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Abstract 
5-axis milling is an important machining process for several industries such as aero-
space, automotive and die/mold. It is mainly used in machining of sculptured surfaces 
where surface quality is of extreme importance. Being one of the most important prob-
lems in machining, chatter vibrations must be avoided in manufacturing of these com-
ponents as they result in high cutting forces, poor surface finish and unacceptable part 
quality. Chatter free cutting conditions for required quality with higher productivity can be 
determined by using stability models. Up to now, dynamic milling and stability models 
have been developed for 3-axis milling operations; however the stability of 5-axis proc-
esses has never been modeled. In this paper, a stability model for 5-axis milling opera-
tions is proposed. The model can consider the 3D dynamics of the 5-axis milling proc-
ess including effects of all important process parameters including lead and tilt angles. 
Due to the complex geometry and mechanics of the process, the resulting analytical 
equations are solved numerically in order to generate the stability diagrams. 

 
 
 
1 INTRODUCTION 
The 5-axis milling is a heavily used process in 
manufacturing of complex shaped parts. During 
the process planning stage, the process plan-
ner is faced with several limitations such as 
high cutting forces, tool deflections and chatter 
vibrations while selecting proper cutting condi-
tions for higher productivity. Prediction of cut-
ting forces in 5-axis milling was investigated by 
several researchers [1]-[6]. Ozturk and Budak 
[6] also predicted tool deflections using the cal-
culated cutting forces in 5-axis ball end milling 
processes. These studies are helpful for proc-
ess planner to avoid high cutting forces and 
unacceptable tool deflections. However, chatter 
vibrations in 5-axis ball end milling have not 
been investigated in the past. For that reason, 
stability limits for chatter free 5-axis ball end 
milling cannot be predicted before machining. 
Therefore, a stability model for 5-axis ball end 
milling processes is required. 
 
The chatter stability of cylindrical end mills was 
investigated by Minis et al. [7] and Budak and 
Altintas [8]. Minis et al. [7] solved two-
dimensional dynamic milling problem iteratively, 
using Nyquist stability criterion to determine the 
stability limits. Budak and Altintas [8] deter-
mined the chatter stability directly without any 
iteration by approximating the time varying co-
efficients by their Fourier series components. 
They showed that two-dimensional chatter sta-

bility can be predicted analytically as accurately 
as in time domain simulations. The analytical 
method was later extended to the prediction of 
stability limits for ball end milling by Altintas et 
al. [9]. In this study, the chip thickness variation 
in both radial and axial directions were consid-
ered, and the variation of the cutting force coef-
ficients for each point on the cutting edge were 
taken into account by transforming shear 
stress, shear angle and friction angle using the 
mechanics of milling method [10]. The stability 
limits were determined by solution of a quad-
ratic equation since the dynamics in two di-
mensions were considered. Later, Altintas [11] 
extended this model by considering the dynam-
ics in the axial direction. This paper extends the 
three dimensional chatter stability model to 5-
axis ball end milling by adding the effect of lead 
and tilt angles on the process. The dynamic 
chip thickness for 5-axis milling is formulated. 
Depending on the machine tool’s kinematics 
configuration, the feed direction of the tool may 
change in 5-axis milling due to the lead and tilt 
angles. Thus, the measured transfer functions 
need to be oriented accordingly. The effect of 
this orientation on the stability limits is pre-
sented together with effect of lead and tilt an-
gles.  
 
In the next section, 5-axis milling geometry is 
summarized briefly. Then, the stability limit for-
mulation is given in detail. Finally, the model’s 
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stability limit diagram predictions are demon-
strated for different cases.  
2 5-AXIS MILLING GEOMETRY 
In this section, the geometry of ball-end mill, 
parameters in 5-axis milling and coordinate 
systems defining 5-axis process geometry are 
described. 
 
Ball-end mills are mainly used in 3-axis and 5-
axis milling. Since calculation of stability limits 
requires determination of local cutting edge ge-
ometry, the geometry of the ball-end mill is 
summarized briefly. The geometry of a ball-end 
mill is shown in Figure 1. A Cartesian tool co-
ordinate system TCS (xyz) is defined at the ball 
center. The z-axis is the axial direction of the 
cutter. At the tool tip, the local radius R(z) is 
zero, and it increases along the z-axis in the 
ball part whereas it has a constant value of Ro 
in cylindrical part: 
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Figure 1: Geometry of ball end mill. 

  
Figure 2: Top view of ball end mill. 

A point q that is at elevation z on a cutting edge 
has local radius of R(z), axial immersion angle 
of , and radial lag angle of (Fig-
ure 2). The axial immersion angle K is defined 
as the angle between the tool axis and normal 

of the cutting edge at point q. The axial immer-
sion angle K can be calculated as (Figure 1): 
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The radial lag angle  is the angle on the xy 
plane between the line which connects the 
point q to the point (0, 0, z), and the cutting 
edge tangent at the tip of the cutter (Figure 2).  
Radial lag angle  is due to the helix angle, 
and is calculated using equation 3 
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io is the helix angle at the meeting point of the 
ball and the cylinder.  

o
o

o i
R

zR
zψ tan

)(
)(

+
=                                 (3) 

Immersion angle  shown in Figures 1 and 
2 defines the angular orientation of a point on 
the cutting edge of flute j, measured from +y 
direction whereas  is the immersion angle of 
the reference tooth at the tool tip.  can be 
expressed as in equation 4: 
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where  is the pitch angle between the pre-
ceding flutes. 

pφ

 
Figure 3: Coordinate systems in 5-axis milling. 

 
In the analysis of 5-axis milling processes, 
mainly 3 coordinate systems are used: the ma-
chine coordinate system (MCS), the process 
coordinate system (FCN) and the tool coordi-
nate system (TCS) as shown in Figure 3. MCS 
is a fixed coordinate system attached to the 
axes of the machine tool. TCS consists of the 
(z) axis which is the tool axis (TA), and the two 
perpendicular transversal axis (x) and (y). In 
FCN, F represents the feed direction, N stands 
for the surface normal direction of the work-
piece and C is the cross-feed axis. The origin of 
the tool coordinate system (TCS) and the proc-
ess coordinate system (FCN) is at the ball-
center. I 
 
In 5-axis milling, tool orientation is determined 
by lead and tilt angles which are measured with 
respect to the surface normal. Lead angle is the 



rotation of the tool about the cross-feed axis C, 
and tilt angle is the rotation about the feed axis 
F. Lead and tilt angles are demonstrated in 
Figure 4. 

  
Figure 4: Lead and tilt angles. 

 
Given the process parameters, determining en-
gagement between the tool and workpiece is a 
crucial step for process modeling. The en-
gagement boundary determination is more 
complicated in 5-axis milling with respect to 3-
axis milling due to effect of lead and tilt angles. 
In this study, the previously developed en-
gagement model [6] is used to determine the 
points in cut with the workpiece. In the en-
gagement model, two different cutting types 
can be considered, namely first cut cases and 
following cut cases. In the first cut cases, the 
tool cuts a non-machined cubic solid whereas 
in the following cut cases it cuts a previously 
machined surface Figure 5. For the first-cut 
cases, the radial depth of cut s is defined as the 
distance that the tool penetrates through the 
workpiece at the ball center level through C 
axis, and the axial depth of cut a is the distance 
between the tool’s lowest point and workpiece’s 
upper face in the surface normal direction N 
(Figure 6). For following-cut cases, the radial 
depth of cut s is equal to step over, and the ax-
ial depth of cut a definition is the same as first-
cut cases.  
 

  
         (a)            (b) 
Figure 5: (a) First and (b) following cut cases. 

 

 
Figure 6: Radial and axial depth definition in 

first cuts. 

3 STABILITY MODEL 
The stability model proposed for the 5 axis mill-
ing process is derived in this section. Firstly the 
dynamic chip thickness in 5 axis milling process 
is modeled. Then, the relationship between the 
dynamic forces and the chip thickness is de-
rived which is followed by the determination of 
the stability lobes.  
3.1 The dynamic chip thickness 
The dynamic chip thickness h(t) at a point q on 
the cutting edge consists of two parts, namely 
static and dynamic parts. The static part ct 
(Figure 7) is determined by the scalar product 
of the feed vector  and unit outward surface 
normal vector u at the cutting point q where f is 
the unit vector in F direction, and t

ft

 is the feed 
per tooth. On the other hand, the dynamic part 
is calculated by the scalar product of dynamic 
displacement vector d and the unit outward 
surface normal vector u at the cutting point q. 
Since the static part of the chip thickness ct 
does not contribute to the regeneration mecha-
nism, it can be ignored for the purpose of the 
stability analysis and the dynamic chip thick-
ness h(t)  can be written as: 

ud ⋅=)(th                           (5) 

where d and u are calculated in the FCN coor-
dinate system. Also, the dynamic displacement 
vector d is defined as: 
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where  is the delay term which is equal to the 
one tooth passing period in seconds,  

τ

dFΔ , dCΔ  and dNΔ  represent the relative 
displacements difference between the current 
( , , )  and previous relative 
dynamic displacements ( , 

)(tFd )(tCd )(tNd
)( τtFd − )( τtCd − , 

)( τtNd − ) of the tool and the workpiece in F, C 
and N directions, respectively. 

 
Figure 7: Static part of the chip thickness. 



Unit outward surface normal vector u at a point 
q is calculated in a different way for the ball and 
the cylinder parts (see Figure 7). For the ball 
part, the surface normal vector u on the cutting 
edge can be calculated as: 

oR
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where c, n are the unit vectors in C and N axis, 
respectively. Besides, in the cylindrical part, the 
unit surface outward normal vector at a point q 
that is at elevation z is defined as follows:  

pq
pqu =      (8) 

In the calculation of pq vector, first of all the 
point p is defined. The point p lies in the center 
of the ball end mill in x and y axis in the TCS 
coordinate system; and it is at the same eleva-
tion with point q in the z axis as shown in 
Figure 7. Thus, the TCS coordinates of the 
point p is (0, 0, z). In order to define the pq vec-
tor in the FCN coordinates, the point p is trans-
formed to the FCN system using the transfor-
mation matrix Tlt. Tlt depends on lead angle l 
and tilt angle tℓ : 
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where s() and c() represent sine and cosine 
functions, respectively. Defining (FP, Cp, Np) as 
the transformed coordinates of the point p in 
FCN coordinates. The pq vector is calculated 
as: 

ncfpq )()()( ppp NNCCFF −+−+−=       (10) 

Now, the dynamic chip thickness which corre-
sponds to the ball end and the cylindrical part 
of the cutter can be calculated by equations 5-
10.  
3.2 The dynamic forces and the stability 

limit 
In order to apply the stability formulations for 
dynamic cutting forces, the ball-end mill is di-
vided into disk elements that have heights of Δz 
along the axial direction of the tool. The cutting 
forces in x, y and z directions which is on disk 
element i can be calculated for immersion an-
gle   for each flute j on the tool as: jφ
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where Krc, Ktc and Kac are cutting force coeffi-
cients that are calculated by the transformation 
of shear angle, friction angle and shear stress 
using the mechanics of milling method [10] and 
the chip width Δb is calculated using Δz and 
axial immersion angle K as follows: 

K
zΔbΔ
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=                (12) 

T is the transformation matrix which transforms 
radial, tangential and axial forces to the forces 
in x, y and z directions that is determined by the 
below equation in terms of immersion angle  
and axial immersion angle K 

jφ
[12]: 
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The dynamic displacement vector d can also 
be written in terms of displacements in x, y and 
z directions ( ) using the trans-
formation matrix T

ddd zΔyΔxΔ ,,
lt as follows: 
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After the dynamic chip thickness h(t) and the 
differential chip width Δb are substituted into 
equation 11, and defining  matrix as 
follows: 
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Equation 11 can be rewritten as: 
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Summing the cutting forces contributed by all 
the teeth on disk element i, total dynamic 
forces at reference immersion angle are 
found as follows: 

φ
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where  is the summation of  for 
all n teeth: 
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Since the immersion angle  changes with 
time, the above equation can be expressed in 
time domain as: 
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In equation 19, the average component of the 
Fourier series expansion of Bi(t), which is rep-
resented by BBo

i, can be used by eliminating the 
periodic time varying coefficients. BoB

i is a time 
invariant but immersion dependent coefficient 
matrix, and it can be calculated by averaging 
the Bi(t): 
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Using BBo
i, equation 20 reduces to: 
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The dynamic displacement vector in TCS can 
be defined in terms of the transfer function of 
the structure and cutting forces as: 
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where ωc is chatter frequency; Fx(t), Fy(t), Fz(t) 
are total dynamic cutting forces in TCS coordi-
nate system and )( ciωG  is the transfer function 
identified at the cutter workpiece contact zone 
oriented with respect to the TCS coordinate 
system. The orientation of transfer function is 
needed because transfer functions are meas-
ured in fixed machine coordinate system 
(MCS). The orientation is performed using a 
transformation matrix TG which depends on ori-
entation of FCN with respect to MCS, lead and 
tilt angles as follows: 
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where fX, fY, fZ ; cX, cY, cZ; nX, nY, nZ are the 
measure numbers of unit feed vector, unit 
cross-feed vector and unit surface normal vec-
tor in MCS, respectively.  The transformation of 
a transfer function H(iωc) measured in MCS to 
TCS is done using below equation: 

GG THTG )()( c
T
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where superscript T denotes the transpose op-
eration. 
 
Inserting equation 22 into equation 21, the dy-
namic cutting force system on disk i becomes: 
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Now the dynamic elemental forces can be cal-
culated using Equation 25 for each disk ele-
ment. However, in order to obtain the stability 
limit of the system, all the disk elements have 
to be solved simultaneously. We propose to 
add the individual dynamic forces acting on 
each element together. Thus, writing this equa-
tion for the other disk elements and summing 
up the equations side by side results in the fol-
lowing eigenvalue problem: 
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where m is the total number of disk elements 
andΛ is the eigenvalue . Equation 26 has solu-
tion if and only if the following determinant is 
equal to zero:  
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where and complex eigenvalueΦ Λare defined 
as follows: 
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Substituting  into 
eigenvalue equation, critical depth at chatter 
frequency w

τwiτwe cc
τiwc sincos −=−

c can be written as [8]: 
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Since Δzlim is a real number, the imaginary part 
of equation 29 vanishes and following relation 
is obtained:  
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3.3 Stability diagrams 
In the foregoing analysis, the basic stability limit 
prediction for 5 axis milling process is derived. 
However, it should be noted that there are two 
unknowns in the formulation, the total number 
of disk elements m and the height of the disks 
Δz. In order to solve the dynamic system’s sta-
bility with these two unknowns an iterative solu-
tion procedure is proposed as follows.  
 
The solution begins by selecting a Δz value. 
Then, the stability limit Δzlim is calculated start-
ing from the first element and incrementing m 
one by one. For each iteration, it is checked 
whether the calculated stability limit Δzlim is 
smaller than Δz. If it is so, limiting depth of cut 
zlim is obtained as mΔz otherwise the iteration 
continues by considering the next disk element. 
Since the calculated limiting depth of cut zlim is 
along the tool axis direction, it is transformed to 
the surface normal direction to find the limiting 
depth of cut alim. It should be mentioned here 
that selecting smaller Δz values increases the 
accuracy of the solution. Once the stable depth 
of cut is obtained by sweeping the chatter fre-
quency around the most flexible modes of the 
dynamic system, the corresponding spindle 
speed can be calculated as proposed in [8]. 
The following equation defines the relation be-
tween the chatter frequency wc and tooth pass-
ing periodτ : 

πkετwc 2+=                          (32) 
where ε  is the phase shift between the present 
and the previous vibration waves and k is the 
integer number of full vibration waves marked 
on the cut. Phase shift depends on phase an-
gle , and is determined by: κφph
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The corresponding spindle speed ns can be 
calculated after tooth passing period τ  is calcu-
lated: 
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Finally the stability lobes can be obtained by 
plotting the corresponding stable depth of cut 
and spindle speed values. 
  
4 SIMULATIONS 
In this section, the proposed stability model’s 
predictions are presented for different example 
cases. Firstly the proposed model is compared 
with CutPro®[13]  software for a special case of 
3-axis ball end milling operations. Then the ef-
fect of using the oriented transfer function is 
discussed. Finally the effect of the lead and tilt 
angles on the stability limit is presented.  
 
Following are the common parameters that are 
used in the simulations. The cutting tool used in 
the simulations is a 2 flute 8mm diameter ball 
end mill with 8º rake and 30º helix angle. Dy-
namics of the workpiece is neglected as it is 
highly rigid with respect to the cutting tool. 
Transfer function of the tool is measured in 
MCS using hammer test. The dynamics in the Z 
direction HZZ is neglected since the tool is very 
stiff in Z direction with respect to X and Y direc-
tions. Moreover, the cross terms in the transfer 
function matrix are ignored.  
 
A special case, where lead and tilt angles are 
zero, is simulated both with the proposed stabil-
ity model and CutPro® software. The example 
case is a 3-axis ball-end milling slotting opera-
tion. Workpiece material is selected as Ti6Al4V 
and cutting coefficients are determined by me-
chanics of milling method. Feed per tooth is 
0.05 mm/tooth. The comparison of the model‘s 
and Cutpro®’s predictions for stability lobes are 
presented in Figure 8. 

 
Figure 8: Comparison of the results of the 

model and Cutpro®



Comparing the model’s prediction with Cutpro®, 
it's seen that there is an acceptable difference 
between the predictions which may be due to 
different treatment of the cutting force coeffi-
cients.   
4.1 The effect of the oriented transfer func-

tion on the stability limit 
Being the major difference from the conven-
tional milling operations, the lead and tilt angles 
in five axis milling operations affect the me-
chanics of the process by changing the orienta-
tion of the tool according to the workpiece sur-
face. Furthermore, depending on the kinematic 
configuration of the machine tool, they may 
change the directions of feed, cross-feed and 
surface normal directions with respect to fixed 
machine coordinate system MCS. If transfer 
functions of the tool and/or workpiece are direc-
tion dependent, then directions of feed, cross-
feed and surface normal direction becomes im-
portant in terms of stability. In these cases, the 
measured transfer functions need to be ori-
ented accordingly.  
 
The five axis CNC machine in our lab has two 
rotary degrees of freedom on the table. Since 
lead and tilt angles are applied by rotating the 
table, the feed direction given with respect to 
the workpiece on the table becomes dependent 
on lead and tilt angles according to fixed coor-
dinate system MCS. Hence, for such machine 
tools lead and tilt angles change the oriented 
transfer function as well as the mechanics of 
the process. However, if the rotary axes are on 
the spindle side, then the lead and tilt angles do 
not change the direction of feed, and thus 
transfer functions. The second example simula-
tion shows the effect of orientation of the 
measured transfer function on stability. In the 
first case, the machine tool has two rotary de-
gree of freedoms on the table and in the sec-
ond case a machine tool where all rotary de-
gree of freedoms are on the spindle is used. 
For both cases the same process which is a 
following cut operation is simulated. Lead and 
tilt angles are both 15 deg, radial depth of cut is 
2 mm and feed per tooth is 0.05 mm. The 
workpiece material is 1050 steel. Figure 9 
shows the axial stability limit diagram prediction 
of the model when first type of machine is used. 
Since feed, cross-feed and surface normal di-
rections change with the application of lead and 
tilt angles, the oriented transfer function is used 
in this case. For the second machine tool type, 
the measured transfer function is directly used 
in the stability formulation. The stability limit 
diagram prediction for this case is presented in 

Figure 10. It’s seen that for these two sample 
cases, the orientation of the transfer function, 
i.e. the kinematic configuration of the machine 
tool, has a considerable effect on the stability 
limits. Absolute stability limit prediction is 6 mm 
for the first case whereas it’s 1 mm in the sec-
ond case. 

 
Figure 9: Stability limit diagram when oriented 

transfer function is used. 

 
Figure 10: Stability limit diagram when no orien-

tation is used. 

4.2 The effect of the lead and tilt angles on 
the stability limit 

In order to observe the effect of the tilt and lead 
angles together with the oriented transfer func-
tion effect, simulations are conducted for the 
case in Section 4.1 by varying the tilt and the 
lead angles. The results when the oriented 
transfer function is used are shown in Figure 
11. On the contrary, in order to exclude the ef-
fect of the orientation, the same process is 
simulated where the orientation of transfer 
function is not considered. For this case, the 
effect of the lead and tilt angles on the absolute 
stability limit is presented in Figure 12. In both 
of the cases absolute stability limit prediction is 
same for lead=0 deg and tilt=0 deg case be-
cause no orientation is needed in this case. 
Another important conclusion from the results is 
the high difference between the absolute stabil-
ity limit for the two cases. With the integration 
of the orientated transfer function in the predic-
tion, the stability limit is found to be much 
higher than the predictions without oriented 
transfer function. These results can be used to 
determine optimal lead and tilt angles for in-
creased stability.      
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Figure 11: Effect of lead and tilt angles when 

oriented transfer function is used. 
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Figure 12: Effect of lead and tilt angles when 
orientation is not used. 

5 CONCLUSION 
In this paper, a stability limit model for 5-axis 
milling process is presented where the dynamic 
chip thickness is formulated in 5-axis ball end 
milling together with the dynamic cutting forces. 
The ball end mill is divided into disk elements 
and the stability limit of the dynamic system is 
solved iteratively. For 3-axis ball end milling 
slotting case the predictions of the stability 
model is compared with CutPro® predictions 
and good agreement is observed. In 5-axis mill-
ing, for two different machine tool configura-
tions, stability limit diagrams are predicted and 
the effect of using the oriented transfer function 
is shown. Finally, effects of lead and tilt angles 
on the stability limit are demonstrated. The ex-
perimental verification of the presented stability 
model for 5-axis ball end milling is currently un-
der progress. 
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