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Abstract 

Analysis of genetic polymorphisms may help identify putative prognostic markers and 
determine the biological basis of variable prognosis in patients. However, in contrast to other 
variables commonly used in the prognostic studies, there are special considerations when 
studying genetic polymorphisms. For example, variable inheritance patterns (recessive, 
dominant, codominant, and additive genetic models) need to be explored to identify the 
specific genotypes associated with the outcome. In addition, several characteristics of genetic 
polymorphisms, such as their minor allele frequency and linkage disequilibrium among 
multiple polymorphisms, and the population substructure of the cohort investigated need to 
be accounted for in the analyses. In addition, in cancer research due to the genomic 
differences between the tumor and non-tumor DNA, differences in the genetic information 
obtained using these tissues need to be carefully assessed in prognostic studies. In this article, 



we review these and other considerations specific to genetic polymorphism by focusing on 
genetic prognostic studies in cancer. 
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Introduction 

Genetic prognostic research 

Prognostic research aims to identify the factors that can predict the course of a disease in 
cohorts of patients [1]. Traditionally, various patient and disease-related and measurable 
variables, such as the demographic characteristics (for example, sex and age), pathological 
characteristics (for example, stage), molecular characteristics (for example, preoperative 
serum levels of carcinoembryonic antigen), and somatic mutations (for example, KRAS 
mutations) have been extensively investigated as prognostic markers in human cancers. 
While several of these variables, such as the disease stage, have been used in predicting the 
prognosis and outcomes in cancer patients, there is nevertheless a considerable amount of 
variability in clinical outcomes of patients carrying similar baseline clinicopathological 
characteristics. Identification of additional variables, such as genetic variations, and their 
inclusion into prognostic prediction models may provide better prognostic predictions and 
help improve treatment decisions and clinical outcomes in cancer patients [1]. 

In this article, we provide a review of the promises and special considerations arising from 
the unique features of genetic polymorphisms in prognostic research, particularly in relation 
to methodological and statistical applications, with an emphasis on cancer research. 

Genetic polymorphisms 

The human genome contains millions of sequence and structural variations. Among the most 
common variations are the single nucleotide polymorphisms (SNPs: estimated number >10 
million), small insertions and deletions (indels), and copy number variations (CNVs; variable 
number of DNA segments longer than 1 kb) [2,3]. Biological consequences of genetic and 
genomic variations contribute to a wide range of phenotypes, such as high-penetrant 
mutations observed in Mendelian diseases and low penetrant variations (also called 
polymorphisms) implicated in complex diseases. Therefore, many genomic variations have 
been extensively studied for their roles in human health and disease. In these studies, either 
individual alleles or genotypes at the polymorphic locus or their combinations (that is, 
haplotypes) at different polymorphic loci are investigated. We should mention that genetic 
prognostic studies benefit from the experience gained as a result of the genetic susceptibility 
studies investigating the genetic etiology of complex human diseases. For example, it 
becomes increasingly clear that in order to identify the low susceptibility alleles, more 
comprehensive (for example, including rare variants and structural variants, such as CNVs) 
and detailed (for example, investigating gene-gene and gene-environment interactions) 
analyses may be required [4]. In addition, since it is possible that patient prognosis can be 
modified by a number of different genetic variations and these risk alleles may not be shared 



by the individuals (that is, genetic heterogeneity), our current efforts to identify the genetic 
factors may be quite limited [4,5]. Genetic prognostic studies thus can learn from the 
strength, limitation, and experiences obtained from the genetic susceptibility studies and 
adapt the (emerging) concepts as relevant. 

While due to the large number of variations in the human genome and their relatively poor 
biological characterization, the functional consequences and medical significance of a large 
portion of these variations are currently unknown, nevertheless, many genetic polymorphisms 
have been evaluated as potential prognostic markers in human diseases. In this article, for 
simplicity, we will use the term polymorphism to refer to any type of genetic variations that 
is commonly used in the contemporary research setting, regardless of their functional and 
phenotypic consequences. In addition, although, we will focus on SNPs, the concepts 
discussed in this manuscript are also applicable to other genetic variations (such as indels and 
CNVs). 

Univariate and multivariate analyses in prognostic research 

An extensive description of the statistical tests and interpretation of their results used in 
prognostic studies is beyond the scope of this article. Instead, a brief, non-mathematical 
prologue is provided below. Interested readers may refer to other articles for further 
information [6-10]. 

Initially, association of a polymorphism and clinical outcomes is assessed through univariate 
analyses. Linear regression and the t-test are commonly used to test statistical association of 
continuous outcomes (for example, quality of life scores). Logistic regression and χ2 tests are 
frequently used to test statistical association of binary outcomes (for example, response rate, 
toxicity). Log-rank test (comparing Kaplan-Meier survival curves) and Cox regression 
analysis are two commonly used statistical methods to evaluate time-to-event outcomes (for 
example, time to progression, cancer-specific survival or overall survival). The result of these 
univariate analyses provides a P value and/or an estimated effect size (for example, odds ratio 
(OR) and hazard ratio (HR)) with confidence intervals that estimate whether a group of 
patients differs from another group of patients in terms of their prognostic characteristics. 
Specifically, in genetic prognostic research, these tests are used to determine whether a group 
of patients with a particular genotype (or genetic profiles combining multiple genotype data 
together) can be distinguished from patients with other genotypes or genetic profiles in terms 
of their outcomes. 

If, after a univariate analysis, a significant association of a polymorphism with outcome is 
detected, then, the patients carrying a particular form of a polymorphism (for example, a 
homozygous or heterozygous genotype, a particular allele, or combination of alleles (for 
example, haplotypes)) have a poorer or better outcome than the other group of patients 
carrying another genotype, allele or haplotype in that cohort. However, outcome in patients 
are affected by many different variables (such as disease stage, age, comorbid conditions) and 
the compared patient groups in analyses may differ in these potentially confounding factors. 
Unfortunately, univariate analyses cannot adjust for these confounding factors. Thus, 
univariate analysis results are only the first step in analysis, helping us to understand our data 
and perhaps select the variables suitable for further studies, and need to be followed by 
multivariate analyses. 



In multivariate analyses, a number of selected variables are analyzed together in a single 
statistical model, typically a regression model such as a logistic or Cox proportional hazard 
regression model. In such analyses, several variables are analyzed simultaneously to test their 
contribution to the outcome independent of other variables in the model. For example, the 
individual predictive value of a genotype may be tested after adjustment for other variables 
entered in the model (such as stage, age, and other clinically important variables). Genotypes 
that show statistically significant results after this adjustment are concluded to be independent 
predictors of the outcome. Another benefit of the multivariable models is that if confounding 
factors are entered into the multivariable analysis, then this method also helps identify the 
confounding factors (though in many cases some of the potential confounders remain 
unknown and thus cannot be included into the models). 

Selection, number and characteristics of the variables entered into a multivariable model are 
critical in statistical analyses. For instance, to ensure a proper model, variables in the model 
should be kept to minimum and have relatively common variable categories (see section 
entitled The minor allele frequency of polymorphisms and the other determinants of the study 
power in the multivariable models). Several approaches are available to select the variables 
entered into the multivariable models, with their own advantage and disadvantage [6]. One of 
the ways is to enter the experimental variable (such as polymorphisms) with those variables 
that are shown to be independent predictors with convincing scientific evidence (such as 
stage in cancer). In another approach, those putative prognostic variables that have a certain P 
value in the univariate analyses (such as below 0.05 or other cut point at the discretion of the 
investigator) are entered into the model. If the number of variables is large, an automatic 
selection method (such as backward, forward, and stepwise selections) may also be 
performed by statistical programs to determine the variables to be entered into the final 
model. In another approach, all variables that cause the main association (that is, OR or HR) 
to change greater than 10% are included in the final model. Last but not least, all variables 
may be analyzed in the multivariate analysis regardless of their P value in the univariate 
analyses (that is, unselected variables). Utilization of these alternative approaches in 
multivariate analysis thus may result in different results. 

Assuming that a multivariable model is developed, its results can pinpoint those variables that 
are able to predict the outcome in a study cohort independent of other prognostic variables. 
Once such independent predictors of outcome are identified in a study, however, validation in 
additional studies is required to avoid false-positive statistical results. Several approaches, 
such as internal and external validations, may be used in validation studies [11]. Usually, 
though, a model developed on a patient cohort may not work in another patient cohort with 
different characteristics. This is a natural anticipation as the prognosis in cancer patients is 
affected by many factors (such as disease and tumor characteristics, comorbid conditions, 
medical care, lifestyle factors, and patient ethnicity) and the distribution of such variables 
may differ from one cohort to other leading to different results in different cohorts. Therefore, 
factors that independently predict outcome regardless of this inter-patient variability are 
currently the ‘holy grail’ of prognostic research and whether we need a single prognostic 
model applicable to all patients or different models selected based on patient and disease 
characteristics is an ongoing debate. 

In addition to validation in other patient cohorts, meta-analyses can also be useful in 
identifying independent prognostic markers. Incorporation of independent prognostic markers 
in the clinical management of patients then requires clinical utility testing, followed by 
consensus guidelines for clinical adaption. Although there is a tremendous amount of 



research performed in this field, currently the number of genetic markers used in the clinic 
management of patients is surprisingly small, indicating the need to design better studies and 
the time required to validate prognostic models in a clinically meaningful way [11-13]. 

Other statistical approaches in prognostic studies 

In addition to the univariate and multivariate analyses that are commonly used in prognostic 
studies, we should also mention other statistical approaches that are relevant to genetic 
prognostic studies. For example, classification and regression tree (CART) analysis is a data 
partitioning method that can explore the relationship between the variables and the outcome 
in patient cohorts [14,15]. While multivariable models concern with predicting the risk of 
hazard for each covariate, CART analyses are rather focused on risk stratifying (or 
subgrouping the patients) based on clinical and prognostic characteristics [16]. In this regard, 
CART analysis is useful in identifying not only the patients with similar characteristics but 
also the predictive capacity of covariates. Another advantage of the CART analysis is its 
ability to detect the interactions between the covariates included in the analysis. For example, 
interactions between genetic polymorphisms or between genetic polymorphisms and 
environmental factors may be explored using this method [17,18]. Thus, CART analysis can 
be useful in genetic prognostic studies as well and is suggested to be complementary to the 
multivariable analyses [16,19]. 

Special considerations and analyses in genetic prognostic research involving 
genetic polymorphisms in cancer 

In many ways, genetic polymorphisms differ from other potential or established prognostic 
markers used in prognostic studies. While some of these characteristics ease our research and 
thus are advantageous, others still are challenging and may need to be debated within the 
scientific community to develop or establish ways to address them. In the following session, 
we discuss these characteristics and summarize the current challenges and solutions to some 
of these issues (Table 1). 

  



Table 1 A summary of special considerations in genetic prognostic studies 
Characteristics/challenge Possible solutions Potential benefits of the 

solution in genetic prognostic 
studies 

Correlation among genetic 
polymorphisms 

(i) Utilization of the linkage 
disequilibrium (LD) information 
and investigating the tagging single 
nucleotide polymorphisms 
(tagSNPs) instead can prevent this 
issue [23] 

(i) reduces the redundancy 
among variables and simplify 
the analysis while also 
reducing the genotyping cost 
and efforts [23] 

(ii) Once an association is found 
with a genetic polymorphism, this 
genomic region (usually within the 
same LD block) may be 
investigated in detail to identify the 
nearby ‘true’ prognostic factor that 
modifies the prognosis in patients 

(ii) may identify the prognostic 
factor biologically linked to 
variable prognosis in patients 

Genetic polymorphisms as 
confounders 

Some of the genetic polymorphisms 
confounding the relationship 
between the prognostic factor and 
the outcome are likely to be in close 
vicinity and can be identified by 
investigating the genomic region in 
detail 

Genetic confounders can be 
identified 

Hardy-Weinberg equilibrium 
(HWE) testing in case-only 
cohorts 

Whether appropriate or not remains 
to be established 

 

Estimating the correct genetic 
model 

Visual inspection of Kaplan-Meier 
curves for the codominant genetic 
model may reveal the best suitable 
genetic model for investigation of 
each polymorphism in multivariable 
models 

Provides a logical and 
comprehensive solution while 
also reduces the number of 
tests to be performed 

Minor allele frequency (MAF) 
of genetic polymorphisms 

Excluding the rare polymorphisms 
(for example, MAF <5%) from the 
analysis is a common practice 

Prevents unstable model 
construction and by reducing 
the multiple testing burden and 
increasing the events/variables 
ratio also improves the study 
power 

Population stratification due to 
variable frequencies of genetic 
polymorphisms in different 
ethnicities 

Detecting and controlling for the 
population substructure in the 
cohort eliminates this problem (for 
example, outlier samples may be 
eliminated from the analysis or 
ethnicity can be used as a covariate 
in the analysis) 

Prevents biased estimations 
and increases the study power 

Multiple testing issue due to 
the investigation of large 
numbers of polymorphisms 

Correction for multiple testing 
using a variety of methods such as 
Bonferroni or false discovery rate 

Reduces the false-positive rate 
(however, ironically may also 
increase the false-negative 



(FDR) methods [42] rate) 
Use of genomic material 
extracted from archived 
specimen 

Use of new technologies with high 
rates of successful genotyping 
[48,49] 

Reduces bias and increases 
study power by allowing the 
construction of models with a 
higher number of patients 

Use of tumor versus non-tumor 
DNA in the same study 

Using one type (either tumor or 
non-tumor) depending on the 
objectives of the study in the cohort 
or checking the correlation of 
genotype data obtained from both 
tumor and non-tumor DNA samples 
in a set of patients to see whether 
they are comparable with each other 
(for example, the tumor DNA may 
not be a good surrogate for non-
tumor DNA all the time) 

Prevents bias in study results 
created by alterations in tumor 
tissue DNA (that is, different 
genotypes in tumor DNA 
compared to non-tumor DNA) 

The main characteristics of genetic polymorphisms that require additional considerations in genetic 
prognostic research are summarized. The majority of the solutions are already applied in 
susceptibility studies, which can be or have been extended to the prognostic studies. 

Linkage disequilibrium among genetic polymorphisms provides unique 
advantages in genetic prognostic research 

The results of the HapMap project indicated that parts of the human genome are inherited as 
blocks (called linkage disequilibrium (LD) blocks); the polymorphisms located within these 
LD blocks are also inherited together with higher probability [20] (Figure 1). Usually, the 
genotypes of genetic variations in a LD block are also correlated with each other. In 
prognostic studies, these highly correlated genetic variations create a redundancy problem if 
investigated at the same time, which may distort the results of the statistical analysis. In order 
to prevent this problem, a practical alternative is to select a subset of genetic variation that 
captures the genetic information of correlated variations. This approach involves ‘tagging 
SNPs (tagSNPs)’, which can be identified for particular genomic regions for example, 
through the HapMap website [21] or by using specific software, such as Haploview [22]. 

Figure 1 A partial linkage disequilibrium (LD) map of the human CASR (calcium-
sensing receptor) gene. Rs numbers for polymorphisms in this gene are shown at the top. 
The triangle points to the predicted LD block. The rectangles indicate the correlation 
coefficient (r2) values between the different polymorphisms; the darker the color, the higher 
the r2 values. This figure was obtained using Haploview [22] with the genotype data for 
Caucasian samples posted at the HapMap database [20,21]. 

In addition to reducing the redundancy among the study variables, analysis of tagSNPs alone 
may simplify the genotyping efforts and reduce the cost and resources required for genetic 
prognostic studies [23]. This approach also (by reducing the number of genetic variations to 
be analyzed) reduces the correction for multiple testing burden (see section entitled The 
multiple testing issues). Due to these advantages, tagSNPs are increasingly used in genetic 
prognostic studies [24]. 



The LD among genetic polymorphisms in close proximity to each other also offers an 
additional advantage. For instance, once an association between an outcome and a 
polymorphism is detected and validated, this polymorphism may be considered as a 
prognostic marker. However, such a genetic marker may not be the direct biological modifier 
of the prognosis, but rather act as a proxy or surrogate for a nearby ‘true’ prognostic factor 
(that biologically modifies the risk of outcome). Therefore, after this initial step, the genomic 
region around the validated polymorphisms should be investigated in detail to identify this 
prognostic factor. This critical information may then help elucidate the biological basis of 
variable prognosis in patients, but is unfortunately currently missing in the majority of the 
genetic prognostic studies. Therefore, future studies may also focus on this missing part of 
the genetic prognostic research. 

Genetic polymorphisms may be confounded by other genetic polymorphisms 

A confounder is a variable that is linked to both the variable and the outcome [6]. 
Confounding is a common issue in epidemiological studies and complicates the interpretation 
of statistical analyses and identification of independent prognostic factors. For example, an 
association between a variable and an outcome in univariate analyses may be detected due to 
a variety of reasons, including chance, bias in study design, true association of the variable 
with the outcome, or the effect of a confounding factor on the variable. Luckily, the 
multivariate analyses can control confounding by means of adjusting if the confounder and 
confounded variables are included into the models. However, it is expected that many of the 
confounder variables are not yet identified, collected for studies, or included into the models 
in many diseases. Thus, in the absence of their inclusion into the models, it is likely that those 
variables identified as independent prognostic markers in multivariate analyses remain as 
confounded by other (unknown or unmeasured) factors. 

In the case of genetic variations, it is possible that another genetic variation in the same LD 
block (for example, a highly correlated or linked polymorphism) may be a confounder. 
Therefore, in contrast to many other epidemiological confounders, which are difficult to 
identify, at least some of the genetic confounders may be identified by examining the 
genomic region of interest and the other genetic variations located in it. Therefore, analysis of 
genetic variations as prognostic markers also offers unique benefits that do not currently exist 
in epidemiological research. 

Should the Hardy-Weinberg equilibrium test be applied in genetic prognostic 
research? 

In genetic research, as a quality control measure, the patient genotypes obtained for genetic 
polymorphisms are generally checked for genotyping or sampling errors using the Hardy-
Weinberg equilibrium (HWE) [25] prior to inclusion into analysis. 

HWE states that in an (infinitely) large population with random mating and absence of 
mutation, migration, or immigration, the allele and genotype frequencies of autosomal loci 
remain constant over time and follow specific genotype distributions. Therefore, any 
deviation of genotype distribution from HWE may indicate a population in flux, such as non-
random mating and immigration. In genetic research, however, such deviations may also be 
caused by random fluctuations in samples included into the study, bias in samples collected 
or included into the research project, presence of samples from different ethnicities (where 
the frequency of the alleles differ from each other, which is called as population stratification; 



see section entitled Population substructure of the patient cohort investigated), and technical 
errors in genotyping (such as underdetection of an allele due to poor primer binding, errors in 
DNA sampling, DNA contamination by other sources, and errors in interpretation of the 
genotype [26,27]). In genetic research, HWE has been mostly used to address handling, 
sampling, and genotyping errors and thus many experts use deviations from HWE as a flag to 
indicate that the genotyping method may need additional scrutiny. 

The conventional approach, for example, in case-control studies is to check for such 
genotyping errors by applying the HWE test to genotype information in the healthy control 
population. If the test results do not indicate a deviation from the HWE, then the investigation 
of this polymorphism in the case-control cohorts proceeds forward. Usually, however, the 
polymorphisms whose genotype data do not satisfy the HWE are excluded from the analysis. 
Since, the deviations from HWE may also be due to the other factors (mentioned above), 
using this test to exclude some genotype data is a conservative approach. In addition, in 
contrast to the case-control association studies, prognostic research relies only on cases. In 
our opinion, how appropriate the HWE test in case-only design therefore needs to be debated. 

Recessive, dominant, codominant, and additive inheritance models: which one to 
investigate? 

Genetic polymorphisms commonly consist of two different alleles (A and B). Thus, a person 
can carry two copies of the same allele (for example, AA and BB homozygous genotypes) or 
one of each allele (for example, AB heterozygous genotype). While tri-allelic (for example, 
AA, AB, BB, AC, and CC genotypes) and quadri-allelic polymorphisms (AA, AB, BB, AC, 
CC, AD, and DD genotypes) also exist in the human genome, albeit at a much lower 
frequency, in this article we develop our discussion around the bi-allelic polymorphisms. 

Usually, the genetic effects of each of the three genotypes (AA, AB, and BB) on prognosis 
are unknown and thus consideration of different genetic inheritance models may be required 
during statistical analysis. Most commonly used genetic models are the recessive, dominant, 
codominant and additive genetic models [28]. In these genetic models, when the risk allele is 
unknown (whether it is the major or the minor allele, for example), the genetic model can be 
defined after the minor allele assuming that the minor allele is the risk allele. In such a case, 
in the recessive model, patients with homozygous (two) minor alleles (for example, patients 
with the BB genotype) are considered to be different from the group of patients with both 
homozygous major allele (patients with the AA genotype) and heterozygote genotype 
(patients with the AB genotype) in terms of their clinical and prognostic characteristics. In 
the dominant model, the assumption is that only one minor allele is enough to predict the 
outcome, thus the patients with BB and AB (containing at least one minor allele) are grouped 
together and compared with the AA patients. In the codominant model (also called discrete 
model), the assumption is that the heterozygotes (AB) have a distinct effect, which is 
different than the effects of minor (BB) and major (AA) homozygote genotypes; therefore, a 
comparison of these three groups is performed (usually where the major allele homozygotes 
(AA) serve as a reference group and compared with AB and BB genotypes separately). In the 
additive model, it is assumed that the effect of heterozygote genotype (AB) is in between the 
effects of minor homozygote genotype (BB) and major homozygote genotype (AA) in a 
dose-dependent manner. 

Typically, there is no, little, or conflicting biological or phenotype data to hint the right 
direction to use one inheritance model over another. Therefore, multiple models may need to 



be investigated in genetic prognostic studies. In our experience, the most common and robust 
genetic models investigated are the additive and the codominant models. In order to 
completely evaluate the role of a polymorphism with prognostic characteristics of patients, 
however, ideally all possible genetic models require investigation. Ironically, this also 
increases the number of statistical tests performed, which may require correction for multiple 
testing (see section entitled The multiple testing issues). In addition, the correction for 
multiple testing procedures almost always reduce the statistical power. Therefore, as a way of 
overcoming the multiple testing issue, many researchers opt for application of only one or a 
few of these inheritance models in their studies, rather than investigating multiple models for 
a comprehensive analysis. Such a practice, however, may lead to omission of potentially 
important findings. 

In addition to the correction for multiple testing, analysis of multiple genetic models in the 
same study presents another challenge. In univariate analysis, detection of a significant 
association of a polymorphism with an outcome in more than one genetic model is not 
uncommon. Especially if the models contain multiple polymorphisms, constructing a separate 
multivariate model for each inheritance model, for example, is not a logical solution as each 
polymorphism may affect the prognosis under different inheritance patterns. 

One solution to this issue is to determine the best pattern of genetic effect (that is, inheritance 
model) for each polymorphism by inspecting the univariate Kaplan-Meier survival curves 
conducted for the codominant genetic model (Figure 2). This way, the genetic model for each 
polymorphism may be determined prior to performing multivariate analysis, which 
circumvents the concern of multiple and blind looks at the data and unnecessary multiple 
modeling. Another solution is to test the association of a genetic variation with prognosis 
under multiple genetic models in separate univariate analyses and then to select the best 
genetic model among all based on the P values (that is, the lower the P value, more 
appropriate is the genetic model to detect the effect of the variation) [29]. 

Figure 2 Kaplan-Meier curves may identify the best fitting genetic model for a 
polymorphism. For simplicity, survival curves are shown as straight lines. AA = major allele 
homozygous genotype, AB = heterozygous genotype, BB = minor allele homozygous 
genotype, assuming allele ‘A’ is the common allele. (a) The effect of the AB genotype on 
survival is approximately half between the AA and BB genotypes, thus the additive model is 
appropriate for this polymorphism in the multivariate analysis. (b) The curves of AB and BB 
genotypes cluster closer to each other when compared to the AA genotype’s curve, thus, the 
effect of the polymorphism is likely to be dominant. (c) AA and AB genotype survival curves 
cluster together and clearly separate from the BB genotype curve. Thus, the inheritance 
pattern is likely to be recessive. (d) In this case, the effect of AB genotype is somewhat in 
between the effects of AA and BB genotypes, thus, analyzing this polymorphism assuming 
the codominant model is suitable. (e) This is an interesting polymorphism where the 
heterozygotes are associated with worse survival compared to either homozygous genotypes 
(AA and BB). The codominant genetic model is the appropriate model to investigate such 
polymorphisms in multivariate analyses. Exact biological and genetic reasons for such 
associations are not clear, but it may be due to heterozygote disadvantage where the 
heterozygotes display phenotype but not the either homozygotes. (f) The heterozygotes have 
better survival than AA and BB homozygotes. This case may represent a ‘heterozygote 
advantage’ situation, where the heterozygotes have favorable survival characteristics. Similar 
examples are observed in Mendelian diseases, such as sickle cell anemia [56]. In both (e) and 



(f), presence of another genetic variation in close proximity acting as a prognostic factor 
(which is not highly correlated with this polymorphism) may be an alternative explanation. 

The minor allele frequency of polymorphisms and the other determinants of the 
study power in the multivariable models 

Genetic polymorphisms present in a range of minor allele frequencies (MAFs) in human (1% 
to 50%). The minor allele frequency of a polymorphism is critical information that helps 
determine the inclusion of the polymorphism into the statistical analysis, as rare variables 
may hamper the model construction [6]. For example, a polymorphism with a MAF of 1% 
studied in a cohort of 1000 chromosomes (that is, 500 patients, assuming it is on an 
autosomal chromosome) will be detected in only 10 of the chromosomes. Therefore, the 
study analyzing this polymorphism (in univariate or multivariate analyses) may not have 
enough power (that is, the probability of detecting a significant association when it actually 
exists). Therefore, as a general rule, as the MAF of a polymorphism increases, so does the 
study power. Therefore, exclusion of polymorphisms with a MAF of <1% or <5% is a 
common practice in current genetic prognostic studies. However, exclusion of rare genetic 
variations may also lead to missing the identification of rare variations that have strong 
effects (for example, high HRs) on prognosis. Study power is also directly related to the size 
of the effect that a polymorphism has on the outcome; to detect smaller effects, larger sample 
sizes are required [30], yet to detect prognostic markers (whether rare or common) with 
strong effects, studying a cohort with a relatively smaller size may be sufficient [4]. 

Finally, in addition to the sample size and the effect size, we should also mention that the 
number of events per investigated variable in a multivariable model may impact the study 
power. A recommended rule for statistical power in multivariate analyses is the presence of at 
least ten events per independent variable [6]. The event/variable ratio is usually high in 
cohorts with high risk of events (such as metastatic cancer patients) or in cohorts with long 
follow-up periods that allow detection of most events experienced by the patients. Thus, in 
the genetic prognostic research, when an association is not detected, the role of insufficient 
study power as well as inadequate follow-up time should be considered before concluding 
that the polymorphism is not an independent predictor of prognosis. This event per variable 
ratio also demonstrates the need of entering a relatively small number of variables into the 
multivariable models. 

Population substructure of the patient cohort investigated 

Most of the genetic prognostic studies are based on population-based design with unrelated 
patients. However, these studies are prone to population stratification [31]. Population 
stratification refers to different allele frequencies of subpopulations in the study cohort due to 
an ancestry difference in study patients (for example, patients from different ethnicities). The 
influence of stratification on genetic association studies has been demonstrated even in well-
designed protocols, with greatest effect in admixed populations (such as African-Americans) 
and for diseases with different variant prevalence rates in the ancestral populations [32]. For 
example, allelic frequencies of certain polymorphisms may significantly differ among 
Caucasians, Asians, and Africans [33,34]. An example to such a polymorphism is the (TA)7 
allele in the UGT1A1 gene (responsible for the detoxification of the active metabolite of the 
chemotherapeutic agent, irinotecan), which is more common in Caucasians than in Asians 
[35]. In addition, allelic frequencies of polymorphisms may also differ within each of these 
populations (such as among different populations from countries in Europe) [36]. Therefore, 



unrecognized population stratification can lead to biased estimation (for example, inflated 
false-positive results), or reduce statistical power if not appropriately corrected [37]. 

Since many cohorts investigated contain patients from different ethnicities and with potential 
population substructure, various methods have been developed to detect and control for 
population stratification in human genetic association studies, which may also be applied to 
genetic prognostic research; (a) the genomic control method [38] corrects for population 
stratification by adjusting with a variable determined from a set of random genetic markers 
that are not associated with the disease outcomes in the studied cohort, (b) structured 
association can assign the study patients to distinct subpopulations and then aggregates 
evidence of association within each subpopulation. The most commonly used genetic 
package for structured association analysis is the STRUCTURE program [39], (c) a recent 
development for the correction of population stratification utilizes EIGENSTRAT [40], 
which computes principal components for collected SNPs (for example, across the genome in 
genome wide studies) to identify population structure. In this approach, the top principal 
components that contribute mostly to the genetic variation in the study cohort are included as 
covariates in multivariate regression models to adjust for population stratification. Using 
these or other similar methods to identify and account for the population stratification in 
genetic prognostic research may, therefore, improve reliability of results. 

The multiple testing issues 

When multiple hypotheses are tested in a study, using the significance level at the traditional 
value of 0.05 may lead to inflated false-positive results. In other words, the more 
comparisons we perform, the more likely we can obtain a significant result by chance. While 
for candidate gene studies, a modified significance threshold (for example, P <0.0005; [41]) 
was suggested, with the assistance of high-throughput genotyping technologies, genetic 
prognostic studies are increasingly investigating larger numbers of polymorphisms (for 
example, genomewide scans). This increase in the number of polymorphisms creates a 
challenge of how to deal with the multiple testing issue. 

A variety of statistical correction methods have been developed [42] and may be applied to 
genetic prognostic research investigating large numbers of genetic markers. The most 
commonly used methods for multiple-testing correction are Bonferroni adjustment, 
permutation algorithm, and the false discovery rate (FDR) methodology. The Bonferroni 
adjustment is useful when the number of multiple testing is not very large and the tests are 
independent (for example, candidate gene study with genetic variants that are not in LD with 
each other). However, Bonferroni adjustment may be too conservative when the tests are not 
independent, which is often the case in genetic prognostic studies where the polymorphisms 
to be tested are in high LD. Nyholt [43] has proposed a correction method based on 
estimation of the effective number of independent tests. Permutation-based adjusted 
significance levels are particularly useful when there are strong dependencies among the 
tests. However, the computation is quite intensive. FDR methodology is suitable for very 
large scale multiple testing [44]. The statistical significance thresholds can be set according to 
the overall pattern of results [45]. To improve power, the FDR method can be weighted 
according to the importance of the test [46] such as evidence from linkage scans [47]. While 
Bonferroni adjustment can be performed manually, specific statistical programs are required 
for both permutation-based and FDR adjustments. 



While the correction for multiple testing procedures aim to reduce the false-positive findings, 
there are other ways to help limit the number of spurious findings. For example, although not 
completely ideal, internal validation techniques such as cross-validation and bootstrap may be 
applied to the cohort data to reduce the false-positive discoveries [6,11,12]. The best 
approach to test whether a positive association is a true association, however, is to replicate 
the findings in another patient cohort preferably from another center or population [11]. 

Use of genomic material extracted from achieved specimen may require extra 
care in the genetic prognostic studies 

The majority of prognostic studies have been conducted on retrospective cohorts collected for 
other purposes. Here the availability of genetic material and its efficiency in yielding the 
genotypes are not usually considered optimal. For example, in a significant portion of studies 
in cancer, formalin-fixed-paraffin-embedded (FFPE) tissue blocks (from both tumor and 
adjacent non-tumor tissue) collected during surgery are used to extract genomic DNA. The 
quality and the amount of this type of DNA may not be high and is susceptible to lower 
genotyping yields. This limitation in quantity and quality of the genomic DNA in 
retrospective cohorts usually restricts the options on suitable genotyping technology and the 
extent of the genotyping analysis (for example, limiting the number of genes/polymorphisms 
that can be investigated). An increased proportion of failed genotyping may also create biased 
study results. Recently a few studies have shown that the limitations of FFPE-extracted DNA 
can be overcome by certain genotyping methods [48,49]. In addition, recent prognostic 
studies have been keen about banking blood samples that contain DNA (that is, whole blood 
or leukocytes). These technological and study-design-related advances are expected to 
improve the genotyping success rates and reduce bias, and thus increase the capacity and 
reliability of the future genetic prognostic research. 

Use of tumor DNA versus non-tumor DNA in genetic prognostic research: which 
one is appropriate? 

Due to the availability of the tumor tissue in many studies and the fact that disease 
progression and prognosis of cancer patients are affected by tumor behavior [50-54], analysis 
of the tumor genotypes may be feasible and can yield interesting and valuable prognostic 
information. However, distinct differences between the tumor and non-tumor extracted DNA 
samples of a single patient create a challenge. For example, frequent, somatic small-scale 
(such as point mutations) and large-scale (such as aneuploidy and loss-of-heterozygosity 
(LOH)) alterations are well-known characteristics of the cancer genomes. Therefore, tumor 
DNA and non-tumor DNA of the same individual may have different genotypes for a given 
polymorphism. 

In prognostic research in oncology, the optimal source of DNA depends on the study aims. If 
the association being tested is toxicity, then the optimal DNA may be the DNA in the target 
organ of the toxicity (for example, skin for rash, gut for diarrhea) or the organ that 
metabolizes, excretes, or activates the active drug (for example, liver, kidney, biliary track). 
Surrogate DNA in this case may come from any germline (that is, non-tumor) source, such as 
blood. In addition, if the mechanism influences the host stroma (that is, angiogenesis), the 
optimal source of DNA is from the host tissue (that is, non-tumor surgical tissue). In contrast, 
if the association relates to efficacy and the polymorphism influences the tumor itself (for 
example, by affecting the proliferative capacity or oncogenic pathways in tumors), then the 



most appropriate source of DNA is the tumor itself. Since it is impractical to obtain multiple 
sources of DNA to test different hypotheses in the same patient population, one can test 
tumor and non-tumor DNA for their correlation in genotype. High concordances (that is, 
above 95%) may suggest that the polymorphism itself is not a hotbed of somatic change in 
the tumor and thus allow tumor and non-tumor tissue to become surrogates for each other. 

Conclusions 

Genetic prognostic research examining the relation and predictive value of genetic 
polymorphisms is a promising and rapidly developing research area. In contrast to other 
variables commonly studied, genetic polymorphisms have several unique characteristics that 
require special considerations in study design and data analysis. While some of these 
characteristics (such as linkage disequilibrium among genetic polymorphisms and tagSNPs) 
ease our efforts, other characteristics (such as different frequencies of polymorphisms in 
different ethnicities and use of genomic material extracted from archived specimen) may bias 
our results, if left unaccounted for. In addition, variability in study design and analysis can 
adversely affect advancement of the genetic prognostic research and translation of its results 
into the clinic. Recommendations modeled as guidelines (for example, REMARK guidelines 
[55]) on how to conduct and compare genetic prognostic research involving genetic markers 
may be needed to expedite this exiting and promising research field. 
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