
Solving Challenging Grid Puzzles
with Answer Set Programming

Merve Çaylı, Ayşe Gül Karatop, Emrah Kavlak, Hakan Kaynar
Ferhan Türe, and Esra Erdem

Sabancı University, Faculty of Engineering and Natural Sciences
Orhanlı, Tuzla, Istanbul 34956, TURKEY

Abstract. We study four challenging grid puzzles, Nurikabe, Heyawake, Masyu,
Bag Puzzle, interesting for answer set programming (ASP) from the viewpoints
of representation and computation: they show expressivity of ASP, they are good
examples of a representation methodology, and they form a useful suite of bench-
marks for evaluating/improving computational methods for nontight programs.

1 Introduction
Puzzles like Blocks World, Sudoku, Cross Sum, and Sokoban have been studied in
various areas of AI (e.g., knowledge representation, planning, constraint programming,
answer set programming) as toy problems, and these studies have led to interesting in-
sights and useful approaches for solving them as well as some real-life problems. There
are many other challenging puzzles that have not been well-studied, but could be use-
ful for investigating some theoretical or application-oriented questions. In this note we
study four such Nikoli puzzles,1 Nurikabe, Bag Puzzle, Masyu, and Heyawake, interest-
ing for answer set programming (ASP) [7, 8, 10] from the viewpoints of representation,
computation, and education.

These puzzles require (several versions of) “connectedness”, and some require the
presence of a “single loop”; thus their straightforward representations require transi-
tive closure. Since these puzzles include constraints involving “counting”, they need
aggregates. Such requirements make it challenging to represent these puzzles in other
declarative formalisms, while it is convenient to represent them in ASP. Straightforward
representations of these puzzles are not tight, and computation of solutions by some an-
swer set solvers (like CMODELS2 and CLASP3) involves generation of too many loop
formulas (as many as 861656). In this sense, these puzzles form an interesting suite of
benchmarks for answer set solvers, in particular, to understand the behaviour of answer
set solvers with such hard nontight programs and to evaluate algorithms for handling
loop formulas. Also, they are good examples of a representation methodology in ASP.

In the following, we represent each puzzle in the language of LPARSE, show how
their instances can be solved using the answer set solver SMODELS,4 compare its com-
putational efficiency in terms of time, on these problems, with that of CMODELS and
CLASP, and conclude with a discussion of the experimental results and future work.

1 http://www.nikoli.co.jp/en/.
2 http://www.cs.utexas.edu/users/tag/cmodels.html.
3 http://www.cs.uni-potsdam.de/clasp/.
4 http://www.tcs.hut.fi/Software/smodels/.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Sabanci University Research Database

https://core.ac.uk/display/11739256?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. A sample Nurikabe puzzle with its solution.

numbered(1,1,1). numbered(1,5,1). numbered(1,7,6). numbered(2,3,2).
numbered(3,2,1). numbered(3,5,2). numbered(5,1,2). numbered(5,4,1).
numbered(7,2,3). numbered(7,6,1).

Fig. 2. The puzzle in Fig. 1 described in the language of LPARSE.

2 Nurikabe

Nurikabe (also called Cell Structure and Islands in the Stream) is played on a rectangu-
lar grid. Initially all grid cells are white and some of them are numbered, like in Fig. 1.
The goal is to paint some of the grid cells black, like in Fig. 1, according to the rules
below, so that the black cells (water) form the “nurikabe” and the white cells (land)
form “islands”. Here are the rules of Nurikabe:

N1 Numbered cells should remain white.
N2 Every white cell belongs to an island.
N3 Each island must contain exactly one numbered cell.
N4 Each island should contain the same number of white cells as the number it con-

tains.
N5 In every island, white cells should be orthogonally connected.
N6 Two islands can not be connected.
N7 All black cells should be connected orthogonally.
N8 No subset of black cells forms a 2× 2 square.

Deciding whether there is a solution to Nurikabe is NP-complete [9].

We describe Nurikabe in the language of LPARSE as follows.

Input and Output Suppose that we are given a Nurikabe puzzle with a rectangular
grid, with n rows and m columns, containing some numbered cells. The rows and
the columns are described by atoms of the forms row(X) and col(X) respectively.
The numbered cells are described by atoms of the form numbered(X,Y,Z) (“grid cell
(X,Y), located at column X and row Y, contains number Z, and thus belongs to an island
of size Z”). For instance, the puzzle in Fig. 1 is described in the language of LPARSE
as in Fig. 2. Solutions of Nurikabe puzzles can be characterized by atoms of the form
black(X,Y) (“grid cell (X,Y) is painted black”). For instance, for the puzzle in Fig. 1,
SMODELS computes the solution in that figure, as in Fig. 3.



black(2,1) black(3,1) black(4,1) black(6,1) black(7,1) black(1,2)
black(2,2) black(4,2) black(6,2) black(3,3) black(4,3) black(5,3)
black(6,3) black(1,4) black(2,4) black(4,4) black(6,4) black(2,5)
black(4,5) black(5,5) black(6,5) black(7,5) black(1,6) black(2,6)
black(3,6) black(4,6) black(6,6) black(6,7) black(7,7)

Fig. 3. The solution of the puzzle in Fig. 1 computed by SMODELS.

% File: nurikabe.lp

col(1..n). row(1..m). color(b;w).

% Keep some cells white (and paint the rest black)
{cell(w,X,Y)} :- row(X), col(Y).

% ensuring that the given constraints N1--N8 are satisfied:

% N1: Numbered cells remain white.
:- not cell(w,X,Y), numbered(X,Y,N).

% N2 & N5 : With N7, every white cell is orthogonally connected
% to some numbered cell.
:- cell(w,X,Y), not w_connected(X,Y), row(X), col(Y).

adj(C,R,C1,R1) :- col(C;C1), row(R;R1), abs(C-C1)+abs(R-R1)==1.

connected(C,X,Y,X,Y) :- cell(C,X,Y), row(X), col(Y), color(C).
connected(C,X,Y,U,V) :- connected(C,X,Y,W,Z), adj(W,Z,U,V),

cell(C,U,V), row(X;U;W), col(Y;V;Z), color(C).

w_connected(X,Y) :- connected(w,X,Y,U,V),
cell(w,X,Y), numbered(U,V,N), row(X), col(Y).

% N3 & N6: With N2, two numbered cells can not be orthogonally
% connected.
:- numbered(X,Y,N), numbered(U,V,M), X<U, connected(w,X,Y,U,V).
:- numbered(X,Y,N), numbered(U,V,M), Y<V, connected(w,X,Y,U,V).

Fig. 4. Representing Nurikabe in the language of LPARSE: Part 1

Main Program To compute a solution like in Fig. 3, in addition to the specific puzzle
description, as in Fig. 2, we need to describe Nurikabe in the language of LPARSE, e.g.,
as in Fig. 4 and Fig. 5. In this formulation first a set of cells that would remain white is
generated by a choice rule so that the rest are painted black. Then the conditions N1–N8
are guaranteed by some constraints, some of which require further auxiliary definitions.
For instance, to guarantee the connectedness of the nodes of the same color, first we
define the adjacency of two nodes in the grid (by adj), and then introduce a definition
for orthogonal connectedness of the cells of the same color (by connected).



% N4: Each island should contain the same number of white cells
% as the number it contains, i.e., a white cell numbered N
% is connected to exactly N white cells:
island(X,Y) :- N {connected(w,X,Y,U,V):row(U):col(V)} N,

numbered(X,Y,N).
:- not island(X,Y), numbered(X,Y,N).

% N7: All black cells should be connected orthogonally
:- not connected(b,X,Y,U,V), cell(b,X,Y), cell(b,U,V),

row(X;U), col(Y;V).

cell(b,X,Y) :- not cell(w,X,Y), row(X), col(Y).

% N8: No subset of black cells forms a 2x2 square.
:- sqrBlack(X,Y), row(X), col(Y).

sqrBlack(X,Y) :- cell(b,X+1,Y), cell(b,X,Y),
cell(b,X, Y+1), cell(b,X+1, Y+1), row(X), col(Y).

black(X,Y) :- cell(b,X,Y), row(X), col(Y).
hide. show black(_,_).

Fig. 5. Representing Nurikabe in the language of LPARSE: Part 2

Fig. 6. A sample Heyawake puzzle and its solution.

3 Heyawake

Heyawake is played on a rectangular grid whose cells are white or numbered, like
in Nurikabe. Furthermore, different from Nurikabe, the grid is divided into rooms, as
shown in Fig. 6. The goal is, like in Nurikabe, to paint some cells black (Fig. 6), but
obeying a different set of rules:

H1 Any two black cells should not be horizontally or vertically adjacent to each other.
H2 All white cells should be interconnected.



room(0,1,1,2,2).room(1,1,3,2,5).room(2,6,1,8,2).room(3,3,4,5,5).
room(4,3,1,5,2).room(5,3,3,5,3).room(6,6,3,8,5).room(7,3,6,5,8).
room(8,6,6,8,7).room(9,1,6,2,8).room(10,6,8,8,8).room(13,9,6,10,8).
room(11,9,1,10,2).room(12,9,3,10,5).room(14,9,9,10,10).
room(17,1,9,2,10).room(16,3,9,5,10).room(15,6,9,8,10).
has(0,0).has(1,1).has(2,1).has(3,2).has(4,-1).has(5,-1).has(6,2).
has(7,5).has(8,0).has(9,-1).has(10,-1).has(11,-1).has(12,-1).
has(13,1).has(14,0).has(15,-1).has(16,-1).has(17,-1).

Fig. 7. The input file describing the Heyawake puzzle in Fig. 6.

% File: heyawake.lp

col(1..m). row(1..n). num(0..r-1). segment(h;v).

% H3: In each room containing a cell numbered N (N>0),
% paint N cells black
N {black(C,R):col(C):row(R):C1<=C:C<=C2:R1<=R:R<=R2} N :-

room_size(N,C1,R1,C2,R2), N>0.
room_size(N,X1,Y1,X2,Y2) :- room(A,X1,Y1,X2,Y2), has(A,N).

% H4: Each room without numbered cell contains any number of
% black cells.
{black(C,R):col(C):row(R):C1<=C:C<=C2:R1<=R:R<=R2} :-

room_size(-1,C1,R1,C2,R2).

% H1: No two black cells are orthogonally adjacent.
:- adj(C,R,C1,R), black(C,R), black(C1,R), C!=C1.
:- adj(C,R,C,R1), black(C,R), black(C,R1), R!=R1.

adj(C,R,C1,R1) :- col(C;C1), row(R;R1), abs(C-C1)+abs(R-R1)==1.

Fig. 8. Representing Heyawake in the language of LPARSE: Part 1.

H3 Each number contained in a room indicates how many cells in that room should be
painted black.

H4 If a room does not contain any numbers, it may contain any number of black cells.
H5 No straight path connecting two white cells passes through more than two rooms.

We describe Heyawake in the language of LPARSE as follows.

Input and Output Suppose that we are given a Heyawake puzzle with a rectangular
grid, with n rows and m columns, divided into r rectangular rooms, each containing
at most one numbered cell. Suppose also that the rooms are enumerated, so each room
has a label. We describe that a room with corners (X1,Y1), (X1,Y2), (X2,Y1), and
(X2,Y2) is labeled A, with atoms of the form room(A,X1,Y1,X2,Y2). We describe
that Room A contains a cell numbered N with an atom of the form has(A,N). If the
room does not contain any numbered cell then N is set to -1. For instance, the input file
describing the Heyawake puzzle in Fig. 6 is presented in Fig. 7. Solutions to Heyawake



% H2: Nonadjacent white cells should be interconnected.
:- not connected(C,R,C1,R1), white(C,R), white(C1,R1),

col(C;C1), row(R;R1), C!=C1, R!=R1.

white(C,R) :- not black(C,R), col(C), row(R).

% connectedness of two white cells (C,R) and (C,R1)
connected(C,R,C1,R1) :- adj(C,R,C1,R1), white(C,R), white(C1,R1).
connected(C,R,X,Y) :- connected(C1,R1,X,Y), adj(C,R,C1,R1),

white(C,R), col(X), row(Y).

% H5: A straight path connecting two white cells (C,R) and (X,Y)
% does not pass through three or more rooms.
:- path(S,C,R,X,Y,3), white(C,R), white(X,Y), col(C;X), row(R;Y),

segment(S).

% horizontal (h) and vertical (v) straight paths of white cells
% whose lengths are at most 3
path(S,C,R,C,R,1) :- white(C,R), col(C), row(R), segment(S).
path(h,C,R,C1,R,N) :- path(h,C+1,R,C1,R,N), adj(C,R,C+1,R),

white(C,R), inroom(C,R,A), inroom(C+1,R,A),
col(C;C1), row(R), num(N),N<3.

path(h,C,R,C1,R,N+1) :- path(h,C+1,R,C1,R,N), adj(C,R,C+1,R),
white(C,R), inroom(C,R,A), inroom(C+1,R,B),
A!=B, col(C;C1), row(R), num(N), N<3.

path(v,C,R,C,R1,N) :- path(v,C,R+1,C,R1,N), adj(C,R,C,R+1),
white(C,R), inroom(C,R,A), inroom(C,R+1,A),
col(C), row(R;R1), num(N),N<3.

path(v,C,R,C,R1,N+1) :- path(v,C,R+1,C,R1,N), adj(C,R,C,R+1),
white(C,R), inroom(C,R,A), inroom(C,R+1,B),
A!=B, col(C), row(R;R1), num(N), N<3.

% inroom(X,Y,A): grid cell (X,) is contained in Room A
inroom(X,Y,A) :- room(A,C,R,C1,R1), X<=C1, C<=X, Y<=R1, R<=Y,

col(C;C1;X), row(Y;R1;R).

hide. show black(_,_).

Fig. 9. Representing Heyawake in the language of LPARSE: Part 2.

puzzles can be characterized by atoms of the form black(X,Y) (“grid cell (X,Y), with
column X and row Y, is painted black”), like in Nurikabe.

Main Program We can describe Heyawake in the language of LPARSE as in Fig.s 8
and 9. In this formulation, for each room, a set of cells that would be painted black
is generated, taking also into account the number contained in the room (H3 and H4).
After that the remaining conditions H1, H2, H5 are ensured by some constraints that
require auxiliary definitions. For instance, to ensure that a straight path connecting two



Fig. 10. A Masyu puzzle and its solution.

white(1,3). black(1,6). black(3,1). black(3,4). white(3,5).
black(3,8). white(3,10). white(4,7). black(5,3). black(5,8).
white(5,9). white(5,10). white(6,6). white(7,2). white(7,4).
white(7,7). white(7,8). white(8,2). white(8,5). black(9,9).
black(10,1). white(10,3). white(10,6).

Fig. 11. The input file describing the Masyu puzzle in Fig. 10.

white cells does not pass through three or more rooms, we introduce the definition of a
horizontal or vertical straight path of white cells passing through 3 rooms (by path).

4 Masyu

Masyu (also called Pearl Puzzle) is played on a rectangular grid. Initially some grid
cells contain circles; each circle is either white or black, like in Fig. 10. The goal is
to draw a single, continuous line that properly passes through all circled cells, like in
Fig. 10, according to the rules below:

M1 The line should form a single loop.
M2 White circles must be traveled straight through, but the loop must turn (90 degrees)

in the previous and/or next cell in its path;
M3 The loop must turn (90 degrees) at black circles, but it must travel straight through

the next and previous cells in its path.

Deciding whether there is a solution to Masyu is NP-complete [4].

We describe Masyu in the language of LPARSE as follows.

Input and Output Suppose that we are given a Masyu puzzle with a rectangular grid,
with n rows and m columns; each circle might contain a white or black circle. A grid
cell (X,Y), at column X and row Y, containing a black (resp. white) circle is described



% File: masyu.lp

col(1..n). row(1..m). direction(v;h).

% Generate a set of unit segments passing through cells
{line(S,X,Y)} :- direction(S), col(X), row(Y).
:- line(h,n,Y), row(Y).
:- line(v,X,m), col(X).

% including balls:
:- ball(X,Y), not on(X,Y).

ball(X,Y) :- black(X,Y), col(X), row(Y).
ball(X,Y) :- white(X,Y), col(X), row(Y).

on(X,Y) :- line(S,X,Y), direction(S), col(X), row(Y).
on(X+1,Y) :- line(h,X,Y), col(X), row(Y), X<n.
on(X,Y+1) :- line(v,X,Y), col(X), row(Y), Y<m.

% ensuring the constraints M1--M3 are satisfied:

% M1:
% Every cell that the generated line passes through is
% connected to exactly 2 such grid cells:
:- 3 {line(h,X-1,Y), line(h,X,Y), line(v,X,Y), line(v,X,Y-1)},

on(X,Y), col(X), row(Y).
:- {line(h,X-1,Y), line(h,X,Y), line(v,X,Y), line(v,X,Y-1)} 1,

on(X,Y), col(X), row(Y).

% Furthermore, every cell on the generated line is reachable
% from other grid cells on the line:
:- on(X,Y), on(Z,W), not reachable(X,Y,Z,W),

col(X;Z), row(Y;W).

adj(X,Y,X,Y+1) :- line(v,X,Y), col(X), row(Y), Y<m.
adj(X,Y,X+1,Y) :- line(h,X,Y), col(X), row(Y), X<n.
adj(X,Y,Z,W) :- adj(Z,W,X,Y), col(X;Z), row(Y;W).

reachable(X,Y,X,Y) :- on(X,Y), col(X;Z), row(Y;W).
reachable(X,Y,Z,W) :- reachable(I,J,Z,W), adj(X,Y,I,J),

col(X;I;Z), row(Y;J;W).

Fig. 12. Representing Masyu in the language of LPARSE: Part 1.

by an atom of the form black(X,Y) (resp. white(X,Y)). For instance, the input file
describing the puzzle in Fig. 10 is presented in Fig. 11. Solutions to Masyu puzzles
can be characterized by atoms of the form line(S,X,Y) (“if S=h (resp. S=v then the
horizontal (resp. vertical) segment passing through the cells (X,Y) and (X+1,Y) (resp.
(X,Y) and (X,Y+1)) is contained in the drawn line”).



% M3:
% The loop must turn (90 degrees) at black circles
:- black(X,Y), line(h,X,Y), line(h,X-1,Y), col(X), row(Y).
:- black(X,Y), line(v,X,Y), line(v,X,Y-1), col(X), row(Y).

% but it must travel straight through the next and previous
% cells in its path.
:- 1{line(v,X+1,Y), line(v,X+1,Y-1)},

black(X,Y), line(h,X,Y), col(X), row(Y).
:- 1{line(v,X-1,Y), line(v,X-1,Y-1)},

black(X,Y), line(h,X-1,Y), col(X),row(Y).

:- 1{line(h,X,Y+1), line(h,X-1,Y+1)},
black(X,Y), line(v,X,Y), col(X), row(Y).

:- 1{line(h,X,Y-1), line(h,X-1,Y-1)},
black(X,Y), line(v,X,Y-1), col(X), row(Y).

% M2:
% White circles must be traveled straight through
:- 1{line(v,X,Y),line(v,X,Y-1)}, 1{line(h,X,Y), line(h,X-1,Y)},

white(X,Y), col(X), row(Y).

% but the loop must turn (90 degrees) in the previous
% and/or next cell in its path.
:- white(X,Y), line(h,X,Y), line(h,X+1,Y), line(h,X-1,Y),

line(h,X-2,Y), col(X), row(Y).
:- white(X,Y), line(v,X,Y), line(v,X,Y+1), line(v,X,Y-1),

line(v,X,Y-2), col(X), row(Y).

hide. show line(_,_,_).

Fig. 13. Representing Masyu in the language of LPARSE: Part 2.

Main Program To compute a solution like in Fig. 10, in addition to the specific puzzle
description, we need to describe Masyu in the language of LPARSE, e.g., as in Fig.s 12
and 13. In this formulation, first a set of line segments that would pass through balls is
generated. After that the conditions M1–M3 are ensured by some constraints, some of
which require auxiliary definitions. Note that this formulation includes more number of
cardinality constraints compared to the previous puzzles.

5 Bag Puzzle

Bag Puzzle (also called Corral Puzzle) is played on a rectangular grid. Initially some
grid cells are numbered, like in Fig. 14. The goal is to draw a single, continuous loop
along the lines of the grid, which contains all the numbers on the grid, like in Fig. 14,
according to the rules below:

B1 The line should form a single loop.



Fig. 14. A sample Bag Puzzle with its solution.

cell(4,0,9). cell(2,1,0). cell(3,1,1). cell(5,1,3). cell(4,8,9).
cell(2,1,5). cell(5,3,4). cell(7,3,6). cell(4,3,7). cell(6,9,0).
cell(5,3,8). cell(4,6,1). cell(6,6,2). cell(3,6,3). cell(4,6,5).
cell(6,8,4). cell(2,8,6). cell(5,8,8).

Fig. 15. The input file describing the Bag puzzle in Fig. 14.

B2 All numbered cells should be contained in the loop.
B3 If there is a numbered cell in the loop, the number of visible cells from that cell in

all orthogonal directions should be the same as the number contained in it.

Deciding whether there is a solution to Bag Puzzle is NP-complete [3].

We describe Bag Puzzle in the language of LPARSE as follows.

Input and Output Suppose that we are given a Bag puzzle with a rectangular grid of
size n × m, containing some numbered cells. Each grid cell is identified by its lower
left grid point; so a cell (X,Y) containing a number N is described by an atom of the
form cell(N,X,Y). For instance, the input file describing the Bag puzzle in Fig. 14
is presented in Fig. 15. Solutions to Bag puzzles can be characterized by atoms of the
form line(S,X,Y) (“if S=h (resp. S=v then the horizontal (resp. vertical) segment
((X,Y),(X+1,Y)) (resp. ((X,Y),(X,Y+1))) is contained in the drawn line”).

Main Program To compute a solution like in Fig. 14, in addition to the specific puzzle
description, we need to describe Bag in the language of LPARSE, e.g., as in Fig.s 16
and 17. The first part of this formulation, about generating a single loop, is very similar
to that of Masyu. On the other hand, the second part is different, since it involves the
conditions about visibility, B2 and B3. In the second part, two auxiliary definitions are
introduced: visible and out. The former describes the visibility of a cell from another
one, and the latter checks whether a cell is outside the loop or not.

6 Discussion

With the programs discussed above, we have experimented with some instances of
the grid puzzles (Nurikabe, Heyawake, Masyu, Bag Puzzle) using SMODELS (Version



% File: bag.lp

x(0..n). y(0..m). direction(v;h).

% Generate a set of unit segments along the grid lines
{line(S,X,Y)} :- direction(S), x(X), y(Y).
:- line(h,n,Y), y(Y).
:- line(v,X,m), x(X).

% ensuring the constraints B1--B3 are satisfied:

% B1:
% Every grid point on the generated line unit is connected to
% exactly 2 such grid points:
:- 3 {line(h,X-1,Y), line(h,X,Y), line(v,X,Y), line(v,X,Y-1)},

on(X,Y), x(X), y(Y).
:- {line(h,X-1,Y), line(h,X,Y), line(v,X,Y), line(v,X,Y-1)} 1,

on(X,Y), x(X), y(Y).

on(X,Y) :- line(S,X,Y), direction(S), x(X), y(Y).
on(X+1,Y) :- line(h,X,Y), x(X), y(Y), X<n.
on(X,Y+1) :- line(v,X,Y), x(X), y(Y), Y<m.

% Furthermore, every grid point on the generated line is
% reachable from other grid points on the line:
:- on(X,Y), on(Z,W), not reachable(X,Y,Z,W), x(X;Z), y(Y;W).

adj(X,Y,X,Y+1) :- line(v,X,Y), x(X), y(Y), Y<m.
adj(X,Y,X+1,Y) :- line(h,X,Y), x(X), y(Y), X<n.
adj(X,Y,Z,W) :- adj(Z,W,X,Y), x(X;Z), y(Y;W).

reachable(X,Y,X,Y) :- on(X,Y), x(X;Z),y(Y;W).
reachable(X,Y,Z,W) :- reachable(I,J,Z,W), adj(X,Y,I,J),

x(X;I;Z), y(Y;J;W).

Fig. 16. Representing Bag in the language of LPARSE: Part 1.

2.32), CLASP (Version 1.0.2), and CMODELS (Version 3.55) with ZCHAFF (Version
2007.3.12); for grounding, LPARSE (Version 1.0.17) is used. All problem instances are
available at http://people.sabanciuniv.edu/˜esraerdem/ASP-benchmarks/
puzzles.html. The experimental results are summarized in Tables 1 and 2. All CPU
times are in seconds, for a workstation with a 1.5GHz Xeon processor and 4x512MB
RAM, running Red Hat Enterprise Linux (Version 4.3).

Table 1 shows, for each puzzle instance, the program size (obtained from the statis-
tics printed out by the solvers). A dash – denotes that the corresponding information
is not known because the computation of a solution could not be completed in 2800
seconds. For instance, consider Nurikabe puzzle n3 on a grid of size 10 × 10. After
grounding the program (Fig.s 4 and 5) with this puzzle instance, using LPARSE, we get



% B3: If there is a numbered cell in the loop, the number of
% visible cells from that cell in all orthogonal directions
% should be the same as the number contained in it.
:- N {visible(X,Y,Z,T):x(Z):y(T)}, cell(N,X,Y), x(X), y(Y).
:- {visible(X,Y,Z,T):x(Z):y(T)} N-2, cell(N,X,Y), x(X), y(Y).

% visible0(X,Y,X1,Y1): cell (X,Y) is visible from
% adjacent cell (X1,Y1)
visible0(X,Y,X,Y+1) :- x(X), y(Y), not line(h,X,Y+1), Y<m-1.
visible0(X,Y,X,Y-1) :- x(X), y(Y), not line(h,X,Y), Y>0.
visible0(X,Y,X+1,Y) :- x(X), y(Y), not line(v,X+1,Y), X<n-1.
visible0(X,Y,X-1,Y) :- x(X), y(Y), not line(v,X,Y), X>0.

% visible(X,Y,X1,Y1): cell (X,Y) is visible from cell (X1,Y1)
visible(X,Y,Z,T) :- visible0(X,Y,Z,T),x(X;Z), y(Y;T).
visible(X,Y,Z,Y) :- visible(X,Y,Z+1,Y), visible0(Z,Y,Z+1,Y),

x(X;Z), y(Y), Z<X-1, X>1, X<n, Y<m.
visible(X,Y,Z,Y) :- visible(X+1,Y,Z,Y), visible0 (X,Y,X+1,Y),

x(X;Z), y(Y), Z>X+1, X<n-2, Y<m.
visible(X,Y,X,T) :- visible(X,Y+1,X,T), visible0(X,Y,X,Y+1),

x(X), y(Y;T), T>Y+1, Y<m-2, X<n.
visible(X,Y,X,T) :- visible(X,Y,X,T+1), visible0(X,T,X,T+1),

x(X), y(Y;T), T<Y-1, Y>1, Y<m, X<n.

% B2: No numbered cell is outside the loop.
:- cell(M,X,Y), out(X,Y).

out(X,Y) :- Y=m-1, X<n, cell(M,X,Y), not line(h,X,Y+1).
out(X,Y) :- Y=0, X<n, cell(M,X,Y), not line(h,X,Y).
out(X,Y) :- X=n-1, Y<m, cell(M,X,Y), not line(v,X+1,Y).
out(X,Y) :- X=0, Y<m, cell(M,X,Y), not line(v,X,Y).

out(X,Y) :- X<n-1, X>0, Y<m-1, Y>0, cell(M,X,Y),
visible(X,Y,0,Y), not line(v,0,Y).

out(X,Y) :- X<n-1, X>0, Y<m-1, Y>0, Z=n-1, cell(M,X,Y),
visible(X,Y,Z,Y), not line(v,n,Y).

out(X,Y) :- X<n-1, X>0, Y<m-1, Y>0, cell(M,X,Y),
visible(X,Y,X,0), not line(h,X,0).

out(X,Y) :- X<n-1, X>0, Y<m-1, Y>0, T=m-1, cell(M,X,Y),
visible(X,Y,X,T), not line(h,X,m).

hide. show line(_,_,_).

Fig. 17. Representing Bag in the language of LPARSE: Part 2.

a program with 20667 atoms and 84671 rules. CMODELS transforms this ground pro-
gram into a propositional theory with 62806 atoms (including new atoms introduced
during clausification) and 192199 clauses, and computes a solution to n3 in 2800 sec-
onds by adding to the theory 8210 loop formulas (LFs). For n4, since a solution could



not be computed in 2800 seconds, we do not know the number of loop formulas that
CMODELS will add to the theory for the computation of a solution. CLASP, on the other
hand, obtains from the ground program for n4 a program with 118394 atoms (vars) and
102210 rules, and computes a solution. During the computation CLASP asserts/learns
26564 loop formulas; the average loop size (LS) is 15.3. The number of loop formulas
added by CMODELS is less than the number of loop formulas asserted/learnt by CLASP,
but keep in mind that what is counted as loop formulas in CMODELS is different from
that of CLASP. In CMODELS, it describes the number of “reason clauses” [6]; in CLASP,
it describes the number of “loop nogoods” [5].

Table 2 shows the computation times for the puzzles that could be solved in 400
seconds (including the grounding time); a star * denotes that a solution is computed
in 400–2800 seconds; a dash – denotes that a solution could not be computed in 2800
seconds. For instance, SMODELS solves Nurikabe puzzle n7 in 5 seconds (4 seconds
for grounding plus 1 second for model finding), and n8 in 400–2800 seconds.

The puzzles above require too many loop formulas of large sizes (e.g., to solve n10
CLASP adds 861656 loop formulas of average size 24), unlike other nontight programs
used as benchmarks (e.g., nontight Sokoban problems), which typically require cou-
ple of hundred loop formulas with CLASP (personal communication, Benjamin Kauf-
mann, June 2007). In this sense, these puzzles will be useful for evaluating algorithms
introduced for handling nontight programs, and help us understand the behaviour of
answer set solvers with such hard nontight programs and improve their computational
efficiency. Potential usefulness of these puzzles to evaluate and improve computational
methods/tools in ASP makes them interesting from the point of view of computation.

Note that an intuitive representation of these puzzles in other formalisms is indeed
challenging (consider, e.g., conditions M1, N4, H5, B2, B3). Fortunately, expressivity of
ASP (e.g., being able to represent transitive closure, and cardinality constraints) makes
it a bit easier. These puzzles illustrate the strength of ASP in terms of representation.

These puzzles are interesting also from the viewpoint of education as they are good
examples of a representation methodology in ASP: describe the given problem pre-
cisely in natural language by means of constraints (e.g., N1–N8 for Nurikabe), de-
cide for the atoms describing the input/output of the problem (e.g., atoms of the forms
cell(N,X,Y) and line(S,X,Y) for Bag), and then formulate the problem as a pro-
gram following the description in natural language. Such a program consists of four
parts: domain predicates describing the input, rules for generating sets of atoms that cor-
respond to possible solutions, rules for testing these sets against the given constraints,
and hide/show statements for describing the output. The second and the third parts usu-
ally include definitions of auxiliary concepts (e.g., reachable in masyu.lp); rules for
generating possible solutions might also express some constraints (like in Heyawake).

Similarities between representations of the puzzles (e.g., generation of line seg-
ments, connectedness of nodes) suggest some extensions of the language of LPARSE
(e.g., a template for transitive closure, like in the language of of DLT [1]). They also
hint at two interesting problems: building a general grid puzzle solver (in the sense of
the general tabular puzzle solver Constraint Lingo [2]), and the automatic generation of
puzzle instances of various difficulty, using ASP methods. Both problems, in addition
to formulating the puzzles in the language of DLT/DLV, are left as a future work.



Table 1. Experimental results: Problem size

Puzzle Grid LPARSE CMODELS CLASP

instance size # of # of # of # of # of # of # of # of avg.
atoms rules atoms clauses LFs vars rules LFs LS

Nurikabe n1 10×10 20661 84410 63319 191567 – 119322 102671 35417 16.7
n2 20667 84668 74642 235436 – 120666 104469 50736 17.1
n3 20667 84671 62806 192199 8210 118495 102312 16450 12.4
n4 20667 84669 75063 236212 – 118394 102210 26564 15.3
n5 20673 84930 68775 208882 6320 119181 103455 11573 12.8
n6 20664 84539 78402 247622 – 118380 101952 19052 14.2
n7 20670 84803 66592 203623 4744 119158 103206 15793 13.3
n8 15×15102657 436972 438712 1414579 – 624187 536074 388361 20.7
n9 102710 437248 426668 1365831 – – – – –

n10 102660 437808 380954 1211337 – 623557 536955 861656 23.5
Heyawake h1 10×10 36213 70559 67976 176813 43 55683 70955 1827 33.9

h2 36201 70572 70630 182483 44 56381 71702 2252 34
h3 36205 70586 72953 192925 78 55871 71132 3057 28.2
h4 36221 70816 71634 188768 49 55863 71351 1470 28.3
h5 36221 70559 71466 188362 36 55734 70972 1626 27.2
h6 36177 70573 72952 192889 60 55878 71161 5721 28.6
h7 36139 70571 70794 186306 53 55881 71111 4309 31.7
h8 15×15172511 355712 359478 969960 100 288547 357433 7334 22.8
h9 172545 355723 354414 955970 64 288139 357070 13643 22.6

h10 172558 355717 362030 980198 75 288367 357274 12792 23.1
Masyu m1 10×10 20696 1031458 56538 179956 145 57909 1032520 3194 15.3

m2 20710 1031496 57384 183801 221 57939 1032572 911 12.6
m3 20685 1031441 57363 185080 3708 57899 1032497 3935 16.5
m4 20694 1031476 57348 183552 1991 57934 1032544 4056 14.6
m5 20715 1031505 57385 184046 702 57940 1032585 3174 12.6
m6 20705 1031469 56131 176879 2600 57912 1032535 2841 23.4
m7 20700 1031473 57374 184579 759 57920 1032541 2394 11.4
m8 15×1510275911545746 293447 951564 – 294628 11548118 141683 31.6
m9 10277011545763 292518 941199 – – – – –

m10 10278311545804 292523 940514 – – – – –
Bag b1 10×10 59385 1833864 117498 321344 2527 102368 1866530 16272 18.4

Acknowledgments Thanks to Martin Gebser, Yuliya Lierler and Benjamin Kaufmann
for answering our questions about the statistics printed out by CMODELS and CLASP,
and to anonymous reviewers for their useful comments and suggestions.

References
1. F. Calimeri, G. Ianni, G. Ielpa, A. Pietramala, and M. Santoro. A system with template

answer set programs. In Proc. of JELIA, 2004.
2. R.A. Finkel, V.W. Marek, and M. Truszczynski. Constraint Lingo: Towards high-level con-

straint programming. Software: Practice and Experience, 34(15):1481–1504, 2004.
3. E. Friedman. Corral puzzles are NP-complete. 2002.
4. E. Friedman. Pearl puzzles are NP-complete. 2002.



Table 2. Experimental results: Computation time

Puzzle Instance Grid size CPU time (sec.)
LPARSE SMODELS CMODELS CLASP

Nurikabe n1 10×10 4 8 – 22
n2 4 7 – 22
n3 4 6 * 2
n4 4 2 – 6
n5 4 1 * 1
n6 3 5 – 5
n7 4 1 * 3
n8 15×15 60 * – 228
n9 60 * – –
n10 60 – – 303

Heyawake h1 10×10 1 5 21 1
h2 1 5 18 1
h3 1 7 27 1
h4 1 7 13 1
h5 1 1 10 1
h6 1 5 17 1
h7 1 2 14 1
h8 15×15 3 309 165 3
h9 3 264 131 6
h10 2 246 139 6

Masyu m1 10×10 4 6 54 5
m2 5 2 82 2
m3 4 12 * 4
m4 4 11 * 3
m5 4 3 202 4
m6 4 3 * 3
m7 5 3 219 2
m8 15×15 44 – – 130
m9 43 144 – –

m10 44 154 – –
Bag b1 10×10 8 * * 16

5. M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving.
In Proc. of IJCAI, 2007.

6. Y. Lierler. SAT-based answer set programming. 2007.
7. V. Lifschitz. Action languages, answer sets and planning. In The Logic Programming

Paradigm: a 25-Year Perspective. 1999.
8. V. Marek and M. Truszczyński. Stable models and an alternative logic programming

paradigm. In The Logic Programming Paradigm: a 25-Year Perspective. 1999.
9. B. McPhail. The complexity of puzzles: NP-completeness results for Nurikabe and

Minesweeper. 2003.
10. I. Niemelä. Logic programs with stable model semantics as a constraint programming

paradigm. AMAI, 25:241–273, 1999.


