RELATION BETWEEN WEAK ENTWINING STRUCTURES AND WEAK CORINGS

NIKKEN PRIMA PUSPITA

Department of Mathematics,

Faculty of Mathematics and Natural Sciences,Diponegoro University, Jl. Prof. Soedharto, Kampus Undip Tembalang, Semarang, Indonesia 50275 Email : <u>nikkenprima@yahoo.com</u>

Abstract. Given a commutative ring R with unit, R -algebra A and R -coalgebra C. Triple (A, C, ψ) is called (weak) entwining structure if there is R -linear map $\psi: C \otimes_R A \to A \otimes_R C$ that fulfil some axioms. In the other hand, from algebra A and coalgebra C we can consider $A \otimes_R C$ as a left A -module canonically such that (A, C, ψ) is entwined structure if only if $A \otimes_R C$ is a A -coring. In particular, we obtain that (A, C, ψ) is a weak entwined structure if only if $A \otimes_R C$ is a weak A -coring. Keywords : algebra, coalgebra, coring, entwining structure.

1. Introduction

In this paper we assume that R is a commutative ring with unit. In Brzeziński and Wisbauer [3] R-algebra (A, μ, ι) and R-coalgebra (C, Δ, ε) is called entwined and (A, C, ψ) is said to be an entwining structure if there exists a R-linear map $\psi: C \otimes_R A \to A \otimes_R C$ such that fulfil some axioms. It is described by Brzeziński [2] on a bow-tie diagram.

R-algebra *A* dan *R*-coalgebra *C* can be considered as *R*-module. From *A* and *C* as *R*-module, we can construct tensor product $A \otimes_R C$. Moreover, from right *A*-action $\alpha: (A \otimes_R C) \otimes_R A \to A \otimes_R C$, $\alpha((a \otimes b) \otimes c) = a \psi(c \otimes b)$, $A \otimes_R C$ is a (A, A)bimodule and we obtain $A \otimes_R C$ is a weak coring. From Brzeziński [4] we have relation between weak coring and weak entwining structure , i. e. (A, C, ψ) is an entwining structure if only if $A \otimes_R C$ has an *A*-coring structure given by the comultiplication

$$\underline{\Delta} := I_A \otimes \Delta : A \otimes_R C \to A \otimes_R C \otimes_R C \simeq (A \otimes_R C) \otimes_A (A \otimes_R C),$$

and counit $\underline{\mathcal{E}} := I_A \otimes \mathcal{E} : A \otimes_R C \to A$. Weak coring is a structure like coring but weak coring is obtained from non-unital bimodule (see Puspita [7], Wisbauer [9]). We will see relation between coring and entwining structures can be used on weak coring $A \otimes_R C$.

In section 2 we give definitions of corings and weak corings. Those are generalization from coalgebra (see Brzeziński [3], Puspita [7] and Wisbauer [9]). In the next section from Brzeziński [4] given definitions of entwining structures and weak entwining structures. In section 4 finally we have relation between weak entwining structures and weak corings, i.e $A \otimes_R C$ is a weak coring if only if $A \otimes_R C$ is an entwining structure.

2. Corings and Weak Corings

In 1960 Sweedler Introduced the study of coalgebras and comodules over field. A vector space C over field F with comultiplication $\Delta: C \to C \otimes_F C$ and counit $\mathcal{E}: C \to F$ is called F-coalgebra. The study of coalgebras over commutative rings and noncommutative rings are presented in Brzeziński and Wisbauer [3]. In this section, we are given basic information of corings and weak corings (see Brzeziński [3], Puspita [7] and Wisbauer [9]). Throughout A will be an assosiative ring with unit.

Definition 2.1. Let C be an (A, A) non-unital bimodule.

(i). An (A, A)-bilinear map $\underline{\Delta}: C \to C \otimes_A A \otimes_A C$, i.e $(\forall c \in C) \underline{\Delta}(c) = \sum c_1 \otimes 1 \otimes c_2$ is called a weak comultiplication.

(ii). An (A, A)-bilinear map $\underline{\mathcal{E}}: C \to A$ is called weak counit for $\underline{\Delta}$ provided we have a commutative diagram on figure 1.

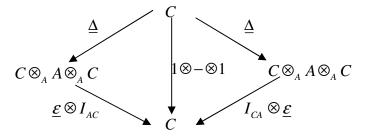


figure 1. Weak counit diagram

Figure 1 is commutative for $c \in C$, $\sum \underline{\varepsilon} (c_{\underline{1}}) c_{\underline{2}} = 1c1 = \sum c_{\underline{1}} \underline{\varepsilon} (c_{\underline{2}}).$

Definition 2.2. An (A, A)-non-unital bimodule C is called weak coring provided it has weak comultiplication $\underline{\Delta}$ and weak counit $\underline{\mathcal{E}}$.

Definition 2.3. Let $(C, \underline{\Delta}, \underline{\mathcal{E}})$ be an weak A-coring. If C is an (A, A)-unital bimodule with left or right unital, then C is called **pre-coring.** If C is an (A, A)-unital, then C is an A-coring.

Based on Definition 2.3., we conclude that every A-coring are a weak A-coring. A weak A-coring is an A-coring if only if C is an (A, A)-unital bimodule.

3. Entwining Structures

Entwining structure introduced by Brzeziński and Majid [1]. Some authors have presented their observation in the same object in various text books as well see Brzeziński [4] and Brzeziński and Wisbauer[3].

Definition 3.1. Let (A, μ, l) be a R-algebra and (C, Δ, ε) be a R-coalgebra. Triple (A, C, ψ) is called entwining structure provided there exist R-linear map $\psi: C \otimes_R A \to A \otimes_R C$ such that $(1). \psi \circ (I_C \otimes \mu) = (\mu \otimes I_C) \circ (I_A \otimes \psi) \circ (\psi \otimes I_A),$ $(2). (I_A \otimes \Delta) \circ \psi = (\psi \otimes I_C) \circ (I_C \otimes \psi) \circ (\Delta \otimes I_A),$ $(3). \psi \circ (I_C \otimes l) = l \otimes I_C,$ $(4). (I_A \otimes \varepsilon) \circ \psi = \varepsilon \otimes I_A.$

The axioms in Definition 3.1. are described on **bow-tie** diagram (see Brzeziński [2], Brzeziński and Wisbauer[3]) as follow :

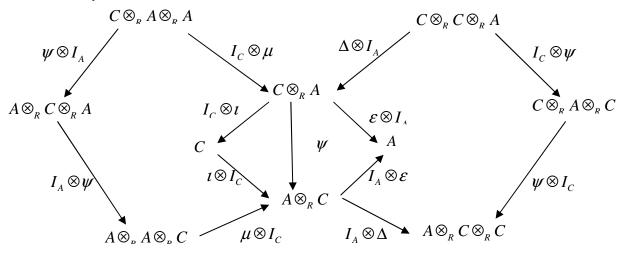


Figure 2. bow-tie commutative diagram

Defined a map $\psi: C \otimes_R A \to A \otimes_R C$, $\psi(c \otimes a) = \sum a_{\psi} \otimes c^{\psi}$, for $a_{\psi} \in A, c^{\psi} \in C$. Figure 2 is commutative, it means that for any $c \otimes a_1 \otimes a_2 \in C \otimes_R A \otimes_R A$, $c \otimes a \in C \otimes_R A$,

- 1. $\sum (a_1 a_2)_{\psi} c^{\psi} = \sum a_{1_{\psi}} a_{2_{\varphi}} c^{\psi \varphi}$
- 2. $\sum_{-} a_{\psi} \otimes c_1^{\psi} \otimes c_2^{\psi} = \sum_{-} a_{\psi\varphi} c_1^{\varphi} c_2^{\psi}$
- 3. $\sum l_{\psi} \otimes c^{\psi} = 1 \otimes c$ 4. $\sum a_{\psi} \varepsilon(c^{\psi}) = \varepsilon(c) a.$

Definition for weak entwining structures analog with Definition 3.1. The differences are caused by $A \otimes_R C$ as a non unital module so the conditions that need to be fulfiled are still involved an element unit 1. The following definition are presented in Hungerford [6] and Wisbauer [9].

Definisi 3.2. Let (A, μ, t) be a R - algebra and (C, Δ, \mathcal{E}) is a R -coalgebra. Triple (A, C, ψ) is called weak entwining structure provided there exist a R -linear maps $\psi: C \otimes_R A \to A \otimes_R C$, $\psi(a \otimes c) = \sum a_{\psi} c^{\psi}$ for $a_{\psi} \in A$ and $c^{\psi} \in C$ such that : (1). $\sum (ab)_{\psi} c^{\psi} = \sum a_{\psi} b_{\varphi} c^{\psi\varphi}$ (2). $\sum a_{\psi} (c^{\psi}_1 \otimes 1) \otimes c^{\psi}_2 = \sum a_{\psi\varphi} \otimes c_1^{\varphi} \otimes c_2^{\psi}$ (3). $\sum a_{\psi} \mathcal{E} (c^{\psi}) = \sum \mathcal{E} (c^{\psi}) \mathbf{1}_{\psi} a$ (4). $\sum \mathbf{1}_{\psi} \otimes c^{\psi} = \sum \mathcal{E} (c_1^{\psi}) \mathbf{1}_{\psi} \otimes c_2$.

4. Weak Entwining Structures and Weak Corings

As a R-module, product tensor between R-algebra A and R-coalgebra C is denoted by $A \otimes_R C$. In this section it will be explained the relation between (weak) entwining structures and (weak) corings) $A \otimes_R C$. We are now proving our main theorem.

Theorem 4.1. Let (A, μ, ι) be a R-algebra and (C, Δ, ε) be a R-coalgebra. Triple (A, C, ψ) is an entwining structure if only if $A \otimes_R C$ is an A-coring.

PROOF.

(\Leftarrow) Assume that $A \otimes_{_R} C$ is an A -coring over comultiplication and counit

$$\underline{\Delta}: A \otimes_{R} C \xrightarrow{I_{A} \otimes \Delta} (A \otimes_{R} C) \otimes_{A} (A \otimes_{R} C) \simeq (A \otimes_{R} C).1 \otimes_{R} C,$$

$$a \otimes c \quad \mapsto \quad \sum (a \otimes c_{1}) \otimes_{A} (1 \otimes c_{2}) \mapsto \sum (a \otimes c_{1}).(1 \otimes c_{2}),$$

$$\underline{\varepsilon}: A \otimes_{R} C \rightarrow (A \otimes_{R} C).1 \xrightarrow{I_{A} \otimes \varepsilon} A,$$

$$a \otimes c \quad \mapsto \quad (a \otimes c).1 \quad \mapsto \quad a\varepsilon(c).$$

The following R -linear map is defined by right A -action $A \otimes_R C$.

$$\psi: C \otimes_{R} A \to A \otimes_{R} C, \ c \otimes a \mapsto (1 \otimes c).a$$

 $\Psi(c \otimes a) = \sum a_{\psi} c^{\psi}, \text{ for } a_{\psi} \in A, c^{\psi} \in C.$ We will show that (A, C, ψ) is an entwining structure by ψ . For any $a, b \in A$ and $c \in C$ (i). by associative properties from right action

$$\sum (ab)_{\psi} \otimes c^{\psi} = (1 \otimes c) . a.b = ((1 \otimes c) . a) . b = (\sum a_{\psi} c^{\psi}) . b = (1 \otimes \sum a_{\psi} c^{\psi}) . b = \sum a_{\psi} b_{\varphi} c^{\psi \varphi} .$$

(ii). By comultiplication in $A \otimes_{\scriptscriptstyle R} C$ we have

$$\begin{split} \underline{\Delta}(1 \otimes c).a &= \underline{\Delta}\left(\sum a_{\psi}c^{\psi}\right) \\ &= \sum a_{\psi}\underline{\Delta}(c^{\psi}) \\ &= \sum a_{\psi}\left(c^{\psi}_{1} \otimes c^{\psi}_{2}\right) \\ &= \sum a_{\psi} \otimes c^{\psi}_{1} \otimes c^{\psi}_{2} \\ \underline{\Delta}((1 \otimes c).a) &= \underline{\Delta}(1 \otimes c).a \\ &= \left(\sum (1 \otimes c_{1}) \otimes_{A} (1 \otimes c_{2})\right).a \\ &= \sum 1 \otimes c_{1}\left(\sum a_{\psi} (1 \otimes c_{2})^{\psi}\right) \\ &= \sum 1 \otimes c_{1}\left(\sum (a_{\psi}1)c_{2}^{\psi}\right) \\ &= \sum (1 \otimes c_{1}).a_{\psi} \otimes c_{2}^{\psi} \\ &= \sum a_{\psi\varphi}\left(1 \otimes c_{1}\right)^{\varphi} \otimes c_{2}^{\psi} \\ &= \sum a_{\psi\varphi} \otimes c_{1}^{\varphi} \otimes c_{2}^{\psi} \end{split}$$

(iii). R -linear map $\underline{\mathcal{E}}$ is a module homorphism, so that

$$\sum a_{\psi} \varepsilon(c^{\psi}) = (I_A \otimes \varepsilon) \sum a_{\psi} c^{\psi}$$
$$= (I_A \otimes \varepsilon) \circ \psi(c \otimes a)$$
$$= (I_A \otimes \varepsilon)((1 \otimes c).a)$$
$$= \varepsilon(c)a$$
$$= \varepsilon \otimes I_A(c \otimes a)$$

(iv). As an *A*-coring, $A \otimes_R C$ is a right unital *A*-module, so from unital properties we have $1 \otimes c = (1 \otimes c) \cdot 1 = \sum 1_{\psi} c^{\psi}$.

By (i) – (iv) (A,C,ψ) is an entwining structure.

 (\Rightarrow) Suppose that (A, C, ψ) is an entwining structure, to show $A \otimes_R C$ is an A-coring, so in the first step we have to show that $A \otimes_R C$ is an (A, A)-unital bimodule. Left Aaction for $A \otimes_R C$ is trivial. By R-linear map $\psi: A \otimes_R C \to C \otimes_R A$, defined right Aaction in $A \otimes_R C$

$$(A \otimes_{R} C) \otimes_{R} A \to A \otimes_{R} C, \ (a \otimes b) \otimes c \mapsto a \psi(c \otimes b)$$

by right A -action above, $A \otimes_R C$ is an (A, A)-unital bimodule.

For any $(a \otimes c), (a' \otimes c') \in A \otimes_{\mathbb{R}} C$ and $r, s \in A$ (i). $(a \otimes c).x + (a' \otimes c').x = (a \otimes c) \otimes x + (a' \otimes c') \otimes x$ $= ((a \otimes c) + (a' \otimes c')) \otimes x$ $= ((a \otimes c) + (a' \otimes c')) \otimes x$ (ii). $(a \otimes c).(x + y) = a \psi (c \otimes (x + y))$

$$= a\psi(c \otimes x + c \otimes y)$$
$$= a\psi(c \otimes x) + a\psi(c \otimes y)$$
$$= (a \otimes c).x + (a \otimes c).y$$

(iii).
$$((a \otimes c).x).y = (a\psi(c \otimes x)).y$$

 $= a(1 \otimes c).xy$
 $= a\psi(c \otimes xy)$
 $= (a \otimes c)(xy)$
(iv). $(a \otimes c).1 = a \otimes \psi(c \otimes 1)$
 $= a \otimes (\sum 1_{\psi} c^{\psi})$
 $= a \otimes (1 \otimes c)$ (see Definition 3.1 (4))
 $= a \otimes c$

Furthermore we define a map

$$\underline{\Delta}: A \otimes_{R} C \xrightarrow{I_{A} \otimes \Delta} (A \otimes_{R} C) \otimes_{A} (A \otimes_{R} C) \simeq (A \otimes_{R} C).1 \otimes_{R} C,$$

$$a \otimes c \quad \mapsto \quad \sum (a \otimes c_{1}) \otimes_{A} (1 \otimes c_{2}) \mapsto \sum (a \otimes c_{1}).(1 \otimes c_{2}),$$

$$\underline{\varepsilon}: A \otimes_{R} C \rightarrow (A \otimes_{R} C).1 \xrightarrow{I_{A} \otimes \varepsilon} A,$$

$$a \otimes c \quad \mapsto \quad (a \otimes c).1 \quad \mapsto \quad a\varepsilon(c).$$

R -linear map $\underline{\Delta}$ and $\underline{\varepsilon}$ above sequentially are a comultiplication and counit for an (A, A)-bimodule $A \otimes_R C$

$$\begin{split} \left(I_{A \otimes_{R} C} \otimes \underline{\varepsilon} \right) \circ \underline{\Delta} (a \otimes c) &= \left(I_{A \otimes_{R} C} \otimes \underline{\varepsilon} \right) \sum \left(a \otimes c_{1} \right) . 1 \otimes c_{2} \\ &= \sum a \otimes c_{1} \varepsilon \left(c_{2} \right) \\ &= a \sum c_{1} \varepsilon \left(c_{2} \right) \\ &= a \otimes c \text{ (by counital as a coalgebra). } \Box \end{split}$$

Theorem 4.2. Let (A, μ, ι) be a R - algebra and (C, Δ, ε) be a R -coalgebra. Triple

 (A, C, ψ) is an entwining structure if only if $A \otimes_R C$ is a weak A -coring. PROOF.

(\Leftarrow) We have that $A \otimes_R C$ is a weak A - coring over weak comultiplication $\underline{\Delta}$ and weak counit $\underline{\mathcal{E}}$.

$$\underline{\Delta}: A \otimes_{R} C \xrightarrow{I_{A} \otimes \Delta} (A \otimes_{R} C) \otimes_{A} A \otimes_{A} (A \otimes_{R} C) \simeq (A \otimes_{R} C) \otimes_{A} (A \otimes_{R} C) \simeq (A \otimes_{R} C) (A \otimes_{R} C) \otimes_{A} (A \otimes_{R} C) = (A \otimes_{R} C) (A$$

$$a \otimes c \quad \mapsto \quad \sum (a \otimes c_1) \otimes_A (1 \otimes c_2) \mapsto \sum (a \otimes c_1) . (1 \otimes c_2),$$

$$\underline{\varepsilon} : A \otimes_R C \to (A \otimes_R C) . 1 \xrightarrow{I_A \otimes \varepsilon} A,$$

$$a \otimes c \quad \mapsto \quad (a \otimes c) . 1 \quad \mapsto \quad a\varepsilon(c).$$

By right A -action of $A \otimes_{\scriptscriptstyle R} C,$ we defined a R -linear map

$$\psi: C \otimes_{R} A \to A \otimes_{R} C, \ c \otimes a \mapsto (1 \otimes c).a$$

 $\psi(c \otimes a) = \sum a_{\psi}c^{\psi}$, for $a_{\psi} \in A, c^{\psi} \in C$. We must show that (A, C, ψ) fulfil Definition 3.2. For 3.2 (1) analog with Theorem 4.2 (i). For any $a, b \in A$ and $c \in C$

(i). by weak comultiplication definition of $A \bigotimes_{\scriptscriptstyle R} C$

$$\begin{split} \underline{\Delta}(1 \otimes c).a &= \underline{\Delta}\left(\sum a_{\psi}c^{\psi}\right) \\ &= \sum a_{\psi}\underline{\Delta}(c^{\psi}) \\ &= \sum \left(a_{\psi} \otimes c^{\psi}_{1}\right) \otimes \left(1 \otimes c^{\psi}_{2}\right) \\ &= \sum \left(a_{\psi} \otimes 1 \otimes c^{\psi}_{1}\right) \otimes \left(1 \otimes c^{\psi}_{2}\right) \\ &= \sum a_{\psi} \otimes \left(\left(1 \otimes c^{\psi}_{1}\right).1\right) \otimes c^{\psi}_{2} \\ &= \sum a_{\psi} \psi\left(c^{\psi}_{1} \otimes 1\right) \otimes c^{\psi}_{2} \end{split}$$

$$\begin{split} \underline{\Delta}((1 \otimes c).a) &= \underline{\Delta}(1 \otimes c).a \\ &= \sum (1 \otimes c_1) \otimes_A (1 \otimes c_2).a \\ &= \sum 1 \otimes c_1 \left(\sum (a_{\psi} 1) c_2^{\psi} \right) \\ &= \sum (1 \otimes c_1).a_{\psi} \otimes c_2^{\psi} \\ &= \sum a_{\psi\varphi} (1 \otimes c_1)^{\varphi} \otimes c_2^{\psi} \\ &= \sum a_{\psi\varphi} \otimes c_1^{\varphi} \otimes c_2^{\psi} \\ &= \sum a_{\psi\varphi} \otimes c_1^{\varphi} \otimes c_2^{\psi} \end{split}$$
Jadi $\sum a_{\psi} \psi (c_1^{\psi} \otimes 1) \otimes c_2^{\psi} = \sum a_{\psi\varphi} \otimes c_1^{\varphi} \otimes c_2^{\psi}.$

(ii). Morphism $\underline{\boldsymbol{\mathcal{E}}}$ is an A -module homomorphism so that

$$\sum a_{\psi} \varepsilon (c^{\psi}) = (I_A \otimes \varepsilon) \sum a_{\psi} c^{\psi}$$
$$= (I_A \otimes \varepsilon) \circ \psi (c \otimes a)$$
$$= (I_A \otimes \varepsilon) (1 \otimes c) . a$$
$$= (I_A \otimes \varepsilon) (1 \otimes c) . 1 . a$$
$$= (I_A \otimes \varepsilon) (\sum 1_{\psi} c^{\psi}) . a$$
$$= \sum \varepsilon (c^{\psi}) 1_{\psi} a$$

(iii). By weak counital we have

$$\sum I_{\psi} c^{\psi} = (1 \otimes c).1$$

= $(\underline{\varepsilon} \otimes I_A) \circ \underline{\Delta} (1 \otimes c)$ (by weak counital)
= $(\underline{\varepsilon} \otimes I_A) (\sum (1 \otimes c_1).1 \otimes c_2)$
= $(\underline{\varepsilon} \otimes I_A) (\sum I_{\psi} c_1^{\psi} \otimes c_2)$
= $\sum I_{\psi} \underline{\varepsilon} (c_1^{\psi}) \otimes c_2$
= $\sum \underline{\varepsilon} (c_1^{\psi}) I_{\psi} \otimes c_2$

(i) – (iii) showed that (A, C, ψ) is a weak entwining structure. Conversely is analog with Theorem 4.2. \Box

References

- [1] Brzeziński, T., Majid, Sh. (1998), Coalgebra Bundles, Comm. Math. Phys, 191: 467-492.
- [2] Brzeziński, T. (2001) The cohomology structure of an algebra entwined with coalgebra, Jurnal of Algebra 235 : 176-202.
- [3] Brzeziński, T., Wisbauer, R. (2003) Coring and comodules, Germany.
- [4] Brzeziński, T. The Structures of Corings, Alg. Rep Theory, to appear.
- [5] Caenepeel, S., de Groot, E. (2000) Modules over weak entwining structures, Contemporary Mathematics 267 : 32-54.
- [6] Hungerford, T.W. (1974) Algebra, Graduate text in Mathematics, Springer-Verlag, Berlin.
- [7] Puspita, N. P. (2009) Koring Lemah, Thesis, Gadjah Mada University, Yogyakarta.
- [8] Wisbauer, R. (1991) Foundation of Module and Ring Theory, Gordon and Breach Science Publishers, Germany.
- [9] Wisbauer, R., (2001) Weak Coring, Jurnal of Algebra 245 : 123 160.