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Abstract 
In this study, a process model for orthogonal cutting processes is proposed. The model involves the primary 
and secondary deformation zones. The primary shear zone is modeled by a Johnson-Cook constitutive 
relationship and a shear plane having constant thickness.  The secondary deformation zone is modeled semi-
analytically, where the coefficient of friction is calibrated experimentally. The cutting forces predicted using the 
calibrated sliding friction coefficients are in good agreement with the measurements. The experimental 
investigation of sliding friction coefficients also show promising results for the proposed model, which is still 
under development.     
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1 INTRODUCTION 
Being the fundamental model for all cutting processes, 
modeling of the orthogonal cutting has been one of the 
most important problems for machining researchers for 
decades. Understanding the true mechanics and 
dynamics of the orthogonal cutting process would result in 
solution of major problems in machining such as 
parameter selection, accurate predictions of forces, 
stresses, and temperature distributions. The first 
successful mathematical attempt for understanding of the 
mechanics of orthogonal cutting is made by Merchant [1]. 
Merchant [1] studied the continuous type chips and 
formulated the deformation zone, i.e. the shear plane, that 
is responsible for the formation of the chip by force 
equilibrium and the minimum energy principle. Although 
his work has several important assumptions, it is still 
widely used to understand the basics of the cutting 
process. Later, many researchers [2-7] worked on the 
modeling of the orthogonal cutting. After some 
deceleration in the research on cutting process mechanics 
due to the developments in CNC and CAD/CAM 
technologies, the process research regained some 
momentum in recent years. Many predictive models have 
been proposed by means of analytical, semi-analytical or 
completely numerical methods up to now. Semi-analytical 
models, where some of the values are identified from the 
cutting tests, usually yield high prediction accuracy, 
however they may not always provide insight about the 
process [8-10]. In addition, the cutting tests can be time 
consuming depending on the number of variables and 
their ranges. On the other hand, numerical models, such 
as FEM, [11-14] could provide much more detailed 
information about the process, such as temperature and 
pressure distribution on the rake face, however their 
accuracy is questionable and the solution times can be 
very long. Some analytical models may provide sufficient 
insight about the process and the solution times are 
usually very short. They can be grouped in some 
categories such as the slip-line models [15-19], and thin 
and thick shear zone models [20-23]. 
  
It can be deduced from the previous studies that there are 
several accurate models for the primary shear zone. 
There are also several studies where the friction in 
machining is investigated [24-30]. However, there are still 
issues in modeling the rake contact zone which involves 

the friction between the tool and the workpiece due to the 
complex nature of the chip-tool contact. The objective of 
this study is to propose an orthogonal cutting model that 
integrates the primary and secondary deformation zones’ 
effects on the cutting process. In modeling of the primary 
shear zone the study of Dudzinski and Molinari [21] is 
used. The model uses a thermo-mechanical constitutive 
relationship which is transformed to a Johnson-Cook type 
material model in this study. The shear plane is modeled 
having a constant thickness. In their later model, 
Dudzinski and Molinari [21] modeled the friction on the 
rake face as a temperature dependent value. However, 
they just considered sliding contact conditions which may 
be valid for very high cutting speeds. In this study, the 
rake face contact is modeled by considering dual zones. 
The material which exists from the primary shear zone 
enters the rake contact with a high normal pressure that 
creates a sticking friction region between the tool and the 
material. After a short distance, the contact state changes 
to sliding friction due to the decreasing normal pressure 
which can be formulated by the Coulomb friction law. 
Orthogonal tube cutting tests and non-cutting friction tests 
are conducted in order to verify the model and discuss the 
results. The outputs of the proposed model are the cutting 
forces, the stress distributions on the rake face and the 
length of the sticking and sliding zones. Although the 
model is still under development, the final aim of the 
model is to develop a cutting process model which needs 
minimum amount of calibration tests. The friction and 
material constants can be obtained from orthogonal 
cutting tests. After the calibration, the model can be 
applied for all machining operations using the same tool 
and workpiece material.  
 
The paper is organized as follows. The proposed 
mathematical formulation is derived in detail in the next 
section. In section 3 the experimental identification of the 
friction between the tool and the workpiece material is 
presented. In the last section the experimental results is 
presented and discussed.   
 
2 THE ORTHOGONAL CUTTING PROCESS MODEL 
In the proposed model two main deformation zones are 
taken into account: the primary shear zone also called as 
the shear plane and the secondary deformation zone also 
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called as the rake contact. It should be mentioned here 
that the model proposed by Dudzinski and Molinari [21] is 
used to model the primary shear zone. On the other hand, 
the secondary shear zone is modeled semi-analytically i.e. 
the behavior is modeled analytically but the friction 
coefficient is identified from the experiments. The models 
will be presented in the following sections in detail.     
 

2.1 The Primary Shear Zone Model 
As mentioned earlier the primary shear zone model is 
implemented to the current analysis from Dudzinski and 
Molinari [21]. The model will be presented here briefly for 
the integrity of the formulation and approach. Although 
they used a different thermo-mechanical constitutive 
relationship in their model, a Johnson-Cook (JC) 
constitutive relationship is used in the current analysis as 
follows: 
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where γ is the shear strain, γ is the shear strain rate, 0γ is 
the reference shear strain rate, T is the absolute 
temperature, Tr is the reference temperature, Tm is the 
melting temperature,  and A, B, n, m, and v are the 
material constants. The plastic deformation is assumed to 
take place only at the shear plane, and with plane strain 
conditions. Also the shear plane is modeled as a thin plane 
but having a thickness of 0.025 mm. Moreover, the shear 
stress distribution at the outer boundary of the shear plane 
is assumed to be uniform. With the assistance of the 
equations of conversation of momentum and energy, and 
the constitutive law, Dudzinski and Molinari [21] proposed 
to solve a compatibility condition with an iterative 
procedure in order to calculate the shear stress at the entry 
of the shear plane, τ0. Moreover again from the equations 
of motion for a steady state solution and continuous type 
chip  The shear stress at the exit of the shear plane is 
calculated as follows [21,22]: 

( ) 01
2

1 sin τγφρτ += V    (2)       

where ρ is the density of the material, V is the cutting 
speed, φ is the shear angle, and γ1 is the shear strain at 
the exit of the shear plane. The shear angle in the model is 
calculated by the Merchant model as follows [1,22]: 
 ( ) 2/2/ λαπφ −+=    (3) 

where α is the rake angle, and λ is the mean friction angle 
which equals to atan(μa). However it should mentioned that 
the model proposed in this study uses the shear angles 
obtained from orthogonal cutting tests.  
 

2.2 The Dual Zone Rake Face Contact Model 
In this section the reasoning and the formulation for the 
dual zone rake face contact model is given, and an 
iterative solution procedure is proposed. The model 
proposed in this study divides the rake face into two 
regions as for the first time proposed by Zorev [3]. In the 
first region the contact condition is defined to be sticking 
due to the high normal pressure exerted on the tool, 
whereas in the second region the contact is considered to 
be the Coulomb (sliding) friction. Zorev [3] and some other 
later studies [31-33] define the shear stress and the normal 
stress distribution on the rake face as shown in Fig. 1.a. 
However it is well known and also proved by friction tests 
[34] that the Coulomb friction coefficient cannot exceed 1.0 
between metallic materials unless some kind of oxide 
formation or chemical reaction occurs [26,35]. Therefore, 
as shown by split tool cutting tests and mathematical 

analysis [18,28,34,36-38] the distribution of the shear and 
normal stress on the rake face is obtained as in Fig. 1.b. 
This distribution is used for the model in this study.     
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Figure 1: Stress distributions on the rake face by two 
different approaches, where the sliding friction coefficient is 
(a) higher, and (b) smaller than 1. 
 
From Fig. 1.b, it can be observed that the shear stress on 
the rake is equal to the shear yield stress of the material 
(τ1) along the sticking region with length ℓp. It should be 
noted here that in the thin shear plane model used in the 
analysis, the plastic deformation is assumed to occur only 
in the shear plane. Therefore τ1 is equal to the shear stress 
at the exit of the shear band at the shear plane which is 
calculated by Eqn. (2). In addition, the shear stress in the 
sliding region is equal to the product of sliding friction 
coefficient (μ) and the normal stress (P), according to the 
Coulomb friction law. The shear stress reduces to zero at 
the end of the contact zone. Therefore, the mathematical 
representation of the shear stress distribution on the rake 
face can be defined as follows: 
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where ℓc is the contact length, and x is the distance on the 
rake face from the tool tip. Moreover the shear stress 
distribution along the sliding friction region can be defined 
as follows: 
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where ℓe is the length of the sliding region. Also for the 
normal stress on the rake face the following distribution, 
which is validated by various researchers and experiments 
for metallic materials [22, 28, 36], is selected:  
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where P0 is the normal stress on the rake face at the tool 
tip, and can be found as follows: The normal force acting 
on the rake face can be obtained as (see Fig. 2):          
 

( )
1

1 0

0

0

0
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−== ∫∫ ζ

ζ
c

c

w
PwdxxPxPN

cc

 (7) 

where w is the width of cut. The normal force N can also 
be calculated in terms of the shear force on the shear 
plane is: 

 ( )αλφ
λ

−+
=

cos
cos

sFN      (8) 

where the shear force Fs is defined as follows by assuming 
that the shear stress distribution on the shear plane AB is 
uniform: 
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where h1 is the uncut chip thickness. Combining Eqns. (7-
9) P0 can be calculated as follows [22]: 
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Figure 2: The Merchant’s Circle and the schematic 
representation of the forces acting on the rake face.  
 

The next step is to calculate the length of contact ℓc. 
Assuming that the normal stress is distributed uniformly at 
the exit of the shear plane, and considering the momentum 
equilibrium at the tool tip, we get: BCAB MM =   
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φ
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From Eqns. (15) and (16), the contact length ℓc is obtained 
as follows [28]: 
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Now we can be able to calculate the length of the sticking 
region ℓp. For the sliding region we have that (see Fig. 2): 

ee NF μ=     (18) 

The normal Ne and friction forces Fe can be calculated as 
follows: 
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Substituting Eqns. (19) and (20) into Eqn. (18) and 
expanding ℓe= ℓc-ℓp we obtain the length of the sticking 
region as follows: 
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The term inside the root is positive if ζ is an even number, 
and it is negative if ζ is odd number. The only parameter 
left to be defined is the apparent friction coefficient, μa. The 
apparent friction coefficient is defined as follows: 
   NFa /=μ     (22) 

The normal force acting on the rake face N can be 
obtained from Eqn. 11 and the friction force on the rake 
face F can be calculated as follows: 
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Substituting Eqn. (11) and (23) into Eqn. (22), μa is 
obtained as follows: 
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2.3 The Solution Procedure for Cutting Forces 
In this section the application of the derived formulation to 
the orthogonal cutting process will be discussed. Basically 
two scenarios are considered in this study. Firstly, the input 
parameters for the model are summarized in Table 1. As 
can be seen from Table 1 only the apparent and the sliding 
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friction coefficients are unknown. As the first case the 
sliding coefficient of friction can be identified from non-
cutting friction tests whereas in the second case, the 
apparent friction coefficient can be obtained from 
orthogonal tube cutting tests. The details of these 
experiments are discussed in Section 3. Although the 
approach is the same, two different solution procedures 
are proposed for these two different cases, which can be 
seen in Fig. 3 a. and b. simultaneously.    
In the first case where the sliding friction coefficient is 
known, the iterative procedure starts with a small value of 
the apparent friction coefficient, e.g. 0.1. Then, the 
necessary calculations are done as shown in Fig. 3.a in 
detail. At the end of the iteration an apparent friction 
coefficient is obtained as derived in Eqn. (24). If the 
difference between the calculated μa and the initially 
guessed one is in the desirable range the iteration 
procedure stops, else continues by increasing the initial μa 
value. In the second case where the apparent friction 
coefficient is known, a similar iterative procedure is applied 
in order to solve for sliding friction coefficient as shown in 
Fig. 3.b in detail. After the iteration converges in both 
cases, the cutting forces can be calculated as follows: 
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where Ft is the tangential force at the cutting velocity 
direction and Ff is the feed force at the feed (thrust) 
direction (see Fig. 2). 
 
Table 1: Parameters needed for the cutting force analysis. 

Parameters Explanation 

Depth of cut  Process dependent 
Feed rate Process dependent 
Rake angle Process dependent 
Pressure distribution – ζ Selected as 3 
Workpiece diameter Process dependent 
Spindle speed Process dependent 
Material constants From experiments 
Fraction of energy converted 
to heat at the shear plane 

From empirical values, 
selected as 0.95 [39] 

Thickness of the primary 
shear zone 

Selected as 0.025 mm 
[21] 

Sliding friction coefficient Unknown 
Apparent friction coefficient Unknown 

 
 
It should be noted here that our ultimate aim in these 
simulations is to calibrate the sliding friction coefficient 
between the tool and the workpiece material. The 
calibration involves the identification of apparent friction 
coefficient from orthogonal tube cutting tests, and using 
the method described in Fig. 3.b, the sliding friction 
coefficient is calibrated for different feed rates and cutting 
speeds, also indirectly the average pressure exerted on 
the rake face. The difference of this methodology from 
classical orthogonal cutting tests is that these set of tests 
do not depend on the rake angle. Thus, the tests can be 
carried out by one tool only, i.e. one rake angle. The 
model will handle the cases for different rake angles, once 
the calibrated sliding friction coefficient is used to predict 
the forces with the method described above and in Fig. 
3.a. 

 
 
3 IDENTIFICATION OF FRICTION COEFFICIENT 

BETWEEN THE TOOL AND THE WORKPIECE 
In this section two different experimental methods are 
described in order to identify the friction coefficient 
between the tool and the workpiece material which would 
complete the proposed process model. In the first method, 
non-cutting tests, the friction coefficient μ due to the sliding 
contact between the tool and workpiece materials is 
measured. On the contrary in the latter method the aim is 
to identify the apparent friction coefficient on the rake face 
where an orthogonal database is obtained by tube cutting 
tests. The experimental results together with the process 
model results are discussed in Section 4. 
  

 
(a) 

 
(b) 

Figure 3: Solution procedure when (a) sliding coefficient of 
friction is known, or when (b) apparent friction coefficient is 
known. 
 

3.1 Friction Coefficients from Non-Cutting Tests 
In order to obtain the sliding coefficient of friction between 
the workpiece and the cutting tool materials a non-cutting 
friction test setup is prepared. The setup is built on a 
manual lathe. As can be seen in Fig. 4, the setup involves 
a dynamometer in order to measure the normal and the 
friction forces, a fine slider in order to make the initial 
contact between tool and workpiece smoother, and a DAQ 
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setup in order to collect the data. It should be noted that an 
uncoated carbide rod is used in the experiments to as the 
tool material and the workpiece material was AISI 1050 
steel. The 3 mm diameter carbide rods were present which 
were placed at the origin axis of the workpiece in order to 
avoid the third force (i.e. the radial force) component. The 
sliding friction speed is controlled by moving the carbide 
rod along the radial axis of the workpiece. The sliding 
coefficient of friction is calculated using the mean values 
as shown in Fig. 5 for an example case: 

normalfriction FF /=μ    (26) 

 

 
 

 
Figure 4: The non-cutting test setup. 
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Figure 5: An example case of calculating the mean 
Coulomb friction coefficient by measured force data at 420 
m/min friction speed. 
 
It should be mentioned that the non-cutting friction tests 
are done in order to verify the proposed model. They do 
not have any contribution to the force prediction procedure 

that is discussed in Section 2. Only the apparent friction 
coefficient is needed as the sliding friction coefficient for 
different feed rates and cutting speeds are calibrated.  
 

3.2 Friction Coefficients from Orthogonal Tube 
Cutting Tests 

In order to measure the apparent coefficient of friction on 
the rake face, we conducted orthogonal tube cutting tests 
on a conventional lathe. The test setup involves a 
dynamometer and a DAQ setup in order to collect the 
cutting force data. After each experiment the cut chip 
thickness is measured by two methods and the mean 
value of the cut chip thickness is used for shear angle 
calculations. In the first measurement method, the cut chip 
thickness is simply measured by a micrometer. In the 
second method the average thickness of the cut chip is 
determined from weight measurements.  
 
The workpiece material was AISI 1050 steel and 4 types of 
inserts were used in the tests: coated and uncoated 
carbide, ceramic and CBN inserts. The inserts were of 
TPGN type i.e. the rake face of the insert is flat with 5º 
rake angle. All the tests were conducted at dry condition 
except one case. The tests were conducted at different 
cutting speeds and feed rates. The cutting speed range 
was 150 – 1200 m/min and the feed rate range was 0.05-
0.16 mm/rev. The apparent friction coefficient on the rake 
face between the tool and the workpiece is calculated as 
follows: 

( )( )tf FFarake /tantan +=μ    (27) 

where Ff and Ft are the measured feed and tangential 
forces, respectively. The results are discussed in the 
following section.  
 
4  RESULTS AND DISCUSSION 
The results obtained from the non-cutting and orthogonal 
cutting tests are presented in this section together with the 
force predictions of the proposed process model, and 
comparison with the experimental results.   
 

4.1 Coefficient of Friction Measurements 
 
The results obtained from the non-cutting and the 
orthogonal tube cutting tests are discussed in this section. 
The apparent friction coefficients measured at different 
cutting speeds and feed rates for different insert types can 
be found in Fig. 6. As can be observed from the results, 
there is a slight decrease in friction coefficient with the 
cutting speed and the feed rate for each insert. The 
maximum apparent friction coefficient is measured to be 
around 0.6 which corresponds to the coated carbide 
inserts. The minimum friction coefficient is measured to be 
around 0.3 for CBN with dry cutting conditions and 
uncoated carbide insert with coolant. Another important 
conclusion is derived when the sliding coefficient of friction 
values are compared with the apparent coefficient of 
friction values for uncoated carbide tools (see Fig. 7). As 
expected, the apparent friction coefficients are found to be 
slightly smaller than the sliding coefficients of friction. This 
is due to the existence of the sticking region.  
 
Another conclusion which can be deduced from Fig. 7 is 
that the sliding friction coefficient between the uncoated 
carbide tool and AISI 1050 steel doesn’t depend on the 
friction speed strongly. However, there is a slight decrease 
in the sliding coefficient of friction at moderate speeds.     
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Figure 6: Apparent friction coefficients obtained from 

orthogonal cutting tests for different cutting speeds, and 
type of inserts for feed rates of (a) 0.05, (b) 0.08, and (c) 

0.16 mm/rev. 
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Figure 7: Sliding coefficient of friction obtained from non-
cutting tests together with the apparent friction coefficient. 
 
4.2 An Example Case for the Process Model 
In this section an example single case is presented in 
order to demonstrate the proposed model predictions. The 
parameters used in the analysis can be found in Table 2. 
 

Table 2: The parameters that are used in the example 
case. 

Depth of cut  1 mm Material 
Constants 

Feed rate 0.08 mm/rev A 850 MPa 
Rake angle 5º B 600 MPa 
Pressure dist. – ζ 3 C 0.02 
Workpiece  dia. 30 mm N 0.165 
Spindle speed 3000 rpm M 1 

Sliding fric. coeff. 0.6 γ  0.01 

 
The resulting stress distribution can be found in Fig. 8. As 
also can be observed from Fig. 8 the contact length is 
calculated as 0.35 mm and the sticking region length is 
calculated as 0.06 mm. In addition, Ft is calculated as 182 
N and Ff is calculated as 92 N, and the apparent coefficient 
of friction is calculated as 0.5. 
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Figure 8: The stress distributions on the rake face for the 

example case. 

4.3 Identification of Sliding Coefficient of Friction 
from the Process Model 

In this section, the proposed model is verified in terms of 
the friction coefficient calculations. The apparent coefficient 
of friction values obtained from the orthogonal tube cutting 
tests are used as input to the model, and the sliding 
coefficients of friction are calculated. The material 
constants for the JC constitutive model used in the 
analysis for AISI 1050 steel are listed in Table 2. The 
calculated sliding coefficients of friction for the uncoated 
carbide tool for different cuttings speeds and average 
pressure on the sliding region can be found in Fig. 9. 
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Figure 9: The sliding coefficient of friction calculated from 
the process model for uncoated carbide tool and variation 
for average pressure exerted on the rake face. 



Also the experimental apparent and sliding friction 
coefficient results along with the sliding friction coefficient 
calculated from the process model can be found in Fig. 10. 
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Figure 10: The experimentally identified sliding coefficient 
of friction and the process model results.  
 
As can be seen from Fig. 9 the sliding coefficient of friction 
decreases with the increasing pressure as expected. And 
also from Fig. 10 it can be seen that the experimental 
measurements and the results obtained from the model is 
in close agreement. 
 
4.4 Comparison of Force Predictions with the 

Experimental Results 
In this section, the proposed process model is compared 
with the experimental results in terms of force predictions. 
Again the material constants used in the analysis for AISI 
1050 steel is selected as listed in Table 2. The apparent 
coefficient of friction obtained from the orthogonal cutting 
tests are used as an input to the model and the tangential 
and feed cutting forces are calculated by the proposed 
model and compared with the forces obtained from the 
same tests. The results can be seen in Fig. 11 for different 
cutting speeds and feed rates. Good agreement is 
observed between the predictions and the measurements. 
 
5 CONCLUSIONS 
 
The process model proposed in this paper for orthogonal 
cutting operations takes the primary and secondary 
deformation zones into account. The primary shear zone 
modeling is adapted from Dudzinski and Molinari [21] and 
the contact on the rake face is modeled by a dual zone 
model. The rake face contact is divided into two regions 
where in the first region the contact is assumed to be 
sticking followed by a sliding contact region which can be 
modeled by the Coulomb friction law. The model is useful 
predicting not only the cutting forces but the stress 
distributions on the rake face as well as the length of the 
sticking and sliding zones. The prediction of these regions 
will enable further predictions like temperature distribution 
in a more correct way, which is still under investigation. 
Also, the predictions of the model are compared with the 
experimental results, and overall a good agreement is 
observed. This agreement is expected since the friction 
coefficient between the tool and the workpiece material is 
calibrated by orthogonal tube cutting tests. Another 
comparison is done using the non-cutting friction tests in 
order to validate the sliding friction calculations, and again 
a good agreement is observed.    
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Figure 11: The comparison of the cutting forces predicted 
by the proposed process mode and the experimental 
results. 
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