

Force	Model	Basis of Attraction	Energy	in pronce
Bonding			(w)/mot)	Example
Ionic	+ _ + _ +	Cation-anion	400-4000	NaCl
	• - +			
Covalent	0:0	Nuclei–shared e [–] pair	150-1100	н—н
Metallic		Cations-delocalized	75-1000	Fe

Dispersion Forces Among Ar Atoms

- Dispersion force is responsible for the condensed states of noble gases and nonpolar molecules
- A : Separated Ar atoms are nonpolar
- B : An instantaneous dipole in one atom induces a dipole in its neighbor. These partial charges attract the atoms together

19

C : This process takes place among atoms throughout the sample

