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Müjdat Çetin† and Brian M. Sadler‡

†Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

77 Massachusetts Ave., Cambridge, MA 02139, USA
‡Army Research Laboratory, AMSRL-CI-CN, Adelphi, MD 20783, USA

ABSTRACT

We propose two methods for estimation of sparse commu-
nication channels. In the first method, we consider the
problem of channel estimation based on training symbols,
and formulate it as an optimization problem. In this for-
mulation, we combine the objective of fidelity to the re-
ceived data, with a non-quadratic constraint reflecting the
prior information about the sparsity of the channel. This
approach leads to accurate channel estimates with much
shorter training sequences than conventional methods. The
second method we propose is aimed at taking advantage of
any available training-based data, as well as any “blind”
data based on unknown, constant modulus symbols. We
propose a semi-blind optimization framework making use
of these two types of data, and enforcing the sparsity of the
channel as well as the constant modulus property of the
symbols. This approach improves upon the channel esti-
mates based only on training sequences, and also produces
accurate estimates for the unknown symbols.

1. INTRODUCTION

In many wireless communication systems, the propagation
channels involved exhibit a large delay spread, but a sparse
impulse response consisting of a small number of dominant
echoes. A primary example is terrestrial transmission of
high definition television (HDTV) signals [1,2]. In Fig. 1 we
show an example of such a sparse channel impulse response.
Conventional least-squares channel estimation techniques
do not exploit the sparse structure of such channels and
require the transmission of many training symbols to gen-
erate an accurate estimate. Recently, a matching pursuit
algorithm that exploits the sparse structure of such chan-
nels has been proposed [3]. This approach has also been ex-
tended to multiuser environments [4]. In the initial portion
of our work presented in this paper, we propose a channel
estimation technique that has a similar goal of exploiting
sparsity. In contrast with the approach in [3], we formulate
the channel estimation problem as a non-quadratic opti-
mization problem involving a data fidelity term, and an �1-
norm-based, sparsity-enforcing regularization term. Both
matching pursuit and �1-norm regularization (also called
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Fig. 1. A sample sparse channel impulse response (adapted
from [3]).

basis pursuit) can be viewed as trying to solve a combina-
torial sparse signal representation problem in a suboptimal
fashion. Matching pursuit provides a greedy solution, while
�1-norm-based methods replace the original problem with
a relaxed version for tractability. Recent work has illumi-
nated interesting theoretical properties of both approaches.
The �1-norm-based approach we propose for channel esti-
mation has regularization built into it to provide robustness
against noise. Furthermore, the optimization-based nature
of our framework makes it easy to extend these ideas to the
semi-blind case, which we discuss next.

The discussion above was implicitly focused on channel
estimation in the presence of training symbols. Most cur-
rent wireless communication systems depend on the trans-
mission of such known symbols for channel estimation and
equalization. However, use of training symbols limits the
effective transmission bandwidth. Therefore, it is of inter-
est to reduce the number of training symbols. On the other
hand, blind equalization techniques do not require train-
ing. One of the most popular blind techniques is based
on the so-called constant modulus algorithms [5]. While
such blind algorithms have good performance with long
data sequences, they may not achieve equalization in a
short burst.1 In order to alleviate this problem, a num-
ber of researchers have recently proposed methods which

1Although most constant modulus algorithms are applied to
long data sequences, there is also some recent work on finite-
interval constant modulus algorithms [6].
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couple training-based and blind techniques, leading to so-
called semi-blind methods [7,8]. These methods provide an
attractive tradeoff between training-based and blind tech-
niques. However we are not aware of any semi-blind tech-
nique designed explicitly for, and exploit the characteristics
of, sparse communication channels. We propose a semi-
blind sparse channel estimation technique for the case of
constant modulus symbols. In particular, we formulate an
optimization problem which contains terms for fidelity to
the training-based as well as blind data, an �1-norm term
for enforcing channel sparsity, and a term enforcing the con-
stant modulus property of the symbols. The solution of
this optimization problem yields both an estimate for the
channel impulse response, and estimates for the transmit-
ted unknown symbols. Our experiments on simulated data
demonstrate both the improvements of our sparse chan-
nel estimation framework over conventional techniques, and
also how our semi-blind approach improves over our channel
estimation technique based only on training data.

2. OBSERVATION MODEL

Let the training symbols sT (n), n = 0, ..., NT − 1 be trans-
mitted through a channel with impulse response c(m), m =
0, ..., Nc − 1. We can model the observed signal samples
yT (n) as:

yT (n) =

Nc−1∑

m=0

sT (n − m)c(m) + v(n), n = 0, ..., NT − 1 (1)

where v(n) denotes the measurement noise. We can write
this equation in matrix form as follows:

yT = AT c + v (2)

where AT is a Toeplitz matrix that depends on the trans-
mitted symbols; and c, yT , and v are the channel impulse
response, observed data, and measurement noise, respec-
tively, column-stacked as vectors. The conventional chan-
nel estimation method is based on the pseudo-inverse oper-
ation: ĉLS = A†

T yT , where “†” denotes the pseudo-inverse.
We will refer to this method as least-squares, as is custom-
ary, although we should note that when NT < Nc, this is
actually a least-squares, min-norm solution.

3. CHANNEL ESTIMATION BY
SPARSITY-ENFORCING REGULARIZATION

We propose estimating the channel by minimizing the fol-
lowing cost function:

ET (c) = ‖yT − AT c‖2
2 + λ‖c‖1 (3)

where λ is a scalar parameter. The first term of ET (c)
is a data fidelity term, and the second term is a sparsity-
enforcing regularization term. It is well-known that mini-
mizing the �1-norm leads to a preference for sparse struc-
ture [9]. By incorporating the prior information that the
channel is sparse, we aim to achieve accurate channel es-
timation with a much smaller number of training symbols
than conventional methods. We solve the optimization prob-
lem in Eqn. (3) by adapting and applying the numerical
algorithm of [10].

4. SEMI-BLIND CHANNEL ESTIMATION
WITH CONSTANT MODULUS SYMBOLS

The technique we proposed in the previous section relies
entirely on known training symbols. In this section, we
propose an extension, where we take advantage of some
training symbols as well as a block of transmitted unknown
symbols for channel estimation. The technique also pro-
duces estimates of the unknown symbols. We focus on the
case where the transmitted symbols have constant modulus
K, and build that information into our formulation as well.
Let us assume that we have two data streams: yT refer-
ring to received data associated with the training symbols,
and yB referring to received “blind” data associated with
the unknown symbols s. Then we construct the following
“semi-blind” cost function:

ESB(s, c) = ‖yT − AT c‖2
2 + ‖yB − AB(s)c‖2

2

+λ‖c‖1 + γ

Ns∑

i=1

[|si|2 − K2]2 (4)

where γ is a scalar parameter, Ns denotes the number of
unknown symbols, and si denotes the i-th unknown sym-
bol. The matrix AB(s) is constructed in a similar fashion to
AT , however it depends on the unknown symbols s rather
than the training symbols, and we make that dependence
explicit in our notation. The first two terms of ESB(s, c) en-
force fidelity to training-based and blind observations, the
third term is the channel sparsity constraint, and the last
term enforces the constant modulus property of the sym-
bols. The major novelty of this formulation as compared
to other semi-blind techniques is the channel sparsity con-
straint. Although we weight the training-based and blind
data fidelity terms in ESB(s, c) equally, one could general-
ize this cost function slightly to apply different weights, e.g.
if the two data streams have different SNRs. We minimize
ESB(s, c) by applying a block coordinate descent algorithm
on s and c. In particular, we first find an initial channel
estimate ĉ(0) based only on the training symbols, using the
technique described in Section 3. Then we run the following
set of alternating minimizations at each iteration k, starting
with k = 0:

ŝ(k+1) = arg min
s

ESB(s, ĉ(k))

ĉ(k+1) = arg min
c

ESB(ŝ(k+1), c) (5)

To solve the first minimization above, we use gradient de-
scent; and to solve the second minimization, we use the
same numerical algorithm utilized in Section 3. We run the
coordinate descent iterations in (5) until

‖ĉ(k+1) − ĉ(k)‖2/‖ĉ(k)‖2 < δ, where δ > 0 is a small con-
stant.

5. EXPERIMENTAL RESULTS

We present simulations where the channel to be estimated
and equalized is given in Fig. 1. This impulse response has
length Nc = 119, and 10 non-zero taps. For the trans-
mitted symbols, we use BPSK sequences with equiprobable
symbols.



5.1. Training-based Channel Estimation

We first present the results of our training-based sparse
channel estimation technique of Section 3. We start with a
remark about the observation model. Note that in Sec-
tion 2, we assumed we had the training symbols sT (n)
for n = 0, ..., NT − 1. However, the observation model in
Eqn. (1) also depends on sT (n) for n < 0. As a result,
the matrix AT in Eqn. (3) also depends on those symbols.
These symbols may be obtained from previous decodings
in a data stream or can be assumed zero if this is the first
packet received [3]. Which assumption is made can have an
impact on the results, especially when short data sequences
are of interest. Therefore we present results based on both
assumptions.

We compare our �1-norm-based approach with match-
ing pursuit [3], as well as conventional least squares. We run
these techniques on 100 different realizations of the training
symbols and measurement noise. We repeat these experi-
ments at a range of SNRs, where SNR is defined as the vari-
ance ratio of the signal and noise components in Eqn. (1).
Given an estimated channel impulse response produced by
each technique, we find the locations of the 10 largest mag-
nitude taps for each technique. We then count how many of
these locations match the actual 10 non-zero tap locations
of the channel in Fig. 1.

In the first set of experiments, we assume that sT (n)
for n < 0 are obtained from previous decodings. Fig. 2
shows the number of matches averaged over 100 realiza-
tions for each technique, as a function of SNR. Fig. 2(a),(b)
and (c) correspond to different numbers of training sym-
bols NT . We observe that both our �1-norm-based method
and matching pursuit provide much more accurate chan-
nel estimates than least squares. The �1 method provides
slightly better performance than matching pursuit, which
is more significant when the number of training symbols
is relatively small. We should note that we have not opti-
mized the choice of the free parameter λ in Eqn. (3), and the
performance of the �1 technique might be improved further
by better parameter choices. In Fig. 3, we present similar
results for the second set of experiments where sT (n) for
n < 0 are assumed to be zero.

5.2. Semi-blind Channel Estimation

We now present the results of the semi-blind algorithm pro-
posed in Section 4. For the training portion of the experi-
mental setup, we assume that sT (n) for n < 0 are available
from previous decodings. We consider the transmission of
two BPSK sequences: a training sequence of NT symbols
and an unknown sequence s of Ns = 200 symbols. Based on
the training and the blind data, we minimize ESB(s, c) to
find estimates of both the channel and the unknown sym-
bols. We consider a range of SNRs, as well as training se-
quence lengths NT , and find the average number of matches
in the channel impulse response over 100 realizations, as in
the experiments of Section 5.1. We present these results
in Fig. 4. The dashed curves correspond to the �1 results
presented in Section 5.1, based only on training data. The
solid curves are based on the semi-blind experiments. We
observe that we are able to exploit the unknown symbols
in the semi-blind framework to improve upon the results
of our training-based method. As a result, our semi-blind
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Fig. 2. Average number of matches between the locations
of the 10 largest magnitude taps estimated by the three
methods (�1, matching pursuit (MP), least squares (LS))
and the actual non-zero taps of the channel. It is assumed
that sT (n) for n < 0 are obtained from previous decodings.
Each plot is based on 100 trials. (a) NT = 40. (b) NT = 80.
(c) NT = 130.
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Fig. 3. Average number of matches as in Fig. 2, but for
the case where sT (n) = 0 for n < 0. (a) NT = 120. (b)
NT = 130. (c) NT = 140.

framework can achieve the accuracy of our training-based
channel estimates with a much smaller number of training
symbols, resulting in communication bandwidth savings.

Finally, we demonstrate the performance of our semi-
blind technique in estimating the unknown symbol sequences
s of length Ns = 200. After quantizing the continuous-
valued symbol estimates produced by the minimization of



0 5 10 15 20 25 30
2

4

6

8

10

SNR

av
eg

. #
 m

at
ch

es

only training
semi−blind

(a)

0 5 10 15 20 25 30
2

4

6

8

10

SNR

av
eg

. #
 m

at
ch

es

only training
semi−blind

(b)

0 5 10 15 20 25 30
2

4

6

8

10

SNR

av
eg

. #
 m

at
ch

es

only training
semi−blind

(c)

Fig. 4. Average number of matches obtained by minimizing
the semi-blind cost function ESB(s, c) compared with the
results of the training-based cost function ET (c). Each plot
is based on 100 trials. (a) NT = 40. (b) NT = 80. (c)
NT = 130.

ESB(s, c), we compare them to the true symbols, and count
the number of bit errors. Dividing the number of bit errors
by Ns, and averaging over 100 realizations, we obtain an
estimate of the bit error rate (BER). Fig. 5 shows plots of
BER for three different sizes of training sequences, and a
range of SNRs. This result demonstrates that our semi-
blind approach can provide reasonable estimates of the un-
known symbols. We have not optimized the choice of the
free parameters λ and γ in Eqn. (4), and the performance
of our technique might be improved further by better pa-
rameter choices.

6. CONCLUSION

We have developed new techniques for the estimation of
sparse communication channels for training-based and for
semi-blind scenarios. We have defined appropriate opti-
mization problems taking advantage of both training-based
and blind data streams, and incorporating prior informa-
tion we have about the structure of the propagation chan-
nels and about the unknown symbols. This work provides
a principled framework synthesizing recent ideas on semi-
blind equalization with ideas on sparse channel estimation.
Our preliminary experiments have demonstrated the promise
of this framework in generating accurate channel estimates,
as well as symbol estimates with short data streams. How-
ever, a much more detailed analysis of the proposed frame-
work is needed, and is a subject of our current research.
We are interested in comparing our approach to other semi-
blind techniques, illuminating the role of sparsity-enforcing
regularization. We are also interested in characterizing po-
tential performance improvements provided by this frame-
work over the fully-blind case. Finally, we are interested
in exploring further performance improvements of our ap-
proach by utilizing effective automatic techniques for choos-
ing the free parameters involved.
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Fig. 5. Performance of the semi-blind technique in esti-
mating the unknown symbols, in terms of BER.
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