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CONSPECIFIC BROOD PARASITISM IN COMMON EIDERS (SOMATERIA 

MOLLISSIMA): DO BROOD PARASITES TARGET SAFE NEST SITES?

Résumé.—Plusieurs hypothèses ont été proposées afin d’expliquer l’évolution du parasitisme conspécifique de nid (PCN). Des études 

récentes suggèrent que la prédation des nids puisse être un facteur important dans l’élaboration de ce comportement. Nous avons évalué 

si les individus qui se livrent à la ponte parasitaire déposaient préférentiellement leurs œufs dans des nids sûrs (hypothèse d’évaluation 

des risques). Nous avons testé les prédictions de cette hypothèse sur une population de Somateria mollissima dresseri nichant à Table Bay, 

au Labrador, Canada, en . À cet endroit, S. mollissima niche dans trois habitats (végétation arborescente dense, végétation herbacée 

ouverte et abris pour les nids) qui diffèrent en termes d’exposition aux prédateurs aviens. Nous avons utilisé l’électrophorèse isoélectrique 

de l’albumen des œufs afin de quantifier la fréquence et la répartition du PCN entre les habitats. La sécurité des sites de nidification n’a 

pas expliqué les patrons de PCN entre les habitats, car les nids situés dans la végétation arborescente dense avaient la probabilité de survie 

la plus élevée (,; intervalle de confiance [IC] à %: ,–,) et la plus faible fréquence de PCN (%). De plus, il n’y avait aucune 

indication que les nids parasités et non-parasités différaient dans leur probabilité de survie (, [IC %: ,–,] vs , [% IC: 

,–,]). Nous proposons des explications sur le pourquoi nos données ne supportaient pas l’hypothèse d’évaluation des risques.
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Abstract.—Several hypotheses have been proposed to explain the evolution of conspecific brood parasitism (CBP), and recent 

studies suggest that nest predation may be an important factor in shaping this behavior. We assessed whether individuals that engage 

in parasitic laying preferentially deposit their eggs in safe nest sites (i.e., risk assessment hypothesis). We tested the predictions of 

this hypothesis using a population of Common Eiders (Somateria mollissima dresseri) nesting at Table Bay, Labrador, Canada, in 

. Common Eiders at this location nest in three habitats (dense woody vegetation, open grassy vegetation, and nest shelters) that 

vary in their exposure to avian predators. We used isoelectric focusing electrophoresis of egg albumen to quantify the frequency and 

distribution of CBP among habitats. Nest-site safety did not explain patterns of CBP among habitats, given that nests in dense woody 

vegetation had the highest probability of survival (.; % confidence interval [CI]: .–.) yet had the lowest frequency of CBP 

(%). There was also no indication that parasitized and nonparasitized nests differed in their probability of nest survival (. [% 

CI: .–.] vs. . [% CI: .–.]). We propose explanations for why our data did not support the risk assessment hypothesis. 
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Parental investment is energetically costly (King , 

Andersson ) and can expose adults to additional mortality 

risks during nest attendance (Sargeant and Raveling ). Brood-

parasitic individuals avoid these costs. Female birds that lay their 

eggs in the nests of other females, such that the care of the eggs and 

offspring is provided by others, may live longer and produce more 

offspring over a lifetime (Andersson , Åhlund and Andersson 

). However, because brood parasites abandon the care of their 

offspring to others, the selection of suitable hosts to raise their 

young has direct fitness consequences. Determination of where 

females choose to lay their eggs and how their decisions are made 

is important in our understanding of brood-parasite behavior.

If brood parasitism is to be evolutionarily advantageous, the 

parasites should select host species and nest sites that maximize 

the probability of their offspring’s survival (Hauber ). Some 

parasitic species are generalists that employ a “shotgun” strategy 
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to randomly distribute their eggs among host nests (e.g., Molo-

thrus spp.; Rothstein , Kattan ). However, this approach 

may be favored only when host defenses in the avian community 

are not highly developed and when brood parasites have especially 

high fecundity. When host defenses are present or when brood 

parasites have low fecundity, specialized strategies and nonran-

dom host selectivity should evolve over time (Rothstein , Da-

vies , Krüger ).

Brood parasites must overcome several challenges to be suc-

cessful. They should select host species that have an appropriate 

diet to feed their offspring and that have an incubation length 

greater than or equal to their own. Suitable hosts must be in suf-

ficient abundance and density to make parasitic laying possible, 

and the breeding cycle of the brood parasite must be in synchrony 

with that of the host. Brood parasites must also avoid or over-

come host defenses such as aggressive nest defense and egg rejec-

tion (Rothstein , Sealy and Bazin , Sorenson ). Brood 

parasites may increase their fitness further if they are able to 

make finer-scale laying decisions such that they parasitize higher-

quality parents (Soler et al. , Avilés , Polačiková et al. 

) or preferentially lay in safer nest sites (Hauber , ; 

Pöysä ).

Many of the challenges of selecting suitable hosts are resolved 

when brood parasites lay their eggs in the nests of conspecifics. 

Conspecific brood parasitism (CBP) accounts for % of all known 

taxonomic diversity of brood parasitism ( species CBP vs.  

obligate interspecific brood parasites; Yom-Tov and Geffen ) 

because fewer adaptations are required to parasitize individuals of 

the same species. However, CBP still requires sufficient availabil-

ity of host nests (Lyon ) and that hosts are capable of incubat-

ing and caring for additional young. This may explain why CBP is 

biased toward colonial species with precocial young (Rohwer and 

Freeman , Yom-Tov ). However, even in CBP it may be 

evolutionarily advantageous for parasites to discriminate among 

potential hosts to find the optimal location to deposit their eggs.

Nest predation is a primary selective force in shaping avian 

nesting behavior (Ricklefs ; Martin , ), and recent 

studies have examined how nest predation influences the frequency 

and distribution of parasitic eggs among nest sites (Pöysä , 

; Roy Nielsen et al. ). The “risk assessment hypothesis” 

posits that when nest predation differs among nest sites, individuals 

may be able to increase an egg’s probability of survival by preferen-

tially laying in safe nest sites (Pöysä , Pöysä and Pesonen ). 

To date, empirical support for this hypothesis has been restricted to 

cavity-nesting birds, and it is unknown whether this concept can be 

generalized to other groups, such as ground-nesting species.

We attempted to assess whether or not Common Eiders (So-

materia mollissima dresseri) that engage in parasitic laying pref-

erentially deposited their eggs in safe nest sites (i.e., sites with low 

predation risk). Conspecific brood parasitism is frequent in Com-

mon Eiders (Robertson et al. , Bjorn and Erikstad , Wal-

deck et al. ), and birds at our study area nest in habitats that 

vary in their vulnerability to nest predation. Our objectives were 

to () compare rates of CBP among nesting habitats, () determine 

whether levels of CBP were correlated with differences in repro-

ductive success among those habitats, and () determine whether 

parasitized and nonparasitized nests differed in their probability 

of nest survival. Assuming that nest parasites preferentially lay 

eggs in safe nest sites, we predicted higher rates of CBP at nest 

sites that offered the most protection from predators.

METHODS

Study site.—Our study was conducted in Table Bay (  N, 

  W; Fig. ), Labrador, Canada, in . This area supports 

the largest number of nesting Common Eiders of the dresseri sub-

species on the Labrador coast (Lock ). Common Eiders nest 

on small (  ha) coastal islands in three main habitat types: () 

dense woody vegetation of dwarf spruce (Picea spp.) and Balsam 

Fir (Abies balsamea) that ranges from  to  m in height; () open 

habitats characterized by a mix of grassy, herbaceous, and heath 

vegetation (e.g., Common Cowparsnip [Heracleum maximum], 

Scottish Licorice-root [Ligusticum scoticum], and Black Crow-

berry [Empetrum nigrum]) that rarely exceeds  cm in height; 

and () artificial wooden nest shelters (.  .  . m). Approx-

imately  artificial nest shelters were located on study islands in 

the Table Bay area at the time of our study. Although the number 

and placement of shelters varied, our sampling regime (see below) 

enabled us to obtain a representative sample of nests across our 

study islands.

Nest searches.—Islands were searched systematically for 

nests during the early laying period. We limited the total number 

of marked nests to every other nest during each island visit in or-

der to minimize disturbance of the population. For each marked 

nest, we recorded the number of eggs present and numbered the 

eggs with indelible ink according to the degree of egg staining 

(Cooper ). The darkest or dirtiest egg was assumed to have 

been laid first. Nest age was determined by candling eggs (Weller 

). We marked nest bowls using a small wooden stake pushed 

FIG. 1. Map showing the Table Bay study area (circled) in Labrador, Can-
ada, where our study of Common Eider nest survival and conspecific nest 
parasitism was conducted in 2007.
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into the ground under the nest bowl and recorded nest locations 

using a global positioning system to facilitate revisits. Nest ini-

tiation dates (NID) and predicted hatch dates were calculated by 

assuming an incubation length of  days (Guignion ) and 

a laying interval of one egg per day (Cooch , Swennen et al. 

). Before leaving the nest site, we covered the eggs with down 

and nest materials to insulate them and reduce their visibility to 

avian predators. We revisited nests periodically (every  or  days) 

during laying to determine nest status and to check for additional 

eggs. The revisitation rate was selected to limit observer effect on 

nest survival and CBP. Final clutch size (CS) was the number of 

eggs present when incubation began.

Nests were revisited after hatch to determine nest fates. Nests 

were considered successful if they contained eggshell fragments 

and egg membranes that separated easily from the shell (Klett et 

al. , Mabee ). We assumed that nests had failed if they 

lacked signs of successful hatching or contained depredated eggs 

(broken eggshells with yolk or blood on them) or abandoned eggs. 

We excluded nests that could not be relocated (n  ) and nests 

that we suspected were abandoned as a result of our research ac-

tivities (specifically, when the female was flushed from the nest 

during egg laying and the nest was found abandoned on the sub-

sequent visit; n  ).

Albumen sampling and electrophoresis.—We used isoelectric 

focusing (IEF) electrophoresis of egg albumen to identify clutches 

that contained parasitic eggs. We obtained egg albumen samples 

from every nest we encountered that was  days into incubation, 

until we reached target sample sizes in each of the three main 

nesting habitats (~ nests habitat−). Albumen samples were col-

lected over  days (– June). Previous work had shown that al-

bumen sampling does not affect egg hatchability if it is done early 

in incubation (Andersson and Åhlund , Waldeck et al. ), 

and therefore we limited sampling to nests that were  days into 

incubation. A small hole was made in the blunt end of the egg us-

ing a sterile pushpin, and ~. mL of albumen was extracted us-

ing a syringe. The hole was sealed with cyanoacrylate glue (super 

glue) and was left to dry before the eggs were returned to the nest. 

We obtained albumen from all eggs within a clutch beginning at 

the date of nest discovery. We revisited nests  or  days after the 

initial visit to obtain albumen samples from any new eggs, and 

we continued nest visits until albumen had been obtained from 

the entire clutch. Albumen samples were stored frozen until elec-

trophoresis. We did not analyze albumen from nests that failed 

before incubation had begun, because final CS could not be deter-

mined. However, these nests were included in the analysis of nest 

survival (see below).

Albumen samples were run on gels with a broad-range pH 

gradient (Ready-Gel pH –; Bio-Rad, Hercules, California). 

The IEF methods were optimized for protein load and staining–

destaining methods. Five microliters of each albumen sample 

was buffered with  L of % v/v glycerol. Two Ready-Gels were 

loaded into a Bio-Rad Miniprotean apparatus. Cathode buffer 

( mM lysine [free acid, Sigma L] and  mM arginine [free 

acid, Fluka ]) was added to the upper chamber, and anode 

buffer ( mM phosphoric acid) was added to the lower chamber. 

The wells of the precast gel were rinsed with buffer prior to load-

ing the samples. All eggs from the same clutch were run side by 

side on the same gel. One well per gel was loaded with  L of IEF 

standard (BroadRange pI .–.; Bio-Rad). Gels were run in a 

stepwise manner with voltages of  V for  min,  V for  

min, and  V for  min, at a current of – mA. After elec-

trophoresis, each gel was placed in  mL of IEF staining solution 

(Bio-Rad) and incubated for  min on a shaking platform. The 

stain was then removed and  mL of destaining solution (% 

methanol, % acetic acid) was added to each gel. Gels continued 

to be incubated on the shaking platform and the destaining solu-

tion was changed every  to  hours until all background stain 

had been removed from the gel. Gels were placed in distilled wa-

ter overnight before banding patterns were analyzed. The IEF tri-

als were repeated twice to determine that the numbers of visible 

bands were consistent among gel runs.

Albumen proteins are exclusively of maternal origin (White 

). All eggs from a single female have identical protein band 

patterns, and differences in albumen protein band patterns can 

be used to identify eggs laid by different females (Andersson and 

Åhlund , Pilz et al. , Waldeck and Andersson ). We 

scored a nest as being parasitized if it contained at least one egg 

of different maternal origin. The most common albumen band-

ing pattern in a clutch was considered to have originated from the 

host (Andersson and Åhlund , Waldeck et al. ). We did 

not explore relatedness between hosts and parasites.

Statistical analyses.—We tested for normality of CS and NID 

data using the Shapiro-Wilks statistic (PROC UNIVARIATE; SAS 

Institute ). The CS and NID data were not normally distrib-

uted, and transformations did not improve normality. Therefore, 

we used Kruskal-Wallis tests to check for differences in CS and 

NID among habitats (PROC NPARWAY; SAS Institute ) and 

used Bonferroni-adjusted Wilcoxon two-sample tests for post hoc 

comparisons.

We conducted two separate nest-survival analyses to esti-

mate daily survival rates (DSR) for () all nests encountered and 

() the subsample of nests in which we determined egg maternity 

using IEF. We used the Nest Survival option in program MARK 

(White and Burnham ) to estimate DSR and used the logit-

link function for all models. Model selection was based on quasi-

likelihood Akaike’s information criterion (AIC) adjusted for 

sample size and overdispersion (QAIC
c
; Akaike , Burnham 

and Anderson ). Models were adjusted for overdispersion 

using the variance inflation factor (ĉ) from our most parameter-

ized model (Anderson et al. , Burnham and Anderson ). 

There is currently no consensus on how to estimate extrabinomial 

variation in nest survival data (Dinsmore et al. ), but ĉ can 

be used as a conservative method of estimating overdispersion 

(Schmidt et al. ) to avoid selecting a more parameterized 

model than is supported by the data (Anderson et al. ).

In the analysis of all nests encountered, we constructed a set 

of  candidate models in a three-step procedure. First, we exam-

ined the effects of nest habitat, island, and albumen sampling on 

nest survival. We compared the fit of models in which DSR was 

constant across all nests {S
.
} or varied according to nest habitat 

{S
Hab

} or island {S
Island

}. We also examined models in which DSR 

varied according to whether the nests had been sampled for egg 

albumen {S
Alb

}. We included additive and interactive models be-

tween both nest habitat and island with albumen sampling.

Second, for the most parsimonious model {S
Hab

}, we tested for 

variation in DSR in relation to nest age. Because nesting was highly 
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synchronous (see below), the effects of nest age and calendar date 

on DSR could not be differentiated. We assumed that temporal 

trends reflected the effect of nest age on DSR. We used the follow-

ing three forms of models to constrain DSR as a function of nest 

age: () linear, where nest survival changed in relation to nest age at 

a constant rate; () quadratic, where nest survival was highest dur-

ing mid-incubation and lower toward the beginning and end of in-

cubation; and () pseudothreshold, where nest survival increased at 

a constant rate to a point at which the effects of nest age neared, but 

did not reach, an asymptote. The pseudothreshold model allowed 

us to account for changes in DSR that were due to differences in fe-

male behavior between the laying and incubation periods.

Finally, we added CS and NID as covariates to the most par-

simonious model {S
Hab LnAge

}. All covariates were standardized in 

MARK. We considered CS as both a linear and a quadratic covari-

ate and assessed the interaction between linear and quadratic CS 

covariates and nest habitat. Quadratic covariates allowed us to test 

for the presence of an optimal CS (see Franklin et al. ). Because 

of nest failure during the initiation period, we were unable to obtain 

final CS values for some nests (n  ; open habitats  , woody vege-

tation  , nest shelters  ). For these nests, we replaced the missing 

CS values with the mean CS for the nests’ habitat category. Doing 

so reduces the variance slightly but does not change the mean of 

the observed values (Little and Rubin ). We used model averag-

ing to obtain estimates of DSR for nests (Burnham and Anderson 

). We obtained overall nest survival probabilities for habitats 

and CS values using the product of model-averaged DSRs and de-

rived confidence limits using the delta method (Seber ).

We used the chi-square test for goodness-of-fit to test whether 

nest parasitism was randomly distributed among habitats, and 

MARK to calculate overall nest survival probabilities for parasit-

ized and nonparasitized clutches using the subsample of nests used 

in the IEF analysis (n  ). Sample size limited the complexity of 

candidate models; therefore, we pooled nests from all habitats and 

estimated nest survival and compared % confidence intervals 

(CI) using a model with a single fitted parameter for parasitism.

RESULTS

We monitored  Common Eider nests during the study (Table ). 

Clutch size differed among habitats (   ., df  , P  .), with 

nests in shelters having larger clutches than nests in open habitats 

or woody vegetation (Table ; nest shelters vs. open habitats: Z

., P  .; nest shelters vs. woody vegetation: Z  ., P  .; 

open habitats vs. woody vegetation: Z  −., P  .). Nest initia-

tion dates ranged from  May to  June  and differed among 

habitats (   ., df  , P  .). Post hoc comparisons revealed 

that nests were initiated earlier in shelters than in the two other 

habitats (nest shelters vs. open habitats: Z  −., P  .; nest 

shelters vs. woody vegetation: Z  −., P  .; open habitats vs. 

woody vegetation: Z  −., P  .). The NIDs did not differ be-

tween albumen-sampled nests and non-albumen-sampled nests in 

nest shelters (Z  ., df  , P  .) or in open habitats (Z

−., df  , P  .), but they were earlier in albumen-sampled 

nests than in nonsampled nests in woody vegetation (Z  −., 

df  , P  .). Hence, our sampling was biased toward earlier 

nesters in the latter habitat. However, the overall timing of IEF 

sampling did not differ among habitats (   ., df  , P  .).

Overall apparent nest success for the laying and incubation 

period was % ( of ). Nest failure was caused by predation 

(%;  of  marked nests) and nest abandonment (%;  of 

 marked nests). Only avian predators were present at our study 

site—for example, Greater Black-backed Gulls (Larus marinus), 

Herring Gulls (L. argentatus), and Common Ravens (Corvus co-

rax). The results of model selection suggest that nest survival var-

ied among habitats, rather than among nesting islands (Table ). 

Albumen sampling did not negatively affect nest survival. Top 

models (QAIC
c
 weight ≈ .) for nest survival included additive 

effects of habitat, clutch size, pseudothreshold age trend, and NID, 

as well as interactions between habitat and CS (Table ). Daily nest 

survival was lowest during the egg-laying period and increased 

over the course of the nesting period (Fig. ). Nests initiated ear-

lier had higher survival than those initiated later (
NID

 −.; 

% CI: −. to .). Model-averaged nest survival estimates 

indicated that nest survival was highest in woody vegetation (.; 

% CI: .–.), followed by nest shelters (.; % CI: .–

.) and nests in open habitats (.; % CI: .–.). The re-

sults of model averaging suggest that nest survival was highest for 

clutches slightly below mean CS, with a general decline in nest 

survival as CS increased (Fig. ). Nest survival for all clutch sizes 

was lower in open habitats than in nest shelters or dense woody 

vegetation (Fig. ).

Nest parasitism.—In total, % of sampled nests ( of ) 

contained eggs from multiple females, and % of eggs ( of ) 

TABLE 1. Number of nests, mean nest initiation dates, and mean final clutch sizes for Common Eiders nesting in three habitats (nest shelters, open 
grassy vegetation, and dense woody vegetation) at Table Bay, Labrador, Canada, in 2007.

All nests Albumen-sampled nestsb

Parameter Overall a Nest shelters
Open grassy 
vegetation

Dense woody 
vegetation Nest shelters

Open grassy 
vegetation

Dense woody 
vegetation

Nests (n) 239 79 72 88 14 11 15
Nest initiation date (NID) 8 June 7 June 9 June 9 June 7 June 8 June 7 June
Julian date  SD 159.2  3.6 157.9  4.0 159.7  3.5 160.0  3.0 157.8  2.1 159.2  1.9 157.6  1.2
Clutch size (CS)  SD 4.5  1.4 4.9  1.6 4.0  1.3 4.4  1.2 5.5  1.1 4.4  0.8 5.0  2.1

Minimum CS 1 1 1 2 4 3 3
Maximum CS 10 10 8 10 7 6 10

aIncludes nests from all habitats.
bNests from which albumen samples were analyzed, a subset of the total 239 surveyed nests (see text).
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were laid parasitically. An average of . eggs nest− were added to 

parasitized nests. Most nests of mixed maternity contained a sin-

gle foreign egg (%;  of  nests). Five nests contained two para-

sitic eggs, and another five nests contained three parasitic eggs. 

Three nests contained eggs from three different females. Parasitic 

laying was not distributed evenly among habitats (   ., df 

, P  .). Nests in shelters had the highest frequency of brood 

parasitism (%;  of  nests), versus % of nests ( of ) in 

open habitats and % of nests ( of ) in woody vegetation. Over-

lapping % CIs suggest that nest survival of parasitized nests and 

nonparasitized nests did not differ (. [% CI: .–.] and 

. [% CI: .–.], respectively). All parasitic eggs were 

deposited during the egg-laying period or during the first days of 

incubation, and most parasitic eggs (%;  of ) were laid before 

our initial nest visits. We were unable to determine the exact tim-

ing of brood parasitism during the egg-laying sequence because 

we found few nests at the one-egg stage, and our nest visits were 

limited to once every  to  days. However, because we conducted 

nest checks throughout incubation, we could confirm that no eggs 

were deposited in nests after the main egg-laying period.

DISCUSSION

Our estimated rate of CBP (%) is among the highest reported for 

Common Eiders (cf. % and %, respectively, in Robertson et al. 

, Waldeck and Andersson ). Nest parasitism at our study 

site was not evenly distributed among habitats and did not follow 

the pattern predicted by the risk assessment hypothesis (Pöysä 

, ; Pöysä and Pesonen ). Nests in dense woody veg-

etation had the highest rates of nest survival but the lowest fre-

quency of CBP—results that were inconsistent with our initial 

predictions. On the other hand, we observed higher-than-normal 

rates of CBP in nest shelters, compared with other habitats. Al-

though nest shelters were a relatively safe nesting environment in 

TABLE 2. Candidate models of Common Eider nest survival for 239 sam-
pled nests at Table Bay, Labrador, Canada, in 2007. Parameter estimates 
included nest habitat (Hab), nesting island (Island), the effect of albu-
men sampling (Alb), linear age trend (Age), quadratic age trend (Age2), 
pseudothreshold age trend (LnAge), nest initiation date (NID), optimal 
nest initiation date (NID2), clutch size (CS), optimal clutch size (CS2), and 
constant daily survival. Models are ranked in accordance with QAICc

values (ĉ adjusted to 1.22) and are denoted as additive models ( ) or 
models with single and interactive effects (*). K  number of estimable 
parameters.

Model K QAICc
a

QAICc
weights QDeviance

S(Hab  LnAge  NID  CS
2) 8 0.00 0.26 235.12

S(Hab  LnAge  NID  CS) 7 0.10 0.25 237.23
S(Hab  LnAge  NID  CS

2
 Hab*CS

2) 12 0.93 0.17 228.00
S(Hab  LnAge  CS

2) 7 1.30 0.14 238.42
S(Hab  LnAge  CS) 6 1.90 0.10 241.03
S(Hab  LnAge  NID  CS  Hab*CS) 9 3.93 0.04 237.04
S(Hab  LnAge) 5 5.21 0.02 246.35
S(Hab  LnAge  NID) 6 6.52 0.01 245.66
S(Hab  Age) 5 7.00 0.01 248.14
S(Hab  Age

2) 6 7.94 0.00 247.07
S(Hab) 4 11.69 0.00 254.84
S(Hab  Alb) 5 13.60 0.00 254.74
S(.) 2 14.50 0.00 261.66
S(Alb) 3 16.44 0.00 261.59
S(Island) 8 16.63 0.00 290.61
S(Hab*Alb) 7 17.18 0.00 254.30
S(Island  Alb) 9 18.61 0.00 290.57
S(Island*Alb) 12 23.94 0.00 289.77

aLowest QAICc value  251.71.

FIG. 2. Estimates of daily survival rates of Common Eider nests and 
95% confidence intervals from three different nesting habitats at Table 
Bay, Labrador, Canada, in 2007. Values were calculated using the logit-
link function and are the weighted averages based on 18 candidate 
models.

FIG. 3. Influence of clutch size on nest survival as predicted by models 
for Common Eider nests in three different habitats at Table Bay, Labrador, 
Canada, in 2007. The relationship is based on weighted model averages. 
Data were backtransformed from the logit scale, and confidence limits 
were derived using the delta method.
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comparison to open habitats, we suggest that visibility and avail-

ability of suitable host nests (Semel et al. , Lyon , Roy 

Nielsen et al. a) played more important roles than nest safety 

in influencing where nest parasites deposited their eggs.

Nest-site safety vs. visibility.—Nest safety is a primary selec-

tive force in shaping habitat selection (Ricklefs ; Martin , 

) and, thus, can influence CBP behavior (Pöysä and Pesonen 

, Roy Nielsen et al. ). Recent studies suggest that brood 

parasites can increase the probability of their eggs’ survival by 

preferentially depositing eggs in safe nest sites (risk assessment 

hypothesis; Pöysä , ; Pöysä and Pesonen ). Central to 

this hypothesis is the premise that nest parasites gain information 

about nest-site safety through nest prospecting (Robertson , 

Pöysä , Roy et al. ). Information gathered during pros-

pecting, such as the presence of a female at a site (Wilson ), 

the presence of eggs, or evidence of past success, may be useful 

cues when a safe nest site is selected. However, unlike cavity nest-

ers that prospect for nest sites at the end of the season (Eadie and 

Gauthier , Zicus and Hennes , Pöysä ), Common Ei-

ders prospect upon arrival at breeding areas (Robertson ). We 

suggest that shelters are used more by parasites because they () 

are highly visible and easily found and observed for host activity, 

() provide protection against avian nest predators and increase 

the probability that a parasite will find a host nest during laying, 

and () protect evidence of previous nesting attempts from being 

scattered by wind and precipitation, making shelters attractive to 

both normal nesters and parasites (see Roy et al. , Fast et al. 

). This supports the notion that nest visibility strongly influ-

ences CBP (Semel et al. , Semel and Sherman ) and that 

nests in open areas are more likely to be parasitized than those 

in more concealed locations (Payne ). Although brood para-

sites could have potentially benefited from laying in the safest sites 

(i.e., nests in dense woody vegetation), the benefits may have been 

outweighed by the increased effort required to locate these nests 

(Rohwer and Freeman ).

In the absence of parasite strategies that target more con-

cealed nests (e.g., Fiorini et al. ), nests in more exposed areas 

would, by chance alone, have been more likely to receive greater 

prospecting than more concealed nests. Recent evidence suggests 

that parasitic laying in combination with normal nesting (i.e., dual 

strategy; Sorenson ) may be a commonly used strategy (Re-

ichart et al. ). Because normal nesting reduces the opportu-

nity for individuals to parasitize the nests of others (Westneat and 

Sherman ), we suggest that individuals that engage in a dual 

strategy would benefit most if they used highly visible nest sites 

because this minimizes time spent searching for suitable host 

nests so that most of their time is spent attending to their own 

nests. This may be particularly important for colonial-nesting 

species that exhibit synchronous nest initiation.

Nest availability.—Successful parasitism requires tempo-

ral and spatial nest-site availability (Lyon , Shaw and Hau-

ber ). Because of the synchronous nature of nest initiation 

in Common Eiders (Cooch , Swennen et al. , present 

study), parasites have a relatively small window of opportunity to 

find suitable host nests. Common Eiders also exhibit a high degree 

of nest attendance before clutch completion and almost continu-

ous attendance once incubation has begun (Swennen et al. , 

Criscuolo et al. , Bolduc and Guillemette ). Although 

these behaviors are thought to have evolved to reduce the potential 

for egg predation (see Korschgen , Andersson and Waldeck 

), they likely limit exposure to brood parasites. Our results 

seem to support this idea, given that nest survival increased con-

siderably at the onset of incubation and no eggs were laid parasiti-

cally after the main egg-laying period.

Behaviors that restrict opportunities for CBP and the small 

clutch size of Common Eiders (x‒  .) likely contributed to the 

relatively low number of parasitic eggs per nest. We found no re-

ductions in nest survival attributable to CBP, despite an overall 

high frequency of CBP (see also Robertson , Roy Nielsen et 

al. b). This may partially explain why aggressive interactions 

between female Common Eiders do not seem to occur (Robertson 

), in contrast with other host–parasite systems (e.g., Sorenson 

).

Conclusions and future studies.—Brood parasites appear to 

be selective in choosing where they lay their eggs. However, the 

choice of nest site seems to be based on overall nest visibility 

rather than nest-site safety. Although IEF helped to determine the 

frequency of nest parasitism, genetic data combined with molecu-

lar techniques will be necessary to understand whether Common 

Eiders employ dual nesting strategies (e.g., Reichart et al. ). 

Future studies that examine differences between hosts and brood 

parasites in terms of embryo quality and incubation effects (e.g., 

Pilz et al. , DuRant et al. ) and recruitment of parasite 

and host young would be helpful in elucidating the ultimate ben-

efits of CBP.
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