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[1] Nutation amplitudes are computed in a displacement field approach that incorporates
the influence of a prescribed magnetic field inside the Earth’s core. The existence of
relative nutational motions between the liquid core and its surrounding solid parts induces
a shearing of the magnetic field. An incremental magnetic field is then created, which
in return perturbs the nutations themselves. This problem has already been addressed
within a nutation model computed from an angular momentum budget approach. Here
we incorporate the magnetic field influence directly in the motion equation and in the
boundary conditions used in precise nutation theory, and a new strategy to compute
nutations is established. As in previous studies, we assume that the root‐mean‐square of
the radial magnetic field amplitude at the core‐mantle boundary is 6.9 Gauss, that the
magnetic diffusivity at the bottom of the mantle and in the fluid outer core side is 1.6 m2/s,
and that the thickness of the conductive layer at the bottom of the mantle is 200 m.
The Coriolis force is included in this work. The results show that the free core nutation
period decreases by 0.38 days, and that the out‐of‐phase (in‐phase) amplitudes of the
retrograde 18.6 year and the retrograde annual nutations increase (decrease) by 20
and 39 mas, respectively. Comparisons of these results with previous studies are made,
and discussions are also presented on the contribution of Coriolis force and the
prescribed magnetic field on the coupling constants.
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1. Introduction

[2] Precession and nutation are secular and long periodic
motions (periods longer than 2 days) of the Celestial Inter-
mediate Pole (CIP) in space. The CIP is the direction of a
conceptual axis describing the same motion as the Earth’s
rotation axis in space for periods longer than 2 days
[Capitaine et al., 2003], and the same motion as the Earth’s
rotation axis inside the Earth except for the retrograde motion
of quasi‐diurnal periods. The nutation model adopted by the
International Astronomical Union (IAU) in 2000 and the
International Union of Geodesy and Geophysics (IUGG) in
2003 is the so‐called MHB2000 model.
[3] Based on the angular momentum approach of Sasao

et al. [1980], Mathews et al. [1991] presented a semi-
analytical calculation of the Earth’s transfer function for
nutations. In the work ofMathews et al. [1991], a deformable
solid inner core (SIC), a fluid outer core (FOC), and an elastic
mantle are considered, and 9 compliance parameters in the

formulae are to be fitted from VLBI observations [Herring
et al., 1991]. In order to minimize the residuals on the ret-
rograde annual (−1 year) nutation term, Buffett [1992,
hereafter paper 1] and Buffett et al. [1993] introduced a fitted
constant in the only mechanism of coupling they considered,
between the magnetic field and nutation at the core‐mantle
boundary (CMB). After one decade, these authors updated
their model in three new papers [Mathews et al., 2002;
Buffett et al., 2002, hereafter paper 2; Herring et al., 2002].
In this new model (MHB2000), mantle anelasticity, ocean
and atmospheric effects are incorporated, more VLBI
observation data of better precision are used and, moreover,
the computation of the coupling between magnetic field and
nutation at CMB (and also at the boundary between the inner
core and the outer core, ICB) is improved. However, it is only
recently that there are a few papers discussing the MHB
theory itself [e.g., Rochester and Crossley, 2009].
[4] Several other available theoretical nutation models of

the nonrigid Earth have been published recently. Since 1995,
a Spanish group has been working on a new nutation theory
and published a series of papers improving the nutationmodel
by a generalization of the Hamiltonian method accounting for
the nonrigid Earth [see, e.g., Getino, 1995; Getino and
Ferrándiz, 2001]. Using a numerical integration approach
first proposed by Smith [1974] (see also Wahr [1981] or
Rogister [2001]), the Royal Observatory of Belgium group
has studied new nutation models for more than one decade,
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incorporating mantle anelasticity, nonhydrostatic contribu-
tions from mantle lateral heterogeneities in density and non-
hydrostatic boundaries [see, e.g., Dehant, 1990; Dehant and
Defraigne, 1997]. Due to the resonance of nutation with
the free core nutation (FCN), the period of FCN plays a key
role in nutation amplitudes, and the FCN related parameters,
such as a change in the core flattening and various dissipation
factors (like magnetic, viscous, and topographic dissipation)
in the Earth’s interior, are important for the nutation models.
Therefore, besides including the contributions from the ocean
tides and the atmospheric angular momentum via the outer
surface nonfree boundary conditions, Schastok [1997] and
Huang et al. [2001] have paid special attention to the boundary
conditions at the CMB by introducing a thin nonhydrostatic
equilibrium layer there, expanding these boundary conditions
to the second order of ellipticity [Huang, 2001], and modify-
ing the ellipticity of the CMB a little (4 ∼ 5%) by fitting to the
observed FCN period.
[5] On the one hand, all the above theoretical nutation

models are very comparable to each other although they use
different approaches; on the other hand, the most important
unsolved problem in the above nutation models is the
observed differences for the principal nutation terms (mainly
the −1 year term, the 18.6 year terms, and the prograde
semiannual term) between the theoretical amplitudes based
on an Earth model and the VLBI observations.
[6] One significant improvement of MHB2000 over the

other models is that the observed differences in the principal
nutation terms (mainly the −1 year term) with respect to VLBI
observations are removed mostly by accounting for the
effects of electromagnetic coupling (EMC) of the liquid core
to the mantle and the inner core. In MHB2000, the coupling
constants at CMB and ICB and related compliance parameters
appearing in the incremental products of inertia are fitted to
the VLBI nutation observation data.
[7] In the original work of Rochester and Smylie [1965],

the equatorial components of the electromagnetic torque
act on the mantle is calculated rigorously and the electro-
magnetic damping of the Chandler wobble is first quantita-
tively investigated, and it is shown that the electromagnetic
core‐mantle coupling fails by several orders of magnitude
either to generate or to damp the Chandler wobble. Following
the same way of this work, paper 1 and paper 2 also consider
that this coupling is a consequence of the Lorentz forces
induced by the interaction between the global static magnetic
field that crosses the boundaries and the relative rotation of
the outer core with respect to the mantle or to the inner core.
The mantle is generally considered as poorly conducting, but
it is supposed that there exists a highly conducting layer at
the bottom of the mantle, possibly due to chemical reactions
between the mantle silicates and the conducting liquid iron
alloy [Buffett et al., 2000; Buffett, 2007]. This layer hosts the
inducedmagnetic field, which decreases very sharply through
the thin layer and vanishes in the bulk of the mantle. The
relative rotation between the mantle and the outer core (and
equivalently between the outer core and the inner core) dis-
torts the magnetic field near the core boundaries, which in
return, induces changes in the differential rotations and thus
in the nutations. From this description, it is easy to see that
the nutation amplitudes and the magnetic field are coupled
together and that a first‐order computation is probably
sufficient.

[8] Meanwhile, there are many papers which discuss the
possible effects of EMC at the CMB on other features of the
Earth’s rotation than nutation, including the secular decrease
of obliquity [e.g., Rochester, 1976] and the decade variation
of length of day [e.g., Holme, 1998, 2000; Stix and Roberts,
1984; Wicht and Jault, 1999]. EMC is also assumed as a
source of dissipation for torsional oscillation [e.g., Dumberry
and Mound, 2008; Buffett et al., 2009]. The details of these
discussion are outside the scope of this paper and readers are
referred to the respective papers.
[9] The purpose of this paper is to introduce the necessary

theoretical developments in the numerical integration
method and to compute the nutation perturbations induced
by considering a prescribed static electromagnetic field. This
paper follows the approach and the notation defined by
Smith [1974]. The displacement field approach in essence
considers coupling between the toroidal nutational motion
and the other components of the displacement field within a
rotating ellipsoidal Earth. It offers the advantage of working
in a completely consistent displacement field and thus opens
interesting perspectives. We calculate the influence of the
magnetic field on nutations and compare with the results
from theMHB2000 approach. Except for the particularities of
the approaches, if the same approximations are considered,
one should retrieve similar results as paper 1 and paper 2.
[10] This paper is organized as follows. In section 2, we

present the dynamic equations for nutation and the induction
equation for the magnetic field and explain how the intro-
duction of the static magnetic field is treated in the frame
of a numerical integration method for computing nutations
(and tides). We also develop a strategy to deal with the
Lorentz force in the numerical integration approach as well
as new boundary conditions and apply them to the particular
case of the approximations used in paper 1. In section 3, we
present the results, discussion, short summary and remarks.
Related notes are given in five appendices.

2. The Dynamical Equations for Nutation and
the Induction Equation for the Magnetic Field

[11] Let the Earth be composed of a solid inner core,
a fluid outer core, and an elastic mantle. In a first approxi-
mation, the Earth can be idealized as having a rheology
satisfying an isotropic linearly elastic constitutive relation,
and having an ellipsoidal shape consistent with hydrostatic
equilibrium (HSE) in a steadily rotating reference frame. This
ellipsoidal shape arises from the uniform rotation around
the z axis, with a constant angular speed W0, hydrostatic
prestresses (stress tensor Tref.), and self‐gravitation. In this
case, the equal density and equipotential surfaces coincide,
are axially symmetric and slightly ellipsoidal.
[12] Let VE be the volume occupied by the Earth at

equilibrium, and consider that the origin and z axis of the
(uniformly rotating) reference frame attached to VE coincide
with the geocenter and the rotation axis, respectively, and
that the x and y axes rotate rigidly about the z axis with a
constant angular velocity W0 in space. At equilibrium, the
Earth is in a HSE state and coincides exactly with VE. When
the equilibrium Earth is subjected to an infinitesimal time‐
dependent disturbance, an additional displacement will be
produced, with an additional stress tensor, and an additional
gravitational potential due to the mass redistribution, which
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all vary with time. The total stress tensor at each point inside
the Earth then equals the sum of the reference stress and the
additional stress tensor caused by the disturbance.
[13] Let P be a particle in VE in HSE, and r its position

vector. The equilibrium density field and the gravitational
potential field are denoted by r(r) and �(r), respectively,
while s(r, t) denotes the infinitesimal Lagrangian displace-
ment vector of particle P at time t.
[14] The dynamic equation for infinitesimal elastic grav-

itational motion for a rotating, slightly elliptical Earth is
given as, in a steadily rotating reference frame with constant
speed W0 (see Smith [1974] or Dahlen and Tromp [1998] for
more information):

�D2
t sþ 2�W0 � Dts ¼ ��W0 � W0 � sð Þ þ r � Te �r �r � sð Þ

� �r�1 � �s � rr�þr � � rsð ÞT
h i

; ð1Þ

where g is the equilibrium pressure, and �1 the incremental
gravitational potential induced by the mass redistribution
due to deformation. The stress tensor Te is the incremental
stress with respect to the reference stress, Tref. = −gI where
I is the identity tensor, and is related to the displacement
field by two Lamé parameters (l, m) for an isotropic
medium as

Te ¼ � r � sð ÞIþ � rsþ rsð ÞT
h i

; ð2Þ

where rigidity m = 0 in a liquid part of the Earth.
[15] Traditionally, when the magnetic contribution is

neglected, the solution of equations (1) and (2) and Poisson’s
equation for a given Earth model (e.g., PREM) gives the
displacement field s (and velocity field v = ∂ts → iws)
everywhere in the interior, and the nutation is obtained from
the toroidal part of degree 1 and order 1 of s, denoted as W1

1

(see later).
[16] Here, a magnetic field B0 which is stationary in time

is added to the reference configuration. In the electrically
conducting regions of the Earth B0 must be supported by a

stationary electrical current system j0 = (r × B0)/m0. The
electromagnetic field plus current can be stationary in time
only if ohmic decay is offset by regenerative dynamo action,
which in turn requires a flow field of velocity v0 (relative to
the steadily rotating reference frame) in the FOC. (Another
argument is that the magnetic field and its current can be
assumed time invariant if their timescales are much longer
than those of nutation to be discussed here.) Of course this
nonzero velocity field will, for consistency, also have to be
stationary in time. We are therefore assuming that we can
establish an equilibrium configuration which is no longer
one of hydrostatic equilibrium. To do this, we should show
that we can obtain a consistent time‐independent solution of
the coupled system of differential equations: the momentum
equation (with a Lorentz force term j0 × B0 per unit volume),
the induction equation (with a term r × (v0 × B0)), and of
course the solenoidal condition r · B0 = 0. In other words
to be totally consistent physically we have to solve a sta-
tionary but nonlinear hydromagnetic dynamo problem! This
is, however, a too difficult problem to solve, and we will just
assume that adding a magnetic field still leaves us free to take
the reference configuration as the hydrostatic equilibrium,
wherever we need to do so. For the discussion of likely
mechanisms to offset a finite background magnetic torque
from themagnetic field and current, readers are recommended
to refer related MHD studies.
[17] A small‐oscillation departure from the reference

configuration, such as nutation, is assumed and associated
with a nonzero displacement field s (or velocity field v) and
a simultaneous perturbation b in the magnetic field. Of course
both the nutation and the other components of s are modified
by the presence of b, and at the same time b depends on v.
So we have a differential system (the momentum equation
and the induction equation) coupled by the Lorentz force and
the induction term, to solve for s and b simultaneously.
[18] For computing EMC, we also assume, as shown in

Figure 1, that there exist thin boundary layers, BL.I_f and
BL.I_m, at both fluid and mantle sides of the CMB. They
are magnetic skin layers and are supposed to be highly con-
ducting although the bulk of the mantle is usually regarded as
almost insulated. The magnetic field b induced by the nuta-
tion is assumed to act only within these layers, meaning that
the coupling between s and b happens only within these
boundary layers. The thickness of these two layers, i.e., the
thickness of the magnetic boundary layer d (it is named as
“the skin layer depth” in paper 1 and paper 2), depends on
the magnetic diffusivity h, on the magnetic model and on
how the magnetic field varies in the layer. If a magnetic field
is assumed to be reduced with the distance from the boundary
by an exponential form, then d =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=j!jp

. For a magnetic
conductivity sf = sm = 5 * 10

5 S/m and the diurnal nutational
frequency (1 day), we have df = dm ≈ 200 m.
[19] In traditional nutation studies, the outer core is con-

sidered as a pure liquid, meaning no viscosity and a free‐slip
boundary condition at the CMB. The mantle and the FOC
(as well as the SIC) rotate rigidly with two different nuta-
tional angular velocities and there is a jump of velocity field
in crossing the CMB. A very thin boundary layer (BL.II) in
the fluid side is assumed, in which the rotational tangential
velocities vary rapidly, and a large gradient in the direction
normal to the boundary is expected in this very thin layer,

Figure 1. Schematic of the induced magnetic field b and
the nutational velocity field v near the boundary. We take
the case of CMB as an example and consider a rotating ref-
erence frame fixed to the FOC. Across the CMB, b should
be continuous, while v is also continuous if it is nonslip
boundary due to viscosity. At the fluid side, v varies rapidly
over the radius of the very thin viscous layer (BL.II) and
vanishes far away from the boundary, and the case of b is
analogous to v. At the solid side, v almost does not change
over the radius of the thin conducting layer (BL.I_m), but b
should be confined to this layer (and BL.I_f) and vanishes
away from the boundary as in the fluid side.
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while far away from the boundaries, the velocity field of the
bulk of the FOC is still mainly the global nutational velocity
induced by the external forcing. A possible candidate for
this mechanism is viscosity as considered in some studies.
On experimental grounds, the fluid in the core is of course
not ideal and adherence to the boundary always takes place
even if the viscosity is extremely small, and there is always
a thin layer inside which the relative velocity decrease up to
zero at the boundary. The thickness of this layer depends on
the viscosity and is usually considered as very small (even
smaller than 1 m). Nevertheless, whether the viscosity of the
fluid (or a combination of viscosity and magnetic field) is
enough or is not enough to support the radial gradient of
the tangential nutational velocity required as in paper 1 and
paper 2 or in the work of Mathews and Guo [2005], is still
uncertain and is an interesting question, and it will be dis-
cussed in a next paper. We just assume here that there is
such a very thin layer in which there is a large radial gra-
dient of the global nutational velocity. Although the CMB
becomes nonslip at the sharp boundary and the velocity field
should be continuous now, we still ignore in this work the
hydrodynamic effect of this very thin viscous layer and as a
result, there is still a jump (or discontinuity) of the nutational
tangential velocity field if moving from the boundary point
between the BL II and the bulk of the FOC to the CMB.
We also do not consider the possible viscous force in the
motion equation, and we only change the boundary condi-
tion at the CMB for the stress field in which the magnetic
stress will take part (see section 2.3). Appendix A and
Melchior [1986] also provide some information on the EMC
and related fields near the boundary.
[20] The additional term in the equation of motion

induced by the Lorentz force, L, is added to the right hand
side of equation (1) in both the core and the mantle near the
CMB (and equivalently in both the inner core and the outer
core near the ICB):

�D2
t sþ 2�W0 � Dts ¼��W0 � W0 � sð Þ þ r � Te �r �r � sð Þ

� �r�1 � �s � rr�þr � � rsð ÞT
h i

þ L:

ð3Þ

Note that this equation degenerates in the fluid core because
the rigidity m → 0 which will be discussed later.
[21] In principle, L may be exerted not only near the CMB

and ICB but also throughout the Earth. However, we con-
sider the Lorentz force to be efficient only in the thin layers
near the CMB as mentioned above. The Lorentz force is
indeed proportional to the radial derivative of the induced
field, ∂rb, which vanishes away from the boundaries as b
itself. This means that, when integrating the motion equation
to compute the nutation from s, we can still use the motion
equation (1) everywhere in the Earth interior except in the
thin boundary layers where the motion equation (3) applies.

2.1. Approximation for L

[22] The total magnetic force density can be expressed as

Ltotal ¼ r �Mtotal; ð4Þ

whereMtotal is the Maxwell magnetic stress tensor [Rochester,
1962]

Mtotal ¼ BB� B2

2
I

� �
=�0: ð5Þ

Note that m0 designates the magnetic permeability, rather than
the rigidity m in equation (2).
[23] Let total magnetic field B be decomposed into

B ¼ B0 þ b; ð6Þ

where B0 and b are the reference magnetic field and the
magnetic field induced by nutation, respectively. We have
∣b∣ � ∣B0∣, and both are subject to the solenoidal condition
r · B0 = r · b = 0. Then

Mtotal ¼ B0B0 þ B0bþ bB0 þ bb� B2I=2
� �

=�0: ð7Þ

[24] In all the following text including appendixes, we are
interested only in the diurnal frequency band in which nuta-
tions lie.
[25] The reference magnetic field B0 (that does not vary at

diurnal timescale in an Earth‐fixed reference frame) and its
magnetic stress (B0B0) can be considered as a part of the
reference state in the absence of any nutational motion.
Meanwhile, the dynamical effect of the term B2I/2 (a mag-
netic pressure) on nutation is indistinguishable from that of
the mechanical pressure and is absorbed into the effective
pressure [Greenspan, 1968]. Therefore, when considering the
contribution of the EMC to nutation, we reduce the magnetic
stress tensor to

M ¼ B0bþ bB0 þ bbð Þ=�0: ð8Þ

[26] Generally, the induced field is much smaller than the
main field (b � B0). Therefore, bb can be ignored in
comparison with the other terms (it would also induce
components outside of the diurnal band), i.e.,

M ¼ B0bþ bB0ð Þ=�0; ð9Þ

and the terms in L that must be kept in equation (3) for
nutation are

L � B0 � rbþ b � rB0ð Þ=�0: ð10Þ

[27] As the incremental magnetic field b is confined to the
thin boundary layer, its gradient is important. The scale of
B0 · rb is B0b/db, while that of b · rB0 is B0b/LB0, where
db � LB0, so the second term can be ignored compared with
the first one. We then have

L � B0 � rbð Þ=�0: ð11Þ

[28] The Lorentz force can be decomposed into a sum
of two parts, one related to the poloidal part of main field B,
the other to the toroidal component of the main field.
Concerning the toroidal part of the reference magnetic field,
B0
T(r), it is natural for a perfectly conducting FOC to have a
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toroidal magnetic field. However, it is not observable at the
Earth’s surface and the only way to obtain the features of
B0
T(r) is from geodynamo models, which, while already

complicated to run, are mostly far simpler than in reality. One
can, anyway, use numerical models of B0

T(r) (coefficients of
spherical harmonics) from geodynamo models [e.g., Kuang
and Bloxham, 1999] (see also Glatzmaier [2002] or
Christensen and Wicht [2007] for a complete review), or from
an approximate relationship between B0

T(r) and B0
r(r). For

example, based on a geostrophic flow model, Stix and
Roberts [1984] give the following relationship for a con-
ducting shell in which conductivity sf (r) decreases rapidly
with radius:

BT
0 � �Br

0 h=�ac½ �uac ; ð12Þ

where uac is the geostrophic flow velocity at the CMB with
mean radius ac and has mainly longitudinal (along ’̂) com-
ponents, hac is the magnetic diffusivity at the CMB, and h is
the length scale over which the shell conductivity varies. For
typicalB0

T values from geodynamomodels,Buffett [1993] has
shown that the toroidal contribution to nutation is most likely
not large enough to be observable.
[29] Moreover, the horizontal derivatives of b are further

assumed to be negligible in comparison with the radial deriv-
ative, rHb � ∂rb (see Appendix A). The magnetic force is
then approximated as

L � 1

�0
Br
0@rb ð13Þ

and depends on B0
r , the radial component of B0, and on ∂rb at

the CMB, where B0
r can be obtained from downward con-

tinuation from the observed values at the outer surface to the
CMB, and ∂rb is obtained from solving the induction equa-
tion as below.

2.2. On the Induction Equation and Its Solution

[30] Generally, the induction equation is [Moffatt, 1978]

@tB ¼ r� v0 þ vð Þ � B½ � � r � �r� Bð Þ; ð14Þ

where, both v0, the reference velocity field in the core
supporting the reference magnetic field for its long‐term
component, and the nutational velocity v in the diurnal band
are involved.
[31] With the approximations explained in Appendix A,

the perturbation of the induction equation due to nutation
can be written up to the first order in the all quantities as

@tb � r� v� B0ð Þ þ �r2b � Br
0@rvþ �r2b: ð15Þ

In this approximated induction equation, the induced mag-
netic field b depends on B0

r and v only, while v0 is not
involved anymore.
[32] In principle, one can use this equation and integrate it

together with the equation of motion to solve b as well as s
(or v). Starting from here, Huang et al. [2005] expanded the
vector equation (15) to scalar equations in generalized sur-
face spherical harmonics (GSSH) along with the equations
of motion, which provide the theoretical basis for solving
simultaneously the nutation and the perturbed magnetic field.

As a first step, in this paper we will try to verify the results
obtained by the MHBmodel. Therefore, we will use the same
hypotheses as in that paper and base our computation on the
approximations used in paper 1 and later in paper 2. The
difference between paper 1 and paper 2 will be discussed
later.
[33] Because of all the hypotheses considered, b and v

have only tangential components (i.e., br = vr = 0) in the
very thin boundary layer at the CMB (r = ac). There are two
boundary conditions on b. The first is that b be continuous
across CMB, and the second is that

�@rb½ �þ�¼ �m @rbð Þm��f @rbð Þf ¼ Br
0vf�m: ð16Þ

The latter can be obtained by integrating the induction
equation (15) over radius in the thin boundary layer across
the velocity discontinuity at CMB and by noting that the
integration of ∂rv across the boundary is just vf−m, where
vf−m is the nutational velocity of the fluid relative to the
mantle, i.e.,

vf�m ¼ v cmb
foc � v cmb

mantle � Wf �Wm

� �� r; ð17Þ

in whichWf andWm are the total angular velocity vectors of
the FOC and the mantle, respectively, and subscripts (m, f )
denote the mantle and FOC side, respectively. In what
follows we will consider only the mantle for the solid part;
the case near the SIC can be obtained in a similar manner.
[34] In the first case, we assume that the conductivity

profile in the thin layer BL.I_m decays away from the CMB
with the following exponential form

� rð Þ ¼ �cmbe
� r�acð Þ=D; ð18Þ

where scmb is the mantle conductivity at the CMB and D is
the characteristic thickness of the conducting layer BL.I_m.
By using the above two boundary conditions on b, it is not
difficult to get the solutions in the thin layers BL.I_f and
BL.I_m as (see paper 1 for detail)

@rb rð Þ ¼ C1b rð Þ ð19Þ

and the induced magnetic field b at CMB (r = ac)

b acð Þ � b		̂þ b’’̂
� �

¼ �k1B
r
0vf�m; ð20Þ

where

C1 ¼
1þ ið Þ=
f in BL:I f

� J0 ze�i�=4ð Þ
J1 ze�i�=4ð Þ

z
2D e�i�=4 in BL:I m

8<
: ð21Þ

and

k1 ¼ ei�=4ffiffiffi
2

p J1 z0e�i�=4
� �

�m

m
J0 z0e�i�=4ð Þ þ i �f
f J1 z0e�i�=4ð Þ ð22Þ

is a function of z0, in which, Jn is the nth degree Bessel
function of the first kind; the parameter z in equation (21) is
defined as z =

ffiffiffi
8

p
(D
m)e

−(r−ac)/2D, and

z0 � z acð Þ ¼
ffiffiffi
8

p
D=
m; ð23Þ
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where dm is the boundary thickness in the mantle and may
have the form [Gubbins and Roberts, 1987] dm =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�m=!

p
.

The characteristic thickness of the conducting layer D takes
200 m in this paper; taking scmb as 5 * 10

5 Sm−1 and we have
dm ≈ 4.7 km for diurnal nutation.
[35] In the more simple second case, we assume that the

conductivities in the two boundary layers are spatially uni-
form (and one can assume for further simplicity as in this
paper for comparison, but not necessary, that df = dm). The
solutions in the thin boundary layers will be

@rb rð Þ ¼ C2b rð Þ ð24Þ
and at CMB

b acð Þ ¼ �k2B
r
0vf�m; ð25Þ

in which

C2 ¼
1þ ið Þ=
f in BL:I f

� 1þ ið Þ=
m in BL:I m

8<
: ð26Þ

and

k2 ¼ 1� ið Þ
2 �f =
f þ �m=
m
� � ¼ 1� ið Þffiffiffiffiffiffiffiffiffiffiffiffiffi

2�mj!j
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2�f j!j
p ; ð27Þ

the coefficient k2 depends on the diffusivity (h) and the
thickness (d) of the magnetic boundary layers in the vicinity
of the CMB.
[36] Once again, ∂rb is not continuous across CMB as the

C1 and C2 are different for the two sides.
[37] As the third case, in paper 2 where similar approxima-

tions are used but the Coriolis force is included, the induced
magnetic field has the following form in the boundary layers

b	 r; tð Þ � b	 	 ib’

¼ b þð Þ
	 rð Þ 1	 cos 	ð Þei !t�’ð Þ

þ b �ð Þ
	 rð Þ 1
 cos 	ð Þe�i !t�’ð Þ; ð28Þ

where the coefficients b±
(+)(r) = b±

(+)(as)e
l f ± (r−as) with the

subscript s denoting the mantle (as = ac at CMB) or SIC
(as = aICB at ICB). At the boundaries

b þð Þ
	 asð Þ ¼ k3B

r
0vs�f asð Þ; ð29Þ

where

k3 ¼ 1

i!=�f	
� �� �s�s

; ð30Þ

and vs−f (as) = iasDws−f /2 (where the factor 1/2 is introduced
by the definition of b in canonical form in equations (29)
and (28)) and Dws−f are the velocity and the angular
velocity, respectively, of the solid part (mantle or SIC) with
respect to the FOC. And b±

(−) is equal to the conjugate of b±
(+).

[38] The other parameters used in equation (30) are the
spatial oscillation frequency of the induced magnetic field at
fluid (lf) and solid (ls) sides near the boundaries:

�2
f	 ¼ �! !	 fð Þ

Br
0

� �2
= �0�ð Þ þ i�f !	 fð Þ

; �2
s ¼

i!

�s
; ð31Þ

where f = 2W0 cos 	 and w is the nutation frequency. The
signs of lf and ls are imposed by the boundary condition
and the definition of the outward unit vector of the boundary
sphere, i.e.,

Re �fþ
� �

> 0; Re �sþð Þ < 0; ð32Þ

for the CMB. Implicitly, the quantities above are in the fre-
quency domain, meaning, for example, b±

(+)(r) = b±
(+)(r, w).

[39] From the solution form above, one can easily see that
b has a linear dependence on B0

r and has no radial part (i.e.,
b is horizontal), and that b is parallel to and only related to
the relative velocities vs−f of the mantle (or SIC) with respect
to the liquid core at the first order.
[40] Comparing the three solution forms, equations (19)–

(22), equations (24)–(27) and equations (28)–(31), one can
find that all solutions of b(r) have the same exponential
form with radial coordinate r and that the boundary thick-
ness d relates to the spatial frequency l by ls = (1 + i)/ds and
analogous for df and lf if ignoring (B0

r)2/m0r and f in lf.
[41] As the boundary layers are believed to be so thin, the

two solutions given by paper 1 and paper 2 are physically
equivalent, except for two contributions that can be seen in
equations (30) and (31): (1) a small contribution from the
Coriolis force in the fluid and (2) the influence of the
magnetic field on the spatial oscillation frequency.
[42] In section 3.2 wewill verify that when taking (B0

r)2/m0r
and f out of lf in equation (31), one obtains the same
expressions for k in equation (30) as in equation (27).

2.3. Incorporating L Into the Scalar ODE

[43] We consider in this section the second solution of b
(equations (24)–(27)), and a discussion of the other two solu-
tions will be given in section 3. Taking the CMB as an
example (the case at the ICB is analogous), we have

@rb ¼ �C2k2B
r
0vf�m: ð33Þ

Therefore, the Lorentz force density becomes

L � � 1

�0
C2k2 Br

0

� �2
vf�m ð34Þ

or transformed into nutational frequency domain as

L � Ksf�m; ð35Þ

where

K ¼ � i!

�0
C2k2 Br

0

� �2
; ð36Þ

where iw transfers the parameters from time domain to
nutational frequency domain. The w can be any frequency as
it is just a general Fourier transform here, but in this paper,
it can be regarded as the nutation frequency only. Please
notice that K is different at the two sides of CMB as is C2.
[44] Because the relative velocity field vf−m considered

here and in equation (17) is only the global rigid rotation of
the whole layer at the FOC side with respective to the whole
layer at the mantle side, similarly to Smith [1974], the part in
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the displacement field s to be kept here is only the toroidal
part t of degree l = 1 and order m = 1, i.e.,

�11 r; !ð Þ ¼ 1

2
W 1

1 r; !ð Þ �ê�D1
1� 	; ’ð Þ þ êþD1

1þ 	; ’ð Þ	 

: ð37Þ

[45] Wl
m, and Ul

m and Vl
m that will appear later, are the

toroidal, radial and transverse spheroidal components,
respectively, of the displacement s of degree l and order m;
and Dma

l (	, ’) is the GSSH defined by Smith [1974]. The
above equation in which only the term of degree 1 and order 1
is kept implies that only the rigid rotation angle is consid-
ered and that the deviations from rigid‐body motion (i.e.,
the contribution from U2

1, V2
1 and others) are ignored. This

approximation for the velocity (and displacement) field is
consistent with other approximations made in our discus-
sion of the EMC.
[46] It can be seen from equations (35) and (37) that L

is toroidal. Because L is added to the stress term in the
equation of motion to include the magnetic force, all we
need to change is just to replace the toroidal part of the stress
term ∂rR1

1 by ∂rR1
1 + (∂rR1

1)incr. in the equation of motion
containing ∂rR1

1 [i.e., Smith, 1974, equation (5.30)], for both
the mantle side and the fluid side, where, Rl

m, Ql
m and Pl

m

that will appear later are the toroidal, transverse spheroidal
and radial components, respectively, of the stress T of degree
l and order m. (∂rR1

1)incr. is the incremental part of ∂rR1
1 due

to EMC. This replacement is as follows:

@rR
1
1 ! @rR

1
1 þ @rR

1
1

� �incr:
; ð38Þ

where

@rR
1
1

� �incr:¼ K W 1
1

	 

f�m

; ð39Þ

and [W1
1] f−m = [W1

1] f − [W1
1]m at the CMB, which can be

obtained after integration for each nutation frequency w.
This is discussed in detail in section 2.4.
[47] Let us now return to the equation of motion (3).

b is confined to the boundary layers, so equation (3) with
expression (34) for the magnetic force must only be con-
sidered in the thin boundary layers. It must be noted that
equations (2) and (3) are degenerate for the fluid outer
core, i.e., the equations governing the radial derivatives
of the tangential displacement field that are derived from
equation (2) and depend on 1/m [see, e.g., Smith, 1974,
equations (5.23) and (5.24)] are not valid for fluid regions
as the Lamé parameter m = 0 for an ideal fluid. Instead, one
can derive them from the equation of motion by setting the
tangential stress and their radial derivatives equal to zero
(for details, see Huang et al. [2004] for the case without
magnetic field). This results in the following format:

D � ~X ¼ E � ~Y; ð40Þ

where

~X � ~X r; !ð Þ ¼ fVm
l r; !ð Þ;Wm

l�1 r; !ð Þ;Wm
lþ1 r; !ð ÞgT ;

~Y � ~Y r; !ð Þ ¼ fUm
l r; !ð Þ;Pm

l r; !ð Þ; �m
1l r; !ð Þ; gm1l r; !ð ÞgT

are the sets of scalars for the tangential displacement and
for all nonvanishing spheroidal variables, respectively,

except Vl
m; and D and E are 3 × 3 and 3 × 4 coefficient

matrices that only depend on the degree (l) and order (m) of
the external potential, the density (r), the Lamé parameters
(l, m), the radius (r), the frequency (w), the equilibrium
gravitational potential (�0, �2), and the equilibrium gravity
(g, ~g, ∂r�2), all of which can be obtained from a given
Earth model like PREM; �1l

m is the incremental Eulerian
gravitational potential due to displacement, and g1l

m is the
corresponding incremental gravitational flux defined by
g1l
m = ∂r�1lm + 4pGr0Ul

m.
[48] In summary, for the numerical integration method,

the governing equations in the FOC form a set of four ODEs
of the first order in d/dr [i.e., Smith, 1974, equations (5.22),
(5.25), (5.26), and (5.28)], which can be expressed as

@r ~Y ¼ A1 � ~Yþ A2 � ~Xþ A3 � @r ~X; ð41Þ

where ~X can be calculated from the known ~Y by equation (40)
and ∂r ~X can also be derived from equation (40) by taking a
radial derivative [see Huang et al., 2004]:

D � @r ~X ¼ @r E � ~Y	 
� @rDð Þ � ~X: ð42Þ

[49] When introducing the Lorentz force for the FOC in
the equations above, the three scalar equations (40) need to
be changed to

D � ~X ¼ E � ~Yþ Kf
~Xf�m: ð43Þ

This is related to the changes in the equation corresponding
to setting ∂rR1

1 = 0 in equation (5.30) of Smith [1974] by
considering

@rR
1
1 ¼ 0þ @rR

1
1

� �incr:¼ Kf W 1
1

	 

f�m; ð44Þ

where Kf is the value of K at the fluid side.

2.4. On the Boundary Condition at CMB

[50] In addition to the change in the motion equation for
both mantle and fluid sides, one also needs to modify the
boundary conditions on the stress field at the CMB (r = ac).
[51] Traditionally, the boundary condition on stress field

Te at CMB (as well as at all kind of boundaries) is that n̂(p) ·
Te(p) be continuous across the boundary, i.e.,

n̂ pð Þ � Te pð Þ cont:; ð45Þ

where

p ¼ rþ r̂h ¼ r̂ r þ hð Þ ð46Þ

is the material point on the boundary in the bulk volume VE

and r is its corresponding point in the effective spherical
domain (ESD). The normal to the boundary can be expressed
as

n̂ pð Þ ¼ r̂ 1þ @rhð Þ � rh ¼ r̂þ 	̂
h2
r
P1
2 cos 	ð Þ; ð47Þ
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where all are expressed in the ESD and

h r; 	ð Þ ¼ h2 rð ÞP2 cos 	ð Þ ¼ � 2

3
r rð ÞP2 cos 	ð Þ: ð48Þ

Expanding alsoTe (p) =Te (r + r̂h) in a Taylor series, then the
boundary condition on stress field (equation (45)) becomes,
expressed in the ESD of radius r and to first order in ellip-
ticity, as

r̂ � Te þ hr̂ � @rTe þ Te � r̂@rh�rhð Þ: ð49Þ

[52] If the Maxwell stress M is incorporated, the new
boundary condition on the stress field at the CMB becomes

n̂ pð Þ � Te pð Þ þM pð Þð Þ cont: ð50Þ

Following section 2.1 and focusing only on the diurnal
frequency band in which nutations lie, M takes the form of
equation (9). Substituting it into the new boundary condition
equation (50), and expanding them to ESD as done for the
dynamical stress Te, the continuity quantities in the new
boundary condition then, additional to those in equation (49),
include the following terms:

r̂ �Mþ hr̂ � @rMþM � r̂@rh�rhð Þ

¼ 1

�0

�
Br
0bþ brB0 þ h @rB

r
0bþ Br

0@rbþ @rb
rB0 þ br@rB0

� �
þ B0b

	 þ bB	
0

� � h2
r
P1
2

�
; ð51Þ

where all the above quantities are expressed in ESD of
radius r, and both the initial (reference) magnetic field B0

and the induced magnetic field b should be continuous
across the CMB and ICB.
[53] Meanwhile, since the radial derivative of the radial

component of B0, ∂rB0
r ≈ − lþ2

ac
B0
r , is also continuous across

the CMB. Moreover, according to the assumption that b
has only tangential components (parallel to the differential
velocity across the boundary vf−m) and does not have a radial
component, we have br = ∂rbr = 0. Therefore, additional
to those in equation (49), there is only one term related to
Maxwell stress kept in the new continuity quantity, i.e.,
h
�0
B0
r∂rb, where ∂rb is not continuous. If assuming that the

diffusivities at fluid side and at mantle side equal, i.e.,
hf = hm ≡ h, then from equation (16), one has

D @rbð Þ ¼ @rb½ �þ�¼ 1=�Br
0vf�m ð52Þ

and the new boundary condition becomes

r̂ � Te þ hr̂ � @rTe þ Te � r̂@rh�rhð Þ½ �þ�þ
h

��0
Br
0

� �2
vf�m ¼ 0:

ð53Þ
Using equation (48) and 1

��0
= s then

r̂ � Te þ hr̂ � @rTe þ Te � r̂@rh�rhð Þ½ �þ�þh2P2� Br
0

� �2
vf�m ¼ 0

ð54Þ

in time domain, or

r̂ � Te þ hr̂ � @rTe þ Te � r̂@rh� rhð Þ þ �P2s cont: ð55Þ

in frequency domain, where s is displacement field (v→ iws),
� = −iwsh2(B0

r)2, and h2 = −(2/3)r.
[54] Noting that

P2s ¼
X
�

ê�
X
l;m

Xlþ2

l′¼jl�2j

l 2 l′
� 0 �
m 0 m

2
4

3
5Sm�l′

8<
:

9=
;Dl

m� ð56Þ

the new continuity quantities on the stress field components
(P,Q,R) are changedwith additional terms (Pincr.,Qincr.,Rincr.)
to equations (5.44)–(46) of Smith [1974] or equations (47)–
(49) of Huang et al. [2001]:

Pm
l

� �incr:¼ �
Xlþ2

l′¼jl�2j
;

l 2 l′
0 0 0
m 0 m

2
4

3
5Um

l′ ; ð57Þ

Qm
l

� �incr:¼ �
Xlþ2

l′¼jl�2j

l 2 l′
þ 0 þ
m 0 m

2
4

3
5 Vm

l′
Wm

l′

� � jl � l′jeven
jl � l′jodd ; ð58Þ

Rm
l

� �incr:¼ �
Xlþ2

l′¼jl�2j

l 2 l′
þ 0 þ
m 0 m

2
4

3
5 Wm

l′
Vm
l′

� � jl � l′jeven
jl � l′jodd : ð59Þ

[55] In the frame of EMC and on the assumption in that
frame that only the rigid nutational rotation between FOC
and mantle is considered, we can then ignore the contribu-
tion from (Pl

m)incr. (equation (57)) and the contributions to
both (Ql

m)incr. and (Rl
m)incr. from Vl ′

m.

2.5. Iteration: A Practical Strategy to Solve
the Coupling ODE System

[56] The nutation velocity v results, for a part, from both
the reference magnetic field B0 and the incremental mag-
netic field b, while b depends on the differential nutation
velocity vf−m at the boundaries; this is why nutation and
magnetic field are coupled to each other. Without EMC,
equations (40) and (41) can be solved together by substi-
tution and solving for one set of variables (~Y), ~X can then be
obtained from the known ~Y with equation (40), and one gets
∂r~X from equation (42). Introducing magnetic perturbation
renders the above procedure no longer possible because of the
coupling between the fluid and the mantle: the quantities ~X
at fluid side depend on ~X at mantle side from equation (43),
the latter one is determined from the solution of (~Y, ~X) at
fluid side and from the new boundary condition equation (50)
or (55) in which the ~X at both the fluid and the mantle sides
are involved.
[57] In order to solve this coupled system, we use an

iteration strategy because the magnetic perturbation to the
nutation is small compared to the nutation induced by the
external forcing. We take the electromagnetic coupling at
the CMB as an example. First, we integrate the equation of
motion (1) without the perturbed magnetic field as usual
throughout the Earth and obtain the mean global rotation,
or [W1

1] f and [W1
1]m. Secondly, from these values, we deter-

mine (∂rR1
1)incr. by equation (39) (b can also be obtained if
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needed). Next, we use the values of all related parameters
(~X, ∂r ~X, ~Y) at the fluid side of the CMB obtained in the first
step without magnetic field and get a new set of ~X at fluid side
from equation (43); and pass them to mantle side by using the
new boundary condition equation (55) with equations (58)–
(59). We then have new values for all the variables on the
mantle side. These values are different from the values that
were obtained in the first step because the magnetic pertur-
bation is now included. By using these new values of the
variables on the mantle side and the variables on the fluid side
obtained in the first step, one can repeat the second step until
(∂rR1

1)incr. (or b) converges. It turns out in practice that one
iteration is enough.
[58] Once the final convergent values of all the variables

on the mantle side (at the CMB) are obtained, we continue
the integration from the CMB to the outer surface by
equation (1) as usual.
[59] Once the final convergent values of all the variables

on the mantle side (at the CMB) are obtained, we continue
the integration from the CMB to the outer surface by
equation (1) as usual.
[60] At a solid‐fluid boundary such as CMB which is a

slip boundary (if ignoring the dynamical effects, like vis-
cosity, of the boundary layer B.L.II), the continuity condition
on the displacement field only requires the normal component
of s to be continuous, while there is not a requirement on the
tangential components of s. However, all these components
are involved in the continuity conditions (equation (45) or
(50)) on the stress field. Because the condition equation (45)
is changed to (50), given ~X and ~Y at FOC side by standard
integration in FOC (from ICB to CMB), the resulted ~X
(including the W1

1) and ~Y at mantle side will be changed
significantly compared to the case without Lorentz force.
It is shown in practice that the continuity conditions on the
stress field at the CMB play the most important role in this
coupling, while the integration of the motion equation in the
thin boundary layers with the new motion equation (3) does
not contribute so significantly to the nutation result.

3. Results and Discussions

[61] In order to compare our results with those of paper 1,
we take the same values of related quantities as in paper 1
(profile B). They are: the conductivity sm = sf = 5 × 105 S/m
near the CMB, the thickness of the conducting layer in the
mantle dm = 200m and in the fluid df = dm. Moreover, we
consider only the EMC near the CMB.
[62] As to the magnetic field at CMB, B0

r , used in the
formula of magnetic force (equation (34)) and of the (∂R1

1)incr.

(equation (39)), it should be dependent on the location on the

CMB sphere, i.e., a local function of colatitude 	 and longi-
tude �. This makes the new motion equation (3) difficult
to integrate. This difficulty also happens in paper 2 for the
integration of Ib in its equation (46) (or (47) for weak field
approximation), although its integration is over the CMB
surface (paper 1 does not provide the numerical values of the
magnetic field). For simplicity, we use a uniform field
approximation here, i.e., B0

r(r, 	, �) = Buniform, and use the
RMS value of the total field given in paper 2 as our uniform
field, i.e., Buniform = 6.9G (Gauss). some of these used and
related parameters are listed in Table 1. From the constraints
of both torsional oscillations of core flow deduced from
magnetic field and the length‐of‐day (LOD) data, regarding
the variation of LOD as forced rather than free, Dumberry
and Mound [2008] prefer ~Bcmb ≈ 3G. For more details see
Appendix B.
[63] The results are given in Table 2. The first and

second values in brackets are cited from Table 3 (profile B)
of paper 1 and from Table 5 ofMathews et al. [2002] which
comes from paper 2, respectively. Both values in brackets
are also the contribution from EMC only happened near the
CMB. The four main nutations are listed, but only 5 terms,
at −18.6 year, −1 year, −0.5 year, +18.6 year and +0.5 year
(plus signs and minus signs denote prograde and retrograde,
respectively), are influenced by EMC. The change of the
FCN period is also presented in Table 2, with the corre-
sponding result from paper 1 in brackets, while paper 2 does
not list the FCN period.
[64] As shown in Table 2, our results are of the same order

as those of paper 1 when considering the same coupling
constant, but differ by a factor of 1.7 for the −1 year term
and a factor of 4.1 for the −18.6 year term. We will show in
section 3.1 that the changes of the nutation amplitudes are
consistent with the change of the FCN period in our work,
and then discuss the comparison with paper 2.

3.1. Changes in Nutations and FCN Period

[65] The changes in the nutation amplitudes, considering
the two terms that have changed most (the −1 year and
−18.6 year terms) as an example, are consistent with the
change of the FCN period in this work. Note here that the
FCN period obtained in this paper is subject to a small
modification (about 4.5%) of the CMB ellipticity from its
hydrostatic equilibrium value [Huang et al., 2001], while in
paper 1, it is obtained for hydrostatic equilibrium CMB. This
difference does not have a significant effect on the problem
we discuss here.

Table 1. Collections of Some Parameters and Their Volumes
Adopted in This Paper

Parametera Volume Note

sf and sm 5 * 105 S/m conductivity
hf and hm 1.6 m2/s diffusivity
df and dm 200 m thickness of the conducting layer
w diurnal nutation frequencies
B0
r 6.9 Gauss uniform field approximation

aSubscript F and m denote in fluid and mantle sides, respectively.

Table 2. Effects on the Nutation Amplitudes and the FCN Period
Due to EMC at the CMBa

Periods
(day)

Pro‐ip
(mas)

Pro‐op
(mas)

Retro‐ip
(mas)

Retro‐op
(mas)

6798.384 4 (9, 37) −4 (−9, −29) −20 (−83, −328) 20 (83, 249)
365.260 0 (0, −3) 0 (0, 3) −39 (−68, −450) 39 (69, 411)
182.621 5 (14, 61) −5 (−14, −47) −2 (−3, −16) 2 (3, 12)
13.661 0 (0, 2) 0 (0, −1) 0 (NA, 0) 0 (NA, 0)

aThe first and second values in parentheses are from Table 3 (profile B)
of paper 1 and from Table 5 of Mathews et al. [2002], respectively. “Pro”
and “retro” stand for prograde and retrograde, and “ip” and “op” stand for
in‐phase and out‐of‐phase, respectively. FCN without EMC equals
−433.52 sidereal day (−455.57). FCN with EMC equals −433.14 sidereal
day (−454.39). Change in the FCN period equals 0.38 sidereal day (1.18).
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[66] Analytically, one has, as a first approximation, a direct
relation between the FCN frequency change and the changes
in the amplitudes of the nutations. Indeed, the prograde
and retrograde nutation amplitudes can be expressed as the
product of a rigid nutation amplitude and a transfer function
T(s) accounting for the resonance effects:

T �ð Þ ¼ Rþ R′ 1þ �ð Þ þ RCW

�� �CW
þ RFCN

�� �FCN

þ RFICN

�� �FICN
þ RICW

�� �ICW
; ð60Þ

where s is the frequency in the terrestrial frame expressed in
cycles per sidereal day (cpsd), Ri are the resonance strengths,
and si the resonance frequencies in cpsd. Ignoring the inner
core effect on the FCN resonance strength (neglecting a factor
As/Af where As and Af are the inner core and outer core
moment of inertia), one can consider thatRFCN is proportional
to s′FCN = sFCN + 1. In that case, the effect of the changes in
the amplitude of the nutation near the FCN resonance due to
EMC can be approximated as

�FCN′ emc= �� �emc
FCN

� �
�FCN′ non�emc= �� �non�emc

FCN

� � : ð61Þ

[67] By considering that the changes in the FCN period
induced by the EMC is x days, the effects on the nutations
can be considered as directly proportional to x and inversely
proportional to the difference between the nutation period and
the FCN period in space (∼x/(Periodnutation − PeriodFCN).
For the annual nutation the denominator is large and the
enhancement is larger too. For the 18.6 year nutation, the
enhancement is almost inversely proportional to the period
and therefore small. With the analytical formula, a rapid
computation of the effect of the EMC at the CMB on the
annual period shows that, for a decrease of the FCN period in
space of about 0.4 day as provided by our computations, the
out‐of‐phase components of −1 year and −18.6 year nutations
increase by 41 mas and 26 mas, respectively. For a decrease of
the FCN period in space of about 1.2 days (the case of the
reproduction of the paper 1 results), one obtains, with the
analytical formula, an increase of the −1 year nutation of
125 mas, and an increase of the −18.6 year nutation of 79 mas.
[68] From these analytical values and Table 2, we con-

clude that the changes of the annual and 18.6 year nutations

obtained in this paper are more consistent with the change of
the FCN period than in paper 1. Of course, in this estimate
we ignore the effects on the other parameters of the transfer
function. However, these are expected to be small if EMC is
considered only at the CMB.

3.2. On the Contribution of the Energy of the Magnetic
Field and the Coriolis Force to the Coefficient k

[69] In this section, we want to make some, but not full,
discussion on how many factors play roles in the change of
the final nutations and how much they influence. These fac-
tors include the energy of the magnetic field and the contri-
bution of the Coriolis force.
[70] Comparing the results of paper 1 with those of paper 2

(listed in Table 5 of Mathews et al. [2002]), we see that the
changes of the main nutations in paper 1 are smaller than
those of paper 2 by a factor of about 6 for the −1 year
nutation and approximately 4 for the −18.6 year nutation.
paper 1 assumes that the energy other than the dipole mag-
netic field increase 5 times, and paper 2 seeks the Lorentz
force and contribution from the magnetic field near the ICB.
[71] The results in paper 2 [also Mathews et al., 2002] are

improved in several ways comparing to paper 1. The effects
of the Coriolis force was included, and the study byMathews
et al. [2002] also included the back reaction of the Lorentz
force on the fluid flow. Adding the Lorentz force alters the
velocity of the fluid core at the core‐mantle boundary. And
the energy of the magnetic field is also an important param-
eter, as expected in paper 1 that increasing the magnetic
energy by 4 times, via the part of short wavelength, may
increase the final nutation terms by similar times.
[72] From equation (34), L (and the magnetic torque)

obviously depends on both k and (B0
r)2, and it is clear that

the effects of changing the magnetic field have two parts:
(1) direct, in changing the value of (B0

r)2, and (2) indirect, in
changing the value of coefficient k and changing the value
of sf−m compared to displacement s. The “back reaction”
affects only the second kind of these two changes.
[73] It is consistent, rather than conflict, with the formulae

of the torque used in both paper 1 and paper 2 that are cited
from early papers (Rochester, 1962, 1976). k is only a linear
coefficient in equation (34) and it is independent on B0

r in
paper 1, but it depends on both Coriolis force and B0

r in
paper 2.
[74] Because the Lorentz force is almost linearly propor-

tional to the coefficient k additional to (B0
r)2, we will cal-

culate this k in this section and show that, if not considering
the change of the boundary conditions as section 2.4, neither
the including Coriolis force nor increasing the magnetic
field contributes much to k (not the final nutation here).
However, one should keep in mind that the following
analysis is only an approximate comparison.
[75] On the one hand, for equation (27) related to paper 1,

one can substitute the quantities with the values given in
paper 1, i.e., hm = hf = 1.6m2/s, dm = 200m (for w = W0), and
df = dm, and then get k = (32.7 − 32.7i).
[76] On the other hand, for equation (30) related to paper 2,

we discuss some extreme cases to be compared with the result
in paper 1.
[77] First, if we ignore the Coriolis force, then f =

2W0 cos 	 → 0. Moreover, if
Br
0ð Þ2

�0�
� hfw, i.e.,

ffiffi
2

p
Br
0ffiffiffiffiffiffi

�0�
p

!
f
� 1,

Table 3. The Dependence of the Linear Coefficient k in Paper 2
on the Magnetic Field Itself ((B0

r)2) and on the Coriolis Force ( f )
for Some Extreme Casesa

(B0
r)2 = (6.9G)2 (B0

r)2 = (10.7G)2

f = +2W0 l f+ = (4.5 + 5.0i) l f+ = (4.1 + 5.3i)
k = (33.6 − 31.8i) k = (34.6 − 30.4i)

f = 0 l f+ = (3.9 + 5.3i) l f+ = (2.6 + 5.4i)
k = (34.9 − 29.7i) k = (36.2 − 25.2i)

f = −2W0 l f+ = (5.3 + 3.9i) l f+ = (5.4 + 2.6i)
k = (29.7 − 34.9i) k = (25.2 − 36.2i)

aThe units of k and l are S/m and 10−3 m−1, respectively. If ignoring
(B0

r )2 and f in lf+, lf+ = (4.8 + 4.8i), k = (34.6 − 30.4i). Also, ls+ =
(−4.8 − 4.8i).
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then lf+
2 → iw/hf and lf+ → +

ffiffiffiffiffiffiffiffiffiffiffi
i!=�f

p
for the CMB. After

substituting this into equation (30) and noticing that ls =
−

ffiffiffiffiffiffiffiffiffiffiffi
i!=�s

p
for the CMB. One finds that equation (30)

derived in paper 2 exactly degenerates to equation (27)
which is obtained in paper 1. Or from another compari-
son of equation (27) for paper 1 with equation (30) for
paper 2, we see that ls in equation (30) acts as ds in
equation (27), and that lf in equation (30) acts as df in
equation (27). Moreover, in equation (30), the value of lf
is of the same order of magnitude as ls. Therefore, kB1992 =
kB2002 if df = ds.
[78] Second, we compute equation (30) by keeping the

contribution from (B0
r)2 and the Coriolis force (i.e., f ) in lf+,

and consider three extreme cases for f = 2W0 cos 	: f = 2W0,
f = 0, and f = −2W0. Moreover, in order to see the con-
tribution of (B0

r )2 clearly, we consider two cases: (B0
r )2 =

(6.9G)2 (paper 2 takes the RMS of the total magnetic field
at CMB as 6.9G) and (B0

r )2 = (10.7G)2 (the magnetic
energy of the latter one is approximately double of the
former one). Table 3 lists the results for k and lf+, in which
w ≈ W0 for diurnal nutations, hm = hf = 1.6m2/s and r = rf =
9.9 * 103 kg/m3.
[79] From Table 3, one can conclude (1) that increasing

magnetic energy by doubling can increase lf+ and k by
about 20% only, (2) that the contributions of the Coriolis
force to k is also smaller than about 20%, and (3) that the
total back reaction contributions of both the Coriolis force
and magnetic field to the linear coefficient k (k only,
rather than L or torque and thus the final nutation) is smaller
than 40%.
[80] It means that, if ignoring the different treatment of

magnetic field (dipole filed only, uniform field only, or
total energy) in paper 1 and in paper 2 and taking the same
magnetic energy, the direct contributions of both the Coriolis
force and magnetic field itself to the linear coefficient k is
smaller than 40%.
[81] From this calculation, it is shown that the big

improvement of the −1 year nutation in paper 2 from paper 1,
i.e., get a much larger number (0.4 mas) which is required
to fill the gap between the VLBI observation and classical
theoretical calculation is not mainly due to the inclusion of
back reaction contributions of both the Coriolis force and
magnetic field itself, as implied in paper 2. There must be
other reasons.
[82] On the one hand, paper 1 does not give the value of

B0
r , while paper 2 gives the overall root‐mean‐square (RMS)

of the radial field at CMB as 6.9 G (partitioned into 2.64 G
for dipole and 6.4 G for other nondipole component), we
cannot guess how much paper 1 adopts but they should be
similar although paper 1 states that the magnetic energy
requires to enlarge 4 times.
[83] However, from the analysis in Appendix B, it is

shown that paper 1 used only the terms of l = n and m = k in
magnetic field and excluded other cross terms in evaluating
the magnetic torque G. However, these cross terms do not
cancel and should be included in the calculation of G. The
resulting G will not have the simple relationship with Wf as
in equation (53) of paper 1 and will become a very complex
calculation. Furthermore, Appendix C shows that, if using
the same magnetic field and the weak field approximation,
paper 1 and paper 2 should get the same magnetic torque on

the mantle, and therefore the same magnetic coupling con-
stant Kcmb (and thus nutation) at CMB.
[84] On the other hand, we use also 6.9 G as in paper 2,

the results in Table 2 is smaller than that of paper 2 by
approximately 1 order of magnitude.
[85] Finally, if a double magnetic energy ((B0

r)2) is applied
in all the Lorentz force in equation (34), boundary conditions
(equation (55)) and k itself, rather than applied to k only as
done in this section, the final entire −1 year nutation will be
increased by approximately 1.8.

3.3. Brief Remarks

[86] In this paper, we have calculated the effects of EMC
at the CMB on nutations by numerical integration. Both the
Lorentz force and the Coriolis force are integrated in this
integration; the back reaction (a real “coupling” between
magnetic field and nutation) is also included automatically
in this dynamic system by two points: (1) the velocity field
of the fluid core near the CMB is changed, via the change of
the ODE, which is described in detail in the content of the
section 2.3, and (2) the boundary conditions cross the CMB
are also changed, which is described in detail in the text of
the section 2.4. Following the above two steps, the velocity
field of the particles in the mantle side near CMB, and thus
the final nutation terms, is therefore also changed.
[87] The formula of the Lorentz force and the new bound-

ary conditions are derived, a strategy (iteration) to solve this
coupling system is given in detail in section 2.5.
[88] Using the solution of the induced magnetic field b

and the same values of the related parameters as in paper 1,
and the energy of the reference magnetic field being taking
the same as paper 2 (as it is not given directly in paper 1),
we get results listed in Table 2: the FCN period decreases by
0.38 day, and the out‐of‐phase (in‐phase) amplitudes of the
−18.6 year and the −1 year nutations increase (decrease) by
20 and 39 mas, respectively. They are of the same order as
those of paper 1, but approximately 1 order of magnitude
smaller than required to fill the gap in the out‐of‐phase com-
ponent of the −1 year nutation between the VLBI observation
and the theoretical value.
[89] A discussion on the contribution of the energy of the

magnetic field and the Coriolis force to the coefficient k
(and thus to Kcmb) is also presented in section 3.2. A
comparison with the results of paper 1 and paper 2 is made
and differences remain, and it shows that more in‐depth
studies are needed for this problem, especially the out‐of‐
phase component of the −1 year nutation.
[90] For example, Jackson and Livermore [2009] point

out that the formal lower bound for the Ohmic dissipation
based on all possible (including geodetic) constraints and on
a 3‐D magnetic field configuration is almost 10 GW, that is
well below estimates, from geodynamomodels, of the energy
needed to power the dynamo, which are around several TW.
[91] The results concerning the magnetic coupling effects

on nutation (in particular, the RMS magnetic field at the
core boundaries) presented in paper 2 may be considered
as upper bounds, as other coupling mechanisms may be
significant at the core boundary. Viscous torque (considering
an effective viscosity) is another potential coupling mecha-
nism and can be used to explain the difference between the
observed nutations and the theoretical model [Mathews and
Guo, 2005; Deleplace and Cardin, 2006], although Buffett
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and Christensen [2007] suggest that viscous coupling can
only explain a few percent of the dissipative torque between
the core and the mantle. More discussions on the viscosity
and torsional oscillations can also be found in the work by,
e.g.,Mound and Buffett [2005, 2007] and Palmer and Smylie
[2005]. Topographic torque maybe important as well as
proposed byWahr and de Vries [1989],Wu and Wahr [1997]
and Folgueira and Dehant [2008].
[92] Regarding to the reference configuration with the

magnetic field B0 as described at the second paragraph after
equation (2), another possible explanation on the dynamical
consistencies of B0 and J0 may be, from numerical dynamo
simulations, that B0 is to leading order a potential field in
the mantle, and in this case, J0 ≈ 0. If so, one does not need to
discuss the likely mechanisms how to offset a finite back-
ground magnetic torque from B0 and J0 ( from the comments
of anonymous reviewer). For detail discussion of likely
mechanisms to offset a finite background magnetic torque
from themagnetic field and current, readers are recommended
to refer related MHD studies. Anyhow, it would be worth
trying to look at nutation as a small perturbation on a numerical
geodynamo model in the future study. The numerical geo-
dynamo models are all done in spherical geometry, and one
problem to be solved is to decide what ellipsoidal shape of
the CMB would be reasonably consistent with such a model
rather than with the usual hydrostatic equilibrium model.
[93] Regarding to the boundary condition, The formula-

tion in this paper follows that of Smith [1974]. The boundary
conditions on elliptical surfaces are expressed on an equiva-
lent spherical surface using a Taylor series. When the
boundary displacement due to ellipticity is small then it is
reasonable to truncate the Taylor series after the first‐order
terms. However, when this procedure is applied to the a small
perturbation near CMB, like the magnetic perturbation here,
one should be careful because the magnetic boundary layer
is only a few hundred meters thick. Especially for the FCN
and −1 year nutation, they are very sensitive to the physics
near CMB, i.e., the boundary situation. Our practical calcu-
lation show that any small change in the boundary condition
at CMB will cause a large (at least not ignorable) change in
the displacement field (and thus the final nutation) comparing
with the “direct” effect of the Lorentz force. Another example
is that, when discussing possible couplings between rotational
modes and core modes, Rogister [2003] and Rogister and
Valette [2009] point out that the coupling chain in the expres-
sion of the displacement field in the FOC should be truncated
at higher degree, i.e., include one (even two) more term. The
further study of how this factor influence the coupling between
nutation and magnetic field near CMB will be also interesting.

Appendix A: Dimensional Analysis
and Approximations

[94] In order to simplify the computation, in what follows
we present some justifications for the approximations and
assumptions used in the text.
[95] 1. The total velocity field of fluid is v0 + v, where v0

is the reference velocity field in the core supporting B0 for
its long‐term component, and v is mainly the relative nuta-
tional motion of the FOC to the mantle or to the SIC and
describes the entire nutation relative to the adopted steadily

rotating reference frame. They may be of the same order (e.g.,
∣v0∣ ∼ 0.5 mm/s; ∣v∣ ∼ 0.1 mm/s).
[96] 2. As shown in the text, there is no radial component

in both b and v.
[97] 3. The length scales of B0 and v0 (LB0 and LV0) are

assumed to be comparable to the radius of the core, ac (or aicb
near ICB).
[98] 4. Here b is confined to the viscous layer at the fluid

side and to the conducting layer at the solid side. Their
thickness or boundary thickness is much smaller than the
radius of the boundary; the length scale of b, db, depends on
the magnetic skin depth and is likely shorter than 1 km.
[99] 5. Taking the FOC as steady rotating reference frame,

it is assumed, on the fluid side, that v is confined to the thin
boundary layers and that v varies in the radial direction from
v = wf × r at the interface to zero, over distances of the
viscous boundary layer, which is very small (even possibly a
few centimeters). The length scale of v, dv, in the vicinity of
the fluid core boundaries depends on the boundary layers
and has an upper bound of db.
[100] 6. Because of the above two arguments, the hori-

zontal derivatives of b and v are much smaller than their
radial derivatives, i.e., ∂rv � ∣rHv∣, ∂rb � ∣rHb∣, where
rH ≡ 1

r r1 ≡ 1
r[	̂∂	 + ’̂ 1

sin 	∂’].
[101] 7. Because b and v vary rapidly with radius in the

thin boundary layers, whose thickness is much smaller than
the radius of core, we conclude 1

r ∂rb � ∂r2 b, 1r ∂rv � ∂r2 v.
[102] 8. Now we may compare the terms in the following

expansions

r� v0 � bð Þ ¼ b � rv0 � v0 � rbþ v0 r � bð Þ � b r � v0ð Þ;
ðA1Þ

r � v� B0ð Þ ¼ B0 � rv� v � rB0 þ v r � B0ð Þ � B0 r � vð Þ:
ðA2Þ

From the solenoidal conditions of b and B, the two related
terms in both equations can be removed. It is conventionally
assumed, when making geomagnetic dynamo models, that
r · v0 = 0. This is valid for long‐period changes in the flow
such as those associated with a dynamo. While for shorter
periods, say 1 day or shorter when measured in the rotating
frame, it is necessary to take a finite (but large) Lame
parameter l into account, and to allow r · v to be nonzero.
This is what is done in the usual treatments of wobble/
nutation. However, noting the assumption that v (and b as
well) has no radial component, and that the horizontal deri-
vatives of v are small compared with the radial derivative, one
can still easily ignore B0(r · v) compared with B0 · rv.
Moreover, the length scales of the remaining four terms are:
B0 · rv ∼ B0v/dv; v · rB0 ∼ B0v/LB0; v0 · rb ∼ bv0 /db; b ·
rv0 ∼ bv0/LV0. Therefore, if one considers B0 ·rv as being
of the first order, then the second and third terms are regarded
as second order, and the last term as third order, which has
been discussed by Buffett [1993]. This explains why the sum
of equations (A1) and (A2) can be written as

r� v0 � bð Þ þ r � v� B0ð Þ � B0 � rv: ðA3Þ
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[103] 9. In the thin boundary layers, ∂rB0
r ≈ − lþ2

r B0
r ≈ − lþ2

ac
B0
r

for the degree l component of the magnetic field, while
∂rvf−m ≈ vf�m


m
, and lþ2

ac
� 1


m
if the degree l is not too large.

Therefore, ∂rB0
rvf−m can be ignored compared with B0

r∂rvf−m.

Appendix B: On theMagnetic TorqueGm
(b) in paper 1

[104] The magnetic torque Gm
(b) on the mantle at the CMB is

(see equation (48) in paper 1 or equation (15) of Rochester
[1962]):

G bð Þ
m ¼ 1

�0

Z
S
r� bð ÞBr

0dS: ðB1Þ

If the CMB is assumed spherical then r̂ = n̂ on it (in the
notation system in the work of Rochester [1962], r̂ = −n̂).
[105] Because b = kB0

rvf−m where k is −k1 or −k2 or −k3 in
section 2.2, and considering that

vf�m ¼ Wf �Wm

� �� r ¼ Wf � r ðB2Þ

(if Wm = 0 in the coordinate system fixed with the rotating
mantle), and that Wf for nutation has only equatorial com-
ponents, then

G bð Þ
m ¼ k

�0

I
S
Br
0

	 
2
r� Wf � r

� �	 

dS

¼ k

�0

I
S
Br
0

	 
2
r2Wf dS �

I
S
Br
0

	 
2
r �Wf

� �
rdS

 �

¼ k

�0
A1 � A2ð Þ; ðB3Þ

which is equation (52) of paper 1.

B1. The First Part of the Integral, A1

[106] Since Wf has only equatorial components,

Wf ¼ W1x̂þ W2ŷ; ðB4Þ

then

A1 ¼
I
S
Br
0

	 
2
r2Wf

� �
dS ¼ a2cWf

I
S
Br
0

	 
2
dS: ðB5Þ

[107] From the definition of B0
r at r = ac

Br
0 acð Þ ¼

XN
l¼1

Xl

m¼0

Cm
l acð Þ cosm�þ Sml acð Þ sinm�	 


Pm
l cos 	ð Þ;

ðB6Þ

where the definition of the associated Legendre function Pl
m

in paper 1 can be retrieved from its normalization formula
that is his formula (50) (corrected). Defining

Pm
l xð Þ ¼ 1

2nn!

� �
1� x2
� �m=2 d

dx

� �lþm

x2 � 1
� �l ðB7Þ

then the normalization factor of Pl
m should beI

S1
Pm
l cos 	ð ÞPm

n cos 	ð ÞdS ¼ 4�
ln
2l þ 1

l þ mð Þ!
l � mð Þ! ; ðB8Þ

Mm
l ¼

I
S1
Pm
l cos 	ð Þ cos m�ð ÞPk

n cos 	ð Þ cos k�ð ÞdS

¼ 2�
ln
mk
1þ 
0mð Þ l þ mð Þ!
2l þ 1ð Þ l � mð Þ! ; ðB9Þ

I
S1
Pm
l cos 	ð Þ sin m�ð ÞPk

n cos 	ð Þ sin k�ð ÞdS

¼ 2�
ln
mk
1� 
0mð Þ l þ mð Þ!
2l þ 1ð Þ l � mð Þ! ; ðB10Þ

I
S1
Pm
l cos 	ð Þ cos m�ð ÞPk

n cos 	ð Þ sin k�ð ÞdS ¼ 0; ðB11Þ

where the integral surface S1 is a unit sphere surface of
radius r = 1.
[108] There is a mistake in equation (50) of paper 1

compared with our equation (B10). Fortunately, noting that
all Sl

0 ≡ 0, this mistake does not affect the calculation ofH
[B0

r]2dS and G. ThenI
S
Br
0

	 
2
dS ¼ acð Þ2

X
l

X
m

Mm
l Bm

l

	 
2
; ðB12Þ

where

Bm
l

	 
2¼ Cm
l

	 
2þ Sml
	 
2

: ðB13Þ

[109] Therefore, the first part of Gm
(b) in equation (B3) is

k

�0
a4cWf

X
l;m

Mm
l Cm

l

� �2þ Sml
� �2h i

ðB14Þ

(Note: it is Ml
m in the above equation rather than Nl

m as in
equation (53) of paper 1).

B2. Numerical Value of
HHH
s[B0

r]2 dS

[110]
H
S[B0

r]2dS represents the total flux of the magnetic
energy over the spherical surface of the boundary, which
can also be seen in the following definition. Although no
final numerical result of

H
S[B0

r]2dS is given in paper 1, one
can still find the detailed description of how to get it from
a given geomagnetic field model which is usually given
at the Earth surface and represented by spherical harmonic
expansion.
[111] From the IGRF2000 model [International Association

of Geomagnetism and Aeronomy Division V, Working Group
8, 2000], the geomagnetic potential is given at the Earth’s
surface (r = a) by

V rð Þ ¼
XN
l¼1

Xl

m¼0

gml rð Þ cosm�þ hml rð Þ sinm�	 

Pm
l cos 	ð Þ; ðB15Þ
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where Pl
m, different from that given in above, is the Schmidt

quasi‐normalized associated Legendre function defined by

Pm
l xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 l � mð Þ!

1þ 
0mð Þ l þ mð Þ!

s
1

2mm!

� �� 1� x2ð Þm=2 d

dx

� �lþm

x2 � 1ð Þl :

ðB16Þ

[112] From B = −rV and downward continuation of the
radial field from the Earth’s surface (r = a) to the boundary
(r = ac), ignoring the work of Ballani et al. [2002] in
which they indicate that the spherical harmonical down-
ward extrapolate in the mantle may be not suitable for B to
get BCMB, we get the radial magnetic field at the boundary

Br
0 ¼

XN
l¼1

Xl

m¼0

Cm
l cosm�þ Sml sinm�

	 

Pm
l cos 	ð Þ; ðB17Þ

where

Cm
l

Sml

 �
¼ l þ 1ð Þ a

ac

� �lþ2

*
gml
hml

 �
: ðB18Þ

By the definition, at r = ac,

Br
0

� �2 � I
cmb

XN
l¼1

Xl

m¼0

Cm
l cosm�þ Sml sinm�

� �
Pm
l cos 	ð Þ

" #

*
XN
l′¼1

Xl′
m′¼0

Cm′
l′ cosm′�þ Sm′l′ sinm′�

� �
Pm′
l′ cos 	ð Þ

" #
dS:

ðB19Þ

By using the orthogonality of Pl
m, and noticing that Sl

0 ≡ 0,
we get

Br
0

� �2 ¼ XN
l¼1

Xl

m¼0

Cm
l

� �2þ Sml
� �2h i

*
4�

2l þ 1
: ðB20Þ

[113] Using the same above procedure as given in paper 1
and the IGRF2000 model [International Association of
Geomagnetism and Aeronomy Division V, Working Group 8,
2000] for the J2000.0 epoch, in which the truncated degree/
order is 10/10, and having noticed that the definition and
normalization factor of the associated Legendre functions
used in the spherical harmonics expansion of the radial
magnetic field in paper 1 is different from the Schmidt quasi‐
normalized associated Legendre function used in IGRF2000
model, we get Br

0

� �2 ≈ (10.7G)2 at the CMB.

B3. The Second Part of the Integral, A2

[114] Evaluation of A2 in equation (B3) is a little
cumbersome:

A2 �
I
S
Br
0

	 
2
r �Wf

� �
rdS

¼
I
S
Br
0

	 
2
r2

sin2 	 W1 cos2 �þ W2 sin� cos�ð Þx̂
þ sin2 	 W1 sin� cos�þ W2 sin

2 �
� �

ŷ

þ sin 	 cos 	 W1 cos�þ W2 sin�ð Þ̂z

8><
>:

9>=
>;dS:

ðB21Þ

Its x component,

A2ð Þx¼ a4c
X
l;m

X
n;k

Gmk
ln � Hmk

ln ; ðB22Þ

where

Hmk
ln �

Z 2�

0
W1 cos

2 �þ W2 sin� cos�
� �

� Cm
l cosm�þ Sml sinm�

� �
Ck
n cos k�þ Skn sin k�

� �
d�

¼

�W1 Cm
l C

k
n

� �
if k ¼ m ¼ 0

�
2W1 Cm

l C
k
n þ Sml S

k
n

� �
if k ¼ m 6¼ 0; 6¼ 1

�
4

W1 Cm
l C

k
n � Sml S

k
n

� �
þW2 Cm

l S
k
n þ Sml C

k
n

� �
" #

if mþ k ¼ 2

�
4

W1 Cm
l C

k
n þ Sml S

k
n

� �
	W2 Sml C

k
n � Cm

l S
k
n

� �
" #

if m� k ¼ 	2

0 else

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ðB23Þ

and

Gmk
ln �

Z �

0
Pm
l P

k
n sin

3 	d	: ðB24Þ

[115] The analytic result of Gln
mk is unavailable in literature

and not easy to get, however, we can get it if l = n and m = k
(see Appendix (E)):

Gmm
ll ¼


1� l þ mð Þ l � mð Þ

2l þ 1ð Þ 2l � 1ð Þ �
l þ mþ 1ð Þ l � mþ 1ð Þ

2l þ 1ð Þ 2l þ 3ð Þ
�

*
2

2l þ 1

l þ mð Þ!
l � mð Þ! : ðB25Þ

[116] Even though we cannot get the analytic result of Gln
mk

for all l, n, m, k, we can still calculate them numerically.

B4. Summary and Discussion of Gm
(b) in Paper 1

[117] From the numerical values ofGln
mk =

R
0
p Pl

m Pn
k sin3 	d	,

one can see that Gln
mk ≠ 0 for many m + k = 2 and m − k = ±2,

which means that both W1 and W2 are included in the x (and y)
component of A2 in equation (B21), so A2 (and therefore Gm

(b))
do not have a simple relation with Wf as in paper 1, in which
Gm
(b) was parallel to Wf.
[118] However, if we keep only the terms l = n and m = k,

then

G bð Þ
m ¼ k

�0
A1 � A2ð Þ ¼ k

�0
a4cWf

X
l;m

dml Cm
l

� �2þ Sml
� �2h i

; ðB26Þ

where

dml ¼ Mm
l � �

2
1þ 
0mð ÞGmm

ll

¼ Mm
l

2
1þ l þ mð Þ l � mð Þ

2l þ 1ð Þ 2l � 1ð Þ þ
l þ mþ 1ð Þ l � mþ 1ð Þ

2l þ 1ð Þ 2l þ 3ð Þ
� �

;

ðB27Þ

which is exactly the Nl
m defined by equation (55) in paper 1.
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B5. Conclusion

[119] Based on the above analysis, we can conclude that
paper 1 used only the terms l = n and m = k and excluded
other cross terms in evaluating the torque G. However, these
cross terms do not cancel and should be included in the
calculation of G. The resulting G will not have the simple
relationship with Wf as in equation (53) of paper 1 and will
become a very complex calculation.

Appendix C: Remarks on B0
r and Proof

of the Equivalence Between GP1 and GP2

[120] As pointed out in the text, the radial magnetic field
at CMB (B0

r), used in the formula for the Lorentz force
(equation (34)) and for the (∂rR1

1)incr. (equation (39)), should
depend on the location on the CMB sphere (i.e., a local
function of colatitude 	 and longitude �). This makes the
new motion equation (3) difficult to integrate, and a full (or
approximated) model of B0

r is then needed. This difficulty
also arises in paper 2 for the integration of Ib in equation (46)
(or (47) for weak field approximation). In paper 2, the
magnetic field B0

r is separated into two configurations for
simplicity.
[121] 1. The dipole field represents the dominant long‐

wavelength component, this part has a simple dependence
of 	: Br

dipole(r, 	, �) = Bp cos 	, where Bp is a constant
(independent on 	 and �).
[122] 2. The other multipole components represent the

shorter‐wavelength field except the dipole field, and this part
makes the integration difficult.
[123] In order to deal with this, paper 2 introduces a con-

cept “uniform field,” Br
uniform. This uniform field is inde-

pendent of 	 and �, i.e., a constant everywhere on the CMB,
so that it can be moved out from the integral as done for Bp.
Moreover, the strength of this uniform field is determined by

the requirement that Bdipole
r

� �
2 + Buniform

r

� �
2 = Btotal

r

� �
2 =

(6.9G)2, where, Bdipole
r , Buniform

r and Btotal
r are the so‐called

“root‐mean‐square” (RMS) values of the dipole field, RMS
of the uniform field, and RMS of the total field, respectively.
paper 2 declares that, in order to get the required torque (and
then the coupling constant) for the wanted nutation result,
Btotal
r

� �
requires 6.9G, while Bdipole

r is 2.64G obtained from

the geomagnetic model, therefore, Buniform
r should be 6.4G.

[124] In order to compare the magnetic torque on mantle
(GP1) in paper 1 andGP2 in paper 2, and therefore the coupling
constants KP1

cmb and KP2
cmb, we also calculate them for two

fields: (1) dipole and (2) uniform.

C1. Dipole Field: B0
r(r, 		, ����) = Bp cos 		

[125] For paper 1

A1 ¼
Z
S
Br
0

	 
2
r2Wf

� �
dS ¼ acð Þ2 Bp

� �2Wf

Z
S
cos 	½ �2dS

� �

¼ 4

3
� acð Þ4 Bp

� �2Wf ðC1Þ

and

A2 ¼
Z
S
Br
0

	 
2
r � Wf

� �
rdS ¼ 4

15
� acð Þ4 Bp

� �2Wf ; ðC2Þ

therefore,

GP1 ¼ k

�0
A1 � A2ð Þ ¼ 16�

15

k

�0
acð Þ4 Bp

� �2Wf : ðC3Þ

[126] On the other hand, from the results of paper 2, the
magnetic torque at boundary (r = ab) can be expressed as

~G ¼ �bIbD~m; ðC4Þ

where

�b ¼ �i�a4bW0

2�0
ffiffiffiffiffi
�f

p þ ffiffiffiffi
�s

p� � ffiffiffiffiffiffiffiffi
2j!jp ðC5Þ

and for the weak‐field approximation,

Ib ¼ �2 iþ !=j!jð Þ
Z �

0
Br
0

� �2
1þ cos2 	
� �

sin 	d	: ðC6Þ

[127] If we also approximate B0
r = Bp cos 	 and having

w/|w| = 1,

Ib ¼ �2 iþ !=j!jð Þ
Z �

0
Br
0

� �2
1þ cos2 	
� �

sin 	d	

¼ �32 1þ ið Þ
15

Bp

� �2 ðC7Þ

then at CMB (r = ac)

GP2 ¼ �bIbD~m

¼ �32 1þ ið Þ
15

Bp

� �2 �i�a4cW0

2�0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2j!j�f

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
2j!j�s

p� �D~m: ðC8Þ

[128] Using equation (27) of our paper, k2 =
1�ið Þffiffiffiffiffiffiffiffiffiffi

2�mj!j
p

þ
ffiffiffiffiffiffiffiffiffi
2�f j!j

p ,

for the coefficient −k here, and the definition ofD~m in paper

2 and Wf in paper 1, one can see that GP2 = GP1 for dipole
field.

C2. Uniform Field: B0
r(r, 		, ����) = Bu

[129] For paper 1

A1 ¼
Z
S
Br
0

	 
2
r2Wf

� �
dS ¼ acð Þ2 Buð Þ2Wf

Z
S
dS

� �
¼ 4� acð Þ4 Buð Þ2Wf

ðC9Þ
and

A2 ¼
Z
S
Br
0

	 
2
r �Wf

� �
rdS ¼ Buð Þ2

Z
S
r �Wf

� �
rdS

¼ 4

3
� acð Þ4 Buð Þ2Wf ; ðC10Þ

where it is easy to write out the last integral by its three
components (or using Gauss theorem to transform this close
surface integral to a volume integral). Therefore,

GP1 ¼ k

�0
A1 � A2ð Þ ¼ 8�

3

k

�0
acð Þ4 Buð Þ2Wf : ðC11Þ
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[130] On the other hand, for paper 2, if also approximate
B0
r = Bu,

Ib ¼ �2 iþ !=j!jð Þ
Z �

0
Br
0

� �2
1þ cos2 	
� �

sin 	d	

¼ �16 1þ ið Þ
3

Buð Þ2 ðC12Þ

then,

GP2 ¼ �bIbD~m ¼ �16 1þ ið Þ
3

�i�a4bW0 Buð Þ2

2�0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2j!j�f

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
2j!j�s

p� �D~m:

ðC13Þ

Again, GP2 = GP1 for uniform field.

C3. Summary and Discussion

[131] According to the statement in paper 2, if B < 15G,
the weak field approximation is valid. paper 2 adopts 6.9G
for Btotal. Therefore, it is reasonable to calculate Ib by using
equation (47) of paper 2 which is only valid for weak field
approximation.
[132] From the above analysis, we can conclude that,

when using the same magnetic field and the weak field
approximation, paper 1 and paper 2 should get the same
magnetic torque on the mantle, and therefore the same
magnetic coupling constant Kcmb at CMB.

Appendix D: On the Formula for Lorentz Force

[133] We will derive the GSSH expression for the
Lorentz force L (equation (34)) for the two approxima-
tions of B0

r (r, 	, �) as is done in paper 2, i.e., dipole field
and uniform field.
[134] First, we will discuss the contribution, Lp by the

dipole field Br
dipole(r, 	, �) = Bp cos 	.

Br
0

� �2¼ Bp

� �2
cos 	ð Þ2¼ Bp

� �2 2

3
D2

00 þ
1

3

� �
ðD1Þ

Lp ¼ k

�0
Br
0

� �2
@rVf�s ! i!k

�0
Br
0

� �2
@rsf�s

¼ i!k

�0
Bp

� �2 2

3
D2

00 þ
1

3

� � X
�¼�;0;þ

X
l;m

@rS
m�
l

� �
f�sD

l
m�ê�;

ðD2Þ

where the notation system is identical to the one used by
Smith [1974], and

D2
00

X
l;m

@rS
m�
l

� �
f�s

Dl
m�

¼
X
l;m

Xlþ2

l′¼jl�2j

l 2 l′

� 0 �

m 0 m

2
64

3
75 @rS

m�
l′

� �
f�s

8><
>:

9>=
>;Dl

m� ðD3Þ

(see Huang [2001, section 4.2] for the detailed derivation of
above formula).

[135] To be incorporated into the motion equation and
expanded into scalar equations as in the work by Smith
[1974], Lp is represented by its three scalar components,
radial part [Lp]

U, transverse spheroidal part [Lp]
V and

toroidal part [Lp]
W. According to section 2.3, only the

toroidal term is needed in the calculation, and noting
equation (37), we can write out

Lp

	 
W
lm ¼ 2

ffiffiffi
2

p i!k

�0
Bp

� �2
(
1

3
@rW

m
l

� �
f�s

þ 2

3

Xlþ2

l′¼jl�2j

l 2 l′

þ 0 þ
m 0 m

2
64

3
75 @rWm

l′

� �
f�s

@rVm
l′

� �
f�s

" #)
jl � l′jeven
jl � l′jodd:

ðD4Þ

[136] For the uniform field approximation, B0
r(r, 	, �) = Bu,

one can more easily write out the toroidal part of its contri-
bution to the Lorentz force:

Lu½ �Wlm¼ 2
ffiffiffi
2

p i!k

�0
Buð Þ2 @rW

m
l

� �
f�s

: ðD5Þ

[137] For simplicity, we use a uniform field approximation
here with the RMS value of the total field given in paper 2,
i.e., Bu = 6.9G.

Appendix E: Calculation of Gln
mk

[138] Gln
mk is used in the calculation of the EMC torque, but

its analytic form is unavailable in the literature and not easy
to get. However, we can derive it if l = n and m = k.

T ¼ Gmm
ll ¼

Z 1

�1
1� x2
� �

Pm
l P

m
l dx ¼ D� A; ðE1Þ

where

D �
Z 1

�1
Pm
l

� �2
dx ¼ 2

2l þ 1

l þ mð Þ!
l � mð Þ! ; ðE2Þ

A �
Z 1

�1
x2Pm

l P
m
l dx: ðE3Þ

[139] From the recurrence of Pl
m,

2l þ 1ð ÞxPm
l ¼ l þ mð ÞPm

l�1 þ l � mþ 1ð ÞPm
lþ1; ðE4Þ

we have

x2Pm
l ¼ Gm

l xPm
l�1

� �þ Hm
l xPm

lþ1

� � ¼ Gm
l Gm

l�1P
m
l�2 þ Hm

l�1P
m
l

	 

þ Hm

l Gm
lþ1P

m
l þ Hm

lþ1P
m
lþ2

	 

; ðE5Þ

where

Gm
l ¼ l þ m

2l þ 1
; Hm

l ¼ l � mþ 1

2l þ 1
: ðE6Þ
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[140] Using the orthogonality property of Pl
m, we get

Z 1

�1
x2Pm

l P
m
l dx ¼ 0þ Gm

l H
m
l�1 þ Hm

l G
m
lþ1

	 

Dþ 0; ðE7Þ

therefore,

T ¼ f1� Gm
l H

m
l�1 þ Hm

l G
m
lþ1

	 
gD
¼


1� l þ mð Þ l � mð Þ

2l þ 1ð Þ 2l � 1ð Þ �
l þ mþ 1ð Þ l � mþ 1ð Þ

2l þ 1ð Þ 2l þ 3ð Þ
�
D: ðE8Þ
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