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We investigate a relation between non-perturbative and perturbative cases in the 2+1 dimensional Chern-Simons-
Witten (CSW) theory for G = E4 gauge group. In the perturbative case, we calculate the vacuum expectation value
(VEV) of an unknotted Wilson loop operator up to order 1/k° (k is a coupling constant). The result above is proved
to be identical to the polynomial invariant E, (p) in the non-perturbative case at the same order of expansion.

Keywords: VEV, CSW, Wilson loop operator, non-perturbative, perturbative.

1. Introduction

The 2+1 dimensional Chern-Simons-Witten
(CSW) theories have been extensively considered by
mathematicians and physicists. In 1988, Edward
Witten established the connection between Chern-
Simons gauge theory and the theory of knot and link
invariants where there are the equivalence between
vacuum expectation values (VEV) of Wilson loops
(perturbative methods) and polynomial invariants
(non-perturbative methods)'?. In this paper we will
show the equivalence explicitly for the group G = E.

We will restrict ourselves to the three-
dimensional manifold R’. Let 4 be a G-connection.
The usual CSW action is given by >*¥

S, = j dxeTH{A0,4,+i3 4,4,4,), (1)
where Tr denotes the trace in the fundamental

representation of G and k is a coupling constant.
Summation over repeated indices is understood.
The Wilson loop operator I, is labeled by a

loop C embedded in R3 and a representation p of G
and is defined as® ©

W,(C)=Tr,(Pexp§.A) .

2

In this equation P denotes path-ordered and 4 =
A°T, (" ) with 7!) being the generator of G in the

representation p. The organization of the paper is the
following. In Section 2 we will discussed the CSW
theory by the use of non-perturbative method where
the group Ej is taken into consideration. Section 3, on
the other hand, will discuss the same theory but
perturbatively and compare the results with that from
the previous section. The final section, Section 4, is
devoted to conclusions.

23

2. Non-Perturbative Methods in the CSW Theory
for Gauge Group Eg,

The polynomial invariant £, (p), given in the

representation p, in the non-perturbative case of the
CSW theory is taken into account in this section. For
Es gauge group, E,(p) has been computed in Ref. 6.
In this section, we will discuss the computation
of Ey(p) by using the Braiding formula. From the

(-B;‘:l pt ?

the following quadratic algebraic equation among
Ey(p) is fulfilled”™

decomposition of a tensor product p, ® p, =

ZEO pr) : ®)

If p, and p, are the same representations, we can
construct the equation

Zﬁz‘f Qﬂz

Eo(pa)Eo(p5)

“4)

£20(p,

g7 IE (p,) Ey(p1)’
where the symmetry factor f equals +1(-1) if p, is
produced under (anti-) symmetry combination of the
two p,.

Now, we will apply the above expressions to

the case of the G = Es group gauge. A decomposition

of a tensor product of two fundamental
representations 27 of E4 is
27®27=351' ®351_®27, , 5)

where s(a) denotes the index of (anti-) symmetric
representation. The algebraic equations derived from
it are

E,(27) (©)

'E, (27)=

= E,(351')+ E,(351)+ E, (27).

qﬁQ(N qi(l/Z)Q 351)

E,(351)
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_qi(l/Z)Q (351) E (351)+q (1/2)0(27) E (27) (7)
Table 1. Quadratic Casimirs of the E¢ gauge group®

Q(650) | 0(351") | O(351) | O(78) 0(27)

18 36 30 12 26
3 3 3

Using the Quadratic Casimirs in table 1, we get a non-
trivial solution:

E,(27)=[3].[9] ®)

where notations in the eq. (8) are defined as

a.‘f _a*X
[, =42 ©a)

and

2ri .
—exp| L | 0(4dj)=0(78). (9b)
! p(k+Q(adj)j (44)=0(7%)

If eq. (8) is expanded in powers of 1/k, we get

2

2
E,(27)= 27—936%+ 224647;—3+ ..... (10)

This is the polynomial invariant in the non-
perturbative case of the CSW theory. This expression
will be contrasted to the VEV of the Wilson loop
operator in perturbative case of the same theory.

3. Perturbative Methods of the Chern-Simons-
Witten Theory

In this section, we will do some computations
in the CSW theory, perturbatively, ie. we will
calculate the VEV of the Wilson loop operator.
Because of gauge invariance, in order to perform the
quantization, we adopt the standard Faddeev-Popov
procedure. Then, the total action is obtained by adding
Seauge-fixing A0 Sgios to the usual CSW action®? :

Stot (A’ ¢5C’E) = SCSW (A) + Sgaugefﬁxing +Sghast
= d e (A,0,4,+i24,4,4,)

3 uv qa a
+EIM3d X\g g Aﬂavqé

—_[Ms d3x\/§ g’”aﬂz“ (D‘,c)a , (11)

where ¢“ is the Lagrange multiplier (auxiliary field)
and

(D,c) =0, - f" Al (12)

The action (11) gives rise gauge propagator and three-
gauge vertex. They are >

(42 (x) 4" () = 1 g, (r=2)" (13.2)

s
k yvcr ‘x _ ‘3

(A5 A1) = = s 6 6 8

o A 4
xj'd3w(w_x)3 (W_yl (w=2) (13.b)
w=a" [w=sf" w7
In the CSW theory one considers VEV of the
Wilson loop operator defined as”
<W ( )> [ DA D¢ De DE Tr, (Pexp§, A)
’ [ DA DgDeDe &5

. (14)

In the eq. (14), the contribution of gauge-fixing and
ghost fields vanish. Then, the VEV of the Wilson loop
operator can be written in an expression in terms of
propagators and vertices™ *:

(w,(C)) =Tr, [1+if, dx* (4, (x))
~§d [ dy (4, (5) 4, (x)> '
=i, [ [ " (4, () 4.()4, ()

[ ] b (4 () (A0
+if, dx" [“dy" ["dz” [ dw’ [" dv*

(4, (v) 4, (w) 4, (2) 4, () 4, (x))

—§,dx" ["ay" [ dz’ [T’ [ [ du’

(4. ()4, (V) 4, (W) 4, (2) 4, () 4, (x))+.. | (15)

The VEV in eq. (15) can be expressed in powers of
2z /k). The term (27/k)° is contributed by

Tr,(1)=dim p =27 . The (27/k) term comes from

~Tr(R'R*)§,dx" [*dy" (4] () 45 (x)

:_i(%”jdimp.g(ﬂ)w(c), (16)

with the matrix form of the quadratic Casimir for the
fundamental representation is given by

0(27)1=RR". (17
and ¢(C)is equal to

(x=y)

1
o(C)=—¢ dx"$ dy'e,,,
(€)= g b e, 0

L pagae, (e (o FO D
47['[D L e () (t) ‘x(s)—x(t)‘3

Note that an explicit parameterization {x“(¢) : 0 < ¢
<1} of C has been used in calculation of the eq. (18).

Let us analyze the (27/k)* part of <Wp (C)> )

This can be written as

Tr, [—z’ § dx"["dy" " dz° <A¢T (2)4,(v)A4, (x)>
e [ [ [ (4,(0)4,(2) 4, ()4, (x)

(18)
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_ [27”] dim p.0(4d).0(27) <, (C)

1

A ampoer 0

2
+[27”j dim p.Q(4dj).0(27)g, (C). (19)
where, for the E5 gauge group, there are relations in
quadratic Casimir : 5“Q(4d) = f“/f** . Then,
6,(C) comes from <AU (w)4,(2)4, (»)A4, (x)> term,
that is

OV g
T

(W_y)3 (Z_x)3 . (20)
w=3" =

On the other hand, the contribution of the
vertex (4, (:)4,.(1)4, (%) is

ova€oup

1 vy
Q(C):_§¢Cdxﬂ.[ @ J‘}dzpli,uvp('x’yﬁz)ﬂ (21)

with
H,,(%.7.2) =8¢

uaoc gv,/f)v gpyr X

o A T
Xj'df&w(w_x) (W_y) (W_Z) . (22)
= w3 w1
We choose the unknot condition of the VEV

above as the parameterization of an unit circle defined
as

U, ={x(s) =(cos27s,sin27s,0):0<s <1} .~ (23)

Accordingly the values of go(U )and S, (U )vanish,

while the value of ¢, (U, ) is >*'”

61 (Uy) = =ydsf; def,du i (s) & (£) &7 () x

[Cccj[a (@), +6,5,~6,a, |

3073 Vo up v
1
-, 24
D (24)
where
a=y-x=x(t)-x(s), (25.2)
b=z—x=x(u)-x(s), (25.b)
2 25.¢c
)= o= 29
C(ab)= b (25.d)
S allpl+ab,
G, (a,b) =|a|+[p|-|a—1|. (25.¢)

Now, we will compute <W s (0)> , the VEV of an

unknotted Wilson loop operator at the order of
2z /k)* . For order (2z/k)° and Q2z/k)' ,

<W (0)> can be written as

P
(0" =1, [1uig e (4, ()]
~27+0=27. (26)

Furthermore, the (27/k)* parts of <Wp (0)> can be

written as

7,(0))" =2 ] dimp. 04 0(27), (V)

[2”j 2778(26j( lj 936—. 27)
k 3\ 12

Let us now continue our calculations to order (27”)3
The VEV of an unknotted Wilson loop operator in the
2+1 dimensional Chern-Simons-Witten theory for this
order is divided into two parts, that is <Wﬂ(C)>(3") and
AR UAGH
of three gauge propagators, of eq. (15), that is

~Tr, [@( ax[dy" [ dz” [T aw” [ v [ du” x

36) 3b)

involves 4% term, combinations

><<Ar (u)4,(v)4, (W)Ap (z)Av(y)Aﬂ (x)>:| . (28)

This eq. (28) vanishes if the condition of
parameterization (23) is taken into account:
3b)

w,(0))™ =0. (29)

»
The <Wp(c)>"‘“) , on the other hand, has the form of
combinations of the propagator and the vertex'"

Tr, [ g, dx" [ dy* [ dz” | dw' [ dv*

X(A;h (v) A, (W) 4, (z) 4, (y) 4, (x)>:|

:%%me T [ & [ b
x{%(j_jjf A e DAt
+g;m(:_3)j H, (z-wx-w)+&,, (1\}/—1): H,, (z=wy-w)
e e ) W (e
e o) 0 (e

|
+& @me (wfv,yfv)vtgw (y_lewp(wv,zv)}
y—x

_iQ(A4dj)’ .dimp

T k3 Q(27) q;c dxij dyvj-y deI: dngrwdvl «
7T
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X{““Am (V_Z) me: (y,w,x,W)Jrg}'m (\;iy) H

‘vfzf y‘s opu
w—y “ w—x)"
+&, ., (‘w7y‘)3 H/lpu (z v,va)Jrgwa (‘w7x‘)3 H;/W (zfv,y v)
(z—x)a (30)
+€ﬁmngm(w—v,y—v) :

Again, taking the unknot condition (23), terms in
equation (30) have the values according to

§.dc" [“dy" [P dz" [dw’ [ dvie (z=0) H,,, (w=v,y—v)

pua 3
|z x]
:321‘;{%2—1} (3l.a)
‘f’( Py | dzpjzdw"j”'dvlgrw (:;:);)3 H,, (z—v,y—v)
2
_ m[%flj, (31.b)

§ dx* [ dy" ["dz" [ dw’ [" dv* x

v—z)"
><|:$/1pa 7(‘ ‘)3 HUW (y—w,x—w)
y—

+&,,, (w=)" H,, (z-v,x-v) =32ir, (Bl

s
§. " ["dy" |7 dz” [ aw” [ dv A ‘ ) m,(z—w,x—w)
=32ir, (31.d)

A dy A [Fan [T dvie (=% H (z=w,y—w
e Aua

3 apv
[v=]

3
=-32%, (3l.e)
6

§ dxt [ dy" [ dz” [ dw’ [" dv* {gﬁm (- W‘)s H,, (y-z.x-z2)

‘v—w
(w=2)"

+ &0 |W—Z|3 Hm(y—v,x—v)
z—y “
+gpmﬁHM#(w—v,x—v)
" (y—x); Hiﬁp(w—v,z—v) =—32i”—3. (31.6)
|y =x[ 6

Note that the calculations in equation (31.a-f) use the
framing contour methods that have the solution

X (£) > y* (1) = x* (1) + en (1), (32.2)
n(s)={0,0,e™}, (32.b)
(¢>0, |n(z)=1). (32.0)

Therefore, for unknot condition (23), we get

s 0(Adj) .dim p.0(27) (27
(o)) = 244 i p [3]

2

- 22464% (33)

Finally, from the eq. (26), (27), (29) and (33) we
obtained the VEV of the unknotted Wilson loop
operator up to order 1/, that is

72'2 ﬂ'z
<Wp(0)>:27—936k—2+22464p+ ..... : (34)
It turns out that eq. (34) is identical to the eq. (10) in
non-perturbative case.

4, Conclusions

We have obtained the explicit expression of the
polynomial invariant of the CSW theory under the
gauge group Eg, up to the third order in (1/k), by the
used of the Braiding formula. We have also
calculated explicitly the VEV of the unknotted Wilson
loop operator in the same theory under the same
gauge group, up to the third order in (1/k). The result
is that both computations are identical, up to the same
order. Since the polynomial invariant and the VEV of
the Wilson loop operator describes the non-
perturbative and perturbative aspects of the 2+1
dimensional CSW theory, respectively, we conclude
that the same results above show equivalence between
both aspects in the 2+1 dimensional CSW theory.
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