH rather than

partitioning a quadrant.

71

REFERENCES

[1] M. Kantarcıoğlu, J. Jin, C. Clifton, “When do Data Mining Results Violate Privacy?”,
Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Seattle, WA, August 2004.

[2] M. Gruteser, D. Grunwald. “Anonymous Usage of Location-Based Services through
Spatial and Temporal Cloaking”, Proceedings of the 1st International Conference on
Mobile Systems, Applications, and Services, 2003.

[3] A. R. Beresford, “Location Privacy in Ubiquitous Computing”, Ph.D. Dissertation,
University of Cambridge, January 2004.

[4] H. Samet, “The Design and Analysis of Spatial Data Structures”, Addison-Wesley,
Reading, MA,1990.

[5] B. C. M. Fung, K. Wang, P. S. Yu, “Top-Down Specialization for Information and
Privacy Preservation”, Proceedings of the 21st International Conference on Data
Engineering, 2005.

[6] R. Agrawal, R. Srikant, “Privacy Preserving Data Mining”, Proceedings of the 2000
ACM SIGMOD Conference on Management of Data, 439-450, 2000.

[7] Y. Saygın, V. S. Verykios, C. Clifton, “Using Unknowns to Prevent Discovery of
Association Rules”, SIGMOD Record, 30(4), 45-54, 2001.

[8] M. Kantarcıoğlu, C. Clifton, “Privacy Preserving Distributed Mining of Association
Rules on Horizontally Partitioned Data”, IEEE Transactions on Knowledge and Data
Engineering, 16(9), 2004.

[9] J. Vaidya, C. Clifton, “Privacy Preserving Association Rule Mining in Vertically
Partitioned Data”, Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 639-644, 2002.

[10] W. Du, Z. Zhan, “Building Decision Tree Classifier on Private Data”, Proceedings of
the IEEE ICDM Workshop on Privacy, Security and Data Mining, 1-8, 2002.

[11] S. R. M. Oliveira, O. R. Zaïane, “Achieving Privacy Preservation When Sharing Data
for Clustering”, Proceedings of the International Workshop on Secure Data Management in
a Connected World, 67-82, 2004.

72

[12] S. R. M. Oliveira, O. R. Zaïane, “Privacy Preserving Clustering By Data
Transformation”, Proceedings of the 18th Brazilian Symposium on Databases, 304-318,
2003.

[13] S. R. M. Oliveira, O. R. Zaïane, “Privacy Preserving Clustering By Object Similarity-
Based Representation and Dimensionality Reduction Transformation”, Proceedings of the
2004 ICDM Workshop on Privacy and Security Aspects of Data Mining, 40-46, 2004.

[14] S. Merugu, J. Ghosh, “Privacy-Preserving Distributed Clustering Using Generative
Models”, Proceedings of the 3rd IEEE International Conference on Data Mining, 211-218,
2003.

[15] M. Klusch, S. Lodi, G. Moro, “Distributed Clustering Based on Sampling Local
Density Estimates”, Proceedings of the 18th International Joint Conference on Artificial
Intelligence, 485-490, 2003.

[16] J. Vaidya, C. Clifton, “Privacy-Preserving K-Means Clustering over Vertically
Partitioned Data”, Proceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 206-215, 2003.

[17] S. Jha, L. Kruger, P. McDaniel, “Privacy Preserving Clustering”, Proceedings of the
10th European Symposium on Research in Computer Security, 397-417, 2005.

[18] A. Inan, Y. Saygin, E. Savas, A. A. Hintoglu, A. Levi, “Privacy Preserving Clustering
on Horizontally Partitioned Data”, Proceeding of the 22nd ICDE Workshop on Privacy
Data Management, 2006.

[19] L. Sweeney, “k-Anonymity: A Model for Protecting Privacy”, International Journal on
Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5), 557-570, 2002.

[20] P. Samarati, “Protecting Respondent’s Identities in Microdata Release”, IEEE
Transactions on Knowledge and Data Engineering, 2001.

[21] P. Samarati, L. Sweeney, “Protecting Privacy When Disclosing Information: k-
Anonymity and its Enforcement through Generalization and Suppression”, Technical
Report, CMU, SRI, 1998.

[22] T. Dalenius, “Finding a Needle in a Haystack – or Identifying Anonymous Census
Record”, Journal of Official Statistics, 2(3), 329-336, 1986.

73

[23] A. Meyerson, R. Williams, “On the complexity of optimal k-anonymity”, Proceedings
of the 23rd ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, Paris, France, June 2004.

[24] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, A.
Zhu, “Anonymizing Tables”, ICDT, 2005].

[25] V. Iyengar, “Transforming Data to Satisfy Privacy Constraints”, ACM SIGKDD,
2002.

[26] W. Winkler, “Simulated Annealing for k-Anonymity”, Research Report 2002-07, US
Census Bureau Statistical Research Division, 2002.

[27] K. LeFevre, D. J. DeWitt, R. Ramakrishnan, “Mondrian Multidimensional k-
Anonymity”, Proceedings of the 2006 ACM SIGMOD International Conference on
Management of Data, 229-240, 2006.

[28] A. Machanavajjhala, J. Gehrke, D. Kifer, M. Venkitasubramaniam, “l-Diversity:
Privacy Beyond k-Anonymity”, Proceedings of the 22nd IEEE International Conference on
Data Engineering, 2006.

[29] T. M. Truta, B. Vinay, “Privacy Protection: p-Sensitive k-Anonymity Property”,
Proceedings of the 22nd IEEE International Conference on Data Engineering, 2006.

[30] W. Jiang, C. Clifton, “Privacy Preserving Distributed k-Anonymity”, Proceedings of
Data and Applications Security, 19th Annual IFIP WG 11.3 Working Conference on Data
and Applications Security, 166-177, 2005.

[31] S. Zhong, Z. Yang, R. Wright, “Privacy-Enhancing k-Anonymization of Customer
Data”, Proceedings of the ACM SIGMOD-SIGACT-SIGART Principles of Database
Systems, Baltimore, MD, 2005.

[32] N. Sumpter, A. Bulpitt, “Learning Spatio-Temporal Patterns for Predicting Object
Behaviour”, Image and Vision Computing, 18(9), 697-704, 2000.

[33] R. Agrawal, R. Srikant, “Mining Sequential Patterns”, Proceedings of the International
Conference on Data Engineering, March 1995.

[34] I. Tsoukatos, D. Gunopulos, “Efficient Mining of Spatio-Temporal Patterns”, Lecture
Notes on Computer Science, Proceedings of SSTD 2001, Vol. 2121, 425-442, 2001.

74

[35] R. J. Miller, Y. Yang, “Association Rules over Interval Data”, Proceedings of ACM
SIGMOD International Conference on Management of Data, Tuscon, AZ, May 1997.

[36] M. Nanni, “Clustering Methods for Spatio-Temporal Data”, Ph.D. Thesis, University
of Pisa, 2002.

[37] S. Gaffney, P. Smyth, “Trajectory Clustering with Mixture of Regression Models”,
KDD-99, 1999.

[38] D. Chudova, S. Gaffney, E. Mjolsness, P. Smyth, “Translation Invariant Mixture
Models for Curve Clustering”, Kdd-03, Proceedings of ACM SIGKDD, 79-88, 2003.

[39] A. Ketterlin, “Clustering Sequences of Complex Objects”, Proceedings of the 3rd
International Conference on Knowledge Discovery and Data Mining, Newport Beach, CA,
1997.

[40] M. D’Auria, M. Nanni, D. Pedreschi, “Time-Focused Density-Based Clustering of
Trajectories of Moving Objects”, Submitted for Publication, 2005.

[41] L. Chen, M. T. Özsu, V. Oria, “Robust and Fast Similarity Search for Moving Object
Trajectories”, Proceedings of the 2005 ACM SIGMOD, 491-502, 2005.

[42] L. Chen, R. Ng, “On the Marriage of Edit Distance and Lp-Norms”, Proceedings of
the 2004 VLDB, 792-803, 2004.

[43] B-K. Yi, H. V. Jagadish, C. Faloutsos, “Efficient Retrieval of Similar Time Sequence
under Time Warping”, Proceedings of the 14th International Conference on Data
Engineering, 201-208, 1998.

[44] M. Vlachos, G. Kollios, D. Gunopulos, “Discovering Similar Multidimensional
Trajectories”, Proceedings of the 18th International Conference on Data Engineering, 673-
684, 2002.

[45] B. Hoh, M. Gruteser, “Location Privacy Through Path Confusion”, Proceedings of
IEEE/CreateNet International Conference on Security and Privacy for Emerging Areas in
Communication Networks, Athens, Greece, 2005.

[46] H. Kido, “Location Anonymization for Protecting User Privacy in Location-Based
Services”, MS. Thesis, Osaka University, February 2006.

75

[47] M. Duckham, L. Kulik. “A Formal Model of Obfuscation and Negotiation for
Location Privacy”, Pervasive 2005, 152-170, 2005.

[48] B. Gedik, L. Liu, “Location Privacy in Mobile Systems: a Personalized
Anonymization Model”, Proceedings of the 25th International Conference on Distributed
Computing Systems, 2005.

[49] C. Bettini, X. S. Wang, S. Jajodia, “Protecting Privacy Against Location-Based
Personal Identification”, Proceedings of the 2nd VLDB Workshop on Secure Data
Management, LNCS 3674, 185-199, 2005.

[50] M. Gruteser, X. Liu, “Protecting Privacy in Continuous Location-Tracking
Applications”, IEEE Security and Privacy, 2(2), 2004.

[51] W. Diffie, M. E. Hellman, “New Directions in Cryptography”, IEEE Transactions on
Information Theory, IT-200, 644-654, 1976.

[52] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J. D. Tygar, “SPINS: Security Protocols
for Sensor Networks”, Proceedings of the 7th Annual International Conference on Mobile
Computing and Networking, 189-199, 2001.

[53] I. Goldberg, D. Wagner, “Randomness and the Netscape Browser”, Dr. Dobb's
Journal, <http://www.ddj.com/184409807>, July 2001.

[54] A. J. Menezes, P. C. V. Oorschot, S. A. Vanstone, “Handbook of Applied
Cryptography”, CRC Press, Boca Raton, FL, 1997.

[55] J. Han, M. Kamber, “Data Mining: Concepts and Techniques”, Morgan Kaufmann
Publishers, San Francisco, 2000.

[56] C. Clifton, M. Kantarcıoğlu, J. Vaidya, X. Lin, M. Y. Zhu, “Tools for Privacy
Preserving Data Mining”, ACM SIGKDD Explorations, 4(2), 28-34, 2004.

[57] A. C. Yao, “Protocols for Secure Computation”, Proceedings of the 23rd IEEE
Symposium on Foundations of Computer Science, IEEE, 1982.

[58] T. Brinkhoff, “A Framework for Generating Network-Based Moving Objects”,
GeoInformatica, 6(2), 153-180, 2002.

[59] L. Kaufman, P. J. Rousseeuw, “Finding Groups in Data: An Introduction to Cluster
Analysis”, New York, John Wiley & Sons, 1990.

76

[60] C. E. Shannon, “A Mathematical Theory of Communication”, Bell System Technical
Journal, 27:379-423, 623-656, 1948.

