
A HIGH PERFORMANCE AND LOW POWER HARDWARE ARCHITECTURE FOR
H.264 CAVLC ALGORITHM

Esra Sahin and Ilker Hamzaoglu

Faculty of Engineering and Natural Sciences, Sabanci University
34956, Orhanli, Tuzla, Istanbul, TURKEY

phone: + (90) 216 483-9577, fax: + (90) 216 483-9550, email: hamzaoglu@sabanciuniv.edu
web: www.sabanciuniv.edu/~hamzaoglu

ABSTRACT
In this paper, we present a high performance and low power hard-
ware architecture for real-time implementation of Context Adap-
tive Variable Length Coding (CAVLC) algorithm used in H.264 /
MPEG4 Part 10 video coding standard. This hardware is designed
to be used as part of a complete low power H.264 video coding
system for portable applications. The proposed architecture is im-
plemented in Verilog HDL. The Verilog RTL code is verified to
work at 76 MHz in a Xilinx Virtex II FPGA and it is verified to
work at 233 MHz in a 0.18µ ASIC implementation. The FPGA and
ASIC implementations can code 22 and 67 VGA frames (640x480)
per second respectively.

1. INTRODUCTION
Video compression systems are used in many commercial
products, from consumer electronic devices such as digital
camcorders, cellular phones to video teleconferencing systems.
These applications make the video compression hardware devices
an inevitable part of many commercial products. To improve the
performance of the existing applications and to enable the
applicability of video compression to new real-time applications,
recently, a new international standard for video compression is
developed. This new standard, offering significantly better video
compression efficiency than previous video compression standards,
is developed with the collobaration of ITU and ISO standardization
organizations. Hence it is called with two different names, H.264
and MPEG4 Part 10.
The video compression efficiency achieved in H.264 standard is
not a result of any single feature but rather a combination of a
number of encoding tools. As it is shown in the top-level block
diagram of an H.264 Encoder in Figure 1, one of these tools is the
Context Adaptive Variable Length Coding (CAVLC) algorithm
used in the baseline profile of H.264 standard [1, 2, 3].
CAVLC algorithm is used to encode transformed and quantized
4x4 residual luminance and chrominance blocks. CAVLC algo-
rithm uses multiple VLC tables for a syntax element. It adapts to
the current context by selecting one of the VLC tables for a given
syntax element based on the already transmitted syntax elements.
This context-adaptivity provides better entropy coding performance
in comparison to an entropy coding algorithm using a single VLC
table. In addition, CAVLC algorithm improves the entropy coding
performance by using coding techniques such as run-level and
trailing ones coding that are designed to take advantage of the
characteristics of the 4x4 blocks of transformed and quantized
residual data [2, 3, 4].
H.264 CAVLC algorithm achieves better coding results than the
entropy coding algorithms used in the previous video compression

Figure 1 H.264 Encoder Block Diagram

standards. This coding gain, however, comes with an increase in
encoding complexity which makes it an exciting challenge to have
a real-time implementation of this algorithm.
In this paper, we present a high performance and low power hard-
ware architecture for real-time implementation of H.264 CAVLC
algorithm. This hardware is designed to be used as part of a com-
plete low power H.264 video coding system for portable applica-
tions. The proposed architecture is implemented in Verilog HDL.
The Verilog RTL code is verified to work at 76 MHz in a Xilinx
Virtex II FPGA and it is verified to work at 233 MHz in a 0.18µ
ASIC implementation. The FPGA and ASIC implementations can
code 22 and 67 VGA frames (640x480) per second respectively.
A hardware architecture for H.264 CAVLC algorithm similar to
our design is presented in [5]. However, that architecture doesn’t
have the low-power techniques we have used in our design.
The rest of the paper is organized as follows. Section II gives a
brief overview of the CAVLC algorithm used in H.264 standard.
Section III describes the proposed architecture in detail. The im-
plementation results are given in Section IV. Finally, Section V
presents the conclusions.

2. H.264 CAVLC ALGORITHM OVERVIEW
CAVLC algorithm is used to encode transformed and quantized
residual luminance and chrominance blocks in a macroblock in the
order shown in Figure 2. Block -1 is formed by the DC coefficients
of 4x4 luminance blocks only for the macroblocks that are coded in
16x16 Intra Mode. Blocks 16 and 17 are formed by the DC coeffi-
cients of 4x4 chrominance blocks for all the macroblocks. All the
transformed and quantized 4x4 and 2x2 blocks for a macroblock
are given as inputs to CAVLC algorithm in the order shown in
Figure 2. CAVLC algorithm processes each 4x4 block in zig-zag

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/11738863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 2 Coding Order of Blocks in a Macroblock

scan order and each 2x2 block in raster scan order. It encodes each
block in the following five steps [2, 3, 4].

Step 1. It generates coeff_token, the variable length code that en-
codes both the number of non-zero coefficients (TotalCoeff) and
the number of trailing ±1 values (TrailingOnes) in a block.
Since the highest non-zero coefficients after the zig-zag scan are
often sequences of ±1, CAVLC algorithm encodes the number of
high-frequency ±1 coefficients (TrailingOnes) in coeff_token.
Since the number of non-zero coefficients in neighbouring blocks
is correlated, CAVLC algorithm generates coeff_token for a block
context adaptively. It uses one of the four different VLC tables for
generating the coeff_token for a block based on the number of non-
zero coefficients in the neighbouring blocks as follows. It first
calculates a parameter nC based on the number of non-zero coeffi-
cients in the left-hand and upper previously coded blocks, nA and
nB respectively. If upper and left blocks nB and nA are both avail-
able (i.e. in the same coded slice), nC = round ((nA + nB) /2). If
only the upper is available, nC = nB; if only the left block is avail-
able, nC = nA; if neither is available, nC = 0. As a special case, for
2x2 dc chroma blocks, nC is always set to -1. It, then, selects the
VLC table that will be used for generating the coeff_token based
on the value of nC as shown in Table 1.

Table 1

nC VLC Table for coeff_token
0,1 Table 1
2,3 Table 2
4,5,6,7 Table 3
8 or above Table 4

Step 2. It encodes the sign of each TrailingOne with a single bit in
reverse order starting with the highest-frequency TrailingOne.

Step 3. It encodes the level (sign and magnitude) of each remaining
non-zero coefficient in the block in reverse order starting with the
highest frequency coefficient and working back towards the DC
coefficient. The codeword for a level consists of a prefix and a
suffix. Since the magnitude of non-zero coefficients tends to be
larger near the DC coefficient and smaller towards the higher fre-
quencies, CAVLC algorithm adapts the suffix length for the level
parameter depending on recently-coded level magnitudes. It sets
the suffix length for the first level, except in some special cases, to
0. It then increments the current suffix length, if the magnitude of
the current level is larger than a predefined threshold for this suffix
length. CAVLC algorithm generates the code length and the code-
word for the current level based on its suffix length. When the
suffix length for a level is 0, its codeword does not include a suffix.
Otherwise, the codeword for the level includes a suffix. The code-

word for a level always includes a prefix, but the prefix for a level
is generated using different equations in the two cases; when the
suffix length for the level is 0 versus when the suffix length for the
level is greater than 0 [4].

Step 4. It encodes the total number of zeros before the last non-zero
coefficient (Total_Zeros) using a VLC table.

Step 5. It encodes the number of zeros preceding each non-zero
coefficient (Run_Before) in reverse order starting with the highest-
frequency coefficient. Since after transformation and quantization,
blocks typically contain mostly zeros, CAVLC algorithm uses run-
level coding to represent strings of zeros compactly.

3. PROPOSED HARDWARE ARCHITECTURE
The proposed hardware architecture for H.264 CAVLC algorithm
is shown in Figure 3. The proposed hardware performs context-
adaptive variable length coding for a macroblock, in the worst case,
in 2880 clock cycles. The worst-case occurs for the macroblocks
that have no zero coefficients and trailing ±1 coefficients. There-
fore, the proposed hardware can process 30 VGA frames per sec-
ond at 104 MHz. In the following subsections, we will explain the
hardware architecture in detail.

3.1 VLC Counters and Reverse Zig-zag Ordering

CAVLC hardware contains a number of counters and register files
to store the information for a block that will be encoded by variable
length codes. Non-Zero Coefficients counter is used to store the
number of non-zero coefficients (TotalCoeff). TrailingOnes
counter is used to store the number of trailing ±1 values (Trailin-
gOnes). TotalZeros counter is used to store the total number of
zeros before the last non-zero coefficient (Total_Zeros). Level
counter is used to store the number of non-zero coefficients other
than the TrailingOnes. TrailingOnes register file is used to store the
sign of each TrailingOne. Level register file is used to store the
level (sign and magnitude) of each non-zero coefficient other than
the TrailingOnes. RunBefores register file is used to store the num-
ber of zeros preceding each non-zero coefficient.
CAVLC hardware begins the encoding for a 4x4 block by reading
the coefficients from the input buffer in reverse zig-zag order. In
each cycle, it reads one coefficient from the input buffer, analyzes
the coefficient and updates the information stored in the related
counter and register file. At the end of this process, the counters
and register files mentioned above contain all the information for
the current block that will be encoded with variable length codes.
Reverse zig-zag scanning enables us to determine the necessary
information for encoding a 4x4 block by reading and analyzing
each coefficient only once. This reduces the power consumption by
reducing the switching activity on the input buffer address and data
signals.
It takes 16 cycles to read the coefficients and store the correspond-
ing information in the counters and register files for each 4x4 lumi-
nance block in the macroblocks that are not coded in 16x16 Intra
Mode. The same process takes 16 cycles for block -1 and 15 cycles
for the other 4x4 luminance blocks in the macroblocks that are
coded in 16x16 Intra Mode. Because DC coefficients in 4x4 lumi-
nance blocks in these macroblocks are coded in block -1. The same
process takes 4 cycles for 2x2 chrominance blocks 16 and 17, and
15 cycles for the 4x4 chrominance blocks in all the macroblocks
due to the same reason.

Figure 3 Context Adaptive Variable Length Coder Hardware Architecture

3.2 CAVLC Hardware for Generating Coeff_Token

CAVLC hardware generates coeff_token, the variable length code
that encodes both the number of non-zero coefficients (TotalCoeff)
and the number of trailing ±1 values (TrailingOnes) in a block, by a
VLC table lookup based on the values of Non-Zero Coefficients
and TrailingOnes counters. CAVLC hardware uses one of the four
different VLC tables for generating the coeff_token for a block
based on the number of non-zero coefficients in the neighbouring
blocks. Coeff_Token Table Selection Unit (CT_TSU) shown in
Figure 3 determines the VLC table that will be used for the current
block as follows.
CT_TSU first calculates the parameter nC based on the number of
non-zero coefficients in the left-hand and upper previously coded
blocks, nA and nB respectively. It uses three internal SRAMs and
six internal register files to determine the number of non-zero coef-
ficients in the left-hand and upper previously coded neighbouring
blocks of a 4x4 block in a frame. The organization of the lumi-
nance and chrominance components of the macroblocks in a CIF
frame is shown in Figure 4. The blocks within a macroblock are
organized and numbered as shown in Figure 2.
CT_TSU uses three internal register files to store the number of
non-zero coefficients in each 4x4 block in a macroblock; one for
luminance, one for chrominance Cr, and one for chrominance Cb
component. After CT_TSU processes a 4x4 block in the current
macroblock, it updates the number of non-zero coefficients entry
for this block in the corresponding register file. When it is later
processing a new 4x4 block (cblk), if the neighbouring 4x4 block
(nblk) of cblk is in the same macroblock as cblk, CT_TSU deter-
mines the number of non-zero coefficients in nblk using the corre-
sponding register file entry.
CT_TSU uses three internal register files to store the number of
non-zero coefficients in the blocks 5, 7, 13 and 15 of the previously
coded macroblock; one for luminance, one for chrominance Cr,
and one for chrominance Cb component. It uses this data to deter-
mine the number of non-zero coefficients in the left-hand previ-
ously coded neighbouring block of the blocks 0, 2, 8 and 10 in the
current macroblock.
CT_TSU uses three internal SRAMs to store the number of non-
zero coefficients in the blocks 10, 11, 14, and 15 of the macrob-
locks in the previously coded macroblock row of the frame; one for
luminance, one for chrominance Cr, and one for chrominance Cb
component. It uses this data to determine the number of non-zero
coefficients in the upper previously coded neighbouring block of
the blocks 0, 1, 4 and 5 in the current macroblock.

We have disabled the SRAMs when they are not accessed in
order to reduce power consumption in CT_TSU. In addition, instead

 (a) Luma (b) Chroma Cb and Cr

Figure 4 Macroblocks in a CIF Frame

of using one large external SRAM, we have used three internal
SRAMs and six internal register files to store the number of non-
zero coefficients in previously coded blocks in order to further re-
duce power consumption in CT_TSU. This is achieved in two ways.
First, instead of accessing one large external SRAM, one internal
SRAM and two register files are used for a block. The other internal
SRAMs and register files are not accessed saving power. Second,
instead of using complex address generation logic for an external
SRAM, much simpler address generation logic is used for the inter-
nal SRAMs and register files. The blocks in the same locations of
different macroblocks write to and read from the same SRAM and
register file locations. So, if the left-hand and upper previously
coded neighbouring blocks of a 4x4 block are available, the read
addresses for the number of non-zero coefficients in these blocks are
generated by a table lookup based on its macroblock and block
number.
Consequently, CT_TSU calculates the parameter nC for the current
block in just one cycle. It then selects the VLC table for the co-
eff_token based on the value of nC as shown in Table 1. It then
generates coeff_token for the current block by a table lookup to the
selected VLC table based on the values of Non-Zero Coefficients
and TrailingOnes counters.

3.3 CAVLC Hardware for Encoding Level

The codeword for a level consists of a prefix and a suffix. Suffix
length generator shown in Figure 3 determines the suffix length for
the current level based on the magnitude of previously coded lev-
els. The prefix-suffix datapath and control unit shown in Figure 3
generate the code length and the codeword for the current level
based on the suffix length provided by the suffix length generator.
The prefix for a level is generated using different equations when

Figure 5 Datapath for Coding Level Prefix and Level Suffix

the suffix length for the level is 0 versus when the suffix length for
the level is greater than 0. The equations used in both cases are
given in the Joint Model (JM) Reference Software Version 8.2 [4].
We have proposed the dual purpose prefix-suffix datapath shown
in Figure 5 to implement these equations. In each case, the prefix-
suffix control unit sends the appropriate control signals to the
datapath. In the worst case, our suffix length generator, prefix-
suffix datapath and control unit take 6 cycles to generate the code
length and codeword for a level.

3.4 VLC Packer

Since CAVLC generates variable length codewords, consecutive
codewords should be packed into fixed size words before being
written to output register file. The datapath shown in Figure 6 is
used to pack the variable length codewords into 32-bit words [6].
When a new codeword is sent to the VLC packer, the barrel shifter
places this codeword next to the end of the bitstream stored in the
32-bit lower register. If the length of the resulting bitstream is lar-
ger than 31, the carry-out bit of the adder in the datapath is set to
one. This indicates that a 32-bit bitstream is packed into the upper
register. Thus, VLC packer outputs the content of the upper regis-
ter, and it moves the content of the lower register into the upper
register. This process is repeated for each codeword.

4. IMPLEMENTATION RESULTS
The proposed architecture is implemented in Verilog HDL. The
implementation is verified with RTL simulations using Mentor
Graphics ModelSim SE. The Verilog RTL is then synthesized to a
2V8000ff1157 Xilinx Virtex II FPGA with speed grade 5 using
Mentor Graphics Leonardo Spectrum [7]. The resulting netlist is
placed and routed to the same FPGA using Xilinx ISE Series 5.2i.
The FPGA implementation including input and output register files
as well is placed and routed at 76 MHz under worst-case PVT con-
ditions. Since, in the worst-case, it takes 2880 clock cycles to proc-
ess a MB, the FPGA implementation can code 22 VGA frames
(640x480) per second. The FPGA implementation is verified to
work in a Xilinx Virtex II FPGA on an Arm Versatile Platform
development board.

Figure 6 VLC Packer Datapath

The FPGA implementation including input and output register files
as well used the following FPGA resources; 3946 Function Genera-
tors, 1973 CLB Slices, 719 Dffs /Latches, and 6 Block RAMs, i.e.
4.23% of Function Generators, 4.23% of CLB Slices, 0.75% of Dffs
/Latches, and 3.57% of Block RAMs. The FPGA implementation
excluding input and output register files used the following FPGA
resources; 3849 Function Generators, 1925 CLB Slices, 719 Dffs
/Latches, and 6 Block RAMs, i.e. 4.13% of Function Generators,
4.13% of CLB Slices, 0.75% of Dffs /Latches, and 3.57% of Block
RAMs.
The Verilog RTL is also synthesized to Virtual Silicon UMC 0.18µ
standard-cell library using Synopsys Design Compiler. The netlist
excluding input and output register files has an area of 32K gates.
The netlist including input and output register files has an area of
96K gates and it is verified to work at 233 MHz under worst-case
PVT conditions with post synthesis simulations. This 0.18µ ASIC
implementation can code 67 VGA frames (640x480) per second.

5. CONCLUSIONS
In this paper, we presented a high performance and low power
hardware architecture for real-time implementation of H.264
CAVLC algorithm. This hardware is designed to be used as part of
a complete low power H.264 video coding system for portable
applications. The proposed architecture is implemented in Verilog
HDL. The Verilog RTL code is verified to work at 76 MHz in a
Xilinx Virtex II FPGA and it is verified to work at 233 MHz in a
0.18µ ASIC implementation. The FPGA and ASIC implementa-
tions can code 22 and 67 VGA frames (640x480) per second re-
spectively.

REFERENCES
[1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra
“Overview of the H.264/AVC Video Coding Standard”, IEEE Trans.
on Circuits and Systems for Video Technology vol. 13, no. 7, pp.
560–576, July 2003
[2] I. Richardson, H.264 and MPEG-4 Video Compression, Wiley,
2003
[3] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG,
Draft ITU-T Recommendation and Final Draft International Stan-
dard of Joint Video Specification, ITU-T Rec. H.264 and ISO/IEC
14496-10 AVC, May 2003
[4] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG,
Joint Model (JM) Reference Software Version 8.2,
http://bs.hhi.de/suehring/
[5] Y. W. Huang, B. Y. Hsieh, T. C. Chen, and L. G. Chen, “Hard-
ware Architecture Design for H.264/AVC Intra Frame Coder”,
Proc. of IEEE ISCAS, 2004
[6] V. Bhaskaran and K. Konstantinides, Image and Video Com-
pression Standards: Algorithms and Architectures, Kluwer Aca-
demic Publishers, 2nd Edition, 1997

