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Abstract. Target detection is the front-end stage in any automatic target recognition system for
synthetic aperture radar (SAR) imagery (SAR-ATR). The efficacy of the detector directly
impacts the succeeding stages in the SAR-ATR processing chain. There are numerous methods
reported in the literature for implementing the detector. We offer an umbrella under which the
various research activities in the field are broadly probed and taxonomized. First, a taxonomy for
the various detection methods is proposed. Second, the underlying assumptions for different
implementation strategies are overviewed. Third, a tabular comparison between careful selec-
tions of representative examples is introduced. Finally, a novel discussion is presented, wherein
the issues covered include suitability of SAR data models, understanding the multiplicative SAR
data models, and two unique perspectives on constant false alarm rate (CFAR) detection: signal
processing and pattern recognition. From a signal processing perspective, CFAR is shown to be a
finite impulse response band-pass filter. From a statistical pattern recognition perspective, CFAR
is shown to be a suboptimal one-class classifier: a Euclidian distance classifier and a quadratic
discriminant with a missing term for one-parameter and two-parameter CFAR, respectively. We
make a contribution toward enabling an objective design and implementation for target detection
in SAR imagery. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JRS.7.071598]
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1 Introduction

Synthetic aperture radar (SAR) offers distinctive active remote sensing capabilities for both mili-
tary and civilian applications. Target, clutter, and noise are three terms of military origins asso-
ciated with automatic target recognition (ATR), and their definition depends on the application of
interest. In the case of SAR imagery, target refers to the object(s) of interest in the imaged scene.
Clutter refers to manmade (building, vehicles, etc.) and/or natural objects (trees, topological
features, etc.) that tend to dominate the imaged scene. Noise refers to imperfections in the
SAR image which are a result of electronic noise in the SAR sensor, as well as computational
inaccuracies introduced by the SAR signal processor. The general structure of an end-to-end
ATR system for SAR imagery (SAR-ATR), as reported in the literature, is depicted in Fig. 1.
To account for the prohibitive amounts of processing pertaining to the input SAR imagery, the
strategy is to divide and conquer. Accordingly, the SAR-ATR processing is split into three dis-
tinctive stages: detector (also known as prescreener), low-level classifier (LLC, also known as
discriminator), and high-level classifier (HLC).1–9 The first two stages together are commonly
known as the focus-of-attention module. While this is the most common structure reported in the
literature, it should be highlighted that (theoretically) there is no restriction on the number of
stages.
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As depicted in Fig. 1, the input SAR image creates an extremely high computational load due
to its high resolution and/or the presence of various clutter types and objects. As the SAR data
progresses throughout the SAR-ATR processing chain, its load is reduced. The HLC stage deals
with SAR data that has relatively lower computational load. To the contrary, the computational
complexity of the SAR-ATR chain increases as the SAR data progresses from the front-end stage
toward the back-end stage.

Detection is the front-end stage in any SAR-ATR processing chain. The detector interfaces
with the input SAR image to identify all regions of interest (ROIs), thus ROIs can be passed-in to
the LLC stage for further analysis. One may think of the detector as a dimensionality reduction
scheme that properly reduces the dimensionality of the SAR data. The detector should be
designed to balance the tradeoff between computational complexity, detection efficacy, and out-
lier rejection. On the one hand, it is required that the detector is relatively computationally sim-
ple, thus it can operate in real-time or near-real-time. On the other hand, it is required that the
detector enjoys a low probability of false alarm (PFA), and a high probability of detection (PD).
Indeed, these often conflicting factors distinguish one detector from another.

There are numerous strategies for implementing the detector. This is evident in the over-
whelming number of research articles published on the topic in the open literature. Different
researchers tend to approach the topic from various perspectives. This makes it even more chal-
lenging and time consuming to relate the various research findings and to grasp the relationship
between these various approaches. This shows a dire need for a survey that offers an umbrella
under which various research activities can be broadly probed and taxonomized. This is precisely
the goal of this paper.

In this paper, we restrict our attention to single-channel SAR imagery (i.e., single polariza-
tion). This is because the development of our survey is motivated by our endeavor to develop
SAR-ATR algorithms for Spotlight mode Radarsat-2 data, which is a single channel.10 However,
many of the topics described in this survey are either applicable or extendable to multichannel
SAR imagery. For readers interested in multichannel SAR image processing, please refer to
pertinent references.11–17

The remainder of this paper is organized as follows. In Sec. 2, taxonomy of the detection
methods is introduced. Primarily, three taxa are proposed: single-feature-based, multifeature-
based, and expert-system-oriented. In Sec. 3, the various methods for implementing the
detection module are comprehensively surveyed. First, a classification methodology for
the various strategies under each taxon is introduced. Next, a description of the different
sub-taxa is elaborated. The description commences with the Bayesian approach being the
optimal approach, and it ends with the various detection strategies that fall under the
expert-system-oriented taxon. Representative examples pertinent to SAR imagery are care-
fully chosen, and relevant comments are pinpointed throughout this section. The issues
approached include proper choice of the size of the constant false alarm rate (CFAR) sliding
window, CFAR as a suboptimal one-class classifier, CFAR loss, and cell averaging CFAR
(CA-CFAR) as the baseline algorithm for comparison with other CFAR techniques. In Sec. 4,
a compact tabular comparison between the surveyed methods is offered. In Sec. 5, a novel
discussion is presented. The issues covered under the discussion include suitability of SAR
data models, understanding the multiplicative SAR data models, and two unique perspectives
on CFAR detection: a signal processing perspective and a statistical pattern recognition per-
spective. In Sec. 6, the paper is concluded.

Fig. 1 General structure for an end-to-end SAR-ATR system.
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2 Taxonomy of the Detection Methods

The detection module takes the entire SAR image and identifies the ROIs. Ultimately, the
detected regions in the image are passed-in to the next stage in the SAR-ATR chain for further
analysis. The goodness of any detection module is typically judged based upon three aspects of
significance: computational complexity, PD, and false alarm rate (also known as PFA). The
detection module should enjoy a low computational complexity such that it operates in real-
time or near-real-time. This is in contrast to the succeeding stages in the SAR-ATR chain,
which are relatively more computationally expensive. Further, a good detection module should
provide a means to refine detections, reduce clutter false alarms, and pass ROIs; thus the detec-
tion method enjoys a reasonable PFA and acceptable PD.

We broadly taxonomize the detection algorithms reported in the open literature into three
major taxa: single-feature-based, multifeature-based, and expert-system-oriented. This taxonomy
is depicted in Fig. 2.

The single-feature-based taxon bases the detection in the SAR image on a single feature;
typically the brightness in the pixel intensity commonly known as the radar cross-section
(RCS). Various methods in the literature fall under this taxon. The single-feature-based approach
is placed at the base of the pyramid in Fig. 2 because it is the most common and widely used
in the literature. Further, the single-feature-based approach is the building block for the other
two taxa.

The multifeature-based taxon bases the detection decision on a fusion of two or more features
extracted from the input SAR image. Besides RCS, additional features that can be inferred and
fused include multiresolution RCS and fractal dimension. Obviously, this taxon builds on the
previous taxon and is expected to provide relatively improved detection performance, along with
fewer false alarms. Multiple methods in the literature fall under this taxon.

Finally, the expert-system-oriented taxon is the most sophisticated. It extends the two afore-
mentioned taxa and utilizes a multistage (two or more stages) artificial intelligence (AI) approach
that bases the detection process in the SAR image on exploitation of prior knowledge about the
imaged scene, clutter, and/or target(s). Prior knowledge is exploited through various means such
as image segmentation, scene maps, previously gathered data, etc.

As the sophistication of the detection taxon increases, the complexity-performance trade-
off arises. Caution should be taken when opting for a certain approach in order to balance this
tradeoff carefully.

3 Taxa, Methods, and Selected Examples

Based on the aforementioned taxonomy, we broadly classify the various detection schemes and
relevant methods reported in the literature in Fig. 3.

Primarily, under the single-feature-based taxon, the sliding window CFAR (CFAR-based)
sub-taxon is the most popular. The various CFAR methods can be viewed through three per-
spectives. First, based on the specifications of the sliding window, there is fixed-size versus
adaptive, as well as rectangle-shaped versus nonrectangle-shaped. Second, based on the strategy
used to implement the CFAR technique, there are various strategies, including cell-averaging

Fig. 2 Major taxa for implementing the detection module.

El-Darymli et al.: Target detection in synthetic aperture radar imagery. . .

Journal of Applied Remote Sensing 071598-3 Vol. 7, 2013

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 04/01/2013 Terms of Use: http://spiedl.org/terms



Fig. 3 The three major target detection taxa and multiple sub-taxa and methods under each
of them.
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CFAR (CA-CFAR), smallest of CA-CFAR (SOCA-CFAR), greatest of CA-CFAR (GOCA-
CFAR), and order statistics CFAR (OS-CFAR). Third, based on the method used to estimate
the threshold (for a desired PFA) in the boundary ring and/or the approach utilized for estimating
the target signature (for a desired PD), two subclasses emerge: parametric and nonparametric.
Under the parametric subclass, two approaches are recognized: only background modeling and
background and target modeling. A choice of the parametric model that best represents the SAR
data in use has to be made among various parametric models. Unlike the parametric approach,
the nonparametric approach does not assume any form for the background/target model(s).
Rather, it directly infers an approximate model from the training data. One such method to
perform the model inference is the kernel-density-estimation (KDE) method.

Less popular non-CFAR-based methods, such as those that rely on a coherence image, represent
the other sub-taxon of single-feature-based methods. The single-feature-based taxon has the limi-
tation that it bases the detection decision solely on RCS, and thus it can become overwhelmed in
regions in the SAR image where there is heterogeneous clutter and/or a high density of targets.

Methods under the multifeature-based taxon try to circumvent this drawback by basing the
detection decision on a fusion of two or more features. Obviously, this taxon can utilize a suit-
able method among those presented under the single-feature-based taxon and incorporate addi-
tional features besides RCS, such as multiresolution RCS analysis, fractal dimension, etc.
Multiresolution methods can be either space-scale-based or space-frequency-based. Prime exam-
ples of methods that utilize space-scale features are those based on the wavelet transform, includ-
ing the discrete wavelet transform (DWT), and the continuous wavelet transform (CWT). Prime
examples of methods that utilize time-frequency features include linear time-frequency methods
such as the Gabor transform and the S-transform, along with bilinear (also known as quadratic)
time-frequency methods such as Cohen’s class distributions (Wigner distribution, Wigner-Ville
distribution, pseudo-Wigner-Ville distribution, etc.).

Finally, a more robust taxon is the expert-system-oriented approach, which incorporates
intelligence into the process to guide the decision making. In its simplest form, detection deci-
sions can be guided by a structure map of the imaged scene generated from properly segmenting
the SAR image. Further, methods of AI can be appropriately integrated to achieve near-optimal
context utilization.

Next we review the various methods introduced above under each taxon. Further, repre-
sentative examples pertaining to SAR imagery under each method are carefully chosen and
presented.

3.1 Single-Feature-Based Taxon

Single-feature-based detection algorithms base their search for target detection in the SAR image
on a single feature. CFAR is the most popular single-feature-based detection algorithm. Despite
the many variations of CFAR under this category, they are considered single-feature-based
because they base the search for ROIs on RCS alone. Indeed, as it is evident from the numerous
works published in the literature, CA-CFAR is the baseline approach for target detection in
SAR imagery. To understand the limitations of the single-feature-based-CFAR approach, it is
important to review its underlying assumptions.

An optimal detector (theoretically speaking) should utilize the Bayesian approach, which for
a zero-one cost, reduces to the maximum a posteriori (MAP) criterion18 as

ΛMAPðxÞ ¼
PðωT jxÞ
PðωBjxÞ

≶ ωB
ωT1; (1)

where ωT is the target-class, ωB is the background or clutter-class, and PðωT jxÞ and PðωBjxÞ are
the posteriors of the target-class and the background-class, respectively.

This is simply a binary (i.e., two-class; dichotomizer) classification problem where x is a
feature vector that represents the pixel values, typically obtained from the boundary ring in
a sliding window with suitable guard cells centered on the ROI. This window is typically called
a CFAR stencil and is depicted in Fig. 4 for a size of 9 × 9 pixels. The boundary ring is shown in
bright green with suitable pixel labels.
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Note that the choice of this stencil size here is for illustration purposes only. Proper choice of
the stencil size will depend on the type of SAR image and the target size. More precisely, the size
(and shape) of the guard ring will be governed by the geometrical size of the target.19 However, it
should be noted that choosing the stencil dimension using only the prior knowledge of target size
yields a detection loss (i.e., CFAR loss that leads to a suboptimal performance), because the
backscatter of the target in SAR imagery is dependent on the operating conditions and is weakly
linked with the target’s geometric shape.20 Despite these challenges, it is recommended21,22 that
the target window size (i.e., pixels under test, PUTs) should be about the size of the smallest
object that one wishes to detect, the guard ring window size should be about the size of the
largest object, and the boundary ring window size should be large enough to estimate the local
clutter statistics accurately.

Posterior probabilities can be expressed by the Bayes rule as

PðωT jxÞ ¼
pðxjωTÞPðωTÞ

pðxÞ ; and PðωBjxÞ ¼
pðxjωBÞPðωBÞ

pðxÞ ; (2)

where pðxjωTÞ, and pðxjωBÞ are the probability density functions (PDFs) or the likelihoods of
the target-class and the background-class, respectively; PðωTÞ, and PðωBÞ are the priors of the
target-class and the background-class, respectively; And pðxÞ is the evidence, which is typically
ignored in the MAP criterion above, because it is identical for both classes.

Accordingly, the MAP criterion can be expressed as a likelihood ratio test (LRT) as

ΛLRTðxÞ ¼
pðxjωTÞ
pðxjωBÞ

≶ ωB
ωT

PðωBÞ
PðωTÞ

: (3)

The major problem with this expression is that, in practice, we do not have knowledge on the
class priors. If we assume equal priors for the target-class and the background-class, the LRT test
reduces to the maximum likelihood (ML) test. However, in practice, these two priors are not
equal, and the ML test should be avoided. Typically, the Neymann-Pearson (NP) criterion is
adopted where the LRT test reduces to

ΛNPðxÞ ¼
pðxjωTÞ
pðxjωBÞ

≶ ωB
ωT

α; (4)

where α is a detection threshold typically referred to as the threshold scaling factor for reasons
that will become apparent.

Equation (4) is the main formula motivating the design for the CFAR algorithm and its var-
iants. Indeed, many popular CFAR algorithms in the literature assume that only the background-
class is characterized without characterizing the target-class, and thus they adopt a suboptimal
anomaly detection (AD). This converts the optimal binary classification problem into a one-class
classification problem23 as
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Fig. 4 CFAR stencil.
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ΛADðxÞ ¼ pðxjωBÞ≶ ωT
ωB α: (5)

However, besides modeling the background, some other CFAR algorithms do consider a PDF
model for the target-class. It is preferable to adopt such a target model, even if it merely rep-
resents a broad PDF (i.e., a weak prior assumption) rather than doing an AD24,25 as shown
in Eq. (5).

In the former approach (i.e., the AD approach), the CFAR algorithm assigns PUTs to the
background if it finds that the PUTs are consistent with the background distribution; other-
wise, the PUTs are labeled as detected. For a desired PFA, the scaling factor α is adaptively
estimated throughout the image from the boundary ring in the sliding window focused on the
ROI as

PFA ¼
Z∞

α

pðxjωBÞ: (6)

The latter approach (i.e., the one that models both the background-class and the target-class)
utilizes the NP criterion as explained in Eq. (4), and the PD, for a certain target model of
interest, pðxjωTÞ, is given by

PD ¼
Z∞

α

pðxjωTÞ. (7)

3.1.1 CFAR-based methods

Be it a fixed-size or adaptive sliding window, the various CFAR methods can be viewed through
two perspectives intermingled. The first is based on the method used to estimate the threshold
scaling factor (for a desired PFA) in the boundary ring and/or the approach utilized for estimating
the target signature (for a desired PD). There are two strategies: parametric CFAR and nonpara-
metric CFAR. The second is based on the method used to implement the CFAR technique. There
are various strategies, including CA-CFAR, SOCA-CFAR, GOCA-CFAR, and OS-CFAR. Thus,
any CFAR detector can be viewed as a combination of these two perspectives: one strategy
pertinent to the estimation of the threshold scaling factor and one strategy for implementing
the CFAR technique. To visualize the interrelation between the various methods and strategies,
refer to Fig. 3.

Under this section, we review parametric CFAR and nonparametric CFAR. Under parametric
CFAR, we review one-parameter CFAR and two-parameter CFAR. Under one-parameter CFAR,
we review various implementation strategies, including CA-CFAR, SOCA-CFAR, GOCA-
CFAR, and OS-CFAR. Under two-parameter CFAR, we discuss the most common implemen-
tation strategy. We then briefly discuss CFAR loss. Then an interesting remark that addresses
an important issue pertaining to CFAR usage is presented. Finally, the topic of nonparametric
CFAR is briefly approached.

Parametric CFAR. Parametric CFAR methods can be classified into two classes: methods
based only on background modeling (i.e., AD) and methods based on both background and
target modeling. We briefly review these two methods here.

All the parametric CFAR algorithms that perform AD (i.e., only models the background
clutter) have one thing in common. They all assume that the background clutter can be roughly
modeled by a certain probability distribution, i.e., pðxjωBÞ. Then, to perform the CFAR detec-
tion, they estimate the model distribution parameters from the boundary ring in the CFAR sten-
cil. This PDF model is used to estimate the threshold scaling factor α, for a desired CFAR (i.e.,
PFA), as the focusing window is systematically slid over the SAR image. However, variant
classes of CFAR algorithms primarily differ in two aspects.

First, there is the probability distribution chosen, i.e., pðxjωBÞ, to model the background
clutter. For example, some CFAR algorithms assume a homogeneous clutter and model the
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background clutter with an exponential distribution (i.e., for SAR image in the power-domain;
magnitude-squared), or a Rayleigh distribution (i.e., for SAR image in the magnitude-domain).
This class of distribution models is characterized by one-parameter (i.e., the mean) and thus
is referred to in the literature as a one-parameter CFAR. Other CFAR algorithms model the
background clutter in the SAR image with the more realistic but more complex Weibull distri-
bution,26,27 K-distribution,28 alpha-stable distribution,29,30 or beta-prime (β 0) distribution,31

among other models. This class of distribution models is characterized by two parameters
(mean and variance, scale and shape parameters, etc.), and because of this, the CFAR algorithm
is referred to in the literature as a two-parameter CFAR.

Second, there is the method used to estimate the model parameters pertaining to the detection
Threshold from the boundary ring. For example, there is CA-CFAR, GOCA-CFAR, SOCA-
CFAR, OS-CFAR,32–34 and best linear unbiased estimator CFAR (BLUE-CFAR),26,27 among
others.

The CFAR algorithms that model both the background and the target perform procedures
similar to those mentioned above. However, besides estimating the background model param-
eters in the focusing window, they also estimate the target model parameters. Thus, the detection
threshold in the sliding window is determined based on the NP criterion as
shown in Eq. (4). Gan and Wang35 and Rong-Bing and Jian-Guo36 offer examples on this
approach.

One-parameter CFAR. Under this section, we briefly review various one-parameter
CFAR implementation strategies, including CA-CFAR, SOCA-CFAR, GOCA-CFAR, and
OS-CFAR. Obviously, these same strategies are also utilized for implementing two-parameter
CFAR. Accordingly, a proper understanding of these implementation strategies paves the way
for better understanding two-parameter CFAR.

CA-CFAR was the first CFAR test proposed in 1968 by Fin and Johnson.37–39 The adaptive
Threshold is comprised of two parts. One is estimated from the boundary ring called Z, and the
other is found from the corresponding PDF distribution for a desired PFA. This explains why α is
referred to as the threshold scaling factor. Thus, Threshold is given by

Threshold ¼ αZ: (8)

The underpinning assumption is that the clutter in the in-phase (I) and quadrature (Q) channels
of the radar (particularly speckle, as no interfering targets are assumed) is Gaussian. Note that the
focused SAR data output from the SAR processor (i.e., level-1 processed) is a complex-valued
image of the form, I þ jQ. The CA-CFAR detection can be performed on the magnitude SAR

image (i.e., A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 þQ2

p
), the power SAR image (i.e., P ¼ A2), or the log-domain image (i.e.,

L ¼ 10 log A2). It should be highlighted that a CFAR detector that deals with a magnitude SAR
image is commonly known in the literature as an envelope (i.e., magnitude) detector or linear
detector. ACFAR detector designed to handle a power SAR image is known as a square-law (i.e.,
power) detector. Finally, a CFAR detector designed for a log-domain SAR image is known as a
log detector. Note that this terminology is also applicable to the two-parameter CFAR method.
Accordingly, the clutter in the SAR image will be Rayleigh or exponential distributed depending
on whether the SAR image is magnitude or power, respectively. Obviously, both the exponential
distribution and Rayleigh distribution are completely characterized by one parameter (i.e.,
mean), thus CA-CFAR is also known as one-parameter CFAR.

Assuming a power image, and assuming the clutter is independent and identically distributed
(iid), and that the PDF of a pixel xi is exponential distributed, whereby both the I andQ channels
with power Z∕2 in each channel (total Z), as follows:

pðxijωBÞ ¼
1

Z
e−xi∕Z. (9)

Thus, for N reference pixels in the boundary ring (see Fig. 4),
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Γ ¼ pðxjωBÞ ¼
1

ZN

YN
i¼1

e−xi∕Z ¼ 1

ZN e−
P

N
i¼1

xi
Z . (10)

From this, Z is approximated from the log maximum likelihood estimate (log-MLE) as

d
dZ

lnΓ ¼ d
dZ

�
−
P

N
i¼1 xi
Z

− N lnZ

�
¼ 0. (11)

Thus,

μ̂B ¼ Ẑ ¼
P

N
i¼1 xi
N

: (12)

Note that Ẑ is simply the maximum likelihood estimate (MLE) of the arithmetic mean of the
pixels in the boundary ring in the CFAR stencil. Accordingly, from Eq. (8),

Threshold ¼ αZ≊αμ̂B ¼ α

P
N
i¼1 xi
N

. (13)

The scaling factor is estimated based on Eq. (6), and for this case is given40 by

α ¼ NðPFA−1
N − 1Þ: (14)

Since PFA does not depend on the average power Z in the reference cell, the algorithm is CFAR
under the assumptions mentioned earlier in this section.40

In reference to Fig. 4, CA-CFAR computes the arithmetic average of the pixels in the boun-
dary ring and then compares it with the PUT. The decision to conclude either that a PUT is
detected (i.e., target-class) or not detected (i.e., background-class) is contingent upon the thresh-
old scaling factor α, as illustrated below. The SAR image is in the (noncomplex) power domain:

XPUT

μ̂B
≶ ωB

ωT α; (15)

where μ̂B is calculated based on Eq. (12) whereby N is the total number of pixels in the boundary
ring (N ¼ 56 in Fig. 4), and xi is a pixel value in the boundary ring, and XPUT is the PUT.

Note that if a log-detector CFAR is used (i.e., the SAR image is assumed to be in the log-
domain), one simply takes the logarithm for both sides in Eq. (15). Accordingly, the log-detector
one-parameter CFAR is governed by

XPUTlog
− μ̂B log ≶

ωB
ωT αlog. (16)

The subscript log is inserted in the above inequality to differentiate it from Eq. (15) and to
emphasize the fact that all the terms in Eq. (16) are calculated based on the SAR image in the
log-domain.

Additionally, note that it is possible to consider more than one pixel for the PUT in the
inequalities above. However, in this case, XPUT should be replaced with the ML estimate of
the arithmetic average pertaining to the M PUTs given by

X̄PUT ¼
P

M
i¼1 xi
M

: (17)

CA-CFAR relies on two major assumptions that pose limitations on its performance. First, the
targets are assumed to be isolated by at least the stencil size, so that there is at most one target in
the stencil at one time (i.e., no interfering targets are assumed). Second, the reference pixels in
the boundary ring are assumed to be iid distributed and have a PDF similar to that in the PUT
(i.e., homogeneous clutter). Obviously, these assumptions do not hold in many real-world
scenarios. Thus, when CA-CFAR is used under circumstances different from the design assump-
tions, its performance suffers a significant detection loss40 (also known as CFAR loss).
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SOCA-CFAR and GOCA-CFAR are variants of CA-CFAR that split the boundary ring in the
sliding stencil into separate leading and lagging windows (indeed, there are four such windows,
one on each side of the PUT) that are used to estimate separate statistics.41 This is depicted
in Fig. 5.

In SOCA-CFAR, the smallest of the four mean estimates is used to perform the test, while in
GOCA-CFAR, the greatest of the four mean estimates is used. Assume there are a total of N
pixels in each window. Thus, there are four mean estimates:

meantop ¼
P

N
i¼1 xi;top
N

; meanleft ¼
P

N
i¼1 xi;left
N

;

meanbottom ¼
P

N
i¼1 xi;bottom

N
; and meanright ¼

P
N
i¼1 xi;right
N

;

(18)

where meantop, meanleft, meanbottom, and meanright are the arithmetic average estimates for the
top, left, bottom, and right windows, respectively, and xi is the corresponding pixel value inside
each window.

Accordingly, for SOCA-CFAR, the detection decision for power-domain (i.e., square-law)
detection is

XPUT

minfmeantop;meanleft;meanbottom;meanrightg
≶ ωB

ωT α: (19)

Similarly, for GOCA-CFAR, the power-domain detection decision is

XPUT

maxfmeantop;meanleft;meanbottom;meanrightg
≶ ωB

ωT α: (20)

Note that, similar to CA-CFAR, the threshold scaling factor α is determined based on the desired
PFA and the (Gaussian) distribution used to model the clutter in the relevant reference window.
Also note that the relationship between α and PFAwill be different from that given in Eq. (14).
For derivation of the relationship for GOCA-CFAR, the reader is referred to Chap. 7, pages 365,
and 367, respectively, in Ref. 40.

SOCA-CFAR is designed to handle strong clutter returns in the boundary ring, but it is sus-
ceptible to clutter edges. On the other hand, GOCA-CFAR is capable of performing better than
CA-CFAR and SOCA-CFAR at clutter edges, but its performance degrades when strong returns
appear in the boundary ring. Further, compared to CA-CFAR, both SOCA and GOCA suffer
from additional CFAR loss, due to the consideration of only a part of the boundary ring.

OS-CFAR was first proposed by Rohling42 to counter multiple targets in the CFAR stencil.
OS-CFAR rank orders the pixels in the boundary ring according to their value. Assuming that
there are N pixels in the boundary ring of Fig. 4, OS-CFAR orders them in an ascending order:

xð1Þ ≥ xð2Þ ≥ : : : ≥ xðNÞ: (21)

Further, the Q’th percentile is chosen in place of the average estimate in CA-CFAR. Thus the
detection decision is based on
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Fig. 5 Four different strategies for defining the leading (a), (b); and lagging (c), (d) windows.
Pixels shaded in orange illustrate a leading or lagging window in relation to the PUT.
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XPUT

xðQÞ
≶ ωB

ωT α: (22)

Similar to earlier CFAR methods, the threshold scaling factor α is estimated based on the clutter
statistics in the boundary ring. In Rohling’s original work,42 Q ¼ 3∕4 is found to work best.
However, in later work,43,44 Q ¼ 4∕5 is found to give better results. Obviously, the best value
of Q is dependent on the type of the SAR data used. Thus, bearing these values in mind, it is
desirable to empirically check the value of Q that best suits the data in use. For derivation of the
threshold scaling factor α for a desired PFA under the Gaussian assumption, the reader is referred
to page 372 in Richards.40

In heterogeneous/nonhomogeneous clutter backgrounds, and for contiguous targets,
OS-CFAR is known to outperform CA-CFAR.38,42,45,46 However, the performance of OS-CFAR
degrades during clutter transitions.45 This motivated researchers to develop this method further to
handle various scenarios. Although only tested on 1-D radar data (i.e., range profiles), a variant
called switched order statistics (SWOS) CFAR is designed for detecting targets in non-
homogenous clutter and/or multiple interfering target scenarios.47 This algorithm builds on a
relevant method known as selection and estimation48 (SE) and is able to determine whether
the cells in the boundary ring belong to homogeneous or nonhomogeneous clutter and thus
adaptively adjust the detection threshold for a desired PFA. SWOS-CFAR is shown to outper-
form standard OS-CFAR49 and switching CFAR (S-CFAR). A generalized version of S-CFAR
termed GS-CFAR is proposed, wherein it is shown that GS-CFAR yields some improvement in
the detection probability in the case of interfering targets and clutter edges.50 Many additional
variations of CFAR exist in Ref. 40.

Gandhi and Kassam51 show that the performance of the CA-CFAR processor approaches that
of the NP detector in that the limit of the number of pixels in the boundary ring approaches
infinity under the condition that homogeneity is maintained in the boundary ring. Thus,
CA-CFAR achieves asymptomatically optimal performance under these (theoretical) assump-
tions. Accordingly, CA-CFAR can be used as the baseline algorithm for comparison with other
CFAR techniques.

We summarize the four basic (square-law) CFAR detectors (i.e., CA-CFAR, SOCA-CFAR,
GOCA-CFAR, and OS-CFAR) in Table 1.

Two-parameter CFAR. Unlike one-parameter distribution models discussed earlier, more
realistic two-parameter distribution models characterize the clutter in the boundary ring of the
CFAR stencil by two parameters (mean and variance, scale and shape, etc.). Examples of two-
parameter distribution models include log-normal distribution and Weibull distribution. For
high-resolution SAR imagery, compound two-parameter distributions such as K-distribution,
Go-distribution, and β’-distribution are typically used.

A conventional two-parameter CA-CFAR algorithm based on the log detector has the
form14,52,53

Table 1 Summary of the four basic square-law CFAR techniques.

Method Formula Advantages Disadvantages

CA-CFAR
XPUT

1
N

PN
i¼1 x i

≶ ωB
ωT α Optimal in homogeneous clutter

(the baseline detector)
Susceptible to nonhomogeneous
clutter in the boundary ring

SOCA-CFAR
XPUT

minf:g ≶ ωB
ωT α Designed to handle strong clutter

returns in boundary ring
Susceptible to clutter edges in the
boundary ring

GOCA-FAR
XPUT

maxf:g ≶ ωB
ωT α Perform well on clutter edges Susceptible to strong returns

appear in the boundary ring

OS-CFAR
XPUT

x ðQÞ
≶ ωB

ωT α Perform well in heterogeneous/
nonhomogeneous clutter
backgrounds

Susceptible to clutter transitions
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XPUT log − μ̂B log

σ̂B log

≶ ωB
ωT αlog; (23)

where αlog is the threshold scaling factor estimated for a desired PFA based on the relevant model
distribution for the background clutter.

Accordingly, rearranging Eq. (23) yields

T̂hresholdlog ¼ μ̂B log þ αlogσ̂B log; (24)

where μ̂B log and σ̂B log are the ML estimates of the background mean and standard deviation,
respectively, calculated from the log-domain SAR image, and given by

μ̂B log ¼
P

N
i¼1 xi
N

and σ̂B log ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðxi − μ̂B logÞ2
vuut ; (25)

where xi is the pixel in the boundary ring, and N is the total number of reference pixels in the
boundary ring.

PUT is assumed to be a single pixel. If more than one pixel is assumed, then PUT is the ML
estimate of the arithmetic mean such that

X̄PUT ¼
P

M
i¼1 xi
M

; (26)

where M is the number of pixels in the PUT.
However, note that this will entail replacing54 σ̂B log in Eqs. (23) and (24) with σ̂m log:

σ̂m log ¼
σ̂B logffiffiffiffiffi

M
p . (27)

An embedded underlying assumption in deriving Eqs. (23) and (24) is that the background clut-
ter in the I andQ channels of the SAR image follows a Gaussian distribution, and thus the clutter
in the magnitude-domain SAR image or the power-domain SAR image is Rayleigh or exponen-
tial distributed, respectively. This assumption entails converting the SAR image to the log-
domain. In some other works, the background clutter in the SAR image is assumed to be
log-normal, and thus the above equations are adopted verbatim without applying the logarithmic
conversion to the SAR image.19,21,22,54

If we keep the assumption implicit in Eqs. (23) and (24) (i.e., magnitude image is Rayleigh
distributed, and power intensity image is exponential distributed), the two-parameter CFAR
applied to the image in the (nonlog) domain is given55 by

XPUT

μ̂B
− 1

σ̂B
≶ ωB

ωT α: (28)

If more than one pixel is considered in the PUT, then a procedure similar to Eqs. (26) and (27)
should be applied. Note that various CFAR combinations described in the previous section (i.e.,
SOCA, GOCA, OS, etc.) can also be applied to two-parameter CFAR.

CFAR loss. As it is explained thus far, the CFAR approach aims at maintaining a CFAR by
locally adapting the detection threshold to the background clutter in the SAR image. However, a
detection loss, commonly referred to as CFAR loss, is the price paid for this threshold adaptation.
This is due to the fact that, in real-world applications, the noise level in the boundary ring is not
constant and/or the number of reference pixels used in the estimation is not large enough.
Further, CFAR loss can be viewed as the required increase in the signal to noise ratio
(SNR) in order to maintain the desired PD.56 The value of this CFAR loss is dependent
upon a number of factors, including CFAR method used (e.g., CA, GOCA, SOCA, etc.), number
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of pixels in the boundary ring, PFA, target statistics, clutter statistics, and noise. Antipov and
Baldwinson57 offer a notable work on this topic, though applied to 1-D radar data.

A universal curve for CFAR loss in a single-hit detection for steady or Rayleigh target56 is
depicted in Fig. 6. The parameter χ is given by

χ ¼ − log PFA: (29)

The CFAR ratio is given by

CFARRatio ¼ χ

meff

; (30)

where meff is the effective number of reference pixels in the boundary ring, given by

meff ¼
mþ k
1þ k

: (31)

Values of k for different CFAR detectors are provided in Table 2.
We now present a final word on the log-detector CFAR. Indeed, caution should be exercised

when dealing with log-CFAR. As reported in Ref. 40 log-CFAR introduces an additional CFAR
loss into the process. To circumvent this CFAR loss, the size of the CFAR stencil, more precisely
the boundary ring in the stencil, needs to be increased by 65 percent58 by following

Nlog ¼ 1.65N − 0.65; (32)

where N is the number of pixels used for the nonlog CA-CFAR detector, and Nlog is the number
of corresponding pixels required for the log CA-CFAR detector to circumvent the CFAR loss due
to using the log-detector.

Indeed, despite this additional hurdle, log-detection CFAR is shown to be preferred over
linear threshold CFAR processing for typical nonhomogeneous clutter conditions where

Fig. 6 Universal curve of CFAR loss in single-hit detection for steady or Rayleigh target (See
Refs. 56 and 57).

Table 2 Values of k under different CFAR detectors (Ref. 56).

CFAR Method SAR image type k

CA-CFAR Square-law detector k ¼ 0

Linear envelope detector k ¼ 0.09

Log detector k ¼ 0.65

GOCA-CFAR Square-law detector k ¼ 0.37

Linear envelope detector k ¼ 0.5

Log detector k ¼ 1.26
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background clutter surrounding the target is contaminated by other targets, bright clutter pixels,
etc.59,60

Final remarks on parametric CFAR. This section highlights the fact that the CFAR
detectors described earlier that are originally designed under the Gaussian assumption (i.e.,
the background clutter distribution in the I and Q channels) are typically applied in the literature
to nonGaussian clutter. Typically, a suitable clutter model (Weibull distribution, K-distribution,
β’-distribution, etc.) is adopted, wherein the distribution model parameters are estimated from
the boundary ring in the sliding stencil and are used to estimate the scaling factor (α) for the
desired PFA.

In Ref. 19, the two-parameter CFAR scheme is originally designed under Rayleigh/Gaussian
assumptions (similar to the one presented earlier) and applied to nonGaussian data in high-
resolution SAR images. In Armstrong and Griffiths,61 the performance of two-parameter
CA-CFAR, GOCA-CFAR, and OS-CFAR (originally designed under Gaussian assumption)
is evaluated under K-distributed clutter. In Refs. 31 and 62 two-parameter CA-CFAR (originally
designed based on Gaussian assumption) is applied to β’-distributed high-resolution SAR data.
Additional examples are provided in Refs. 53 and 54. Obviously, such CFAR detection schemes
are applied to clutter distributions that are different from those on which the CFAR detector was
originally designed. Subsequently, the conclusion is reached that CFAR techniques prove to be
effective regardless of this fact, which explains their popularity.63 However, CFAR loss is the
price paid for this process.40

Nonparametric CFAR. In the parametric CFAR methods explained in the preceding sec-
tions, the background clutter and/or the target pixels are assumed to obey a certain distribution,
and the pixels in the reference window (i.e., boundary ring) are used to estimate the correspond-
ing model parameters. Nonparametric CFAR algorithms do not assume any prior model for the
background or the target. Rather, they use nonparametric methods18,64 to directly infer the model
from the SAR data. An example on a nonparametric CFAR using kernel density estimation
(KDE) for inferring the background and the target models is proposed in Gao.65

3.1.2 Nonrectangle-shaped-window methods

While most detection techniques reported in the literature rely on a rectangle-shaped hollow
stencil with a suitable size and a guard ring, there are some other methods that replace the rec-
tangle-shaped window with another shape. One such example is provided in Ref. 66, where the
rectangle-shaped CFAR window is replaced with a 2-D gamma kernel. The method utilizes a
CFAR detection strategy and is referred to as gamma-CFAR. Similar to traditional rectangle-
shaped-window CFAR, the CFAR threshold in gamma-CFAR is estimated from the radial pixel
intensity information around a PUT. Further, gamma-CFAR has a free parameter which can be
used to estimate the size of its region of support and its standard deviation required for the CFAR
test. Although it is not implemented in Ref. 66 it is stated that this free parameter can be set
adaptively. The gamma stencil is also applied in a non-CFAR fashion based on a quadratic
Gamma discriminant (QGD) that has eight free parameters.66 Test results show that QGD out-
performs gamma-CFAR. Extension of QGD to an artificial neural network (ANN) based on a
multilayer perceptron (MLP) is provided in Ref. 67.

3.1.3 Non-CFAR methods

Besides CFAR-based methods, there are other approaches that do not use CFAR. For example, in
Ouchi et al.,68 the detection is based on a coherence image produced from the multilook SAR
image via cross correlation between two SAR images extracted by moving windows of a small
size over the original image. The method can detect objects buried in a speckle. In Howard,
Roberts, and Brankin,69 the detection is based on genetic programming. Relevant work is pro-
vided in Conte, Lops, and Ricci,70 although applied to 1-D radar data, where the detection is
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based on a generalized likelihood ratio test (GLRT) in a K-distributed clutter. The null hypoth-
esis (Ho) represents the K-distributed clutter, and the alternative hypothesis (H1) is modeled as
being a compound of target signal and a K-distributed noise.

3.2 Multifeature-Based Taxon

All the aforementioned methods for target detection are single-feature-based in that they
distinguish the target pixels from the background only on the basis of the level of pixel bright-
ness (i.e., RCS). This poses a limitation on these methods, more significantly, in ROIs with
heterogeneous clutter and/or contiguous targets.

Methods under the multifeature-based taxon try to circumvent this drawback by basing the
detection decision on a fusion of two or more features. Obviously, this taxon can utilize a suitable
method among those presented under the single-feature-based taxon and incorporate additional
features besides RCS. Methods that fall under the multifeature-based taxon can be broadly clas-
sified into two major sub-taxa: those that utilize arbitrary user-chosen features and those that rely
on systematic multiresolution analysis. Examples of arbitrary user-chosen features are provided
in Refs. 9 and 71, wherein decisions on ROIs in the SAR image are based on a fusion of three
multistage features extracted in parallel from the SAR image, namely CFAR features, variance
features, and extended fractal (EF) features. Obviously, this approach is not purely CFAR.
Another relevant example of the multifeature method is provided in Ref. 72. Further, in
Subotic et al.,73 parametric circular complex Gaussian models are utilized for both target
and clutter. However, unlike the traditional CFAR approach, which works on a single resolution,
the resolution of the SAR image in this approach is varied to produce multiple features. It is
based on the conjecture that target signatures, when viewed as a function of resolution, are suf-
ficiently different from clutter. This allows detection performance gains over single-resolution
detection algorithms.

This perspective motivates the more systematic multiresolution analysis methods, which can
be broadly classified into space-scale-based and space-frequency-based. Space-scale methods
produce space-scale features based on the wavelet transform, including the DWT, and CWT.
In Ref. 74 the detection is based on DWT that yields a spatial correlation of the sub-bands
that attenuates the background noise and enhances the structured pattern of the target signature.
A description of the more relevant detection strategies based on CWT can be found in Antoine
et al.75

Prime examples of methods that utilize space-frequency features include linear space-
frequency methods, such as the S-transform,76 and bilinear (also known as quadratic) space-
frequency methods, such as Cohen’s class distributions77,78 (Wigner distribution, Wigner-Ville
distribution, pseudo-Wigner-Ville distribution, etc.).

3.3 Expert-System-Oriented Taxon

Expert-system-oriented target detection is a multistage (two or more stages) AI approach that
bases the detection process on exploitation of prior knowledge about the imaged scene and/or
target(s). Prior knowledge is captured via context utilization. In the broader sense, context
here refers to all the available means that can help to convey information about the background
clutter and/or target(s) of interest in the scene. Such means include image segmentation, scene
maps, digital elevation model (DEM), previously gathered data, and geographical information
system (GIS).

In its simplest form, context utilization in CFAR can be realized via unsupervised/
semisupervised SAR image segmentation. Typically, prior to applying CFAR to the SAR image,
the SAR image is segmented to extract an image structure map. Then, the conventional CFAR
method of choice is aided with this map to enable it to adaptively select the suitable area over
which the background statistics can be properly estimated. Further, smaller segments can be
labeled as potential targets, while larger ones can be labeled as background. An example for
utilizing annealed segmentation with one-parameter CFAR for SAR target detection is provided
in McConnell and Oliver.79
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A relevant work is termed variability index CFAR (VI-CFAR), although applied on 1-D
range data.80,81 Based on the estimations of the mean in the boundary ring of the stencil,
VI-CFAR switches between one of the following three CFAR methods: CA-CFAR, SOCA-
CFAR, and GOCA-CFAR. This approach tries to benefit from the strength of each CFAR
method through deployment of the switching scheme.

Another relevant algorithm is reported in Gao et al.62 The algorithm builds on the beta-prime
CFAR (β’-CFAR) algorithm31 reported earlier in this paper. A binary index map is created based
on globally thresholding the input SAR image. The index map is comprised of zeros assigned to
pixels in the input SAR image that are found to be less than a predetermined global threshold,
and ones assigned to pixels found to be greater than the global threshold. Then, a sliding window
stencil is placed over the image (i.e., pixel by pixel) where the parameters of the Go-distribution
(i.e., Go-distribution reduces to β’-distribution for a single look SAR image; more on this is
given in Sec. 5.2) are estimated from the pixel values in the boundary ring correspond to 0

in the index map. The size of the stencil is chosen based on the prior knowledge of the target
size as described in Salazar.31 Then, a local threshold in the stencil is determined based on the
parameters estimated, and a decision on the PUT is taken. The window is then systematically slid
to subsequent pixels in the image until the whole image is scanned. Further refinements on detec-
tions are achieved by placing a constraint on the size and allowable distance between detections.

More robust expert-system-oriented approaches utilize a mixture of multiple different CFAR
experts (CA-CFAR, OS-CFAR, etc.), each of which is specialized to handle a suitable kind of
clutter. The expert-system-oriented system uses available context information, extracted by one
or more means (as explained earlier in this section), to assign the CFAR experts to suitable
regions in the SAR image. Unfortunately, there is a lack of work published on this approach
for SAR imagery. However, there are works published on 1-D radar data. One such example82–84

was implemented by the U.S. Air Force Research Laboratory.
Rimbert and Bell43,44 present another interesting work. It is motivated by the observation that,

in homogeneous regions (i.e., locally stationary clutter), a larger reference window provides a
clutter estimate that has a mean with smaller variance than a similar estimate based on a smaller
reference window. Conversely, a smaller reference window provides a more reliable mean esti-
mate in nonhomogeneous regions. Accordingly, a target detection scheme that adapts the refer-
ence window size and selects one of two CFAR detectors (i.e., CA-CFAR, and OS-CFAR) based
on the type of the reference region is proposed. The proposed detection scheme checks the
homogeneity of the reference region using a goodness-of-fit statistical test with an assumed
parametric model for the clutter. One can think of this process as producing a structure map
for the reference window (i.e., not for the whole image, as discussed in this section for the seg-
mentation-based method). A CFAR method termed cell under test inclusive CFAR (CI-CFAR)
is also introduced, which operates in a manner similar to OS-CFAR but combines the PUTwith
the clutter pixels in the reference window. Although the authors reported in one work43 that
CI-CFAR outperforms OS-CFAR, in another work,44 the authors acknowledge that this conclu-
sion is incorrect, due to the use of a simulation with errant detection threshold parameters. It
should be noted that the results presented are not based on 2-D SAR data. Further, the analysis
was based on the assumption that both the clutter and the target obey the central limit theorem
(CLT) (i.e., Gaussian), which is a nonrealistic assumption for high-resolution SAR imagery.
Additionally, reference stencils used are not hollow, and they do not consider any guard regions.

Finally, any relevant detection method that utilizes any form of intelligence/inference is of
particular interest and to fit under this taxon.

4 Comparison

A comparison between selected examples, most of which are from amongst those cited in Sec. 3,
on the detection module pertaining to SAR imagery is provided in Table 3. The choice of the
examples was carefully made to cover the different methods under each taxon. Comparison
aspects include SAR image type, feature(s), clutter/target type, clutter model (if applicable),
and target model (if applicable). The comparison does not attempt to assess the algorithm per-
formance based on reported PD and PFA, as this is infeasible, given the variant types of methods
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Table 3 Comparison between selected detection modules [T ¼ Taxon, ST ¼ Sub-taxon].

T ST Refs. Image type Feature(s) Clutter/target Clutter model
Target
model Comments

Single-
feature-
based

CFAR-
Based

Parametric methods: based only on background modeling

85 SIR-C/X
SAR data

One/RCS Sea/ship Joint
log-normal

N/A Uses sliding window
CA-CFAR. Tested
on isolated targets in
a homogeneous
clutter.

33 HH/
airborne/
high
resolution

One/RCS Homogeneous/
glinting area
targets

Exponential N/A Uses sliding window
OS-CFAR. KDE is
used to estimate
PFA and PD.
Logarithm of
intensity is
considered for
calculations.

26,
27

Spotlight/
HH/
airborne/
high
resolution

One/RCS Land/extended
objects

Weibull N/A Uses sliding window
CFAR.
Homogeneous
clutter in local
windows is
assumed. Location-
scale type (BLUE
estimate)86 is used
for parameter
estimation.

28,
86

Lincoln
Lab/HH
and HV

One/RCS Land/bridge,
and power-line
tower

K-distribution N/A Uses sliding window
CFAR. OS-CFAR
and CA-CFAR are
compared under
Weibull and K -
distribution clutters.

Parametric methods: based on background and target modeling

35,
36

High
resolution
(no info
provided)

One/RCS Land/vehicles Log-normal Log-
normal

Usesslidingwindow-
CFAR. (not AD). NP
criterion is utilized.

Nonparametric methods: based on kernel density estimation (KDE)

65 Radarsat-
1/space-
borne/high
resolution

One/RCS Sea/ship
(homogeneous
clutter, and
isolated
targets)

Nonparametric.
Estimated
using KDE

N/A Uses sliding window
CFAR, for AD.
Gaussian kernel is
used for the KDE of
the background
model.

Non-
CFAR-
based

Based on a coherence Image

68 Radarsat-
1

One/RCS
(correlation-
based)

Sea/ship
(homogeneous
clutter, and
isolated
targets)

N/A N/A A coherence image
produced from the
multilook image via
cross correlation
between two
images
extracted by
moving
windows of a small
size over the
original
image. Can detect
objects buried in
speckle noise.
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Table 3 (Continued).

T ST Refs. Image type Feature(s) Clutter/target Clutter model
Target
model Comments

Based on genetic programming

69 Low
resolution
SAR
imagery
(ERS data)

One/RCS Sea/ship
(homogeneous
clutter, and
isolated
targets)

N/A N/A Two-stage
evolution
strategy.

Nonrectangle/nonsquare-shaped-stencil methods

CFAR 66 Fully
polarimetric
MIT high
resolution
SAR data.
PWF is
used to
generate
a single
image.

One/RCS Natural and
cultural clutter
(including
a parking lot)/
vehicles

Gamma
kernel with
three
parameter

N/A The method is
termed gamma-
CFAR, and uses
two 2-D gamma
kernels to form the
sliding stencil. PWF
stands for
polarimetric
whitening filtering.

Non-
CFAR

66 Fully
polarimetric
MIT high
resolution
SAR data.
PWF is
used to
generate
a single
image.

One/RCS Natural
and cultural
clutter/
vehicles

QGD with
eight
parameters

N/A The method is
based on 2-D
gamma kernels but
replaces CFAR with
QGD. QGD is
shown to outperform
gamma-CFAR.

Multi
feature-
based

CFAR
Utilized

Based on multifeature fusion

9, 71 MSTAR,
and
TESAR
emulated
imagery.

Three
features
(RCS,
variance, &
extended
fractals)

Heterogeneous
clutter/vehicles
(isolated
targets).

Gaussian N/A Features generation
process is
multistaged (four
stages). Among
other features, uses
sliding window
CFAR. Then
detection of ROIs is
based on fusion of
the features.

CFAR-
Based

Based on multiresolution

73 Synthetic
X-band
SAR, and
real SAR
imagery

RCS at
multi-
resolutions

Land/vehicles
(quite
homogeneous
clutter, and
isolated
target)

Zero-mean
circular
complex
Gaussian

Circular
Complex
Gaussian

Sliding window-
CFAR (Not AD). NP
criterion is utilized. It
is based on that
target signatures,
when viewed as a
function of
resolution, are
sufficiently different
from clutter. This
allows detection
performance gains
over single-
resolution detection
algorithms.
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and data used, as well as the different sensor characteristics and operating conditions. Rather, the
aim of this comparison is to show the major differences between the various methods and depict
their applicability to certain scenarios.

5 Discussion

Obviously, target detection based on parametric modeling of SAR imagery is the most popular in
the literature. This discussion focuses on parametric CFAR methods that utilize stochastic mod-
els for modeling the background clutter. Primarily, the issue of the suitability of these models to
represent the SAR data is briefly discussed. This is followed by a concise summary of the popu-
lar multiplicative (also known as compound) SAR data models, conditions of their applicability,
and the interrelation between them. Finally, our focus is shifted to parametric CFAR. We tame
CFAR and present some novel discussions from two different perspectives: the signal processing
perspective and the statistical pattern recognition perspective.

5.1 On the Suitability of SAR Data Models

In Table 3, there are various parametric clutter models used, including log-normal-distribution,
K-distribution, and exponential distribution. Accordingly, in Table 4, we briefly summarize
some of the major statistical distributions, along with the backscatter types in SAR images
they are typically used to model.

Table 3 (Continued).

T ST Refs. Image type Feature(s) Clutter/target Clutter model
Target
model Comments

Non-
CFAR-
based

74 Synthetic
(emulated),
and
Radarsat-1

One/RCS Sea/ship
(homogeneous
clutter, and
isolated
targets)

N/A N/A (Space-scale
analysis)
Application
of DWT that yields a
spatial correlation of
the sub-bands
attenuates
background noise
and enhances the
structured pattern of
ship signature.

Expert-
System-
Oriented

CFAR-
Based

Based on segmentation

79 Simulated
targets
manually
inserted in
real and
synthetic
SAR
images

Image
structure,
and RCS

Non-
homogeneous
clutter/
simulated
targets on
land inserted
in the clutter.

Constant
background
is assumed.

N/A Two-stage process
including,
segmentation and
CFAR. CFAR
criterion is based
on AD. No model
is assumed for
the target.

Based on index matrix

62 Real SAR
imagery,
X-band,
HH

Global
thresholding,
RCS, and
target size

Non-
homogeneous
clutter/vehicle
targets

β 0-
Distribution

N/A The CFAR detection
process is guided
via a binary index
matrix. Detections
are refined via
checking the
distance between
detection segments.
The algorithm
design utilizes the
beta-prime CFAR
algorithm reported
in Ref. 31.
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As is evident in Table 3 (and relevant works published in the literature), in many cases, sim-
ilar distributions are being randomly chosen to model the clutter at various sensor characteristics,
such as frequency, polarization, imaging mode (e.g., Spotlight, Stripmap, ScanSAR, etc.), and
resolution. Obviously, the choice of a proper model for the clutter backscatter depends, not only
on the clutter type, but also on these sensor characteristics. Several works89,95,96 have noted that
the suitability of a certain distribution to model a certain clutter depends on the data being used,
as well as the corresponding sensor characteristics and operating conditions. Surprisingly, this
issue is generally overlooked in many works published in the literature. In many such works, the
justifications for choosing some model (e.g., K-distribution) is merely based on the assumption
that the distribution model is found suitable for a certain clutter type (e.g., ocean clutter) in some
published work, and thus it can be automatically adopted for a similar clutter. Indeed, such a
conclusion can be misleading.

Accordingly, prior to randomly opting for a popular parametric distribution to model the
clutter, one should consider validating the applicability of the distribution on the data using
a suitable goodness-of-fit technique.97,98 One such validation approach for SAR data is
based on the Cramer-Von Mises (CVM) distance97 as presented in di Bisceglie and Galdi.26

The normally used Kolmogorov-Smirnov test is discarded, because the independency assump-
tions of its usage are violated, due to the dependency of the SAR data being non-Gaussian dis-
tributed and generally correlated.97 Thus, the CVM method is used to measure the distributional
distance between the design cumulative distribution function (CDF) model and the empirical
CDF estimated from the available high-resolution SAR image. The design distribution that
scores a minimum distance within some threshold is typically chosen. This procedure is dem-
onstrated in di Bisceglie and Galdi26 on Spotlight (9.6 GHz, HH polarized, geometric resolution
of 0.4 m × 0.4 m) SAR data (with a specific clutter type) pertaining to the Rayleigh and Weibull
distributions. On the SAR image used in di Bisceglie and Galdi,26 the Weibull distribution is
found to be a more suitable model for the clutter.

One final observation on this matter is that, though the CVM test was used in the work
mentioned above, CVM is not the best technique when it comes to characterizing tailed

Table 4 Major statistical distributions and suitable modeling phenomenon.

Distribution Backscatter type/comments

Normal, and Rayleigh87 Homogenous (i.e., bare ground surfaces, dense forest canopies, snow
covered ground).

Weibull, and log-normal87 Other clutter types such as sea surface.

Modified beta88 Different ice types.

K -distribution89 Models heterogeneous backgrounds.

It offers a multiplicative model (compound distribution).

K -distribution originally proposed in Ref. 90 for modeling microwave
sea echoes.

It then became popular for modeling multilook91 and polarimetric SAR
signature.92

It has much poorer performance in extremely heterogonous clutter such
as urban clutter.93

Go-distribution93 Models extremely heterogeneous clutter background. Thus, it has better
performance than K -distribution.93,94

It is a compound distribution.

G-distribution93 It can model extremely heterogeneous clutter such as urban regions that
K -distribution cannot.93,94

It is a compound distribution.

K and Go distributions are special cases of this class.
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SAR data. Indeed, the k-sample Anderson-Darling test99 offers a better procedure, as it places
more weight on observations in the tail of the CDF distribution. Both the CVM test and
Anderson-Darling test belong to the quadratic class of empirical distribution functions
(EDF) for statistical tests.99 Finally, information-theoretic approaches for characterizing the
goodness-of-fit can be found in Ref. 100

5.2 Understanding the Multiplicative SAR Data Models

In any target detection scheme that depends on parametric modeling (e.g., the popular CFAR-
based), the selection of an appropriate probability distribution to model the pixels in the SAR
image (i.e., radar backscatter) is a must, because the thresholding operation in any such detector
is dependent on the clutter distribution. In cases where the random scatterers in a resolution
cell in the SAR image have sizes on the order of the wavelength of the radar signal, the
total backscatter can be modeled as the sum of isolated returns in the cell.101 This invokes
the CLT, wherein the I and Q components of the total complex-valued backscatter can naturally
be assumed to be normally distributed. This implies that the total backscattered amplitude and
phase can be modeled as Rayleigh and uniform distributions, respectively. Thus, the power in
each resolution cell is modeled as an exponential distribution. Conversely, in high-resolution
SAR, the above mentioned assumptions are violated, because the number of random scatters
in a resolution cell is not large, and thus the CLT cannot apply. This renders the clutter
non-normally distributed, which motivates the need for a suitable model.

The multiplicative model (also known as the compound model) for SAR image formation has
been popularly used in the literature to model the clutter background. The model is based on the
hypothesis that the SAR image is formed from the product of a complex backscatter and speckle
random processes as

Z ¼ X × Y; (33)

where X and Y are two independent random variables that represent the backscatter and speckle,
respectively. X is often assumed to be a positive real variable, whereas Y is either complex
or positive real, depending on whether the image is in the complex or intensity domains.
The product in Z models the observed complex SAR image.

Typically, for a single look (i.e., n ¼ 1) SAR image, the complex speckle Y is characterized
as bivariate normal density for complex imagery, which reduces to the exponential distribution in
the magnitude (i.e., power or intensity) domain. Further, for multilook imagery (i.e., n > 1), the
two-parameter gamma distribution Γðα; λÞ characterizes the speckle in the complex domain, and
this reduces to the square root gamma distribution

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðα; λÞp

in the magnitude (i.e., noncomplex
power or intensity) domain. Depending on the type of the background clutter (i.e., homogeneous,
heterogeneous, or extremely heterogeneous), and the pertinent sensor characteristics (i.e., oper-
ating conditions) such as frequency, polarization, and gazing angles, several different distribu-
tions are used in the literature to model the backscatter X. For each case, the manner in which
X (and subsequently Z) manifests itself depends31,94 on whether the SAR image is single-look
(i.e., n ¼ 1) or multilook (i.e., n > 1).

First, for homogeneous regions and a single look SAR image, X is typically modeled as a
constant that equals the average power in the homogeneous region (i.e., C ¼ 2σ2G). Accordingly,
the SAR image Z is modeled as exponential distributed:

Z ∼ exp

�
α

λ

�
: (34)

Similarly, for a multilook SAR image (i.e., n > 1), α ¼ n, and λ ¼ n∕ð2σ2GÞ. However, the SAR
image Z becomes gamma distributed:

Z ∼ Γ
�
n; n

λ

α

�
. (35)

Second, for heterogeneous regions, the backscatter X is not modeled as a constant. Rather, it is
modeled as a gamma distribution Γðα; λÞ, or a square gamma distribution Γ2ðα; λÞ, for complex
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and amplitude (noncomplex) SAR imagery, respectively. This yields the K-distribution model,
Kðα; λ; nÞ for any number of looks n.

Third, for extremely heterogeneous regions, the G-distribution93 is typically used. Unlike
the K-distribution, the G-distribution uses the square root of the generalized inverse Gaussian
distribution to model the backscatter X for both homogeneous and heterogeneous back-
grounds:

X ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−1ðα; γ; λÞ

q
: (36)

The speckle model is left unchanged as provided earlier. This model is the most generic, and
the previous models are special cases of it. Indeed,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N−1ðα; γ; λÞ

p
leads to the following three

special cases. First, the square root of the gamma distribution leads to the K-distribution.
Second, the reciprocal of the square root of the gamma distribution leads to the Go-distribu-
tion. Third, a constant leads to a scaled speckle (i.e., the homogeneous case), as explained in
Eqs. (34) and (35), for single-look and multilook SAR imagery, respectively.

With the same number of free parameters (i.e., two parameters) as the K-distribution, the
Go-distribution can model extremely heterogeneous regions that the K-distribution cannot
model. Finally, the Go-distribution reduces to the beta-prime distribution, β 0ðα; γÞ, for single-
look (i.e., n ¼ 1) SAR imagery.31 The various multiplicative SAR models and the interrelation
between them are summarized in Fig. 7.

5.3 CFAR Detection: Two Additional Variant Perspectives

Thus far, we exclusively dealt with the CFAR detection problem from the traditional perspective
of the radar community. In this section, we look at CFAR from two additional variant perspec-
tives: a signal processing perspective and a pattern recognition perspective. This section presents
a novel discussion and results from these two perspectives. By the end of this section, it will be
clear that interpreting CFAR from these additional perspectives opens the door for advancing and
improving the CFAR detection process on both the computational complexity (i.e., implemen-
tation) level as well as the performance (i.e., false alarm rejection and target detection) level. It

Fig. 7 The SARmultiplicative (also known as compound) models and interrelations (See Ref. 31.)
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should be highlighted that the discussion provided here can be generalized to non-CFAR meth-
ods that implement a similar sliding window strategy for neighborhood processing.

5.3.1 Signal processing perspective

From a pure signal processing perspective, the sliding window CFAR approach is simply a linear
spatial filter for the pixel neighborhoods in the input SAR image. This is followed by an adaptive
thresholding operation (i.e., threshold scaling factor) to create a binary image. This process is
depicted in Fig. 8.

Recall that, for the log-detector one-parameter CFAR (the subscript log introduced earlier is
dropped for notational simplicity), the detection decision is based on

X̄PUT − μ̂B ≶
ωB
ωT α: (37)

Similarly, for the log-detector two-parameter CFAR, the detection decision is given by

X̄PUT − μ̂B
σ̂B

≶ ωB
ωT α: (38)

In these inequalities, X̄PUT, μ̂B, and σ̂B are estimated based on a linear spatial filtering operation
as depicted in Fig. 8. Further, the filtered image is compared with a corresponding matrix per-
taining to the threshold scaling factor (i.e., α) to produce a binary image of detections. The
threshold scaling factor is approximated for each pixel neighborhood (i.e., boundary ring in
the CFAR stencil) in the SAR image based on the statistical model chosen for the background
clutter and the desired PFA.

Accordingly, the CFAR stencil is a band-pass (BP) finite impulse response (FIR) filter. The
BP filter can be designed using two low-pass filters: one centered on the PUT(s), including the
guard region, and the other centered on the region correspond to the whole CFAR stencil. This
kind of filter is typically referred to as convolution kernel, or simply kernel. We will use the term
kernel to refer to the CFAR stencil in the spatial domain.

Prior to elaborating on this, we briefly demonstrate the process of linear spatial filtering and
its relation to one-parameter CFAR. We then extend the discussion to two-parameter CFAR.

Linear spatial filtering, one PUT. In the general case, an input SAR image I is a pixel
array of sizeM × N. The CFAR kernel fB has a size MB × NB.MB and NB are typically chosen
to be odd values to avoid ambiguity in defining the PUT. Convolving the SAR image I with the
kernel fB yields

IConv;Bðm; nÞ ¼ fB � Iðm; nÞ ¼
XMB

mB¼1

XNB

nB¼1

fBðmB; nBÞIðm −mB; n − nBÞ; (39)

where � denotes 2-D convolution, m ∈ f1; 2; : : : ;MBg, and n ∈ f1; 2; : : : ; NBg.
Note that IConv;Bðm; nÞ is the filtered pixel corresponding to coordinates ðm; nÞ. Also note

that, because the image is filtered in the spatial domain, the kernel is not multiplied, but rather
convolved with the neighborhood pixels. The kernel entries should be chosen to keep the desired
boundary ring pixels in the CFAR stencil and eliminate other pixels corresponding to the guard
ring and the PUT.

Fig. 9 depicts an illustrative example for a convolution kernel fB. In this example, having
only one PUT, one layer guard ring, and one layer boundary ring is desired. Thus, the boundary
ring kernel fB is given by

Fig. 8 CFAR as a linear spatial filter.
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fB ¼ 1

16

2
6664
1

1

1

0

1

0

1

0
1 0 0 0

1 0 0 0

1 1 1 1

1

1
1

1

1

3
7775: (40)

Following Eq. (39), this filter is convolved with the SAR image I as depicted in Fig. 10.
To illustrate the filtering (i.e., convolution) process, assume that we wish to perform filtering

at pixel x71 in the original SAR image with the filter as depicted in Fig. 9. The filtering result
corresponding to this particular PUT is given by

IConv;Bð5; 11Þ ¼ fB � Ið5; 11Þ

¼ 1

16
ð1 × x39 þ 1 × x40 þ 1 × x41 þ 1 × x42 þ 1 × x43 þ 1 × x54 þ 1 × x58

þ 1 × x69 þ 1 × x73 þ 1 × x84 þ 1 × x88 þ 1 × x99 þ 1 × x100 þ 1 × x101

þ 1 × x102 þ 1 × x103 þ 0þ 0þ 0þ 0þ 0þ 0þ 0þ 0þ 0Þ: (41)

This process is performed for all the pixels in the original SAR image. Obviously, performing
this operation on the whole SAR image yields a filtered (i.e., convolution) image of the same size
as the original SAR image. Each pixel in the resultant image represents an ML estimate of the
arithmetic average of the pixels in the boundary ring corresponding to the original SAR image.

Fig. 9 Convolution kernel corresponds to a desired CFAR stencil. Pixels highlighted in green and
assigned values of one correspond to the boundary ring. Pixels highlighted in red and black and
assigned values of zero correspond to the guard ring and PUT, respectively.
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Fig. 10 Illustration of the convolution process. The black pixels correspond to the original SAR
image. The CFAR stencil is systematically slid on the image. (a) f B (b) fWhole (c) f PUTþG.
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Note that, depending on the size of the input SAR image in relation to the convolution kernel, the
input image may need to be zero-padded prior to performing the convolution.

Linear spatial filtering, multiple PUTs. Now consider the more general case where one
desires to have more than one PUT in the center of the CFAR stencil. In this case, another kernel
fT with size MT × NT is required. The kernel has a size corresponding to the size of the CFAR
stencil. Values of one corresponding to the size of PUTs are inserted in the center of the kernel,
and zeros are placed in the guard ring and the boundary ring. Similar to the aforementioned
description, the kernel is convolved with the original SAR image as

IConv;Tðm; nÞ ¼ fT � Iðm; nÞ ¼
XMT

mT¼1

XNT

nT¼1

fTðmT; nTÞIðm −mT; n − nTÞ; (42)

where � denotes 2-D convolution, m ∈ f1; 2; : : : ;MTg, and n ∈ f1; 2; : : : ; NTg, as explained
earlier.

CFAR, one-parameter and two-parameter. Based on the above-mentioned illustra-
tion, for a one-parameter CA-CFAR, the CA-CFAR decision is based on

fT � Iðm; nÞ − fB � Iðm; nÞ≶ ωB
ωT αðm; nÞ; (43)

and for two-parameter CFAR, the decision is based on

fT � Iðm; nÞ − fB � Iðm; nÞ
σ̂Bðm; nÞ ≶ ωB

ωT αðm; nÞ; (44)

where σ̂Bðm; nÞ ¼ ½fB � Iðm; nÞ2 − ðfB � ðIðm; nÞÞ2�0.5 is the ML estimate of the background
variance, and � denotes 2-D convolution.

The adaptive threshold scaling factor αðm; nÞ for pixel(s) ðm; nÞ under test is calculated based
on the probability distribution used to model the background clutter (see Sec. 3.1). This yields
a matrix with the same size as the input SAR image (i.e., M × N). Obviously, the kernels fT
and fB correspond to low-pass filters for the target and boundary ring, respectively, and fT �
Iðm; nÞ − fB � Iðm; nÞ corresponds effectively to a BP filtering.

Understanding CFAR as a BP filter. The typical relationship between spatial domain
filtering and frequency domain filtering is given as

fB � Iðm; nÞ ↔ FBIðu; vÞ; (45)

where � denotes 2-D convolution. In this equation, FBðu; vÞ and Iðu; vÞ are the 2-D Fourier
transforms of the spatial domain CFAR kernel fB and the SAR image Iðm; nÞ, respectively.

To elaborate further on this equation, let us consider the illustrative CFAR stencil (i.e., kernel)
given in Fig. 9 earlier and represented in Fig. 11 hereinafter. Obviously, using the CFAR kernel
in Fig. 11(a), the CFAR operation on a SAR image involves some neighborhood operations
performed on the boundary ring while discarding the guard ring as well as the PUT (the dis-
cussion can be easily generalized to PUTs). The boundary ring is shaded in green in Fig. 11(a).
The CFAR kernel can be decomposed into two kernels: one covers the whole CFAR stencil, as
shown in Fig. 11(b), while the other covers both the boundary ring and the PUT, as shown in
Fig. 11(c).

The spatial kernels in Fig. 11 can be converted to the frequency domain by simply applying
the Fourier transform. The magnitude spectra of the 3-D frequency-domain kernels are given in
Fig. 12, and their 2-D projections are depicted in Fig. 13.

After the SAR image is BP filtered, the second block in the CFAR processing involves
thresholding the filtered image to produce a binary image of detections. This is performed
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by simply comparing the filtered SAR image from the first stage with a corresponding image (2-
D matrix) of thresholds pertaining to each PUT in the image. The matrix of thresholds is typically
estimated for a desired PFA based on the desired statistical model for the background clutter.

Our discussion here shows that it is possible to implement the first stage in the CFAR
processing either in the spatial domain or in the frequency domain. This choice will depend
on the size of the CFAR stencil, and it offers a means for efficient implementation.
Typically, for smaller CFAR stencils, it is more efficient to use the spatial implementation,
while for larger CFAR stencils, it is more efficient to migrate to the frequency domain
implementation.

Another interesting observation is that our understanding of CFAR from the signal process-
ing perspective does not limit us to a rectangle-shaped stencil. Indeed, it is feasible to implement
any desired shape for the CFAR stencil. For example, it is feasible to implement an adaptive
CFAR stencil that adapts its shape based on some prior information, such as clutter map or image
segmentation or differences in 2-D resolution (i.e., range versus azimuth).

In conclusion, this section presented an interesting and novel interpretation for CFAR. This
interpretation not only enables an efficient and compact implementation of the CFAR process-
ing, but also enables us to approach the problem from a unique perspective, thus allowing
improvements to the detection process potentially to be realized.

Fig. 12 3-D magnitude spectrum for spatial kernels in Fig. 12. (a) FBðu; vÞ (b) FWholeðu; vÞ
(c) FPUTþGðu; vÞ.

Fig. 13 Corresponding 2-D magnitude spectrum for Fig. 12.

PUT

(a) (b) (c)

Fig. 11 CFAR neighborhood kernel (f B) decomposed into two kernels. One kernel covers the
whole CFAR stencil (fWhole), and the other covers the guard ring and the PUT (f PUTþG). Pixels
shaded in green have a value of one; those shaded in red have a value of zero. (a) FB (b) FWhole

(c) FPUTþG.
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5.3.2 Pattern recognition perspective

Statistical pattern recognition provides a unique interpretation for the CFAR detection process.
In this section, the two formulas analyzed in the earlier section for one-parameter and two-
parameter (log-detector) CFAR, respectively, are revisited. Then, the well-known quadratic dis-
criminant classifier is presented and rearranged in a way that resembles CFAR. Further, the
CFAR formulas are contrasted with the quadratic discriminant classifier. Finally, some insightful
conclusions are drawn.

Log-detector CFAR formulas. We briefly revisit the log-detector CA-CFAR formulas
discussed in Sec. 5.3.1. First, consider the one-parameter CFAR detector. As the (log-detector)
CFAR stencil runs over the pixels of the SAR image, the CFAR decision at each PUT(s) for
one-parameter CFAR is based on (the subscript log introduced earlier is dropped for notational
simplicity):

X̄PUT − μ̂B ≶
ωB
ωT α; (46)

where X̄PUT and μ̂B are the ML estimates for the arithmetic means of the PUT(s) and the pixels in
the boundary ring, respectively, and α is a scaling factor estimated based on the parametric model
adopted for the background clutter pertaining to the desired PFA.

Similarly, the log-detector CFAR decision for two-parameter CFAR is given by

X̄PUT − μ̂B
σ̂B

≶ ωB
ωT α; (47)

where σ̂B is the ML estimate for the standard deviation of the pixels in the boundary ring.
Equations (46) and (47) will be contrasted with the quadratic discriminant classifier dis-

cussed below.

Quadratic discriminant classifier. In statistical pattern recognition, it is well known that
the Bayesian classifier for normal classes can be expressed as a quadratic discriminant function
(QDF). Thus, assuming that the detection problem is a binary (i.e., two-class; dichotomizer), the
classification entails two discriminant functions:

gωT
ðxÞ ¼ −

1

2
ðx − μTÞTΣ−1

T ðx − μTÞ −
1

2
log jΣ−1

T j þ log PðωTÞ; (48)

gωB
ðxÞ ¼ −

1

2
ðx − μBÞTΣ−1

B ðx − μBÞ −
1

2
log jΣ−1

B j þ log PðωBÞ; (49)

where gωT
ðxÞ and gωB

ðxÞ are the QDF for the target-class (i.e., ωT) and the background-class
(i.e., ωB), respectively; μT and μB are the ML mean estimates pertaining to the training features
for the target-class and the background-class, respectively; Σ−1

T and Σ−1
B are the inverse covari-

ance matrices for the target-class and the background-class, respectively; and PðωωT
Þ and PðωBÞ

are the priors for the target-class and the background-class, respectively.
In the case of CFAR, our feature-space is only one-dimensional. Subsequently, the training

mean vector for each class is a 1-D scalar. Moreover, the training covariance matrix for each class
reduces to the variance. Further, the test vector is also 1-D, and it is simply the ML estimate of the
mean PUTs, X̄PUT. Thus, assuming that CFAR is a binary classification problem, Eqs. (48) and
(49) reduce to

gωT
ðX̄PUTÞ ¼ −

1

2

ðX̄PUT − μTÞ2
σ2T

−
1

2
log jσ−2T j þ log PðωTÞ; (50)

gωB
ðX̄PUTÞ ¼ −

1

2

ðX̄PUT − μBÞ2
σ2B

−
1

2
log jσ−2B j þ log PðωBÞ: (51)
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Accordingly, the detection decision in this case follows

gωT
ðX̄PUTÞ≶ ωB

ωT gωB
ðX̄PUTÞ: (52)

Subsequently, for the general case, the decision threshold (i.e., decision boundary) between the
two classes is given by

gωT
ðX̄PUTÞ − gωB

ðX̄PUTÞ ¼ 0: (53)

Obviously, this detection decision is a variant from typical CFAR. Indeed, one may refor-
mulate the classification problem from CFAR’s perspective (i.e., for the commonly used
AD). In this case, one considers only the discriminant function pertinent to the back-
ground-class as

gωB
ðX̄PUTÞ ¼ −

1

2

ðX̄PUT − μBÞ2
σ2B

−
1

2
log jσ−2B j þ log PðωBÞ: (54)

Accordingly, one can decide a detection decision as

−gωB
ðX̄PUTÞ≶ ωB

ωT αQDF; (55)

where αQDF is a scaling factor pertaining to the detection threshold. Thus, the detection deci-
sion is based on

1

2

ðX̄PUT − μBÞ2
σ2B

þ 1

2
log jσ−2B j − log PðωBÞ≶ ωB

ωT αQDF: (56)

Obviously, this is a suboptimal one-class classification problem.23 It is stated in Principe et
al.20 that CFAR as an anomaly detector is a two-class classification problem. Indeed, this
statement is incorrect. CFAR formulates a discriminant function for a (sub-optimal) one-
class classification as illustrated in Eqs. (55) and (56).

Contrasting CA-CFAR with QDF. Let us first compare the one-parameter CFAR, as
shown in Eq. (46), with the QDF, as shown in Eq. (56). Squaring both sides of Eq. (46) yields

ðX̄PUT − μ̂BÞ2 ≶ ωB
ωT α

2: (57)

This equation equals to Eq. (56) when σ2ωB
¼ 1, and 2½αQDF þ log PðωBÞ� ¼ α2. Subsequently,

the one-parameter CFAR is simply a (squared) Euclidian distance classifier. More precisely,
under this case, the QDF reduces to a linear minimum distance classifier based on the
Euclidian distance.

Similarly, this discussion can be extended to the two-parameter CFAR. First, squaring both
sides of Eq. (47) yields

ðX̄PUT − μ̂BÞ2
σ̂B

≶ ωB
ωT α

2: (58)

Comparing this inequality with Eq. (56) one notes the following. First, the scaling factor in the
two-parameter CFAR equation corresponds to

α2 ¼ 2αQDF þ 2 log PðωBÞ: (59)

Second, the term log jσ−2ωB
j is missing from the equation of two-parameter CFAR, Eq. (58).

Subsequently, the conclusion is reached that the two-parameter CFAR is a quadratic discriminant
classifier applied to the logarithm of the power (i.e., magnitude-squared) SAR image. However,
log jσ−2ωB

j is missing, nonetheless.
Subsequently, from the perspective of optimal classification (i.e., Bayes classifier), under

the assumption that all conditions for optimality are fulfilled, two-parameter CFAR (as an
anomaly detector) can never achieve optimal performance, due to the missing term in the
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above equation (practically speaking). Further, the online training methodology based on the
pixel neighborhoods in the log-domain SAR image is not efficient, because the neighborhoods
are chosen ad hoc. Note that our conclusions on two-parameter CFAR resemble those pub-
lished in Principe, Kim, and Fisher.67 However, unlike our conclusions, which are based on
CFAR as a log-detector, the conclusions in Principe, Kim, and Fisher are based on an envelope
(i.e., magnitude) CFAR detector. Their assumption of the magnitude detection is inaccurate,
because the formula for two-parameter CFAR used here and in their work was designed for log
detection.

In conclusion, this section demonstrates the relationship between CFAR and the quadratic
discriminant classifier. Indeed, regardless of the various models used in the literature to esti-
mate the scaling factor of the detection threshold (Weibull distribution, K-distribution, etc.) our
discussion makes it clear that both one-parameter CFAR and two-parameter CFAR are based
on the inherent assumption that the class-likelihoods are normal. Under the assumption that
CFAR is an anomaly detector, the CFAR classifier was shown to be a suboptimal one-
class classifier. One-parameter CFAR was shown to be a special case of the quadratic discrimi-
nant classifier, a linear minimum distance classifier. More precisely, it is a Euclidian distance
classifier. Two-parameter CFAR was shown to be a quadratic discriminant classifier but with
a missing term that adds to the performance degradation. These interesting insights
enable one to understand the inherent limitations of CFAR, and they pave the way for future
improvements.

6 Conclusions

An end-to-end ATR system for SAR imagery (SAR-ATR) is typically multistaged to counter the
prohibitive amounts of processing pertinent to the input SAR imagery. The front-end stage in any
such SAR-ATR system is the detector (also known as prescreener). This paper has presented a
state-of-the-art survey of the various methods for target detection in SAR imagery. First, the
major methods reported in the open literature for implementing the detector are broadly tax-
onomized into single-feature-based, multifeature-based, and expert-system-oriented. Then, vari-
ous implementation strategies under each taxon are further classified and overviewed. Special
attention is paid to the Bayesian approach being the optimal approach. Additionally, emphasis is
placed on the CFAR approach being the most popular. Further, the obvious advantages of the
expert-system-oriented taxon are noted. Selections of representative examples from the literature
under each method are presented. A table of comparison between selected methods under each
taxon is provided. Finally, we elaborate on a novel discussion on important issues pertaining to
target detection in SAR imagery.

It is shown that the beta-prime (β’) distribution and Go -distribution allow for better means
(compared to the K-distribution) for modeling the background clutter for single-look and multi-
look SAR imagery, respectively. Further, CFAR is analyzed from two interesting perspectives:
signal processing and statistical pattern recognition. From the signal processing perspective,
CFAR is shown to be a FIR BP filter that can be readily implemented using a two suitable
LP filters. This implementation can be realized either in the spatial domain or in the frequency
domain. From the perspective of statistical pattern recognition, the anomaly detector CFAR is
shown to be a suboptimal one-class classifier. One-parameter CFAR is found to be a Euclidian
distance classifier, whereas two-parameter CFAR is shown to be a quadratic discriminant with a
missing term that adds to the CFAR loss. These interpretations of CFAR allow for potential
future improvements on the design level, as well as the implementation level.

It should be noted that this paper did not aim at providing an exhaustive survey for all the
available methods in the open literature to implement a detector. This is infeasible, due to the
volume of works published on the topic. Rather, this paper has taxonomized the major
approaches and provided a careful selection of popular methods along with representative exam-
ples pertaining to SAR imagery. Additional methods unreported in this paper fall under one of
the taxa provided. Future work plans will consider investigating a proper method for context
acquisition and utilization in SAR imagery for use in an expert-system-oriented detection
scheme. This will be appropriately tailored to Radarsat-2 imagery acquired in the Spotlight
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mode. This is the underlying motivation that drove the development of this survey. Further, a
comprehensive state-of-the-art survey pertaining to the intermediate and back-end stages in the
SAR-ATR processing chain is under preparation.
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