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Abstract

Typically, economic situations featuring a large number of agents are not modelled with
a finite normal form game, rather by a non-atomic game. Consequently, the possibility of
strategic interaction may be completely ignored.

In order to restore strategic interaction among agents we propose a refinement of Nash
equilibrium, strategic equilibrium, for non-atomic games with a continuum of agents, each
of whose payoff depends on what he chooses and a societal choice.

Given a non-atomic game, we consider a perturbed game in which every player believes
that he alone has a small, but positive, impact on the societal choice. A strategy profile is a
strategic equilibrium if it is a limit point of a sequence of Nash equilibria of games in which
each player’s belief about his impact on the societal choice goes to zero. After proving the
existence of strategic equilibria, we show that every strategic equilibrium must be a Nash
equilibrium of the original non-atomic game, thus, our concept of strategic equilibrium
is indeed a refinement of Nash equilibrium. Next, we show that the concept of strategic
equilibrium is the natural extension of Nash equilibrium in finite normal form games,
to non-atomic games: That is, given any finite normal form game, we consider its non-
atomic version, and prove that a strategy profile, in the non-atomic version of the given
finite normal form game, is a strategic equilibrium if and only if the associated strategy
profile in the finite form game is a Nash equilibrium. Finally, applications of strategic
equilibrium is presented examples in which the set of strategic equilibria, in contrast with
the set of Nash equilibria, does not contain any implausible Nash equilibrium strategy
profiles. These examples are: a game of proportional voting, a game of allocation of
public resources, and finally non-atomic Cournot oligopoly.
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valuable advice and support. We thank Pedro Amaral, Kemal Badur, Han Ozsoylev, and especially David
Schmeidler for helpful comments and suggestions. We benefited from discussions in the Mathematical Economics
Workshop at the University of Minnesota. All remaining errors are ours.
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1 Introduction

Typically, economic situations featuring a large number of agents are not modelled with a
finite normal form game, rather by a non-atomic game. Consequently, the strategic behavior
that agents are supposed to demonstrate in the economic situation modelled, may be ignored,
possibly resulting in agents being indifferent between any of their actions.

In this paper, we propose the concept of strategic equilibrium, an equilibrium concept for
non-atomic games in which the payoff of each agent depends on what he chooses and a societal
choice. The equilibrium notion we present is a refinement of Nash equilibrium in non-atomic
games, and is designed to rule out Nash equilibria that are due to degenerate indifference
relations in agents’ best response correspondences which arise because of their inability to
affect the societal choice. We imagine a situation in which any player faced with a given Nash
equilibrium would ask himself: Would I play my part of the Nash equilibrium if I were to have
a very small, yet positive, impact on the societal choice? We argue that if the answer is no for
a positive fraction of the players, then that Nash equilibrium is not plausible.

As an example consider a game where agents’ utility depends only on the societal choice.
The societal choice is, by definition, the average of each player’s choice, and therefore, an agent’s
action does not affect the societal choice and thus cannot affect his own payoff. Thus, any agent
is indifferent between any of his choices, and as a consequence any strategy profile, plausible or
not, is a Nash equilibrium.

Although admittedly extreme, the previous example provides a good illustration of a situa-
tion in which the possibility of strategic interaction between players is completely absent due to
fact that each player is non-atomic. In order to restore the strategic interaction in non-atomic
games, for each such game, we consider a perturbed game in which every player believes that he
alone has an ε, a very small yet positive, impact on the societal choice.1 In such an ε-perturbed
game, every player has an impact on the societal choice, which will be reflected in his choice.
Here, it makes sense for the player to think strategically: he can change the societal choice
in a neighborhood around its value implied by the choice of the others, and so his choice will
depend on what the others do. Another interpretation of the strategic interaction dominant in
the ε-perturbed game is that an agent would think that he alone can manipulate an ε-mass of
players, i.e. that he is a dictator for a society of ε relative size.

Formally, for any ε > 0, we define an ε-strategic equilibrium to be a Nash equilibrium of the
ε−perturbed game. The set of strategic equilibria will be the set of limit points of a sequence
of ε-strategic equilibria, where ε, everybody’s impact on the societal choice, goes to 0. After
proving the existence of strategic equilibria under standard assumptions (e.g., Rath [11]), we
show that every strategic equilibrium must be a Nash equilibrium of the original non-atomic
game, and so our concept of strategic equilibrium is indeed a refinement of Nash equilibrium.

As in Selten [13], our equilibrium notion is designed to rule out non-robust indifference
relations in best response correspondences. However, unlike his and many other refinements
of Nash equilibria, our concept seeks to eliminate only those indifference relations in agents’
best response correspondences that are due to the fact that in a non-atomic game each agent is
atomless. For example, in a symmetric game2 where agents’ payoffs depend only on a societal

1It needs to be pointed out that in the ε-perturbed game agents are not rational, because an agent thinks
that he alone has an ε impact on the societal choice, and does not foresee that other players have the same
consideration as well.

2Symmetry is given in the following fashion: Agents have the same action space, and given any strategy
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choice, any strategy profile is a Nash equilibrium. Obviously, in a game where agents have
a common interest, every agent choosing an action which results in a least preferred strategy
profile for each player, is an implausible Nash equilibrium. Moreover, such a Nash equilibrium
allocation is not Pareto optimal in a game where all the agents have a common interest. On
the other hand, in symmetric finite normal form games, Nash equilibria and the set of Pareto
optimal strategy profiles3 coincide. Similarly, in a symmetric non-atomic game where agents
have a common interest, the set of strategic equilibria is equal to the set of Pareto optimal
strategy profiles.4

In order to study the strategic interaction under strategic equilibrium, we consider any
finite normal form game, and formulate its associated non-atomic game. Then, we prove that
a strategy profile, in the non-atomic version of the given finite normal form game, is a strategic
equilibrium if and only if the associated strategy profile in the finite normal form game is a
Nash equilibrium.

This result confirms that Nash equilibrium in finite normal form games and Nash equilibrium
in non-atomic games are fundamentally two different equilibrium notions, in the sense that
the latter does not possess the “strategic interaction property” of the former. Because of
that observation, we argue that the concept of Nash equilibrium in non-atomic games is not
the plausible version of the Nash equilibrium in finite normal form games, and the strategic
equilibrium is the extension of Nash equilibrium in finite normal form games to non-atomic
games. Consequently, we stress that strategic equilibrium does not rule out Nash equilibria
which are due to indifference relations in best responses because of “the individual deviation
property” of Nash equilibrium. Let us remind the reader that we rule out the Nash equilibria
which are due to indifference relations in best responses because of each agent being atomless.

To see an easy example without going into the formalities, consider a finite normal form
game with 2 positions. Each agent in one of those positions is allowed to choose a strategy
in {1, 2} and the payoff to each of the agent is the average choice. It is obvious that the
unique Nash equilibrium strategy profile of the finite normal form game is one where each
agent chooses 2. In the non-atomic version of that finite normal form game, there are two
non-atomic populations from which an agent to sit in one of those positions is chosen. Since all
of the agents are of measure zero, any strategy profile is a Nash equilibrium of that non-atomic
game. However, the unique strategic equilibrium of the same non-atomic game is where almost
every player chooses 2.

Although the formulation and definition of our concept might be similar to one of various
stability and robustness refinements, the notion of strategic equilibrium is not a refinement
aimed to rule out non-dynamically-stable or non-robust Nash equilibrium strategy profiles. In
fact, the discussion in the previous paragraphs displays that there are dynamically non-stable
Nash equilibria which are strategic. More particularly, because of our equivalence result between
strategic equilibria and Nash equilibria of finite games, a mixed strategy of a finite normal form
coordination game would be a strategic equilibrium in the non-atomic version of the same
finite normal form coordination game. To see that consider a non-atomic coordination game.

profile, every agent gets the same payoff.
3A strategy profile σ is Pareto optimal if there is no σ′ satisfying ui(σ′) > ui(σ) for every player i.
4The reason for this point is that when any agent is given some influence on the societal choice, they no

longer will be indifferent among their choices. And because of the structure of symmetric games, his optimal
choice will coincide with the societal optimal one. Hence, in such games the set of strategic equilibria is equal
to the set of Pareto optimal strategy profiles.
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Suppose that each agent in [0,1] has two possible choices, A or B. Agent’s payoff when he
chooses A (B respectively), is the measure of the players who have chosen A (B respectively).
There are three Nash equilibria in this game: Almost every player choosing A; almost every
player choosing B; and half of the agents choosing A and the other half B. Note that the last
equilibrium is not dynamically-stable, and corresponds to the mixed strategy equilibrium of a
finite normal form coordination game. Nonetheless, in this non-atomic coordination game the
set of strategic equilibria is equal to the set of Nash equilibria. In particular, to see why the
third Nash equilibrium is strategic consider the following: no matter how much weight an agent
is given to affect the societal choice, still he is indifferent between A and B, as the other people
are separated equally between those choices.

We apply the notion of strategic equilibrium to a game of proportional voting featuring finite
number of political parties. After demonstrating that any voting profile is a Nash equilibrium
of that game, we show that the unique strategic equilibrium is a strategy profile under which
every agent votes for his most favored party. In the formulation of this game, it is assumed
that agents’ preferences are continuous in the societal choice. More specifically, each agent
has a strict preference ordering on the finite set of political parties, represented by a utility
function. A mixed strategy profile in the voting game induces a probability distribution on the
set of parties, and the payoff of an agent is the expected utility he gets under that probability
distribution. The same game can be used to the analyze the allocation of public resources on
a finite set of possible projects. With that interpretation, all the implausible Nash strategy
profiles are ruled out, and we are left with one in which every agent supports the project he
favors the most.

Another application of the strategic equilibrium is done to explain strategic voting. A
non-atomic population of agents is to determine which point in an n-dimensional simplex to
choose. Given a strategy profile consisting of each agent’s vote in the n-dimensional simplex, the
societal choice is given by the average choice. 5 We show that under some regularity conditions
to eliminate uninteresting cases, truthful voting profile is not a strategic equilibrium.

Finally, the last application we provide is done in Cournot oligopoly setup. We formulate
the non-atomic Cournot oligopoly, and show that the set of strategic equilibria contains only
symmetric Nash equilibria. Technically, this example is of interest as it displays the non-
linearities in an agent’s individual maximization problem in the perturbed game.

Section 2 gives the formal definitions of and the assumptions on non-atomic games. In Sec-
tion 3 we define the concept of strategic equilibrium and prove its existence. We go on to show
that any strategic equilibrium is a Nash equilibrium of the original non-atomic game. Section
4 studies the strategic interaction under strategic equilibrium. Finally, Section 5 demonstrates
the applications of this refinement.

2 Non-Atomic Games

Let A be a non-empty, compact metric space of actions and M be the set of Borel probability
measures on A endowed with the weak convergence topology. By Parthasarathy [10, Theorem
II.6.4], it follows that M is a compact metric space. We use the following notation: we write
µn ⇒ µ whenever {µn}∞n=1 ⊆M converges to µ and ρ denote the Prohorov metric on M, which
is known to metricize the weak convergence topology. We let dA denote the metric on A.

5Again in this setup, any strategy profile is a Nash equilibrium, and that is not true for strategic equilibrium.
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Let U denote the space of continuous utility functions u : A ×M → R endowed with the
supremum norm. The set U represents the space of players’ characteristics ; it is a complete,
separable metric space.

A game with a continuum of players is characterized by a measurable function U : [0, 1] → U ,
where the unit interval [0, 1] is endowed with the Lebesgue measure λ on the Lebesgue measur-
able sets and represents the set of players. We represent such game by G = (([0, 1], λ), U,A).

A strategy is a measurable function f : [0, 1] → A. A pair (U, f), where f is a strategy,
induces a probability measure on U × A denoted by λ ◦ (U, f)−1.

Given a Borel probability measure τ on U × A, we denote by τU and τA the marginals of
τ on U and A respectively. The expression u(a, τ) ≥ u(A, τ) means u(a, τ) ≥ u(a′, τ) for all
a′ ∈ A.

Given a game µ = λ ◦ U−1, a Borel probability measure τ on U × A is an equilibrium
distribution for µ if

1. τU = µ, and

2. τ({(u, a) ∈ U × A : u(a, τA) ≥ u(A, τA)}) = 1.

We will use the following notation: Bτ = supp(τ) ∩ {(u, a) ∈ U × A : u(a, τA) ≥ u(A, τA)}.
Note that Bτ is closed, and so a Borel set; hence τ(Bτ ) is well defined. Also, if (u, a) belong
to Bτ , then a maximizes the function ã 7→ u(ã, τA). Thus, we are implicitly assuming that
the choice of any player does not affect the distribution of actions. It is in this sense that the
notions of this section describe a game with a continuum of players.

3 Strategic equilibria

As we stressed in the introduction, we wish to consider those Nash equilibria that can be seen
as a limit of equilibria in games in which players have a small, yet positive, impact in the
societal choice. Clearly, the reason why each player t does not have any impact on the societal
choice is because λ({t}) = 0. The way we give players weight is by considering the following
measures: For each ε > 0, and t ∈ [0, 1], we define a measure λt,ε in the following way: for all
Borel-measurable set B ⊆ A,

λt,ε(B) =

{
ε + (1− ε)λ(B) if t ∈ B
(1− ε)λ(B) otherwise

Thus, in λt,ε player t is an atom: In the game described by λt,ε, agent t believes that his choices
can have an ε impact on the societal choice. The following Lemma makes this precise.

Lemma 1 For any measurable f : [0, 1] → A,
∫

fdλt,ε = εf(t) + (1− ε)

∫
fdλ.

Proof. If f is simple, f =
∑J

j=1 ajχAj
, with t ∈ A1, then

∫
fdλt,ε = εa1 + (1− ε)a1λ(A1) + (1− ε)

J∑
j=2

ajλ(Aj)

= εf(t) + (1− ε)

∫
fdλ.
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The general case follows from this by a limit argument.
Given a strategy f , y ∈ A, and t ∈ T , let f \t y denote the strategy g defined by g(t) = y,

and g(t̃) = f(t̃), for all t̃ 6= t.

Lemma 2 For any strategies f and g, a ∈ A and t ∈ T , if λ◦f−1 = λ◦g−1 then λt,ε◦(f\ta)−1 =
λt,ε ◦ (g \t a)−1.

Proof. Let B ⊆ A be measurable. Then,

λt,ε ◦ (f \t a)−1 =

{
ε + (1− ε)λ ◦ f−1(B) if a ∈ B
(1− ε)λ ◦ f−1(B) otherwise.

=

{
ε + (1− ε)λ ◦ g−1(B) if a ∈ B
(1− ε)λ ◦ g−1(B) otherwise.

= λt,ε ◦ (g \t a)−1(B).

Thus, λt,ε ◦ (f \t a)−1 = λt,ε ◦ (g \t a)−1.
Let τ be a distribution on A. Then there exist a measurable function f : [0, 1] → A such

that τ = λ ◦ f−1. Given ε > 0, let for all t ∈ [0, 1] and a ∈ A, define

Uε(t)(a, τ) = U(t)(a, λt,ε ◦ (f \t a)−1).

By Lemma 2, Uε is well defined. We then define the ε−perturbed game Gε of G as Gε =
([0, 1], A, Uε). The ε−perturbed game has the same players, and actions spaces as the original
game G, but differs from this because in Gε every players believes that he has an ε impact on
the distribution of actions.

We say that a distribution τ ∗ on U × A is a strategic equilibrium distribution of G if there
exists a sequence {εk}k∈N ⊆ R++ decreasing to zero and a sequence {τ ∗k}k∈N converging to τ ∗

such that τ ∗k is an equilibrium distribution of Gεk
, for every k ∈ N.

Conceptually, our approach is in the same spirit as Selten [13]. Given ε ∈ (0, 1] and a
non-atomic game, we define its ε-perturbed game, a modified version of the original non-atomic
game, in which every player thinks he alone has ε impact on the distribution of actions. Then,
an ε-strategic equilibrium distribution is an equilibrium of the ε-game. Finally, a distribution is
a strategic equilibrium distribution, if it is a limit point of a sequence of ε-strategic equilibrium
distributions, where ε > 0 and ε ↘ 0.

Theorem 1 is on the existence of a strategic equilibrium distribution.

Theorem 1 Let G ∈ G be a normal form game. Then, G has a strategic equilibrium distribu-
tion.

Proof. Note first that if G = ([0, 1], A, U), G̃ = ([0, 1], A, V ) and U = V a.e., then τ is an
equilibrium distribution of G if and only if τ is an equilibrium equilibrium of G̃. Hence, under
the same hypothesis, τ is a strategic equilibrium distribution of G if and only if τ is a strategic
equilibrium distribution of G̃.

Let V : [0, 1] → U be Borel measurable satisfy V = U a.e. By the above, it is enough to
show that G̃ = ([0, 1], A, V ) has a strategic equilibrium.

Let ε > 0. For any t ∈ [0, 1], define g(t) : A×M→ R by g(t)(a, ν) = V (t)(a, λε,t ◦ f), with
ν = λ ◦ f−1 and Ḡ = ([0, 1], A, g). Thus, τ is an equilibrium distribution of G̃ε if and only if τ
is an equilibrium distribution of Ḡ. We claim that that g : [0, 1] → U is Borel measurable and
g(t) is continuous for all t ∈ [0, 1].
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Claim 1 The function g(t) : A×M→ is continuous for all t ∈ [0, 1].

Proof. Let a ∈ A and τ ∈ M, and let {ak} ⊆ A and {τk} ⊆ M be such that ak → a
and τk ⇒ τ . Since A is a complete metric space, by Skorokhod’s Theorem (see Hildenbrand
[4, Theorem 37, p. 50]), there exist measurable functions f and fk, k ∈ N, of [0, 1] into A
such that τ = λ ◦ f−1, τk = λ ◦ f−1

k and limk fk = f a.e. in [0, 1]. Thus, g(t)(ak, τk) =
V (t)(ak, λε,t ◦ (fk \t ak)

−1), and so it is enough to show that λε,t ◦ (fk \t ak)
−1 ⇒ λε,t ◦ (f \t a)−1.

Let h : A → R be continuous. Then, by the Change-of-variable formula (see Hildenbrand
[4, Theorem 36, p. 50]) and Lemma 1, one obtains

∫

A

hdλε,t ◦ (fk \t ak)
−1 =

∫

[0,1]

h ◦ (fk \t ak)dλε,t =

εh(ak) + (1− ε)

∫

[0,1]

h ◦ fkdλ =

εh(ak) + (1− ε)

∫

A

hdλ ◦ f−1
k →

εh(a) + (1− ε)

∫

A

hdλ ◦ f−1 =
∫

A

hdλε,t ◦ (f \t a)−1.

Thus, indeed we have λε,t ◦ (fk \t ak)
−1 ⇒ λε,t ◦ (f \t a)−1.

Claim 2 The function g : [0, 1] → U is Borel measurable.

Proof. Note first that V(a,τ) defined by t 7→ V (t)(a, τ) is Borel measurable for all a and τ .
This follows because V(a,τ) = π(a,τ) ◦ V , where π(a,τ)(u) = u(a, τ) is continuous.

This fact implies that g(a,τ) is Borel measurable for all a and τ , as follows: note that
λε,t ◦ (f \t a)−1 = λε,t̃ ◦ (f \t̃ a)−1, for any measurable f : [0, 1] → A, a ∈ A and t, t̃ ∈ [0, 1].
Thus, we can write g(a,τ) = V(a,λε,0◦(f\0a)−1) if τ = λ ◦ f−1, and so g(a,τ) is Borel measurable.
This in turn implies that g is Borel measurable.

By Theorem 1 in Mas-Colell [7], it follows that Ḡ, and so G̃ε, has an equilibrium distribution.
To finish the proof, we let τ ∗n be an equilibrium distribution of G̃1/n. Since the set of

probability measures τ on U × A with the property that τU = λ ◦ U−1 is compact, there exists
a converging subsequence. Hence, its limit point is a strategic equilibrium distribution of G̃.

We show that any strategic equilibrium is a Nash equilibrium.

Theorem 2 Let G ∈ G. Then, every strategic equilibrium distribution of G is an equilibrium
distribution of G.

Proof. Let τ ∗ be a strategic equilibrium distribution, and let {εk} and {τ ∗k} be such that
εk ∈ R++, limk εk = 0, τ ∗k converges to τ ∗, and τ ∗k is a Nash equilibrium distribution of Gεk

, for
all k ∈ N. Then, there exist measurable functions f and fk, k ∈ N, of [0, 1] into A such that
τA = λ ◦ f−1, τA,k = λ ◦ f−1

k and limk fk = f a.e. in [0, 1].
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We claim that λεk,t ◦ (f−1
k \t a) ⇒ τ for all t ∈ [0, 1] and a ∈ A. To see this, let h : A → R

be continuous. Then,
∫

A

hdλεk,t ◦ (f−1
k \t a) =

∫

[0,1]

h ◦ (fk \t a)dλεk,t =

εkh(a) + (1− εk)

∫

[0,1]

h ◦ fkdλ →=

∫

[0,1]

h ◦ fdλ =

∫

A

hdλ ◦ f−1 =
∫

A

hdτ.

Thus, indeed we have that λεk,t ◦ (f−1
k \t a) ⇒ τ for all t ∈ [0, 1] and a ∈ A.

Following the same steps as in Carmona [3], we can show that τ ∗ is an equilibrium distri-
bution of G.

We include its proof for the sake of completeness.
Let {τn}n be a sequence of εn−equilibrium distributions, where εn ↘ 0 and let τ be such

that τn ⇒ τ . Then τA,n ⇒ τA; so, taking a subsequence if necessary, we may assume that
ρ(τA, τA,n) < 1/n.

Define, for each u ∈ U ,

βn(u) = sup
a∈A,ν∈M

{|u(a, ν)− u(a, τA)| : ρ(ν, τA) < 1/n}.

Since u is continuous on A ×M, which is compact, it follows that u is uniformly continuous.
Thus, βn(u) ↘ 0 as n →∞. We claim that βn is continuous in U .

Let η > 0. Define δ < η/2. Then if ||u − v|| < δ, we have for any a ∈ A, and ν ∈ M such
that ρ(ν, τA) < 1/n

|v(a, ν)− v(a, τA)| ≤ |v(a, ν)− u(a, ν)|+ |u(a, ν) + u(a, τA)|+
+ |v(a, τA)− u(a, τA)| < δ + βn(u) + δ,

(1)

and so βn(v) ≤ 2δ+βn(u) < η+βn(u). By symmetry, βn(u) < η+βn(v), and so |βn(u)−βn(v)| <
η. Hence, βn is continuous, as claimed.

Given the definition of βn, we have that Bεn
τn
⊆ Dn := {(u, a) : u(a, τA) ≥ u(A, τA) −

εn − 2βn(u)}. Since βn is continuous, we see that Dn is closed, and so Borel measurable.
Thus, τn(Dn) ≥ 1 − εn. Also, Dn ↘ Bτ . Hence, for fixed j ∈ N, j ≥ n, it follows that
τj(Dn) ≥ τj(Dj) ≥ 1 − εj ≥ 1 − εn, and so τ(Dn) ≥ lim supj τj(Dn) ≥ 1 − εn. Hence,
τ(Bτ ) = limn τ(Dn) = 1. Therefore, τ is an equilibrium distribution of τU .

4 Strategic interaction

As we have noted in the introduction, the concept of strategic equilibrium is the correct non-
atomic version of the Nash equilibrium in finite games. To show that formally, we will be using
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Nash’s mass action interpretation taken from his Ph.D. thesis. For any given finite normal form
game, using the mass action interpretation, we will formulate its associated non-atomic version.
In theorem 3 we will prove that a strategy profile, in the non-atomic version of the given finite
normal form game, is a strategic equilibrium if and only if the associated strategy profile in the
finite normal form game is a Nash equilibrium.

In his Ph.D. dissertation, John Nash proposed two interpretations of his equilibrium concept,
with the objective of showing how equilibrium points “(...) can be connected with observable
phenomenon.” (Nash [8, p. 21]) One interpretation is rationalistic: if we assume that players
are rational, they know the full structure of the game, the game is played just once, and there
is just one Nash equilibrium, then players will play according to that equilibrium.6

A second interpretation, which Nash names mass-action interpretation, is less demanding on
the players. In this interpretation, “[i]t is unnecessary to assume that the participants have full
knowledge of the total structure of the game, or the ability and inclination to go through any
complex reasoning processes.” (Nash [8, p. 21]) What is assumed is that there is a population of
participants for each position in the game, which will be played throughout time by participants
drawn at random from the different populations. If there is a stable average frequency with
which each pure strategy is employed by the “average member” of the appropriate population,
then this stable average frequency constitutes a Nash equilibrium.

Below we present not only a new interpretation of Nash equilibrium but also prove that the
notion of strategic equilibrium is the non-atomic extension of Nash equilibrium in finite normal
form games.

Consider a finite normal form game Γ = (N, (∆(Ai), vi)i∈N), where N = {1, . . . , n} is the set
of positions, ∆(Ai) is the set of mixed strategies over the finite action set Ai, and vi is the usual
extension to mixed strategies of the payoff function. As in Nash’s mass action interpretation,
imagine that this game is played in a large society divided in n groups, from each of which a
participant is draw at random. For concreteness, let Ti = [0, 1], and Xi = ∆(Ai), for any i ∈ N ;
a player t ∈ Ti chooses an element of ∆(Ai). From each Ti a player is selected according to the
Lebesgue measure, and so the probability that the player selected from the ith group will play
action ai ∈ Ai is

∫
Ti

xai
i . We thus define si(xi) =

∫
Ti

xi, and

ui(t, x) = vi(s1(x1), . . . , sn(xn)) =
∑
a∈A

∏
i∈N

sai
i (xi)vi(a).

We denote by G the game (Ti, Pi, ui)i∈N

Theorem 3 (x∗1, . . . , x
∗
n) is a strategic equilibrium of G if and only if (si(x

∗
i ))i=1,...,n is a Nash

equilibrium of Γ.

Proof. (Sufficiency) Let (x∗1, . . . , x
∗
n) be a strategy in G, and assume that s∗ := (s1(x

∗
1), . . . , sn(x∗n))

is a Nash equilibrium of Γ. Let i ∈ N . We have that vi(s
∗) ≥ vi(si, s

∗
−i) for all si ∈ ∆(Ai). This

implies, in particular, that vi(s
∗) ≥ vi(εx(t) + (1 − ε)s∗i , s

∗
−i) for all t ∈ Ti, and ε > 0. Hence,

(x∗1, . . . , x
∗
n) is a Nash equilibrium of Gε for all ε > 0, and so a strategic equilibrium of G.

(Necessity) Let (x∗1, . . . , x
∗
n) be a strategic equilibrium of G, and let s∗ := (s1(x

∗
1), . . . , sn(x∗n)).

We will show that for all i ∈ N , and ai ∈ Ai if sai
i (x∗i ) > 0, then ai maximizes vi(ai, s

∗
−i) in Ai.

Let i ∈ N , ai ∈ Ai. If ai does not maximize vi(ai, s
∗
−i) in Ai, then ai does not maximize

vi(ai, s
ε
−i) in Ai for all ε > 0 sufficiently small, where sε := (s1(x

ε
1), . . . , sn(xε

n)), and (xε
1, . . . , x

ε
n)

6For a formal discussion of these ideas, see Aumann and Brandenburger [1] and the Nobel Seminar 1994 [9].
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is a Nash equilibrium of Gε, xε → x∗, and ε → 0. Hence, xε,ai

i (t) = 0 a.e. t ∈ Ti, and so
x∗ai

i (t) = 0 a.e. t ∈ Ti. Thus, sai
i (x∗i ) = 0.

5 Applications

In this section, we present examples in which the strategic equilibrium concept eliminates
implausible Nash equilibrium strategy profiles.

5.1 A Game of Proportional Voting

We argue that in a model of voting, the agents should have a small but positive impact on the
societal choice, because after all, the number voters in any election is finite. Another motivation
for insisting voters to have small but positive impact on the societal choice is that people still
vote, an observation that political economists using non-atomic games to model voting had a
very hard time to explain.

We describe a game of proportional voting where any strategy profile is a Nash equilibrium.
In particular, a Nash equilibrium strategy profile in which nobody votes or in which an agent
favoring an extreme right (left) political party votes for an extreme left (right, respectively)
political party, is an artifact of the specification of a non-atomic game, and is not due to
strategic interaction among players. On the other hand, the unique strategic equilibrium of the
same game is a strategy profile in which each player votes for his favorite political party.

The set of parties is given by M = {1, ..., m̄} and for each player t ∈ [0, 1] the strict
preference ordering on M is characterized by vt(m), t ∈ [0, 1]. That is for any m and m′ in M ,
t strictly prefers m to m′ if and only if vt(m) > vt(m

′). We should note that for the simplicity
of the argument we do not allow any agent be indifferent between any of the parties, m and m′

in M . Let m?
t be the favorite party of agent t, i.e. vt(m

?
t ) ≥ vt(m) for all m ∈ M .

The payoff of an agent t ∈ [0, 1] is given by an expected utility measure. More specifically, a
strategy profile x will induce a probability distribution on the set of parties, which is given by∫ 1

0
x(τ)dλ(τ) ∈ ∆(M). The payoff of an agent is the weighted average of the utilities she gets

from individual parties. Hence, for any m ∈ M , letting v(t) = (vm1(t), . . . , vm̄(t)), we define
the utility of agent t voting for candidate m to be

um(t, x) = ûm

(
t,

∫

[0,1]

xdλ

)
= v(t) ·

∫ 1

0

x(τ)dλ(τ).

Since an agent cannot affect the societal choice, i.e.
∫ 1

0
x(τ)dλ(τ), any strategy profile is

a Nash equilibrium. Yet, for any ε > 0, by voting to his most favorite party m?
t instead of

voting for m, m 6= m?
t , agent t would increase his expected utility by ε(vt(m

?
t ) − vt(m)) > 0.

Consequently, for any ε > 0 agent t’s best response is to vote for m?
t . Thus, the unique strategic

equilibrium profile is where each player t votes only for m?
t .

7 In this unique strategic equilibrium,

7The assumption that no agent can be indifferent between two political parties is just to simplify the ar-
gument. If we were to allow indifference relations on M by some players, the result would essentially be the
same, and would read as follows: The set of strategic equilibria will be strategy profiles in which every agent
t0 assigns zero probability to the parties m ∈ M \ M(t0), i.e. xm(t0) = 0 for all m ∈ M \ M(t0), where
M(t0) = {m̃ ∈ M : vt0(m̃) ≥ vt0(m), ∀m ∈ M}. That is, in any strategic equilibrium, any agent assigns zero
probability to the parties that are not one of his favorites.
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players vote only for the party they like the most. This result appears to be in accordance with
some evidence from proportional voting systems.

5.2 A Game of Allocation of Public Resources

A slightly modified version of the game presented in the previous section can be used in the
analysis of allocating resources on public projects.

Suppose that the set of possible public projects is M = {1, ..., m̄}. As before, for each player
t ∈ [0, 1] the strict preference ordering on M is characterized by vt(m), t ∈ [0, 1]. That is for
any m and m′ in M , t strictly prefers m to m′ if and only if vt(m) > vt(m

′). We do not allow
any agent be indifferent between any of the projects, m and m′ in M . Let m?

t be the favorite
project of agent t, i.e. vt(m

?
t ) ≥ vt(m) for all m ∈ M .

There is a fixed amount of perfectly divisible public resources, B ∈ R++, and any fraction
of that can be allocated to these projects, each of which requires the same kind of resources
to be operated. What fraction of the public resources a project gets is determined in the
following manner: Each agent t announces the weight vector, in ∆(M), with which he wants
the public resource, B, be allocated. Consequently, the resulting strategy profile x determines
a distribution p ∈ ∆(M) given by (p1, . . . , pm̄) =

∫ 1

0
x(τ)dλ(τ), and pmB of the public resources

are allocated to project m ∈ M . A public project that receives pmB resources, makes a utility
contribution of vt(m)pmB to agent t. Hence, the payoff of an agent t supporting project m is

um

(
t,

∫

[0,1]

xdλ

)
= Bv(t) ·

∫ 1

0

x(τ)dλ(τ).

This game is a scaled version of the voting game presented in the previous section. Therefore,
as shown before, any strategy profile is a Nash equilibrium. On the other hand, due to the
same arguments supplied in the previous section, the unique strategic equilibrium is a strategy
profile in which any agent t ∈ [0, 1] points to m?

t ∈ M , his favorite project.

5.3 Cournot Oligopoly

In this section we will formulate and analyze the Cournot oligopoly, and demonstrate that
strategic equilibrium strategy profiles consist of the non-symmetric Nash equilibrium strategy
profiles.

The set of agents is given by T = [0, 1] and each of them can choose a quantity x(t) ∈ [0, q̄],
where q̄ ≥ 1, and the symmetric unit cost of production for each t ∈ [0, 1] is 0. The inverse
demand is given by p = 1− ∫

xdλ.8 Hence the profit function of firm t is

Π

(
x(t),

∫
x

)
=

(
1−

∫
x

)
x(t).

The set of Nash equilibria in this game is any strategy profile x satisfying
∫

xdλ = 1. The
reason is that as long as

∫
xdλ = 1, p = 0, thus, any agent t ∈ [0, 1] would be indifferent

between any of their choices in ∈ [0, q̄], since each agent is atomless. Moreover, if q̄ = 1 the
Nash equilibrium is unique and is given by x(t) = 1 for almost every player t in [0, 1].

8Please note that for simplicity we allow for negative prices. That could be corrected by working with a
symmetric and positive unit cost.
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Given a profile x and ε > 0, the profit of t ∈ [0, 1] is

Πε

(
xt,

∫
x

)
=

(
1− (1− ε)

∫
x− εxt

)
xt.

Thus, the best response of t ∈ [0, 1] is

xε
t =

1− (1− ε)
∫

x

2ε
.

In equilibrium, ∫
xε =

∫ (
1− (1− ε)

∫
xε

2ε

)
=

1− (1− ε)
∫

xε

2ε
.

Thus,
∫

xε = 1
1+ε

which gives us (by substituting back to the best response function)

xε
t =

1

1 + ε
.

Obviously, this term converges to x?
t = 1 for almost every player t ∈ [0, 1]. Hence, the set of

strategic equilibria is given by x? : x?
t = 1 for almost every t ∈ [0, 1]. Thus, unlike for Nash

equilibrium, there a unique strategic equilibrium.
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