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Abstract

Analysis of genetic polymorphisms may help identify putative postioc markers and
determine the biological basis of variable prognosis in patientsetwin contrast to other
variables commonly used in the prognostic studies, there are speogtlerations when
studying genetic polymorphisms. For example, variable inheritaat®rps (recessive,
dominant, codominant, and additive genetic models) need to be explored toyidlwtltif
specific genotypes associated with the outcome. In addition, sebaralcteristics of genetic
polymorphisms, such as their minor allele frequency and linkage diseturii among
multiple polymorphisms, and the population substructure of the cohortigatest need tp
be accounted for in the analyses. In addition, in cancer researchodine genomi¢
differences between the tumor and non-tumor DNA, differences igehetic information
obtained using these tissues need to be carefully assessednagtiogtudies. In this article
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we review these and other considerations specific to genetimpgiism by focusing on
genetic prognostic studies in cancer.

Keywords

Genetic models, genetic polymorphisms, genetic prognostic factors, gesiqtypgnostic
research, tumor DNA

Introduction

Genetic prognostic research

Prognostic research aims to identify the factors that can pribdiccourse of a disease in
cohorts of patients [1]. Traditionally, various patient and diseslsted and measurable
variables, such as the demographic characteristics (forpdeasex and age), pathological
characteristics (for example, stage), molecular charatitsri(for example, preoperative
serum levels of carcinoembryonic antigen), and somatic mutaffonsexample, KRAS
mutations) have been extensively investigated as prognostic mankénsman cancers.
While several of these variables, such as the disease Btagebeen used in predicting the
prognosis and outcomes in cancer patients, there is neverthelessderedshes amount of
variability in clinical outcomes of patients carrying similaaseline clinicopathological
characteristics. Identification of additional variables, such a&etgevariations, and their
inclusion into prognostic prediction models may provide better prognpsgdictions and
help improve treatment decisions and clinical outcomes in cancer patients [1].

In this article, we provide a review of the promises and speciaiderations arising from
the unique features of genetic polymorphisms in prognostic researtbulpaly in relation
to methodological and statistical applications, with an emphasis on caneechese

Genetic polymorphisms

The human genome contains millions of sequence and structural variatioosg the most
common variations are the single nucleotide polymorphisms (SNRwat=st number >10
million), small insertions and deletions (indels), and copy humbétims (CNVs; variable
number of DNA segments longer than 1 kb) [2,3]. Biological consequeriagsnetic and
genomic variations contribute to a wide range of phenotypes, such lagpdmgtrant
mutations observed in Mendelian diseases and low penetrant variatisns c@led
polymorphisms) implicated in complex diseases. Therefore, many genanmations have
been extensively studied for their roles in human health and didaabese studies, either
individual alleles or genotypes at the polymorphic locus or their conntisa(that is,
haplotypes) at different polymorphic loci are investigated. We shoelation that genetic
prognostic studies benefit from the experience gained as a oésidt genetic susceptibility
studies investigating the genetic etiology of complex human s#iseaFor example, it
becomes increasingly clear that in order to identify the loweniwbility alleles, more
comprehensive (for example, including rare variants and structurahtgrsuch as CNVS)
and detailed (for example, investigating gene-gene and gene-enembninteractions)
analyses may be required [4]. In addition, since it is possiblep#isnt prognosis can be
modified by a number of different genetic variations and theseallisles may not be shared



by the individuals (that is, genetic heterogeneity), our curréoit® to identify the genetic
factors may be quite limited [4,5]. Genetic prognostic studies tlams|earn from the
strength, limitation, and experiences obtained from the genetic sbddgpstudies and
adapt the (emerging) concepts as relevant.

While due to the large number of variations in the human genome andetagvely poor
biological characterization, the functional consequences and mewjo#icance of a large
portion of these variations are currently unknown, nevertheless, maetycgeolymorphisms
have been evaluated as potential prognostic markers in human diseabeés.article, for
simplicity, we will use the term polymorphism to refer to @ayge of genetic variations that
is commonly used in the contemporary research setting, regaaflébeir functional and
phenotypic consequences. In addition, although, we will focus on SNPs, theptsonc
discussed in this manuscript are also applicable to other ggagtitions (such as indels and
CNVs).

Univariate and multivariate analyses in prognostiadesearch

An extensive description of the statistical tests and intetpyetaf their results used in
prognostic studies is beyond the scope of this article. Insteadefa rown-mathematical
prologue is provided below. Interested readers may refer to otheles for further
information [6-10].

Initially, association of a polymorphism and clinical outcomessessed through univariate
analyses. Linear regression and thest are commonly used to test statistical association of
continuous outcomes (for example, quality of life scores). Logistjicession ang tests are
frequently used to test statistical association of binary outcdimesxample, response rate,
toxicity). Log-rank test (comparing Kaplan-Meier survival cujvesd Cox regression
analysis are two commonly used statistical methods to evdloaego-event outcomes (for
example, time to progression, cancer-specific survival or dwwmalival). The result of these
univariate analyses providesavalue and/or an estimated effect size (for example, odds ratio
(OR) and hazard ratio (HR)) with confidence intervals that eséimvhether a group of
patients differs from another group of patients in terms of gh@gnostic characteristics.
Specifically, in genetic prognostic research, these tesissarkto determine whether a group
of patients with a particular genotype (or genetic profiles com@pimultiple genotype data
together) can be distinguished from patients with other genotypenetigprofiles in terms

of their outcomes.

If, after a univariate analysis, a significant associatioa pblymorphism with outcome is
detected, then, the patients carrying a particular form of wrmwphism (for example, a
homozygous or heterozygous genotype, a particular allele, or combinatwlieles (for
example, haplotypes)) have a poorer or better outcome than the abher @ patients
carrying another genotype, allele or haplotype in that cohort. Hoyeutzome in patients
are affected by many different variables (such as disease atggeomorbid conditions) and
the compared patient groups in analyses may differ in thesetipdi{econfounding factors.
Unfortunately, univariate analyses cannot adjust for these confoundatgrsta Thus,
univariate analysis results are only the first step in aiglizelping us to understand our data
and perhaps select the variables suitable for further studiesnesstdto be followed by
multivariate analyses.



In multivariate analyses, a number of selected variabilesaaalyzed together in a single
statistical model, typically a regression model such as atilogis Cox proportional hazard
regression model. In such analyses, several variables areexhaigmiltaneously to test their
contribution to the outcome independent of other variables in the model. &oplex the
individual predictive value of a genotype may be tested after atgustfor other variables
entered in the model (such as stage, age, and other clinicplbytant variables). Genotypes
that show statistically significant results after this adjustment@reluded to be independent
predictors of the outcome. Another benefit of the multivariable mosleteat if confounding
factors are entered into the multivariable analysis, then thisoshelso helps identify the
confounding factors (though in many cases some of the potential confeureteain
unknown and thus cannot be included into the models).

Selection, number and characteristics of the variables entdéced multivariable model are
critical in statistical analyses. For instance, to ensym®per model, variables in the model
should be kept to minimum and have relatively common variable catedeeessection
entitled The minor allele frequency of polymorphisms and the othermdimants of the study
power in the multivariable models). Several approaches are [@eaitaselect the variables
entered into the multivariable models, with their own advantage aadvdistage [6]. One of
the ways is to enter the experimental variable (such as polymorghivith those variables
that are shown to be independent predictors with convincing scientifiereg (such as
stage in cancer). In another approach, those putative prognostic variables/tha certaiP
value in the univariate analyses (such as below 0.05 or other cuapthet discretion of the
investigator) are entered into the model. If the number of variablesge, an automatic
selection method (such as backward, forward, and stepwise i@&t¢ctmay also be
performed by statistical programs to determine the vasatidebe entered into the final
model. In another approach, all variables that cause the main #ssoftlzat is, OR or HR)
to change greater than 10% are included in the final model. Lasibblgast, all variables
may be analyzed in the multivariate analysis regardless of Fhealue in the univariate
analyses (that is, unselected variables). Utilization of thdtsgnative approaches in
multivariate analysis thus may result in different results.

Assuming that a multivariable model is developed, its results can pinpoint thossegatinat
are able to predict the outcome in a study cohort independent ofpotiggrostic variables.
Once such independent predictors of outcome are identified in a Bawagyer, validation in
additional studies is required to avoid false-positive statistEsullts. Several approaches,
such as internal and external validations, may be used in validatidiess [11]. Usually,
though, a model developed on a patient cohort may not work in another patient with
different characteristics. This is a natural anticipationhasprognosis in cancer patients is
affected by many factors (such as disease and tumor chiaticte comorbid conditions,
medical care, lifestyle factors, and patient ethnicity) anddik&ibution of such variables
may differ from one cohort to other leading to different results in diffex@mbrts. Therefore,
factors that independently predict outcome regardless of thispatent variability are
currently the ‘holy grail’ of prognostic research and whethernged a single prognostic
model applicable to all patients or different models selecteddbasepatient and disease
characteristics is an ongoing debate.

In addition to validation in other patient cohorts, meta-analysesatsm be useful in
identifying independent prognostic markers. Incorporation of independent pticgnaskers
in the clinical management of patients then requires cliniclityutesting, followed by
consensus guidelines for clinical adaption. Although there is a mdone amount of



research performed in this field, currently the number of gemedirkers used in the clinic
management of patients is surprisingly small, indicating the tweddsign better studies and
the time required to validate prognostic models in a clinically meaningfu[iial3].

Other statistical approaches in prognostic studies

In addition to the univariate and multivariate analyses that@mmonly used in prognostic
studies, we should also mention other statistical approachesarhaklevant to genetic
prognostic studies. For example, classification and regressio(C#d€T) analysis is a data
partitioning method that can explore the relationship between thébheariand the outcome
in patient cohorts [14,15]. While multivariable models concern with piiadit¢he risk of
hazard for each covariate, CART analyses are rather focusedslorstratifying (or
subgrouping the patients) based on clinical and prognostic chastacsefl 6]. In this regard,
CART analysis is useful in identifying not only the patientshvgiimilar characteristics but
also the predictive capacity of covariates. Another advantage dCARET analysis is its
ability to detect the interactions between the covariates incindbe analysis. For example,
interactions between genetic polymorphisms or between genetic peplyistos and
environmental factors may be explored using this method [17,18]. Thus, @A&Ysis can
be useful in genetic prognostic studies as well and is sudgestee complementary to the
multivariable analyses [16,19].

Special considerations and analyses in genetic progstic research involving
genetic polymorphisms in cancer

In many ways, genetic polymorphisms differ from other potentiastablished prognostic
markers used in prognostic studies. While some of these chastacsegaise our research and
thus are advantageous, others still are challenging and may needlébdied within the
scientific community to develop or establish ways to address timethe Ifollowing session,
we discuss these characteristics and summarize the curedlehgles and solutions to some
of these issues (Table 1).



Table 1 A summary of special considerations in genetic prognostic studies

Characteristics/challenge  Possible solutions Potential benefits of the
solution in genetic prognostic
studies

Correlation among genetic (i) Utilization of the linkage () reduces the redundancy

polymorphisms disequilibrium (LD) information among variables and simplify

and investigating the tagging singlee analysis while also
nucleotide polymorphisms reducing the genotyping cost
(tagSNPs) instead can prevent thand efforts [23]

issue [23]

(i) Once an association is found (ii) may identify the prognost
with a genetic polymorphism, thisfactor biologically linked to
genomic region (usually within theariable prognosis in patients
same LD block) may be
investigated in detail to identify the
nearby ‘true’ prognostic factor that
modifies the prognosis in patients
Genetic polymorphisms as Some of the genetolymorphism:Genetic confounders can be
confounders confounding the relationship identified
between the prognostic factor and
the outcome are likely to be in clc
vicinity and can be identified by
investigating the genomic region in
detail
Hardy-Weinberg equilibrium Whether appropriate or not remains
(HWE) testing in case-only to be established

cohorts
Estimating the correct genetid/isual inspection of Kaplan-MeieProvides a logical and
model curves for the codominant geneticomprehensive solution while

model may reveal the best suitabldso reduces the number of
genetic model for investigation oftests to be performed
each polymorphism in multivariak
models
Minor allele frequency (MAF)Excluding the rare polymorphism&revents unstable model
of genetic polymorphisms  (for example, MAF <5%) from theconstruction and by reducing
analysis is a common practice  the multiple testing burden a
increasing the events/variables
ratio also improves the study
power
Population stratification due t®etecting and controlling for the Prevents biased estimations
variable frequencies of genetjgopulation substructure in the  and increases the study power
polymorphisms in different  cohort eliminates this problem (for
ethnicities example, outlier samples may be
eliminated from the analysis or
ethnicity can be used as a covariate
in the analysis)
Multiple testing issue due to Correction for multiple testing  Reduces the false-positive rate
the investigation of large using a variety of methods such gkowever, ironically may also
numbers of polymorphisms Bonferroni or false discovery rateincrease the false-negative




(FDR) methods [42] rate)

Use of genomic material Use of new technologies with higliReduces bias and increases
extracted from archived rates of successful genotyping study power by allowing the
specimen [48,49] construction of models with a

higher number of patients

Use of tumor versus namimor Using one type (either tumor or Prevents bias in study results
DNA in the same study non-tumor) depending on the created by alterations in tumor

objectives of the study in the cohdidsue DNA (that is, different
or checking the correlation of genotypes in tumor DNA
genotype data obtained from botltompared to non-tumor DNA)
tumor and nortumor DNA sample

in a set of patients to see whether

they are comparable with each of

(for example, the tumor DNA may

not be a good surrogate for non-

tumor DNA all the time)

The main characteristics of genetic polymorphisms that regduolgional considerations in genetic
prognostic research are summarized. The majority of the soluaomsalready applied in
susceptibility studies, which can be or have been extended to the prognostic studies.

Linkage disequilibrium among genetic polymorphisms provides unigue
advantages in genetic prognostic research

The results of the HapMap project indicated that parts of the hunmamegeare inherited as
blocks (called linkage disequilibrium (LD) blocks); the polymorphisatated within these

LD blocks are also inherited together with higher probability [20§uFe 1). Usually, the

genotypes of genetic variations in a LD block are also coectlavith each other. In

prognostic studies, these highly correlated genetic variationte @eadundancy problem if
investigated at the same time, which may distort the resiulke statistical analysis. In order
to prevent this problem, a practical alternative is to selettbaet of genetic variation that
captures the genetic information of correlated variations. Thisoapprinvolves ‘tagging

SNPs (tagSNPs)’, which can be identified for particular genamigons for example,

through the HapMap website [21] or by using specific software, such as Hap[@2iew

Figure 1 A patrtial linkage disequilibrium (LD) map of the human CASR (calcium-
sensing receptor) geneRs numbers for polymorphisms in this gene are shown at the top.
The triangle points to the predicted LD block. The rectanghelicate the correlation
coefficient (f) values between the different polymorphisms; the darker the ¢otohigher

the ¢ values. This figure was obtained using Haploview [22] with the gprotata for
Caucasian samples posted at the HapMap database [20,21].

In addition to reducing the redundancy among the study variablegsianafl tagSNPs alone
may simplify the genotyping efforts and reduce the cost and resowequired for genetic
prognostic studies [23]. This approach also (by reducing the numbenetiagyeariations to

be analyzed) reduces the correction for multiple testing burdensgsaion entitled The
multiple testing issues). Due to these advantages, tagSNHs@asingly used in genetic
prognostic studies [24].



The LD among genetic polymorphisms in close proximity to each dilser offers an
additional advantage. For instance, once an association between an eowodma
polymorphism is detected and validated, this polymorphism may be catider a
prognostic marker. However, such a genetic marker may not loiréfoe biological modifier
of the prognosis, but rather act as a proxy or surrogate for a néamsgyprognostic factor
(that biologically modifies the risk of outcome). Therefore, atftes initial step, the genomic
region around the validated polymorphisms should be investigated in tdetdéntify this
prognostic factor. This critical information may then help elucidaée biological basis of
variable prognosis in patients, but is unfortunately currently migsirtbe majority of the
genetic prognostic studies. Therefore, future studies mayfatsis on this missing part of
the genetic prognostic research.

Genetic polymorphisms may be confounded by other genetic polymorphisms

A confounder is a variable that is linked to both the variable andotiteome [6].
Confounding is a common issue in epidemiological studies and comglibatenterpretation
of statistical analyses and identification of independent prognfastiors. For example, an
association between a variable and an outcome in univariate eatgy be detected due to
a variety of reasons, including chance, bias in study design, dseeiation of the variable
with the outcome, or the effect of a confounding factor on the varidlbiekily, the
multivariate analyses can control confounding by means of adjustihg confounder and
confounded variables are included into the models. However, it is edptbett many of the
confounder variables are not yet identified, collected for studigaaclmded into the models
in many diseases. Thus, in the absence of their inclusion into the models, iyithidtehose
variables identified as independent prognostic markers in multivagiaélyses remain as
confounded by other (unknown or unmeasured) factors.

In the case of genetic variations, it is possible that angeetic variation in the same LD
block (for example, a highly correlated or linked polymorphism) mayab&onfounder.
Therefore, in contrast to many other epidemiological confounders, vanechdifficult to
identify, at least some of the genetic confounders may be igeniify examining the
genomic region of interest and the other genetic variations loicated herefore, analysis of
genetic variations as prognostic markers also offers uniqueitsethet do not currently exist
in epidemiological research.

Should the Hardy-Weinberg equilibrium test be applied in genetic prognostic
research?

In genetic research, as a quality control measure, the pgéeotypes obtained for genetic
polymorphisms are generally checked for genotyping or samplingseusang the Hardy-
Weinberg equilibrium (HWE) [25] prior to inclusion into analysis.

HWE states that in an (infinitely) large population with randontimgaand absence of
mutation, migration, or immigration, the allele and genotype frequerdi@autosomal loci
remain constant over time and follow specific genotype distributioh&refore, any
deviation of genotype distribution from HWE may indicate a populatidlux) such as non-
random mating and immigration. In genetic research, however, sucitidesimay also be
caused by random fluctuations in samples included into the studyintsasples collected
or included into the research project, presence of samples fromedifiethnicities (where
the frequency of the alleles differ from each other, which is called asgbopustratification;



see section entitled Population substructure of the patient cohortigaved}, and technical
errors in genotyping (such as underdetection of an allele due to pmer iminding, errors in
DNA sampling, DNA contamination by other sources, and errors inpnet@tion of the
genotype [26,27]). In genetic research, HWE has been mostly usaddtess handling,
sampling, and genotyping errors and thus many experts use deviaetiondWE as a flag to
indicate that the genotyping method may need additional scrutiny.

The conventional approach, for example, in case-control studies is t& &b such
genotyping errors by applying the HWE test to genotype irdtion in the healthy control
population. If the test results do not indicate a deviation from the HWE, then the inv@stiga

of this polymorphism in the case-control cohorts proceeds forwanghllyshowever, the
polymorphisms whose genotype data do not satisfy the HWE angdexicirom the analysis.
Since, the deviations from HWE may also be due to the other fgohastioned above),

using this test to exclude some genotype data is a conservppveaeh. In addition, in
contrast to the case-control association studies, prognostic teseles only on cases. In

our opinion, how appropriate the HWE test in case-only design therefore needs to be debated.

Recessive, dominant, codominant, and additive inheritance models: which oneto
Investigate?

Genetic polymorphisms commonly consist of two different allelear{é B). Thus, a person
can carry two copies of the same allele (for example, AABBtiomozygous genotypes) or
one of each allele (for example, AB heterozygous genotype). \Whdéelic (for example,
AA, AB, BB, AC, and CC genotypes) and quadri-allelic polymorphisms, (AB, BB, AC,
CC, AD, and DD genotypes) also exist in the human genome, albeitnauch lower
frequency, in this article we develop our discussion around the bi-allelic polysmghi

Usually, the genetic effects of each of the three genotyp&s AB, and BB) on prognosis
are unknown and thus consideration of different genetic inheritance nmoaglbe required
during statistical analysis. Most commonly used genetic modeltharrecessive, dominant,
codominant and additive genetic models [28]. In these genetic models,thrisk allele is
unknown (whether it is the major or the minor allele, for examgie)genetic model can be
defined after the minor allele assuming that the minor aletke risk allele. In such a case,
in the recessive model, patients with homozygous (two) minor al{ede example, patients
with the BB genotype) are considered to be different from the gobygatients with both
homozygous major allele (patients with the AA genotype) and hetpteygenotype
(patients with the AB genotype) in terms of their clinical @ndgnostic characteristics. In
the dominant model, the assumption is that only one minor allele is lenoygredict the
outcome, thus the patients with BB and AB (containing at least amar mliele) are grouped
together and compared with the AA patients. In the codominant modeldalled discrete
model), the assumption is that the heterozygotes (AB) have actligtifect, which is
different than the effects of minor (BB) and major (AA) homozygmrotypes; therefore, a
comparison of these three groups is performed (usually wheredijoe afiele homozygotes
(AA) serve as a reference group and compared with AB andeBBtgpes separately). In the
additive model, it is assumed that the effect of heterozygoteygen(AB) is in between the
effects of minor homozygote genotype (BB) and major homozygote genfein a
dose-dependent manner.

Typically, there is no, little, or conflicting biological or phenotypata to hint the right
direction to use one inheritance model over another. Therefore, multylelsrmay need to



be investigated in genetic prognostic studies. In our experidreenost common and robust
genetic models investigated are the additive and the codominant madetsder to
completely evaluate the role of a polymorphism with prognostic ctearstics of patients,
however, ideally all possible genetic models require investigatronically, this also
increases the number of statistical tests performed, whichregaye correction for multiple
testing (see section entitled The multiple testing issuespaddition, the correction for
multiple testing procedures almost always reduce the statippwer. Therefore, as a way of
overcoming the multiple testing issue, many researchers oppfdication of only one or a
few of these inheritance models in their studies, rather thartigatsg multiple models for
a comprehensive analysis. Such a practice, however, may lead gsicmof potentially
important findings.

In addition to the correction for multiple testing, analysis of mldtgenetic models in the
same study presents another challenge. In univariate analysstiate of a significant

association of a polymorphism with an outcome in more than one gemetlel is not

uncommon. Especially if the models contain multiple polymorphisms, cotisgj@cseparate
multivariate model for each inheritance model, for example, is tadieal solution as each
polymorphism may affect the prognosis under different inheritance patterns.

One solution to this issue is to determine the best pattern oigeffett (that is, inheritance
model) for each polymorphism by inspecting the univariate KaplaesfMirvival curves
conducted for the codominant genetic model (Figure 2). This way, tleéigerodel for each
polymorphism may be determined prior to performing multivariate yaisal which
circumvents the concern of multiple and blind looks at the data and essageg multiple
modeling. Another solution is to test the association of a gendiiatisa with prognosis
under multiple genetic models in separate univariate analyseshandd select the best
genetic model among all based on tRevalues (that is, the lower the value, more
appropriate is the genetic model to detect the effect of the variation) [29].

Figure 2 Kaplan-Meier curves may identify the best fitting genetic mdel for a
polymorphism. For simplicity, survival curves are shown as straight lines=AAajor allele
homozygous genotype, AB = heterozygous genotype, BB = minor allele homozygous
genotype, assuming allele ‘A’ is the common allé&. The effect of the AB genotype on
survival is approximately half between the AA and BB genotypes the additive model is
appropriate for this polymorphism in the multivariate analybijsThe curves of AB and BB
genotypes cluster closer to each other when compared to the AA gesaturve, thus, the
effect of the polymorphism is likely to be dominaft). AA and AB genotype survival curves
cluster together and clearly separate from the BB genatypee. Thus, the inheritance
pattern is likely to be recessiv@) In this case, the effect of AB genotype is somewhat in
between the effects of AA and BB genotypes, thus, analyzingptiysnorphism assuming
the codominant model is suitablée) This is an interesting polymorphism where the
heterozygotes are associated with worse survival compared to letnezygous genotypes
(AA and BB). The codominant genetic model is the appropriate ntodelestigate such
polymorphisms in multivariate analyses. Exact biological andetgemeasons for such
associations are not clear, but it may be due to heterozygotevatitage where the
heterozygotes display phenotype but not the either homozygbt&tie heterozygotes have
better survival than AA and BB homozygotes. This case may repras#mdterozygote
advantage’ situation, where the heterozygotes have favorable suhavatteristics. Similar
examples are observed in Mendelian diseases, such as sicldeeralh [56]. In both (e) and



(f), presence of another genetic variation in close proximitw@as a prognostic factor
(which is not highly correlated with this polymorphism) may be an alternatplareation.

Theminor allele frequency of polymorphisms and the other determinants of the
study power in the multivariable models

Genetic polymorphisms present in a range of minor allele freqee(MdAFs) in human (1%
to 50%). The minor allele frequency of a polymorphism is criticBdrmation that helps
determine the inclusion of the polymorphism into the statisticalyais, as rare variables
may hamper the model construction [6]. For example, a polymorphismawitAF of 1%
studied in a cohort of 1000 chromosomes (that is, 500 patients, assumggrnt an
autosomal chromosome) will be detected in only 10 of the chromosomeforbeithe
study analyzing this polymorphism (in univariate or multivariatalyses) may not have
enough power (that is, the probability of detecting a significasb@ation when it actually
exists). Therefore, as a general rule, as the MAF of a popmswn increases, so does the
study power. Therefore, exclusion of polymorphisms with a MARKD¥% or <5% is a
common practice in current genetic prognostic studies. However, iexclolrare genetic
variations may also lead to missing the identification of rameations that have strong
effects (for example, high HRs) on prognosis. Study power is aisctlglirelated to the size
of the effect that a polymorphism has on the outcome; to detelteseféects, larger sample
sizes are required [30], yet to detect prognostic markers lfatheare or common) with
strong effects, studying a cohort with a relatively smaller size mauffieient [4].

Finally, in addition to the sample size and the effect size,hsald also mention that the
number of events per investigated variable in a multivariable nmodglimpact the study
power. A recommended rule for statistical power in multivariate anaiysks presence of at
least ten events per independent variable [6]. The event/varialeigatsually high in

cohorts with high risk of events (such as metastatic cancengstior in cohorts with long
follow-up periods that allow detection of most events experiencatiebpatients. Thus, in
the genetic prognostic research, when an association is notedetthe role of insufficient
study power as well as inadequate follow-up time should be considdi@é bencluding

that the polymorphism is not an independent predictor of prognosis. Vidns ger variable

ratio also demonstrates the need of entering a relativelyt snmaber of variables into the
multivariable models.

Population substructure of the patient cohort investigated

Most of the genetic prognostic studies are based on population-basead wikignrelated
patients. However, these studies are prone to population stratific@id. Population
stratification refers to different allele frequencies of subpatpris in the study cohort due to
an ancestry difference in study patients (for example, pafiemsdifferent ethnicities). The
influence of stratification on genetic association studies hasdmeonstrated even in well-
designed protocols, with greatest effect in admixed populations ésualfrican-Americans)
and for diseases with different variant prevalence rates innttestal populations [32]. For
example, allelic frequencies of certain polymorphisms may fegnily differ among
Caucasians, Asians, and Africans [33,34]. An example to such a polyisrars the (TA)7
allele in theUGT1AL gene (responsible for the detoxification of the active metalafiitbe
chemotherapeutic agent, irinotecan), which is more common in Cansdsian in Asians
[35]. In addition, allelic frequencies of polymorphisms may alscediffithin each of these
populations (such as among different populations from countries in EuBfje)herefore,



unrecognized population stratification can lead to biased estimdtiorexample, inflated
false-positive results), or reduce statistical power if not approprietetgcted [37].

Since many cohorts investigated contain patients from diffeténicities and with potential
population substructure, various methods have been developed to detect andfopntrol
population stratification in human genetic association studies, whichatsaybe applied to
genetic prognostic research; (a) the genomic control methodc[B88cts for population
stratification by adjusting with a variable determined frosetof random genetic markers
that are not associated with the disease outcomes in the stahed, (b) structured
association can assign the study patients to distinct subpopulatidnthen aggregates
evidence of association within each subpopulation. The most commonly esedicg
package for structured association analysis is the STRUCT&#am [39], (c) a recent
development for the correction of population stratification utiiEBHE&ENSTRAT [40],
which computes principal components for collected SNPs (for exaagsless the genome in
genome wide studies) to identify population structure. In this approlaehtop principal
components that contribute mostly to the genetic variation in thg stinbrt are included as
covariates in multivariate regression models to adjust for populatratification. Using
these or other similar methods to identify and account for the populsttiatification in
genetic prognostic research may, therefore, improve reliability oltses

The multiple testing issues

When multiple hypotheses are tested in a study, using the sagitiédevel at the traditional
value of 0.05 may lead to inflated false-positive results. In otherdsy the more
comparisons we perform, the more likely we can obtain a signifreantt by chance. While
for candidate gene studies, a modified significance threshold (forptea® <0.0005; [41])

was suggested, with the assistance of high-throughput genotyping tecespolggnetic
prognostic studies are increasingly investigating larger numbensolgfnorphisms (for
example, genomewide scans). This increase in the number of polysmsplreates a
challenge of how to deal with the multiple testing issue.

A variety of statistical correction methods have been develoggdahd may be applied to
genetic prognostic research investigating large numbers oftigemarkers. The most
commonly used methods for multiple-testing correction are Bonferemjustment,
permutation algorithm, and the false discovery rate (FDR) methgylolbhe Bonferroni
adjustment is useful when the number of multiple testing is notlaegg and the tests are
independent (for example, candidate gene study with genetic vahabhte not in LD with
each other). However, Bonferroni adjustment may be too conservdise the tests are not
independent, which is often the case in genetic prognostic studies thlegpolymorphisms
to be tested are in high LD. Nyholt [43] has proposed a correction médwetl on
estimation of the effective number of independent tests. Permutased-badjusted
significance levels are particularly useful when there streng dependencies among the
tests. However, the computation is quite intensive. FDR methodologpyitable for very
large scale multiple testing [44]. The statistical significance thrdsloaln be set according to
the overall pattern of results [45]. To improve power, the FDR methadbe weighted
according to the importance of the test [46] such as evidencdifrkage scans [47]. While
Bonferroni adjustment can be performed manually, specific staligiftograms are required
for both permutation-based and FDR adjustments.



While the correction for multiple testing procedures aim to retheéalse-positive findings,
there are other ways to help limit the number of spurious findirggseXample, although not
completely ideal, internal validation techniques such as cross-validation asttdqmatay be
applied to the cohort data to reduce the false-positive discoveries [6,1THe]best
approach to test whether a positive association is a true agsucredwever, is to replicate
the findings in another patient cohort preferably from another center or population [11].

Use of genomic material extracted from achieved specimen may require extra
carein the genetic prognostic studies

The majority of prognostic studies have been conducted on retrospetives collected for
other purposes. Here the availability of genetic material andffitsency in yielding the
genotypes are not usually considered optimal. For example, inificsigt portion of studies
in cancer, formalin-fixed-paraffin-embedded (FFPE) tissue blofrken(both tumor and
adjacent non-tumor tissue) collected during surgery are usedréztegenomic DNA. The
quality and the amount of this type of DNA may not be high andisseptible to lower
genotyping yields. This limitation in quantity and quality of thengmic DNA in
retrospective cohorts usually restricts the options on suitablatygeng technology and the
extent of the genotyping analysis (for example, limiting the numbgermes/polymorphisms
that can be investigated). An increased proportion of failed genotyping may atohiesed
study results. Recently a few studies have shown that thatioms of FFPE-extracted DNA
can be overcome by certain genotyping methods [48,49]. In addition, neasgriostic
studies have been keen about banking blood samples that contain DNA, (adlesblood
or leukocytes). These technological and study-design-related advame expected to
improve the genotyping success rates and reduce bias, and thus inceeaapaicity and
reliability of the future genetic prognostic research.

Use of tumor DNA versus non-tumor DNA in genetic prognostic research: which
oneisappropriate?

Due to the availability of the tumor tissue in many studies dad fact that disease
progression and prognosis of cancer patients are affected bytetreorior [50-54], analysis
of the tumor genotypes may be feasible and can yield interemtichgzaluable prognostic
information. However, distinct differences between the tumor and noortextracted DNA
samples of a single patient create a challenge. For exafremjeent, somatic small-scale
(such as point mutations) and large-scale (such as aneuploidy arof-feeterozygosity
(LOH)) alterations are well-known characteristics of theaaer genomes. Therefore, tumor
DNA and non-tumor DNA of the same individual may have differenbgges for a given
polymorphism.

In prognostic research in oncology, the optimal source of DNA depenitie @tudy aims. If
the association being tested is toxicity, then the optimal DN Ioeathe DNA in the target
organ of the toxicity (for example, skin for rash, gut for diarrhea)the organ that
metabolizes, excretes, or activates the active drug (fon@ea liver, kidney, biliary track).
Surrogate DNA in this case may come from any germline ighabn-tumor) source, such as
blood. In addition, if the mechanism influences the host stroma (thatgggenesis), the
optimal source of DNA is from the host tissue (that is, non-tumn@ical tissue). In contrast,
if the association relates to efficacy and the polymorphism mékes the tumor itself (for
example, by affecting the proliferative capacity or oncogeaihways in tumors), then the



most appropriate source of DNA is the tumor itself. Sinceimhgactical to obtain multiple
sources of DNA to test different hypotheses in the samenpgi@pulation, one can test
tumor and non-tumor DNA for their correlation in genotype. High concoefafihat is,
above 95%) may suggest that the polymorphism itself is not a hottsmaitic change in
the tumor and thus allow tumor and non-tumor tissue to become surrogates for each other.

Conclusions

Genetic prognostic research examining the relation and prediwalue of genetic
polymorphisms is a promising and rapidly developing research hArezontrast to other
variables commonly studied, genetic polymorphisms have several utigrecteristics that
require special considerations in study design and data anadlykife some of these
characteristics (such as linkage disequilibrium among genetympagbhisms and tagSNPs)
ease our efforts, other characteristics (such as differegudncies of polymorphisms in
different ethnicities and use of genomic material extractad firchived specimen) may bias
our results, if left unaccounted for. In addition, variability in studgigih and analysis can
adversely affect advancement of the genetic prognostic resmaddnanslation of its results
into the clinic. Recommendations modeled as guidelines (for exampMARK guidelines
[55]) on how to conduct and compare genetic prognostic research involviagicgmarkers
may be needed to expedite this exiting and promising research field.
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