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Abstract. Given a commutative ring R with unit, R -algebra A and R -coalgebra C. Triple (A, C , V/) is called (weak)
entwining structure if there is R -linear map l// :C ®R A—A ®R C that fulfil some axioms. In the other hand, from
algebra A and coalgebra C' we can consider A ® R C as a left A -module canonically such that (A, C 5 l//) is entwined

structure if only if A® R Cisa A -coring. In particular, we obtain that (A, C . l//) is a weak entwined structure if only if

A ®R C isaweak A -coring.
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1. Introduction

In this paper we assume that R is a commutative ring with unit. In Brzezinski and

Wisbauer [3] R -algebra (A, ,u,l) and R -coalgebra (C,A,S) is called entwined and
(A,C, y/) is said to be an entwining structure if there exists a R -linear map

/4 C@R A—> A@R C such that fulfil some axioms. It is described by Brzezinski [2] on a
bow-tie diagram.

R -algebra A dan R -coalgebra C can be considered as R -module. From A and

C as R -module, we can construct tensor product A@R C. Moreover, from right A -action
a:(A®, C)®, A>A®,C, a((a®b)®c)=ay(c®b), A®,C is a (A A)-
bimodule and we obtain A@R C is a weak coring. From Brzezinski [4] we have relation
between weak coring and weak entwining structure , i. e. (A,C, y/) is an entwining

structure if only if A ®R C hasan A -coring structure given by the comultiplication

A=1,®A:A®,C—>A®,C®,C=(A®,C)®,(A®,C),



and counit £ = 1 A ®e ZA@R C —> A Weak coring is a structure like coring but weak
coring is obtained from non-unital bimodule (see Puspita [7], Wisbauer [9]). We will see
relation between coring and entwining structures can be used on weak coring A® R C.

In section 2 we give definitions of corings and weak corings. Those are generalization
from coalgebra (see Brzezinski [3], Puspita [7] and Wisbauer [9]). In the next section from
Brzezinski [4] given definitions of entwining structures and weak entwining structures. In

section 4 finally we have relation between weak entwining structures and weak corings, i.e

A® R C is a weak coring if only if A ®R C isan entwining structure.

2. Corings and Weak Corings

In 1960 Sweedler Introduced the study of coalgebras and comodules over field. A

vector space C over field F' with comultiplication A:C—>C® I3 C and counit £:C > F

is called F' -coalgebra. The study of coalgebras over commutative rings and noncommutative
rings are presented in Brzezinski and Wisbauer [3]. In this section, we are given basic

information of corings and weak corings (see Brzezinski [3], Puspita [7] and Wisbauer [9]).

Throughout A will be an assosiative ring with unit.

Definition 2.1. Let C be an (A,A) non-unital bimodule.

(). An (A,A) -bilinear map é C—> C®A A@A C, ie (VCE C)é(c) = ch ®1®02 is
called a weak comultiplication.

(ii). An (A,A) -bilinear map & :C > A is called weak counit for é provided we have a

commutative diagram on figure 1.

C
A A
C®,A®,C 1©-®1 C®,A®,C
EQI,. ‘é I, ®¢

figure 1. Weak counit diagram

Figure 1 is commutative for c€ C, Zg(cl )C; =lcl= chg(cz )

Definition 2.2. An (A,A) -non-unital bimodule C is called weak coring provided it has weak

comultiplication A and weak counit £.



Definition 2.3. Let (C,é,g) be an weak A -coring. If C is an (A, A) -unital bimodule with

left or right unital, then C is called pre-coring. If C is an (A,A) -unital, then C is an A -

coring.

Based on Definition 2.3., we conclude that every A -coring are a weak A -coring. A

weak A -coring is an A -coring if only if C is an (A, A) -unital bimodule.

3. Entwining Structures
Entwining structure introduced by Brzezinski and Majid [1]. Some authors have
presented their observation in the same object in various text books as well see Brzezinski [4]

and Brzezinski and Wisbauer[3].

Definition 3.1. Let (A,/l,l) be a R -algebra and (C,A,E) be a R -coalgebra. Triple

(A, C ,V/) is called entwining structure provided there exist R -linear —map

y:C®, A— A®, C such that

- yo(lo®u)=(u®I.)o(I,®y)o(y®I,),
@. (I,®A)oy=(y®I.)o(I. ®y)(A®I,),
@6.yo(l.®1)=1®1.,

4. (I,®€)oy=€e®I,.

The axioms in Definition 3.1. are described on bow-tie diagram (see Brzezinski [2], Brzezinski

and Wisbauer[3]) as follow :

C®,A®, A C®,C®, A

w@/ I.®u 1.®y
C®, A

®
C®,A®,C
A®,C®, A I, ®1 \\\i®h
A
l /:@8 l//@lc
A®,C \
A®,C®,C

A®,A®, C UudI,.

\%\

Figure 2. bow-tie commutative diagram



Defined a map l//lC@RA—)A®R C, W(c@a)=2aw®c‘”, for
a, €A, " eC. Figure 2 is commutative, it means that for any

c®aq ®a, e CO®,A®, A, c®ac C®, A,

LY (aa), ¢ =Y a a, e

2. Ya,®c¢'®c," =Y a,.c’c’
3. Y1,®c"=1®c

a. Y ae(c)=¢€(c)a

Definition for weak entwining structures analog with Definition 3.1. The differences
are caused by A@R C as a non unital module so the conditions that need to be fulfiled are

still involved an element unit 1. The following definition are presented in Hungerford [6] and
Wisbauer [9].

Definisi 3.2. Let (A, /4,1) be a R - algebra and (C,A,€) is a R -coalgebra. Triple (A,C,y/)
is called weak entwining structure provided there exist a R -linear maps W :C®, A — A®, C,
y(a®c)= Zawc"’ for a, € A and ¥ € C such that :

(1). Z (ab)w I Zawbwc"””

2. Y a,(c" ®1)®c,=>a,, ®c’®,

(3). Zawé‘(c"’) = zg(c"’ )L/,a

(4). Zlu/ ®c¥ = ZS(CIV/)IV/ ®c,.

4. Weak Entwining Structures and Weak Corings

As a R -module, product tensor between R -algebra A and R -coalgebra C is

denoted by A® R C. In this section it will be explained the relation between (weak) entwining
structures and (weak) corings) A® R C. We are now proving our main theorem.

Theorem 4.1. Let (A,,Ll,l) be a R -algebra and (C, A,g) be a R -coalgebra. Triple (A, C, V/)

is an entwining structure if only if A® R Cisan A -coring.



PROOF.

(&) Assume that A®, C is an A -coring over comultiplication and counit
A:A®, C—12 5(A®,C)®,(A®,C)=(A®,C).1®,C,
a®c > Y (a®c)®,(1®¢,)> D (a®¢).(1®c,),
£:A®,C—(A®,C). 11254,
a®c > (a®c).l > aglc).
The following R -linear map is defined by right A -action A®, C.
Y. C®, A—>A®,C, c®ar>(1®c)a
y(c®a) Za ¢”, for a,€ A,c¥ € C. We will show that (A,C,y) is an entwining

structure by Y. For any a,b€ A and ce C

(). by associative properties from right action
> (ab), ®c" =(1®c).ab=((1®c)a)b=(D a,c")b=(1®3 a,c") b= a,b,c".
(ii). By comultiplication in A®, C we have
A(1®c)a=A(Y a,c")
=2 a4(<")
=2a, (<", ©c")

=>a,®c ®c,
A((1®c)a)=A(1®c).a
=X (1®¢)®,(1®c,))a
:Z@Q(zaw@@%)*”)
:Zl®‘i(2(“wl)czw)
=>(1®¢ )a, ®c)

=3 4,,(1®¢) ®c,”
= Zaw ®c’®c,”



(iii). R -linear map € is a module homorphism, so that
Z%S(CW):(IA ®€)Zawcw
=(1,®¢)oy(c®a)
=(1, ®€)((1®c).a)
=¢(c)a

=e®1,(c®a)
(iv). As an A -coring, A®, C is a right unital A -module, so from unital properties we have
1®c=(1®c).1=>1,c".
By (i) - (iv) (A,C,¥) is an entwining structure.
(=) Suppose that (A,C,¥) is an entwining structure, to show A®, C is an A -coring,
so in the first step we have to show that A®, C is an (A, A)-unital bimodule. Left A -
action for A®, C is trivial. By R -linear map YW :A®, C = C®, A, defined right A -
actionin A®, C

(A®,C)®, A—>A®,C, (a®b)®ct>ay(c®b)
by right A -action above, A®, C is an (A, A)-unital bimodule.
For any (a®c),(a'®c')e A®, C and r,s€ A
(@) (a®c)x+(a'®c')x= (a®c)®x+( '®c)®x
=((a®c) ®c'))®x
=((a®c)+(a '®c')).x

(ii). (a®c).(x+y) a;//(c@ x+y)

ay (c®x+c®y)

ay (c®x)+ay(c®y)
a®c).x+(a®c).y



(iii).((a@c).x).y=(a;//(c®x)).y
=a(1®c).xy
=ay (c®xy)
=(a®c)(xy)
(iv). (a®c).1=a®y(c®1)
=a®(31,c")
=a®(1®c) (see Definition 3.1 (4))
=a®c

Furthermore we define a map
A:A®, C—12 5(A®,C)®,(A®,C)=(A®,C).1®, C,
a®c > Y (a®c)®,(1®¢,) Y (a®¢).(1®c,),
£:A®, C—(A®,C). 124,
a®c > (a®c).l > aglc).
R -linear map A and £ above sequentially are a comultiplication and counit for an (A, A)-

bimodule A ® R C

(IA®RC ®§)0é(a®c)=(IA®RC @g)Z:(a@cl).l(@cg

=2 a®ce(c,)
=0201€(C;)

=a ® ¢ (by counital as a coalgebra). 0
Theorem 4.2. Let (A,,U,l) be a R - algebra and (C, A, 8) be a R -coalgebra. Triple
(A, C, W) is an entwining structure if only if A ®R C isaweak A -coring.
PROOF.

(<=) We have that A@R C is a weak A- coring over weak comultiplication é and weak

counit £.

A:A®,C—1% 5(A®,C)®, A®, (A®,C)=(A®,C)®,(A®,C)=(A®,C).1®, C,



a®c - Z(a®CI)®A (1®Cz)HZ(a®Cl)'(1®C2)’

E:A®,C—(A®,C). 1124,

).

a®c > (a®c).l > aglc).

By right A -action of A®, C, we defined a R -linear map
Y. C®, A—>A®,C, c®ar>(1®c).a

v(c®a)=>a,c", for a,€ A,c"eC. We must show that (A,C,¥) fulfil Definition

3.2. For 3.2 (1) analog with Theorem 4.2 (i). For any a,b€ A and ce C

(i). by weak comultiplication definition of A®, C
A(1®c).a=A(Y a,c")
=2.a,A(c")
=>(a,®c",)®(1®,)
=>(a,®1®c",)®(1®c",)
=>a,®((1®,).1)®c,
=Y a,y(c’ ®1)®c,
A((1®c).a)=A(1®c¢).a
=Y (1®¢)®,(1®c,)a
=210¢(X(a,1)")
=> (1®¢,)a, ®c,”
=>a,,(1®¢) ®c”
=>a,,®¢ ®c)
Jadi Y a,y(c’, ®1)®c*, =Y a,,®c’®c.

(ii). Morphism £ is an A -module homomorphism so that



(iii). By weak counital we have

>1,c"=(1®c)1
=(e®1,)°A(1®c) (by weak counital)

=(e®1,)(2(1®¢).1®c,)
=(£®1,)(X1,¢" ®c,)
=le§(cl"’)®cg

= Zg(cl‘”)lw ®c,

(i) — (iii) showed that (A,C ,l//) is a weak entwining structure. Conversely is analog with

Theorem 4.2. O
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