
Using Distinguishing and UIO Sequences

Together in a Checking Sequence

M. Cihan Yalcin1 and Husnu Yenigun1

Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956,
Istanbul, Turkey

Abstract. If a finite state machine M does not have a distinguishing
sequence, but has UIO sequences for its states, there are methods to
produce a checking sequence for M . However, if M has a distinguishing
sequence D̄, then there are methods that make use of D̄ to construct
checking sequences that are much shorter than the ones that would be
constructed by using only the UIO sequences for M . The methods to
applied when a distinguishing sequence exists, only make use of the dis-
tinguishing sequences. In this paper we show that, even if M has a dis-
tinguishing sequence D̄, the UIO sequences can still be used together
with D̄ to construct shorter checking sequences.

1 Introduction

Finite state machines (FSM) have been successfully used to model the externally
observable behavior of systems [1]. Based on the FSM model M of a system under
test (SUT) N , a test sequence can be constructed to check if N is implemented
correctly [2, 3].

Such a test sequence, which will be called a checking sequence, is a sequence
of inputs such that, if N produces the expected outputs then this information
provides sufficient evidence to conclude that N is a correct implementation of
M . Of course, such a checking sequence cannot be found in general. Two im-
portant assumptions are made on N in practice. First assumption is that N
is deterministic and does not change during the experiments. The second as-
sumption is that N has at most the same number of states as M . Although the
latter assumption seems to be restrictive, this assumption provides a basis to
construct a checking sequence. Based on the methods that can generate check-
ing sequences under this assumption, it is possible to extend these methods to
generate checking sequences when this assumption is relaxed and N is assumed
to have at most n + ∆ states for some constant ∆, where n is the number of
states in M (e.g. see [4]).

Basically, a checking sequence consists of parts that challenge N to provide
evidence for the correct implementation of every transition in M . To do this,
the checking sequence brings N to a state, applies an input at that state (to see
if it would produce the correct output), and then it applies a sequence of inputs
to recognize the state reached. As we will explain, bringing N to a certain state

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/11737975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


is also based on recognizing states, which can only be performed by observing
distinct outputs produced to the same input sequence by different states.

Recognizing states can be based on distinguishing sequences [3], a charac-
terization set [3] or unique input-output (UIO) sequences [5]. It is known that
a distinguishing sequence may not exist for every minimal FSM [6], and that
determining the existence of a distinguishing sequence for an FSM is PSPACE-
complete [7]. However, if M has a distinguishing sequence, there are methods
already available in the literature (e.g. [3, 8, 9]) to produce a checking sequence
in which distinguishing sequences are used to recognize the states. It is quite
easy to understand why a distinguishing sequence D̄ can be used to recognize a
state, since all the states in M produces a different output sequence to the same
input sequence D̄.

If an FSM M does not have a distinguishing sequence, it is still possible to
construct a checking sequence for M . For example in [5] and in [10], it is shown
how a checking sequence can be constructed by using UIO sequences, which are
sequences that may exist even when a distinguishing sequence is not available.
However, the authors of [11] show that, the original method proposed in [5] is not
sufficient, and they propose the UIOv method to fix the problems of the method
given in [5]. Since the UIO sequences of the states are not necessarily the same,
although the response of a state to is UIO Ū is unique in the specification, we
have to make sure that no other state produces the same response to Ū in N .
As this must be guaranteed for the UIO sequences of all the states, checking
sequences based on UIO sequences tend to be longer. Hence the UIOv and the
other UIO based methods are considered only when a distinguishing sequence
does not exist.

In this paper we propose that, even if there exists a distinguishing sequence
for an FSM M , UIO sequences for the states of M (which are guaranteed to
exist since M is known to have a distinguishing sequence) can also be used to
construct a checking sequence in conjunction with the distinguishing sequence.
We explain a method to show how to construct such a checking sequence. We
also give an example for which the length of the checking sequence based on
the distinguishing sequence and UIO sequences is less than the length of the
checking sequence based on the distinguishing sequence only.

The rest of the paper is organized as follows. Section 2 introduces the concepts
used in constructing checking sequences. In Section 3, an existing method to con-
struct checking sequences based on distinguishing sequences is given. Section 4
explains the conditions under which a UIO sequence can be used to recognize
states in a checking sequence. In Section 5, we give a modification of the method
in Section 3 that constructs checking sequences in which UIO sequences are also
used for state recognition. Finally, Section 6 concludes the paper and provides
future research directions on the topic.



2 Preliminaries

We directly adopt the formalism and the notation for finite state machines
from [12] and include it below for completeness. A deterministic FSM M is
defined by a tuple (S, s1,X, Y, δ, λ) where

– S is a finite set of states,
– s1 ∈ S is the initial state,
– X is the finite input alphabet,
– Y is the finite output alphabet,
– δ : S × X → S is the next state function, and
– λ : S × X → Y is the output function.

Throughout the paper, we use barred symbols (e.g. x̄, P̄ , . . .) to denote se-
quences, and juxtaposition to denote concatenation. The next state function δ
and the output function λ can be extended to sequences in a straightforward
manner as, for an input symbol a ∈ X, a sequence of inputs x̄ ∈ X?, and a state
s ∈ S,

δ(s, ax̄) = δ(δ(s, a), x̄) and λ(s, ax̄) = λ(s, a)λ(δ(s, a), x̄)

The number of states of M is denoted n and the states of M are enumerated,
giving S = {s1, s2, . . . , sn}. An FSM is completely specified if the functions λ
and δ are total.

An FSM, that will be denoted M0 throughout this paper, is described in
Figure 1. Here, S = {s1, s2, s3}, X = {a, b} and Y = {0, 1}.

s1

s2 s3

a/0

a/0

a/1

b/0

b/1

b/0

Fig. 1. The FSM M0

In an FSM M , si ∈ S and sj ∈ S, si 6= sj , are equivalent if, ∀x̄ ∈ X∗,
λ(si, x̄) = λ(sj , x̄). If ∃x̄ ∈ X∗ such that λ(si, x̄) 6= λ(sj , x̄) then x̄ is said to
distinguish si and sj . An FSM M is said to be minimal if none of its states are
equivalent.

A distinguishing sequence for an FSM M is an input sequence D̄ for which
each state of M produces a distinct output. More formally, for all si, sj ∈ S



if si 6= sj then λ(si, D̄) 6= λ(sj , D̄). Thus, for example, M0 in Figure 1 has
distinguishing sequence aa.

A unique input output sequence (a UIO sequence, or simply a UIO) for a
state si of an FSM M is an input sequence Ūi which distinguishes si from the
other states. More formally, Ūi is a UIO for si if for all sj ∈ S, if sj 6= si, then
λ(si, Ūi) 6= λ(sj , Ūi). Thus, for example, s3 of M0 has UIO Ū3 = b.

It is known that some FSMs do not have a distinguishing sequence, and
some states do not have UIO sequences. However, when we consider a machine
M = (S, s1,X, Y, δ, λ) with a distinguishing sequence D̄ (let D̄ be a shortest such
sequence), and a state si ∈ S with a UIO sequence Ūi (let Ūi be a shortest such
sequence), we can easily observe the following fact: D̄ distinguishes between all
pairs of states (si and sj , ∀si, sj ∈ S), whereas Ūi distinguishes only between
certain pairs of states (si and sj , ∀sj ∈ S). Hence, Ūi must be at most as long as
D̄. In fact, any distinguishing sequence is also a UIO sequence for all the states
by definition.

For example, for the state s3 in M0 of Figure 1, Ū3 = b is shorter than the
distinguishing sequence D̄ = aa. However, for the states s1 and s2, shortest UIO
sequences are of length 2, which is the same as the length of the distinguishing
sequence.

Therefore, when we do have a distinguishing sequence for an FSM M , we may
be able to find shorter UIO sequences for the states of M . It is this observation
that will allow us to form shorter checking sequences, as explained in the rest of
the paper.

An FSM M can be represented by a directed graph (digraph) G = (V,E)
where a set of vertices V represents the set S of states of M , and a set of
directed edges E represents all transitions of M . Each edge e = (vj , vk, x/y) ∈ E
represents a transition t = (sj , sk, x/y) of M from state sj to state sk with input
x and output y where sj , sk ∈ S, x ∈ X, and y ∈ Y such that δ(sj , x) = sk,
λ(sj , x) = y.

A sequence P̄ = (n1, n2, x1/y1)(n2, n3, x2/y2) . . . (nk−1, nk, xk−1/yk−1) of
pairwise adjacent edges from G forms a path in which each node ni repre-
sents a vertex from V and thus, ultimately, a state from S. Here initial(P̄ )
denotes n1, which is the initial node of P̄ , and final(P̄ ) denotes nk, which is
the final node of P̄ . Two paths P̄1 and P̄2 can be concatenated as P̄1P̄2 only if
final(P̄1) = initial(P̄2).

The sequence Q̄ = (x1/y1)(x2/y2) . . . (xk−1/yk−1) is the label of P̄ and is
denoted label(P̄ ). In this case, Q̄ is said to label the path P̄ . Q̄ is said to be a
transfer sequence from n1 to nk. The path P̄ can be represented by the tuple
(n1, nk, Q̄) or by the tuple (n1, nk, x̄/ȳ) in which x̄ = x1x2 . . . xk−1 is the input
portion of Q̄ and ȳ = y1y2 . . . yk−1 is the output portion of Q̄.

A tour is a path whose initial and final nodes are the same. Given a tour
Γ̄ = e1e2 . . . ek, P̄ = ejej+1 . . . eke1e2 . . . ej−1 is a path formed by starting Γ̄
with edge ej , and hence by ending Γ̄ with edge ej−1. An Euler Tour is a tour
that contains each edge exactly once. A set E′ of edges from G is acyclic if no
tour can be formed using the edges in E′.



A digraph is strongly connected if for any ordered pair of vertices (vi, vj)
there is a path from vi to vj . An FSM is strongly connected if the digraph that
represents it is strongly connected. It will be assumed that any FSM consid-
ered in this paper is deterministic, minimal, completely specified, and strongly
connected.

Given an FSM M , let Φ(M) be the set of FSMs each of which has at most
n states and the same input and output alphabets as M . Let N be an FSM
of Φ(M). N is isomorphic to M if there is a one-to-one and onto function f
on the state sets of M and N such that for any state transition (si, sj , x/y)
of M , (f(si), f(sj), x/y) is a transition of N . A checking sequence of M is an
input sequence starting at the initial state s1 of M that distinguishes M from
any N of Φ(M) that is not isomorphic to M . In the context of testing, this
means that in response to this input sequence, any faulty implementation N
from Φ(M) will produce an output sequence different from the expected output,
thereby indicating the presence of a fault/faults. As stated earlier, a crucial part
of testing the correct implementation of each transition of M in N from Φ(M)
is recognizing the starting and terminating states of the transition which lead
to the notions of state recognition and transition verification used in algorithms
for constructing checking sequences (for example, [9, 13]).

3 An Existing Approach

In this section, we will present an existing approach for generating checking se-
quences. The approach is based on distinguishing sequences only, and directly
imported from [12] for completeness. After understanding the components (and
their purpose) that are put together to form a checking sequence by this ap-
proach, it will be easier to understand how we can use UIO sequences instead
of some of these components, that will hopefully make the generated checking
sequences shorter. In fact, the algorithm for generating a checking sequence that
will be proposed in this paper is a modification on the algorithm of [12], which
was first given in [13].

3.1 Basics

The checking sequence C̄ will be a sequence of inputs to be applied to SUT N ,
that will identify whether N is a correct implementation of M or not, i.e. whether
N is isomorphic to M or not. Suppose that we trace C̄ on the digraph G =
(V,E) representing M . Since M is deterministic, the trace will correspond to a
unique path P̄ = (n1, n2, x1/y1)(n2, n3, x2/y2) . . . (nk−1, nk, xk−1/yk−1). Below
we will refer to the checking sequence C̄ as the input portion of the input/output
sequence Q̄ which is the label of the path P̄ .

P̄ can also be viewed as the application of C̄ to N . In this view, the nodes
n1, n2, . . . , nk (or equivalently the states of N visited during this application)
are not known. A checking sequence C̄, or equivalently P̄ , should be designed
in such a way that, the inputs and the corresponding outputs should provide



sufficient evidence to let us identify these unknown states that are visited during
the application of C̄ to N .

If M has a distinguishing sequence D̄, then D̄ can be used in C̄ to help
to identify the states. Let us call T̄i = D̄/λ(si, D̄)B̄i as a T–sequence, where
B̄i = Īi/λ(δ(si, D̄), Īi) for a possibly empty transfer sequence Īi. For example,
for FSM M0 in Figure 1, if we take Ī1,Ī2 and Ī3 as empty sequences, T̄1 = aa/00,
T̄2 = aa/01, T̄3 = aa/10.

Inference Rule IR1: Let R̄i = (np, nq, T̄i) be a subpath in P̄ . Since the
response of N to D̄ at np is λ(si, D̄), this unknown state np of N at step p,
has some relation to the state si of M . Of course, this does not guarantee that
np is equivalent to the state si under the light of this evidence only. N may be
a faulty implementation of M , yet it may still have a state that produces the
same output λ(si, D̄) to D̄. Therefore we only say that, if np produces the same
output to D̄ as si, then np is recognized as state si of M in Q̄.

Based on the assumption that N does not change during the experiments,
the following inference rule can also be used.

Inference Rule IR2: If P̄1 = (np, nq, x̄/ȳ) and P̄2 = (nr, ns, x̄/ȳ) are two
subpaths of P̄ such that np and nr are recognized as state si of M and nq is
recognized as state sj of M , then ns is said to be recognized (in Q̄) as state
sj of M . Intuitively, this rule says that if P̄1 and P̄2 are labeled by the same
input/output sequence and their starting vertices are both recognized as the
same state si of M , then their terminating vertices correspond to the same state
sj of M .

For N to be a correct implementation of M , first of all, for each state si of M ,
N must have a state which is recognized as si. If P has subpaths R̄i = (np, nq, T̄i)
for all i ∈ {1, 2, . . . , n}, then it will check existence of the corresponding states
in N . If N does not produce the expected outputs, then N is a faulty imple-
mentation of M . However, if N produces the expected outputs, then for each
state si in M , N must have at least one state corresponding to (recognized as)
si. When combined with the assumption that N has at most n states, this will
form a one–to–one correspondence between the states of M and the states of N .

As explained in the paragraph above, for each T̄i, P̄ will have at least one
subpath R̄i = (np, nq, T̄i). Based on IR1, initial(R̄i) will be recognized as si.
Note that, if there exists another subpath R̄′

i = (n′

p, n
′

q, T̄i), initial(R̄′

i) will
again be recognized as si. In other words, for every subpath with the label
T̄i, the initial node of the subpath will be recognized as si. We will abuse the
notation and let initial(T̄i) denote the state si. Since, N is deterministic and
does not change during experiments, we can also argue that for any subpath
R̄i with the label T̄i, final(R̄i) will be recognized as the same state sj , where
sj = δ(si, D̄Īi). We will use final(T̄i) to denote this state sj . Below we explain
how final(R̄i) can be recognized as well.

In order to recognize final(R̄i), P̄ will include subpaths with the labels as
explained below. Let α′–set A = {ᾱ′

1, ᾱ
′

2, . . . ᾱ
′

q} be a set of input/output se-

quences such that ᾱ′

k (1 ≤ k ≤ q) is the sequence T̄k1
T̄k2

. . . T̄krk
, for some

1 ≤ k1, k2, . . . , krk
≤ n, such that ∀i ∈ {1, 2, . . . rk − 1}, initial(T̄ki+1

) =



final(T̄ki
). Each ᾱ′

k is called an α′–sequence, and an α′–set A satisfies the fol-
lowing condition [13]: For all i ∈ {1, 2, . . . , n}, there exists a j ∈ {1, 2, . . . , n}
and a k ∈ {1, 2, . . . , q}, such that T̄iT̄j is a subsequence of ᾱ′

k. For example
{T̄1T̄3, T̄3T̄2, T̄2T̄1} is an α′–set for FSM M0 given in Figure 1.

Lemma 1. Let T = {T̄1, T̄2, . . . , T̄n} be a T–set, and A = {ᾱ′

1, ᾱ
′

2, . . . , ᾱ
′

q} be an

α′–set based on T . If Q̄ = label(P̄ ) includes all ᾱ′

k, 1 ≤ k ≤ q, as a subsequence
then:

1. For all k ∈ {1, 2, . . . q}, if (np, nq, ᾱ
′

k) is a subpath in P̄ , then np is recognized.
2. For all i ∈ {1, 2, . . . , n}, T̄i is a subsequence in Q̄.
3. For all i ∈ {1, 2, . . . , n}, if (nr, ns, T̄i) is a subsequence in P̄ , then ns is

recognized in P̄ .
4. For all k ∈ {1, 2, . . . q}, if (np, nq, ᾱ

′

k) is a subpath in P̄ , then nq is recognized.

Proof. 1. Since ᾱ′

k starts with a T̄i that has a prefix D̄/λ(si, D̄), np is recognized
as si in Q̄ (IR1).

2. Since for each T̄i, there exists a T̄j such that T̄iT̄j is a subsequence of some
ᾱ′

k, which in turn is a subsequence in Q̄, T̄i is a subsequence in Q̄.
3. There exists a T̄j such that T̄iT̄j is a subsequence of some ᾱ′

k, which in turn
is a subsequence in Q̄. In other words, there exists a subpath (np, nt, T̄iT̄j)
in P̄ . After dividing this path into two as (np, nq, T̄i)(nq, nt, T̄j), it is easy
to see that, np and nq are recognized as states si and sj respectively. But
then, we can use IR2 on (np, nq, T̄i) and (nr, ns, T̄i) to deduce that ns is
recognized as sj .

4. Since ᾱ′

k ends with a T̄i, based on the discussion given in (3) above, nq is
recognized. ut

Different α′ sets can be found for a given set of T–sequences {T̄1, T̄2, . . . , T̄n}.
For example {T̄3T̄2T̄1T̄3} and {T̄1T̄3T̄2T̄1} are also α′–sets for M0 of Figure 1.
Since C̄ will have the input portion of α′–sequences as subsequences, it may be
desirable to minimize the total length of α′–sequences. Note that, this is just a
heuristic to minimize the length of C̄. In [14] authors explain how to find a set
of α′–sequences with a minimal total length from a given set of T–sequences.

Besides these components to recognize the states in N , a checking sequence
will also have components to check if the transitions are implemented correctly.
We say that the transition (si, sj , x/y) of M is verified in Q̄ = label(P̄ ) if
(np, nq, x/y) is a subpath of P̄ , np is recognized as si and nq is recognized
as sj . np will have to be recognized using IR2. nq can be recognized using IR1,
by applying a T̄i. Since α′–sequences start with T̄i’s, they can also be used to
recognize the end state of the transitions [13].

In the next section we will explain a method to generate a checking sequence,
which is based on Theorem 1.

Theorem 1. (Theorem 1, [9]) Let Q̄ be the label of a path P̄ on G representing
an FSM M that starts at s1. If every transition of M is verified in Q̄, then the
input portion of Q̄ is a checking sequence of M .



3.2 Checking Sequence Construction

In [13], the following method is explained to produce a checking sequence. Given
G = (V,E) corresponding to an FSM M , a T–sequence set T = {T̄1, T̄2, . . . , T̄n},
and an α′–set A = {ᾱ′

1, ᾱ
′

2, . . . , ᾱ
′

q}, first another digraph G′ = (V ′, E′) is pro-
duced by augmenting the digraph G as follows (Figure 2 is the digraph G′

corresponding to the digraph G of FSM M0 given in Figure 1):

a) V ′ = V ∪ U ′ where U ′ = {v′ : v ∈ V }, i.e. for each vertex v in G, there are
two copies of v in G′. In Figure 2, the nodes on the left are the nodes in V ,
and the nodes on the right are the nodes in U ′.

b) E′ = EC ∪ ET ∪ Eα′ ∪ E′′ where
i) EC = {(v′

i, vj , x/y) : (vi, vj , x/y) ∈ E}. The solid edges leaving the nodes
on the right in Figure 2 are the edges in EC .

ii) ET = {(vi, v
′

j , T̄i) : T̄i ∈ T , si = initial(T̄i), sj = final(T̄i)}. For ex-

ample, since initial(T̄1) = s1 and final(T̄1) = s2, there is an edge
(v1, v

′

2, T̄1) in Figure 2.
iii) Eα′ = {(vi, v

′

j , ᾱ
′

k) : ᾱ′

k ∈ A, ᾱ′

k = T̄i . . . T̄l, initial(T̄i) = si, final(T̄l) =
sj}. For example, in Figure 2 we consider a singleton α′–set A = {ᾱ′

1 =
T̄1T̄3T̄2T̄1}. There is an edge (v1, v

′

3, ᾱ
′

1) in Figure 2 since initial(T̄1) = s1

(the first T–sequence in ᾱ′

1 is T̄1), and final(T̄1) = s3 (the last T–
sequence in ᾱ′

1 is T̄1).
iv) E′′ ⊆ {(v′

i, v
′

j , x/y) : (vi, vj , x/y) ∈ E}. E′′ is a subset of the copies of
the edges in E placed between the corresponding nodes in U ′. E′′ is
selected in such a way that, G′′ = (U ′, E′′) does not have a tour and G′

is strongly connected.

We would like to highlight the followings about G′:

– The edges in EC represent the transitions to be verified.
– On a path in G′, an edge in EC will have to be followed by an edge in ET

or Eα′ . Since an α′–sequence also starts with a T–sequence, this means that
a transition will always be followed by a T–sequence, hence the end state of
the transition will be recognized.

– On a path in G′, the nodes in U ′ will be recognized. If a node v′ in U ′ is
reached by using an edge in ET or an edge Eα′ , it is easy to show that
v′ is recognized since the final states of T–sequences and α′–sequences are
recognized as explained previously in Lemma 1. As long as G′′ = (U ′, E′′)
is acyclic, it is also guaranteed that v′ will be recognized if it is reached by
using an edge in E′′ (please see the proof of Theorem 2 in [9] for the sketch
of a proof of this claim).

– Based on the previous claim, the initial states of the transitions will also
be recognized in a path P̄ in G′, since the edges in EC representing the
transitions always have their initial nodes in U ′.

Suppose that we form a path P̄ in G′ that starts from and ends at v1 such
that, it includes all the edges in Eα′ (so that the states are recognized), and it
also includes all the edges in EC (so that the transitions are verified). On the



v′

1

v′

2

v′

3

v1

v2

v3

ᾱ1 = aaaaaaaa/10010001

T̄1

T̄2

T̄3

a/0
b/0

b/0
a/0 a/1

b/1

a/0

Fig. 2. G′ for M0

basis of Theorem 1, it is argued in [13] that the input portion of the label of
such a path P̄ which is followed by D̄ is a checking sequence of M .

In fact, since we would like to keep the length of the checking sequence small,
an optimization is used to find a short path. The approach given in [13] forms
a minimal symmetric augmentation G∗ of the digraph induced by Eα′ ∪ EC by
adding replications of edges from E′ . If G∗, with its isolated vertices removed,
is connected, then G∗ has an Euler tour. Otherwise, a heuristic such as the one
given in [9] is applied to make G∗ connected and an Euler tour of this new
digraph is formed to find a path from v1 to v1.

(v1, v
′

3, ᾱ
′

1)(v
′

3, v2, b/1)(v2, v
′

1, T̄2)(v
′

1, v2, a/0)(v2, v
′

1, T̄2)(v
′

1, v3, b/0)(v3, v
′

2, T̄3)
(v′

2, v3, a/0)(v3, v
′

2, T̄3)(v
′

2, v3, b/0)(v3, v
′

2, T̄3)(v
′

2, v
′

3, a/0)(v′

3, v1, a/1)

Fig. 3. An tour in G′

The checking sequence constructed based on the tour given in Figure 3 would
be the label of the path of Figure 3 followed by D̄. Hence the length of the
checking sequence is 27.



4 Using UIO Sequences for State Recognition

The method explained in Section 3 uses a distinguishing sequence to recognize
the end state of a transition (si, sj , x/y) by applying D̄ after the execution of the
transition, and by observing the output λ(sj , D̄) which is unique among all the
states. The purpose of an edge (vi, v

′

j , T̄i) in G′ is twofold: (i) it recognizes the
final state of a transition, and (ii) it also recognizes the final state of itself (see
Lemma 1). In other words, when the input portion of T̄i is applied to SUT N and
the expected output is observed, we do not only recognize the state before the
application, but we also recognize the state that is reached after the application
of the input part of T̄i. This is obviously based on the fact that, the input portion
of all the α′–sequences are also applied and the expected outputs are observed
from N .

A UIO sequence Ūj for a state sj also provides a similar information. In other
words, to recognize the end state of a transition (si, sj , x/y), one can apply Ūj

after the execution of the transition, and observe the output λ(sj , Ūj) which is
also unique among all the states. Since Ūj will be at most as long as D̄, using UIO
sequences instead of distinguishing sequences may shorten the overall checking
sequence.

However, for a UIO sequence Ūj for a state sj , suppose that P̄ contains
(np, nq, Ūj/λ(sj , Ūj)) as a subpath. (i) Can we conclude that np must be recog-
nized as sj? (ii) Can we conclude that nq must be recognized as δ(sj , Ūj)? Below
we explain under what conditions both of these questions can be answered pos-
itively.

For a sequence x̄ ∈ X∗, let symb(x̄) ⊆ X denote the set of input symbols
that appear in x̄. For example, if x̄ = aba, then symb(x̄) = {a, b}.

Theorem 2. Let Q̄ be the label of a path P̄ in G = (V,E) corresponding to an
FSM M , and Ūj be a UIO for a state sj in M . Assume that ∀x ∈ symb(Ūj)
and for all states s in M , the transition (s, δ(s, x), x/λ(s, x)) is verified in Q̄.
If (np, nq, Ūj/λ(sj , Ūj)) is a subpath of P̄ , then np is recognized as sj and nq is
recognized as δ(sj , Ūj).

We will need the following result to prove Theorem 2.

Lemma 2. Let Q̄ be the label of a path P̄ in G = (V,E) corresponding to
an FSM M , and x̄′ ∈ X∗ be an input sequence. Assume that ∀x ∈ symb(x̄′)
and for all states s in M , the transition (s, δ(s, x), x/λ(s, x)) is verified in Q̄.
If (nr, ns, x̄

′/λ(s′, x̄′)) is a subpath of P̄ and nr is recognized as s′, then ns is
recognized as δ(s′, x̄′).

Proof. The proof is based on induction on the length of x̄′. When the length
of x̄′ is 1, i.e. when x̄′ = a for some a ∈ X, we have P̄1 = (nr, ns, a/λ(s′, a))
as a subpath in P̄ . Since ∀x ∈ symb(x̄′) = {a} and for all states s in M ,
the transition (s, δ(s, x), x/λ(s, x)) is verified in Q̄, there must exist a subpath
P̄2 = (np, nq, a/λ(s′, a)) in P̄ such that np is recognized as s′, and nq is recognized
as δ(s′, a). Using P̄1 and P̄2 and the inference rule IR2, we can deduce that ns



is recognized as δ(s′, a).
For the inductive step, assume that x̄′ = ax̄′′, in other words we have a subpath
P̄1 = (nr, ns, ax̄′′/λ(s′, ax̄′′)), or equivalently by dividing P̄1 into two, we have
the subpaths P̄11 = (nr, nt, a/λ(s′, a)), P̄12 = (nt, ns, x̄

′′/λ(δ(s′, a), x̄′′)). Based
on the discussion given in the base step of the proof, nt is recognized as δ(s′, a).
This completes the proof, since nt is recognized, and x̄′′ is shorter than x̄′. ut

We can now go back to the proof of Theorem 2:

Proof (of Theorem 2).
We know that the transitions of all the states for all the input symbols in Ūj

are implemented correctly. Since Ūj is a UIO sequence for sj , this means that
only the state that should be recognized as state sj in N produces the output
λ(sj , Ūj) to Ūj . Hence, for the subpath (np, nq, Ūj/λ(sj , Ūj)) of P̄ , np must be
recognized as sj .
When np is recognized, we can use Lemma 2 to show that nq is also recognized.

ut

What Theorem 2 suggests is that, when it is guaranteed that the transitions
of the states for the input symbols that appear in a UIO sequence Ūj are verified,
then Ūj/λ(sj , Ūj) can be used in a checking sequence exactly in the same way
and for the same purpose as the T–sequence T̄j . Based on this observation, we
will propose a modification on the method given in Section 3.2 for constructing
checking sequences.

5 Modified Method for Checking Sequence Construction

The modification will actually be quite intuitive, and very simple for a reader
who understands the purposes of the components of the digraph G′ given in
Section 3.2.

Let us explain the modified method on our running example first. We will
provide the method formally later. Consider M0 in Figure 1, and the digraph G′

for M0 given in Figure 2, and let us focus on the edge (v′

2, v3, a/0). In G′, this
edge will have to followed by the edge (v3, v

′

2, T̄3), which would both recognize
v3 as s3, and also recognize v′

2 as s2.
The state s3 in M0 has the UIO Ū3 = b. Based on the discussions given Sec-

tion 4, we can add outgoing edge to (v3, v
′

2, Ū3/λ(s3, Ū3)) in G′, since Ū3/λ(s3, Ū3)
can also be used in a similar way as T̄3 is used in G′ (Figure 4).

However, we also require that the input symbols that appear in the UIO
sequences that are used to recognize states to be verified. We have to avoid
verifying an edge depending on the correctness of itself. In other words, there
are some transitions with the input b whose final states are s3. Namely the edges
(v′

1, v3, b/0) and (v′

2, v3, b/0) in Figure 4. The verification of the corresponding
transitions of these edges will have to be performed in the conventional way. In
other words, we will need to force to use the edge with the label T̄3 when these



v′

1

v′

2

v′

3

v1

v2

v3

ᾱ1 = aaaaaaaa/10010001

T̄1

T̄2

T̄3

Ū3
/λ

(s3
, Ū3

)

a/0
b/0

b/0
a/0 a/1

b/1

a/0

Fig. 4. The first (unseccuessful) attempt for the modification

two edges are used to reach v3, to guarantee that b transitions of s2 and s3 are
verified.

This can be achieved by having two copies of v3 in G′. One copy of v3 will
be the usual v3 that already exists in G′, and have the outgoing edge with label
T̄3. The other copy of v3 (say vU

3 ) will have an outgoing edge with the label
Ū3/λ(s3, Ū3). Note that, having this edge as the only outgoing edge of vU

3 would
force Ū3 to be used to recognize the node vU

3 . However, if we also add an edge
(vU

3 , v3, ε), this would introduce the possibility and the flexibility of using T̄3 (and
any α′–sequence originating from v3 if there were any) to recognize the node vU

3 .
The final digraph G′ that will be used for our example is given in Figure 5.

We now explain the modified method more formally. Given G = (V,E) cor-
responding to an FSM M , a T–sequence set T = {T̄1, T̄2, . . . , T̄n}, and an α′–set
A = {ᾱ′

1, ᾱ
′

2, . . . , ᾱ
′

q}, we will again generate a digraph G′ = (V ′, E′) by aug-
menting G. Assume that we are also given a set of UIO sequences for some of
the states to recognize these states. Let U = {Ūi1 , Ūi2 , . . . , Ūik

} be such a set of
UIO sequences. Suppose that the UIO sequence Ūij

∈ U is a UIO sequence for
the state sij

. Let symb(U) = symb(Ūi1) ∪ symb(Ūi2) ∪ · · · ∪ symb(Ūik
) below.

a) V ′ = V ∪ V U ∪ U ′ where

i) U ′ = {v′ : v ∈ V }. For each v ∈ V , we have a copy of v in U ′.

ii) V U = {vu
j : vj ∈ V, j ∈ {i1, i2, . . . , ik}}

If U includes a UIO sequence Ūj for the state sj , then for the corre-
sponding node vj ∈ V , we create a copy vU

j in V U .

b) E′ = EC ∪ ET ∪ EU ∪ Eε ∪ Eα′ ∪ E′′ where



v′

1

v′

2

v′

3

v1

v2

v3

vU

3

ᾱ1 = aaaaaaaa/10010001

T̄1

T̄2

T̄3

a/0
b/0

b/0

a/0

a/1

b/1
ε

Ū3
/λ

(s
3
, Ū

3
)

a/0

Fig. 5. G′ after modification

i) EC = {(v′

i, v
U
j , x/y) : (vi, vj , x/y) ∈ E, x 6∈ symb(U), j ∈ {i1, i2, . . . , ik}}∪

{(v′

i, vj , x/y) : (vi, vj , x/y) ∈ E, (x ∈ symb(U) or j 6∈ {i1, i2, . . . , ik})}.
EC will again correspond to the transitions to be verified. However, we
have now two different types of edges in EC . If the input symbol of the
transition is not one of the input symbols in symb(U) (i.e. it does not
appear in any of the UIO sequences provided), and there exists a UIO
sequence Ūj ∈ U for the recognition of final state sj of the transition,
then the edge is connected to the node vU

j . Otherwise, the edge will be
connected to the node vj .

ii) ET = {(vi, v
′

j , T̄i) : T̄i ∈ T , si = initial(T̄i), sj = final(T̄i)}. There is no
change in this component.

iii) EU = {(vU
i , v′

j , Ūi/λ(si, Ūi)) : Ūi ∈ U , sj = δ(si, Ūi)}. If Ūi ∈ U is a UIO

sequence for a state si, then we place the outgoing edge from vU
i for the

UIO recognition, hence it has the label Ūi/λ(si, Ūi).
iv) Eε = {(vU

i , v′

i, ε) : Ūi ∈ U}. If Ūi ∈ U is a UIO sequence for a state si,
then we insert an ε edge from vU

i to vi for increased flexibility of using
T̄i from vi (or an α′–sequence outgoing from vi, if exists) for recognizing
the end state of an edge in EC that ends in vU

i .
v) Eα′ = {(vi, v

′

j , ᾱ
′

k) : ᾱ′

k ∈ A, ᾱ′

k = T̄i . . . T̄l, initial(T̄i) = si, final(T̄l) =
sj}. There is no change in this component.

vi) E′′ ⊆ {(v′

i, v
′

j , x/y) : (vi, vj , x/y) ∈ E}. E′′ is again a subset of the copies
of the edges in E placed between the corresponding nodes in U ′. E′′ is



selected in such a way that, G′′ = (U ′, E′′) does not have a tour and G′

is strongly connected.

As in the case of the previous method, a tour is found in G′ that includes all
the edges in Eα′ ∪ EC . Figure 6 shows a tour in G′ given in Figure 5. The tour
includes the necessary edges, and hence can be used to form a checking sequence
as explained below.

(v1, v
′

3, ᾱ
′

1)(v
′

3, v2, b/1)(v2, v
′

1, T̄2)(v
′

1, v2, a/0)(v2, v
′

1, T̄2)(v
′

1, v3, b/0)(v3, v
′

2, T̄3)
(v′

2, v
U

3 , a/0)(vU

3 , v′

2, Ū3/λ(s3, Ū3))(v
′

2, v3, b/0)(v3, v
′

2, T̄3)(v
′

2, v
′

3, a/0)(v′

3, v1, a/1)

Fig. 6. An tour in the modified G′

The checking sequence constructed based on the tour given in Figure 6 would
be the label of the path of Figure 6 followed by D̄. Hence the length of the
checking sequence is 26. The length of the new checking sequence is 1 less than
the length of the checking sequence produced by the previous method.

6 Conclusion and Future Work

We have shown that, for a FSM M with a distinguishing sequence, UIO sequences
for states can also be used to recognize states in a checking sequence. Existing
methods in the literature use only distinguishing sequences to recognize states in
a checking sequence when M has a distinguishing sequence. However, when an
FSM M has a distinguishing sequence, the states of M may have shorter UIO
sequences. Therefore using UIO sequences instead of distinguishing sequences
may result in shorter checking sequences. We have given an example of such a
case, where the length of the checking sequence is reduced.

We have also shown how a checking sequence that uses UIO sequences for
state recognition can be constructed by modifying an already existing check-
ing sequence construction technique, which is based on using distinguishing se-
quences only for state recognition.

It is assumed that we are given a set of UIO sequences to be used for state
recognition. Further research is required to compute a set of UIO sequences for an
FSM M , that will help shortening the length of a checking sequence. Intuitively,
if for a state sj , there is a large number of transitions incoming into the state sj ,
and if we can find a UIO Ūj for sj such that a small number of different input
symbols appear in Ūj , then heuristically, using Ūj for recognizing sj seems to be
promising to reduce the length of the checking sequence.

This paper shows that it is possible to decrease the length of a checking
sequence using the method proposed. However, an experimental study would
also be useful to understand the magnitude of a typical reduction.



References

1. Tanenbaum, A.S.: Computer Networks. 3rd edn. Prentice Hall International Edi-
tions, Prentice Hall (1996)

2. Gill, A.: Introduction to the Theory of Finite–State Machines. McGraw–Hill, New
York (1962)

3. Hennie, F.C.: Fault–detecting experiments for sequential circuits. In: Proceed-
ings of Fifth Annual Symposium on Switching Circuit Theory and Logical Design,
Princeton, New Jersey (1964) 95–110

4. Lee, D., Yannakakis, M.: Principles and methods of testing finite–state machines
– a survey. Proceedings of the IEEE 84(8) (1996) 1089–1123

5. Sabnani, K., Dahbura, A.: A protocol test generation procedure. Computer Net-
works 15 (1988) 285–297

6. Kohavi, Z.: Switching and Finite Automata Theory. McGraw–Hill, New York
(1978)

7. Lee, D., Yannakakis, M.: Testing finite state machines: state identification and
verification. IEEE Trans. Computers 43(3) (1994) 306–320

8. Gonenc, G.: A method for the design of fault detection experiments. IEEE Trans-
actions on Computers 19 (1970) 551–558

9. Ural, H., Wu, X., Zhang, F.: On minimizing the lengths of checking sequences.
IEEE Transactions on Computers 46(1) (1997) 93–99

10. Aho, A., Dahbura, A., Lee, D., Uyar, M.: An optimization technique for protocol
conformance test generation based on UIO sequences and rural chinese postman
tours. IEEE Transactions on Communications 39(11) (1991) 1604–1615

11. Chan, W., Vuong, C., Otp, M.: An improved protocol test generation procedure
based on UIOS. ACM SIGCOMM Computer Communication Review 19(4) (1989)
283–294

12. Tekle, K.T., Ural, H., Yalcin, M.C., Yenigun, H.: Generalizing redundancy elimina-
tion in checking sequences. In: 20th International Symposium on Information and
Computer Sciences (ISCIS). Volume 3733 of Lecture Notes in Computer Science.,
Istanbul, Turkey (2005) 915–926

13. Hierons, R.M., Ural, H.: Reduced length checking sequences. IEEE Transactions
on Computers 51(9) (2002) 1111–1117

14. Hierons, R.M., Ural, H.: Optimizing the length of checking sequences. IEEE
Transactions on Computers (2004) accepted for publication.


