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List of abbreviations: 

 

CSF – cerebrospinal fluid 

ISF – interstitial fluid 

ICP – intracranial pressure 

BV – brain ventricle 

LV – lateral ventricle 

CM – cisterna magna 
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Abstract 

It is generally assumed that cerebrospinal fluid (CSF) is secreted in the brain 

ventricles, and so after an acute blockage of the aqueduct of Sylvius an increase in the 

ventricular CSF pressure and dilatation of isolated ventricles may be expected. We 

have tested this hypothesis in cats. After blocking the acqueduct, we measured the 

CSF pressure in both isolated ventricles and the cisterna magna, and performed 

radiographic monitoring of the cross-sectional area of the lateral ventricle. The 

complete acqueductal blockage was achieved by implanting a plastic cannula into the 

aqueduct of Sylvius through a small tunnel in the vermis of the cerebellum in the 

chloralose anesthetized cats. After the reconstitution of the occipital bone, the CSF 

pressure was measured in the isolated ventricles via a plastic cannula implanted in the 

aqueduct of Sylvius and in the cisterna magna via a stainless steel cannula. During the 

following two hours, the CSF pressures in the isolated ventricles and cisterna magna 

were identical to those in control conditions. We also monitored the ventricular cross-

sectional area by means of radiography for two hours after the acqueductal blockage 

and failed to observe any significant changes. When mock CSF was infused into 

isolated ventricles to imitate the CSF secretion, the gradient of pressure between the 

ventricle and cisterna magna developed, and disappeared as soon as the infusion was 

terminated. However, when mock CSF was infused into the cisterna magna at various 

rates, the resulting increased subarachnoid CSF pressure was accurately transmitted 

across the brain parenchyma into the CSF of isolated ventricles. The lack of the 

increase in the CSF pressure and ventricular dilatation during two hours of aqueductal 

blockage suggests that aqueductal obstruction by itself does not lead to development 

of hypertensive acute hydrocephalus in cats. 
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According to the generally accepted hypothesis of the cerebrospinal fluid (CSF) 

dynamics, CSF is produced within the cerebral ventricular system, and it circulates 

slowly from the brain ventricles towards the subarachnoid space to be absorbed into 

the venous sinuses and/or into lymphatics via perineural sheets of cranial and spinal 

nerves (Brodbelt and Stoodley, 2007; Johanson et al., 2008). It is believed that CSF is 

formed mainly by the secretory activity of the choroid plexuses in the brain ventricles, 

and that the majority of the remaining CSF is probably produced by the ependyma. 

The endothelium of the choroid plexus capillaries is fenestrated, and the first stage in 

the CSF formation is the passage through the endothelium of a plasma ultrafiltrate, 

facilitated by a hydrostatic pressure. During the second stage of the CSF formation, 

the ultrafiltrate passes through the choroidal epithelium at the surface of the choroid 

plexus and into the ventricle. The passage through the choroidal epithelium is an 

active metabolic process, which transforms the ultrafiltrate into secretion 

(cerebrospinal fluid) (Davson et al., 1987; Brown et al., 2004). Since this second stage 

is an active process, the CSF formation rate should not be significantly altered by 

moderate changes in the intracranial pressure (Heisey et al., 1962; Rubin et al., 1966; 

Cutler et al., 1968; Sklar et al., 1980; Pollay et al., 1983). It is believed that CSF is 

passively absorbed (under pressure gradient between CSF and blood) through 

arachnoid villi of the dural venous sinuses. In addition, there is a large amount of 

literature data which suggests that significant absorption of CSF from subarachnoid 

space to lymphatic system takes place (Johnston et al., 2004; Johnston et al., 2005; 

Koh et al., 2006). According to all above, it is generally accepted that CSF should 

flow unidirectionally (forced by pulsations of vessels) from brain ventricles to 

subarachnoid space with exchange of various substances (more or less manifested) 
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between CSF and interstitial compartments (Johanson et al., 2008). This hypothesis, 

with minor modifications, represents a common point of reference in scientific papers, 

review articles and in numerous textbooks, and it is proffered as an unquestionable 

fact. The hypothesis is applied to explain the removal of cerebral metabolites, an 

increase in intracranial pressure (ICP) and the development of hydrocephalus. 

 According to the above-mentioned hypothesis, if CSF system is blocked 

between the ventricular and subarachnoid space, a significant increase in the 

ventricular pressure and dilatation of brain ventricles are expected to take place. 

Namely, the actively produced CSF should be accumulated inside the brain ventricles 

because it could not be absorbed into the venous sinuses or lymphatics from the 

subarachnoid space.  

 However, in light of our former investigations we didn’t expect that the 

blockade of cerebrospinal spaces between the brain ventricles and the subarachnoid 

space should necessarily result in a significant intraventricular pressure increase due 

to the accumulation of the CSF formation volume inside the brain ventricles. We have 

shown (Orešković et al., 1991) that at a physiological intracranial pressure, the CSF 

production and absorption are in balance in isolated brain ventricles. Furthermore, 

when labeled water is infused into the lateral ventricle, it is not distributed to the 

cisterna magna but rather absorbed into periventricular capillaries, indicating that the 

CSF volume (water) is absorbed in the ventricles (Bulat 1993; Bulat et al., 2008). In 

addition, it was shown that molecules with different molecular weight (organic anions 

such as brain metabolites and 3H-benzylpenicillin,  and larger molecules such as   3H-

inulin and  horseradish peroxidase) could be distributed rapidly from brain ventricles 

to interstitium and finally absorbed into blood via cerebral capillaries (Rennels et al., 

1985; Vladić et al., 2000; Vladić et al., 2008; Zmajević et al., 2002). Moreover, when 
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the aqueduct of Sylvius was cannulated, no CSF outflow was observed from the 

isolated ventricle at a normal CSF pressure suggesting that no net formation of CSF 

took place in the ventricles (Orešković et al., 2001; Orešković et al., 2002). In 

addition to that, Milhorat et al. (1976) have shown that surgical removal of choroid 

plexuses in hydrocephalus cases failed to improve the patients' condition, and that 

CSF composition and formation remained similar to those in hydrocephalus-free 

individuals. This has been observed in an experimental model of the disease 

(Milhorat, 1969). The concept suggesting that the choriod plexus also participates in 

the absorption of cerebrospinal fluid is a rather old idea (Foley, 1921; Hassin, 1924). 

It has been suggested that the choroid plexus probably acts as a two-way traffic 

(Dodge and Fishman, 1970). In some children shunted due to obstructive 

hydrocephalus, the shunts became occluded over time without any signs of 

hydrocephalus progression which indicated that a balance was reached between the 

CSF formation and absorption in the isolated brain ventricles (Holtzer and de Lange, 

1973).  

 In light of these findings, our experiments were designed to detect whether the 

acute blockade of the aqueduct of Sylvius itself would result in an increase CSF 

pressure and ventricular dilatation. For this reason we have developed a new 

experimental model featuring a complete aqueductal blockade in cats, which allows 

simultaneous measurement of CSF pressure inside the brain ventricles (in front of the 

blockade) and subarachnoid spaces (cisterna magna; behind the blockade). X-ray 

ventriculography was performed to explore if the aqueductal occlusion affected the 

size of the isolated ventricles. 

 Finally, using the aforementioned model, we have infused mock CSF into the 

lateral brain ventricle at different rates of the hypothetical physiological CSF 
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formation rate to evaluate if our new model is sensitive enough to detect an 

accumulation of fluid volume in isolated ventricles, and if CSF pressure would 

change under these conditions. Under such experimental conditions the gradient of 

CSF pressure was observed in the cranium, and the mechanism of its development 

was analyzed. This investigation challenges the traditional assumption that a blockade 

of CSF pathways itself would increase the CSF pressure and dilate the brain 

ventricles, as well as the classical hypothesis of CSF physiology related to secretion 

and absorption inside the brain ventricles. 
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EXPERIMENTAL PROCEDURE 

Animals 

The experiments were performed on adult cats, unselected in terms of age and 

sex, ranging in weight from 1.8 to 4.0 kg. All experimental procedures were 

performed in accordance with the Law on Animal Rights and Protection of the 

Republic of Croatia and with the approval of the institutional Ethical Committee to 

ensure that only a minimal number of animals was used for this investigation. The 

animals were anesthetized with an intraperitoneal injection of chloralose (α-

chloralose, Fluka; 100 mg/kg). The femoral artery was cannulated, blood pressure was 

recorded via a “T”-connector and samples of blood were taken for the analysis of 

blood gases. No significant changes either in the blood pressure or blood gases were 

observed in these experiments in cats, which continued breathing spontaneously under 

chloralose anesthesia. Physiological saline was applied via the cannulated femoral 

vein as necessary to maintain the blood pressure, and an overdose of thiopentone was 

injected at the end of the experiment to euthanize the animals. 

 

Aqueductal occlusion and CSF pressure measurement 

In the preliminary experiments, the fourth ventricle was surgically exposed 

after the opening of cisterna magna to occlude the aqueduct of Sylvius, which was 

followed by a partial removal of the occipital bone and removal of a part of the 

cerebellum. A polyethylene tubing (i.d. 1.12 mm, o.d. 1.55 mm; Clay-Adams, USA) 

was heated and pulled so that a narrow tip (~0.5 mm o.d.) was obtained. After filling 

the tubing with mock CSF, its narrow tip was covered on the outer side by 

cyanoacrylate gel glue (Superattack-gel, Loctite, Munich, Germany) for about 2 mm 

length, and under ocular supervision pushed slightly into the exposed opening of the 
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aqueduct. After 10 seconds, the complete occlusion of the aqueduct was obtained so 

that CSF in the third and lateral ventricles communicated with the mock CSF in the 

polyethylene cannula, but not with the fourth ventricle. This was tested by infusing 

mock CSF containing 2% trypan blue into the lateral ventricle and positioning the 

outflow of the cannula up to 40 cm above the interaural line. No leakage of trypan 

blue could be detected from the aqueduct into the fourth ventricle under such 

hydrostatic pressure, since polyethylene tubing was firmly attached to the aqueductal 

tissue. However, a drawback of this surgical approach was the CSF leakage from the 

subarachnoid space, as the closing of the surgical wound could not be prevented. To 

prevent the CSF leakage, a different surgical approach to the aqueduct was used in 

these experiments, as described in detail in our previous paper (Miše et al., 1996). In 

short, a burr hole (10 mm in diameter) was made in the midline of the occipital bone 

and the exposed dura was incised. A tunnel was made through the vermis of the 

cerebellum (1.5 – 2.0 cm long and 0.6 – 0.8 cm wide) with vacuum suction and the 

opening of the aqueduct in the fourth ventricle was exposed. Under direct vision, the 

tip of a polyethylene cannula covered with cyanoacrylate gel glue was positioned into 

the aqueduct as described above. Thereafter, the tunnel in the cerebellum was filled 

with Gelfoam, the cannula was fixed to the occipital bone by dental cement and the 

bony hole was covered by dental acrylate so that a hermetic closure was obtained 

preventing any CSF leakage and blocking the influence of atmospheric pressure. 

A stainless steel cannula (22-gauge) was micromanipulated into the lateral 

ventricle at coordinates 4.5 mm anteriorly and 9.0 mm laterally from the zero point of 

the stereotaxic atlas (Snider and Niemer, 1961), and about 10 mm vertically from the 

dural surfaces, until free communication with CSF in the ventricle was established 

(Bulat and Živković, 1978). The cannula was connected with an infusion pump via a 
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polyethylene tubing (Harvard M-975, USA) (Fig. 1.), and served to infuse mock CSF 

(Merlis, 1940) at 7.0 µL/min, 13.0 µL/min, 26.0 µL/min, and 52.0 µL/min to simulate 

the formation of CSF in the ventricles of the animals before and after the blocking of 

the aqueduct of Sylvius, as well as for the application of trypan blue at the end of the 

experiment to verify the occlusion of the aqueduct. 

 Cisterna magna was also cannulated by a direct puncture with a stainless steel 

cannula (22 gauge), which was fixed in position by a holder and connected with the 

plastic tubing filled with mock CSF. Aqueductal and cisternal plastic cannulas were 

connected to pressure transducers (P23, Gould Electronics, USA) and a polygraph 

(R511A, Beckman, USA) (Fig. 1) so that CSF pressures could be simultaneously 

recorded in both the isolated ventricles and cisterna magna before and after the 

aqueductal occlusion. The pressure transducers were calibrated at the level of 

interaural line taken as the zero reference pressure using water column, and CSF 

pressure was presented as cm H2O. The cannula in the cisterna magna was connected 

to the infusion pump via a “T”-connector (Fig. 1) in order to infuse the mock CSF 

into the cisterna magna at different rates (7.0 µL/min; 13.0 µL/min; 52.0 µL/min; 

100.0 µL/min). 

The impermeability of the aqueductal blockage in our new model was tested at 

different CSF pressure values and in different time intervals. What we were able to 

observe in the three preliminary experiments was that the pressure in the ventricles of 

up to 40 cm H2O did not result in the breakthrough of the blockage which remained 

complete four hours after the placement of cannula in aqueduct. In addition, in the 

next three experiments we examined the duration of such obstruction and after a 

prolonged period (24 h) we observed that the tissue in the vicinity of the cyanoacrylic 

glue became necrotic and that the blockage was leaking.  
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The rectal temperature was recorded during the experiment and maintained at 

about 37 ºC using a heating pad. To verify that the aqueduct remained successfully 

occluded in all the experiments presented here (see Results), at the end of each 

experiment isolated ventricles were perfused with 2% trypan blue in saline (26.0 

µL/min) for 20 min from the cannula in the lateral ventricle to the aqueductal cannula 

with its open end positioned 25 cm above the interaural line. Thereafter, the animals 

were sacrificed by an intravenous overdose of thiopentone. After the careful partial 

opening of the occipital bone and dissection of the cerebellum, the cannula in the 

aqueduct was exposed so that any leakage of trypan blue from isolated ventricles into 

the fourth ventricle could be easily detected. 

 

Ventriculography 

To explore whether the aqueductal occlusion affected the size of isolated 

ventricles, X-ray ventriculography was performed in cats. After the placement of 

aqueductal and ventricular cannulas (see above), a wooden holder was fixed in the 

cats’ mouth, and the animal was set in the sphinx position. From the aqueductal 

cannula, 100 µL of CSF was removed and the same volume of contrast (Omnipaque, 

Sanofi Winthrop Pharmaceuticals) applied via a ventricular cannula; this procedure 

was repeated ten times during one minute until 1 mL of contrast was applied. The 

application of contrast by this microvolume exchange method prevented any 

significant oscillation in intraventricular pressure and potential changes of ventricular 

size (Klarica et al., 1994). 

After the contrast application, the pressures in the cannulas were adjusted to a 

normal CSF pressure (8.0 cm H2O above the interaural level), the cannulas closed and 

a control X-ray ventriculogram made with an X-ray apparatus (Philips Type Dane 
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1001) using a mammography film (18 x 24 cm). The film was fixed close to the 

lateral side of the cats’ head and 90 cm from the X-ray apparatus. The current of 1.5 

kW and 20 mA/s was used for recording. Two hours after the control ventriculogram, 

the second ventriculogram was obtained. The absence of contrast substance behind 

obstruction (fourth brain ventricle and subarachnoid space) shows complete 

obstruction of the aqueduct of Sylvius during 120 minutes after blockade (Fig. 2). 

After that, a bolus of 800 µL of contrast was injected into one cat via a 

intraventricular cannula and an X-ray ventriculogram was obtained immediately. 

Namely, 800 µL is of somewhat smaller volume than a new formed CSF in the 

isolated ventricles supposed to occur during the period of the observation, i.e. 120 

minutes (see Discussion). 

 After the scanning of the X-ray films (ScanMaker X 12 USL, Microtek), the 

ventriculograms were stored in a digital form on a compact disc. Using the ISSA 

program (Vams, Zagreb) for the planimetric measurement, the total area of the lateral 

ventricle was delineated and calculated in mm2. 

 Statistical analysis for all of the results was performed using paired Student’s 

t-test. 
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RESULTS 

In these experiments we explored whether CSF pressure changed in isolated 

ventricles over two hours, whether isolated ventricles changed their size under such 

conditions, how the mock CSF infusion into isolated ventricles affected the CSF 

pressure in the ventricles and cisterna magna, and how the mock CSF infusion into 

the cisterna magna affected the CSF pressure in isolated ventricles. Fig. 3A shows 

that the CSF pressure in isolated brain ventricles (BV) and the cisterna magna (CM) 

do not differ significantly over the 120 min period of aqueductal occlusion. In one cat 

the CSF pressures were measured up to 145 min, and in another  up to 190 min after 

aqueductal occlusion, but neither CSF pressure increase nor transmantle pressure 

gradient was observed.  

A similar phenomenon was observed in control animals without an aqueductal 

occlusion (Fig. 3B). In both cases, small fluctuations of CSF pressures were observed 

over time but no significant difference between the ventricular and cisternal CSF 

pressures developed at any time interval. The fact that the CSF pressure in animals 

with the aqueductal occlusion also remained relatively constant and within a 

physiological range for more than two hours suggests that no net CSF formation took 

place in the brain ventricles. 

 To estimate whether the ventricular size changes when the aqueduct is 

occluded, the cross-sectional area of the lateral ventricle was measured by X-ray 

ventriculogram and planimetry. Immediately after the aqueductal occlusion the cross-

sectional area was 162 ± 7.1 mm2 (mean ± S.E.M.) and 2 hours later the same area 

was 166 ± 7.6 mm2. Thus, the cross-sectional area of the lateral ventricle did not 

change significantly over the 2 hours of aqueductal occlusion (p > 0.1). At the end of 
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one of these experiments a bolus of mock CSF (800 µL) was injected into the lateral 

ventricle and its dilatation was evident. 

In the next group of experiments featuring the occlusion of the aqueduct, we 

imitated the CSF formation in isolated ventricles by infusing mock CSF at an infusion 

rate of 7.0 (n=5) and 13.0 µL/min (n=5) over 20 minutes (Figs. 4A and B). During the 

infusion of mock CSF at a rate of 7.0 µL/min (Fig. 4A), the ventricular CSF pressure 

was increased slightly faster than the cisternal CSF pressure. It should be emphasized 

that a pressure gradient was observed in each experiment although no statistically 

significant difference was established between the ventricular and cisternal pressures. 

However, when mock CSF was infused at a rate 13.0 µL/min (Fig. 4B), the 

ventricular CSF pressure increased more significantly than the cisternal CSF pressure 

so that at the end of the infusion, i.e. in the 20th minute, the ventricular and cisternal 

pressures were 19.9 ± 0.9 (mean ± S.E.) and 14.9 ± 0.9 cm H2O, respectively. After 

the end of the infusion, both CSF pressures returned to the control values during the 

following 15 minutes. Thus, it appears that a transmantle pressure gradient of 5.0 cm 

H2O was generated during the induced CSF formation of 13.0 µL/min. The return of 

ventricular CSF pressure toward the control value indicates that most of the CSF 

added volume was absorbed in isolated ventricles under an increased CSF pressure. 

To explore whether the transmantle pressure gradient can develop in an open 

CSF system, we imitated the CSF formation in the brain ventricles with an open CSF 

system at infusion rates of 7.0 µL/min (n=3; 20 min); 26.0 µL/min (n=4; 20 min); 

52.0 µL/min (n=6; 5 min) and 100.0 µL/min (n=4; 4 min) (Fig.5). An increase in ICP 

was observed at all infusion rates except at 7.0 µL/min, but the transmantle gradient 

pressure between the ventricles and the cisterna magna was not observed at any rate 

of perfusion, not even at 100.0 µL/min.  
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In the group of experiments shown in Table 1, we infused mock CSF in front 

of (in the lateral ventricle) and behind the blockage (in the cisterna magna) in the 

animals with occluded aqueducts during a short time interval (5 min), and monitored 

the pressure in the isolated ventricles and the cisterna magna to test the development 

of a transmantle pressure gradient. When mock CSF was infused into the cisterna 

magna no pressure gradient occurred between the isolated ventricles and the cisterna 

magna at any rate of infusion (7.0; 13.0; 52.0 µL/min). However, during the infusion 

of mock CSF into the lateral ventricle significant changes in CSF pressure did not 

occur only at the rate of 7.0 µL/min, whereas an increased pressure and gradient 

developed at the rates of 13.0 and 52.0 µL/min (p < 0.05) and were rate-dependent; at 

the rates of 13.0 µL/min and 52 µL/min, the mean pressure gradient was 2.5 cm H2O 

and 14 cm H2O, respectively (Table 1).  
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DISCUSSION 

We have designed a set of experiments in order to obtain an acute and 

complete obstruction of the aqueduct of Sylvius and thus measure CSF pressure in 

front of (brain ventricles) and behind (subarachnoid spaces, i.e. cisterna magna) the 

obstruction to detect whether it would lead to an increased CSF pressure in isolated 

ventricles, the development of the transmantle pressure gradient and/or their 

dilatation. The occlusion of the aqueduct in our model was achieved using a cannula 

of the same width as the aqueduct so that the cannula exerted no pressure on the 

adjacent tissue, and local disturbance in the blood circulation or venous pathway was 

avoided. Furthermore, the hole in the occipital bone was hermetically closed to 

prevent CSF leakage from the subarachnoid space and the influence of atmospheric 

pressure. This way, we obtained the first animal model in which a complete 

obstruction was effectively achieved with a normal CSF pressure (Fig. 3).  

Fig. 3A shows that the CSF pressures in the isolated ventricles and cisterna 

magna were practically equal over 120 min, and similar to the pressures recorded 

when the aqueduct was not occluded (Fig. 3B). This experimental data contradicts the 

classical hypothesis according to which the CSF secreted in the ventricles cannot be 

absorbed, due to aqueductal occlusion, at hypothetic CSF absorption sites outside the 

ventricles (i.e. arachnoid villi or perineural sheaths of cranial nerves) so that the CSF 

accumulation in the ventricles should lead to a significant rise in the CSF pressure. 

Actually, according to the data obtained by the perfusion method, CSF secretion in 

cats (Pollay, 1974) ranges from 15 do 25 µL/min. If only the CSF amount occurring 

within the isolated brain ventricles (two lateral and the third ventricle) is taken into 

account, 900-1200 µL of CSF should have been secreted during the two hours when 

the obstruction was present. Since the volume of both lateral ventricles and the third 
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ventricle is about 1300 µL in cats (Levinger and Edery, 1968), the newly emergent 

CSF would be expected to cause a significant increase in CSF pressure. As the 

aqueduct of Sylvius was completely blocked in our model, a question arises as to why 

there was no pressure increase. In view of all the aforementioned facts, the absence of 

the CSF pressure rise in the isolated brain ventricles over time strongly suggests that 

the formation and absorption of CSF are equal, i.e. that there is no net formation of 

CSF in the ventricles. 

To imitate the net formation of CSF in isolated ventricles, mock CSF was 

infused at rates of 7.0 µL/min (Fig. 3A) and 13.0 µL/min (Fig. 4B) over 20 minutes. 

During the mock CSF infusion at a rate of 7.0 µL/min, a somewhat higher pressure 

increase was observed in the isolated ventricles than in the cisterna magna, but no 

statistical difference between these pressures was detected (p > 0.1). However, when 

the infusion rate was 13.0 µL/min, the clear transmantle pressure gradient developed 

and subsequently declined once the infusion was discontinued so that both pressures 

returned toward normal values. The increased pressure in the isolated ventricles 

should speak in favour of the absorption of the CSF volume into the periventricular 

capillaries (Bulat et al. 2008), which would also explain the dissipation of the CSF 

pressure increase after the infusion of the mock CSF was stopped (Fig. 4A and B). 

However, when the aqueduct was eventually opened, the intraventricular infusion of 

mock CSF, even at very high rates (Fig. 5), did not generate the pressure gradient 

since pressure was immediately transmitted to the other CSF compartments as may be 

expected according to Pascals’ law of hydrodynamics. 

The question arises as to how transmantle pressure is transmitted from the 

cortical CSF to the CSF in isolated ventricles in comparison to its transmission in the 

opposite direction. Table 1 shows CSF pressures in the cisterna magna and isolated 
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ventricles under control conditions and 5 min after the intracisternal infusion of mock 

CSF at different rates (7.0, 13.0 and 52.0 µL/min). For comparative purposes, the 

infusion of mock CSF in isolated ventricles at the same rates for 5 minutes is added in 

Table 1. The difference in the pressure transmission is especially evident at the 

infusion rate of 52.0 µL/min during 5 minutes. At that infusion rate into the cisterna 

magna, the pressures in the cisterna magna and isolated ventricles doubled but 

showed no evidence of the transmantle pressure difference. On the contrary, during 

the infusion of mock CSF into the isolated ventricles, intraventricular CSF pressure 

increased much more than that in the cisterna magna, so that the transmantle pressure 

gradient of 14 cm was generated. 

These results indicate that pressure transmission from the isolated ventricles to 

the cortical subarachnoid space is different than the transmission taking place in the 

opposite direction, which may be due to several factors. The fluid pressure transmitted 

from isolated ventricles to the cortical subarachnoid CSF should displace a part of the 

cortical CSF to the spinal CSF due to the distensibility of the spinal dura mater 

(Martins et al., 1972; Tunturi, 1978 and 1980). That way, the cortical CSF pressure 

increase is partly compensated. Furthermore, according to Hakim & Hakim (1984) the 

lines of pressure from the small surface area of isolated ventricles toward the large 

cortical surface area should be dissipated. On the other hand, during the infusion of 

mock CSF into the cisterna magna, the spinal compensation of CSF pressure is 

rapidly exhausted, and the lines of pressure from the large cortical spherical surface 

area toward the centrally located small ventricular surface area should be 

concentrated, so that the pressure is rapidly transmitted from cortical to ventricular 

CSF. This is the probable reason why an increase in cortical CSF pressures is 
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faithfully transmitted into the isolated brain ventricles and so the gradient of 

transmantle pressure is not developed. 

Our X-ray measurements of the cross-sectioned area of the lateral ventricle 

immediately after the aqueductal occlusion and 2 hours later (Fig. 2) did not disclose 

any significant dilatation of the ventricle (see Results). These results are contrary to 

the results of Milhorat and coworkers (Milhorat et al., 1970) in monkeys and dogs 

who used a different experimental approach to induce the isolation of the brain 

ventricles. Namely, they opened the atlantooccipital membrane, introduced a Foley’s 

catheter into the fourth ventricle and filled it with saline (1.0-1.5 mL) to obstruct 

communication of CSF between the aqueduct and the fourth ventricle. Under such 

conditions, dilatation of the ventricles was evident after one hour and rapidly 

progressed after three hours. In our opinion two factors could contribute to the 

dilatation of the isolated ventricles in their case. The filling of Foleys’ catheter with 

saline could have increased the intracranial pressure and impaired venous drainage of 

periventricular capillaries (Hanner et al.1988), which may have caused a rise in the 

pressure and filtration of fluid from these vessels into isolated ventricles, an increase 

in the ventricular pressure and ventricular dilatation. Furthermore, the opening of the 

atlantooccipital membrane and thereafter its reconstitution could have permitted the 

leakage of CSF from the cisterna magna and so artificially decreased the CSF 

pressure in the subarachnoid space, thus creating the pressure gradient between the 

isolated ventricles and subarachnoid space which could have caused the dilatation of 

the isolated ventricles. However, the authors did not measure the CSF pressure in 

either the isolated ventricles or the subarachnoid space, and  so their results should be 

taken with caution. In our model, all the experimental problems in the approach 

adopted by Milhorat et al. 1970 were avoided, since neither CSF pressure changes in 
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the isolated ventricles and the subarachnoid space were observed (Fig. 3A and B), nor 

was the CSF leakage present. In our cats’ model, when we injected mock CSF (800 

µL) with the contrast as a bolus (similar to the fast filling of the balloon of Foleys’ 

catheter in Milhorats’ model) into the isolated ventricles in a volume closely matching 

the volume which is supposed to occur during the period of observation (see 

Experimental procedure and Results), the lateral ventricle evidently dilated. This 

suggests that the size of the brain ventricles could increase very quickly under similar 

conditions. 

The absence of the ventricular dilatation and the absence of CSF pressure 

increase (Fig. 3) in the isolated brain ventricles in our model cannot be easily 

incorporated into the classical hypothesis, but are rather consistent with our recently 

established observations which indicate that the CSF volume accumulation does not 

take place inside the brain ventricles under physiological pressure (Orešković et al., 

2001; Orešković et al., 2002). Thus, the results observed in this study, as well as the 

results of some clinical and experimental studies (Holtzer and de Lange, 1973; 

Stephensen et al., 2002; Orešković et al., 1991) suggest that CSF volume under 

physiological pressure is constant within isolated ventricles, i.e. that the CSF 

formation and absorption in the ventricles are in balance. 

The pressure gradient is often associated with the occurrence of 

hydrocephalus, particularly the acute one, and some authors view it as the 

fundamental mechanism of hydrocephalus development regardless of whether a low 

gradient (Conner et al., 1984; Hakim and Hakim, 1984; Penn, 2005; Levine, 2008) or 

a high gradient is in question (Nagashima et al., 1987; Kaczmarek et al., 1997; Smillic 

et al., 2005). There are, nevertheless, some other authors who believe that CSF 

pressure gradient is not possible within the cranium firmly enclosed by bones, and 
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more so because they did not observe such a gradient either in experiments involving 

animals (Shapiro et al., 1987) or in patients with communicating or non-

communicating hydrocephalus (Stephensen et al., 2002).  

Since the data about the gradient-related results in literature is so 

contradictory, the question arises as to whether the transmantle pressure gradient is 

necessary for the development of hydrocephalus or some other factors may play an 

important role in such a process with occlusion or the stenosis of CSF pathways. It 

was shown in cats that 3 weeks after the application of kaolin into the cisterna magna 

with an obstruction of cervical subarachnoid space, or the stenosis of the aqueduct 

with a plastic screw, a dilatation of ventricles is developed without a rise in the 

ventricular CSF pressure (Miše et al. 1996). Our acute experiments show that the 

occlusion of the aqueduct by itself does not cause the rise of CSF pressure in isolated 

ventricles and their dilatation. As has already been mentioned, we did not prolong our 

experiments because we wanted to avoid tissue reaction to cyanoacrylate glue on the 

tip of the aqueductal catheter or a potential development of CSF communication 

between the isolated ventricles and the fourth ventricle (see Experimental procedure). 

However, during a prolonged occlusion or stenosis of the aqueduct, we would expect 

the development of a ventricular dilatation, probably without an increase in the 

ventricular pressure. This idea is supported by the observation that in patients with 

communicating and non-communicating hydrocephalus the transmantle pressure is 

absent (Stephensen et al., 2002). Furthermore, Holtzer and de Lange (1973) observed 

that after the shunt obstruction the hydrocephalus did not progress in some children 

with communicating and non-communicating hydrocephalus, suggesting that this 

pathological process was compensated. All of this evidence supports the idea that the 

transmantle pressure gradient may not be necessary or instrumental for the 
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development of hydrocephalus, and that some other factors, such as an increase in the 

ventricular CSF pulse pressure (Di Rocco et al., 1978), an impairment of systolic-

diastolic displacement of the CSF with the development of periventricular ischemia 

(Miše et al. 1996), changes in the arterial pulsations (Greitz, 2004 and 2007) and 

venous compliance (Bateman, 2000 and 2003) may play an important role in the 

development of that pathological process. 

All of these potential mechanisms indicate that hydrocephalus develops over a 

prolonged period. We assume that hydrocephalus is essentially a chronic process 

which may change into its acute form under certain conditions (ventricular dilatation 

with a high CSF pressure) due to the appearance of the transmantle pressure gradient. 

Namely, in our model it was clearly shown that the transmantle pressure gradient (and 

potentially quick dilatation of the ventricle) could indeed be developed. Our 

experiments indicate that the transmantle pressure can be generated only when the 

CSF accumulation is increased by infusing mock CSF into isolated ventricles (Fig. 4 

and Table 1). This suggests that, in hydrocephalus, if a significant shift of the brain 

mass, with the stenosis or blockage of communication (e.g., in the aqueduct) occurs 

during the slow ventricular dilatation, it could lead to a biophysical condition similar 

to the one in our model. 

Such observation of an interruption of communication in the CSF system, due 

to the occurrence of the brain mass shift, was described in detail by other authors 

(Williams 1973; Masters et al., 1977). If pathological changes take place, along with 

an interruption of communication before the obstruction, and they result in a CSF 

pressure increase in the ventricles (e.g. bleeding, infection, a tumour, a cysticercous 

cyst), this should lead to appearance of the pressure gradient, an accelerated 

ventricular dilatation and the occurrence of the acute hydrocephalus phase. 
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Previously, Zulch (1958) described many cases of arrested hydrocephalus that 

remained dormant for years, with the aggravation occurring only when some other 

pathological process (infection, bleeding, trauma, etc.) took place within the cranium. 

Finally, our results also proffer an explanation of the aforementioned contradictory 

data, i.e. they explain why some authors have observed a normal pressure before and 

after the occlusion in the so-called obstructive hydrocephalus, while others have noted 

the occurrence of hydrocephalus with the transmantle pressure gradient. 

All of the presented results of our study can hardly be fitted within the 

classical hypothesis of secretion, unidirectional circulation and absorption of CSF 

outside of ventricles. However, our results can be easily explained by the recent 

hypothesis (Bulat and Klarica 2005; Bulat et al. 2008), suggesting that during the 

filtration of water from arterial capillaries under a high hydrostatic pressure, plasma 

osmolytes are sieved (retained) since their permeability across the capillary wall is 

very poor, and so an osmotic counter-pressure is generated opposing water filtration. 

When such hyperosmolar plasma reaches venous capillaries and postcapilary venules 

where the hydrostatic pressure is low, it is instrumental in water reapsorption from 

interstitial fluid (ISF) and CSF (Bulat and Klarica 2005; Bulat et al. 2008). Thus, a 

rapid turnover of water, which constitutes 99% of ISF-CSF volume, continuously 

takes place between plasma and ISF-CSF (Bulat et al 2008). This hypothesis is 

supported by the observation that when 3H-water in physiological saline was slowly 

infused into the lateral ventricle of cats, it was not delivered to cisterna magna but 

rather locally absorbed into the periventricular capillaries and drained via the great 

cerebral vein of Galeni into the confluence of the sinuses (Bulat 1993; Bulat et al. 

2008). Furthermore, when the aqueduct of Sylvius was cannulated the same way as in 

the presented experiments, and the outflow of the cannula positioned at a normal CSF 
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pressure, no outflow of CSF from the isolated ventricles was observed indicating that 

the CSF formation and absorption in those ventricles were in balance (Orešković et al. 

2001 and 2002). A lot of data related to dynamics of CSF have been obtained from 

experiments on cats.  However, we should be careful with generalisation and 

transmission of that data to other species, despite the fact that the physiology of CSF 

in cats is generally explained the same way as in other mammals. Thus, we expect 

that our results obtained on cats will initiate similar experiments on other mammals. 

 

 

CONCLUSIONS 

Our new model of acute aqueductal blockade is sensitive enough to detect a small 

increase of CSF volume in isolated ventricles and in the subarachnoid space. Namely, 

the infusion of mock CSF at rates lower than the previously determined formation rate 

of CSF in cats leads to an increase of CSF pressure in isolated ventricles and the 

development of the transmantle pressure gradient. Since after the occlusion of the 

aqueduct no increase in CSF pressure and the transmantle pressure gradient were 

developed over 2 hours, this indicates that the CSF formation and absorption are in 

balance, i.e. there is no net formation of CSF in isolated ventricles, as has been shown 

previously in our laboratory. Our observation that an aqueductal occlusion by itself 

does not lead to either an increase in CSF pressure or the development of a 

transmantle pressure is in accordance with previous observations in patients with non-

communicating hydrocephalus. 

The transmantle gradient can be developed only during the infusion of mock CSF 

into isolated ventricles. Namely, an increase in the CSF volume and pressure in the 

subarachnoid space does not lead to the development of the pressure gradient in case 
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of an aqueductal occlusion. Thus, our results suggest that, besides occlusion, a 

pathological process should take place in the ventricles causing the CSF volume 

accumulation and transmantle pressure gradient and eventually leading to the acute 

dilatation of brain ventricles. Finally, all of this suggests that an occlusion or a major 

stenosis of CSF pathways by itself cannot cause a sudden onset of hydrocephalus, but 

that during a prolonged period of time they can lead to the development of 

hydrocephalus without an increase in CSF pressure or the transmantle pressure 

gradient.  
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Figure legend: 

 

Figure 1. Scheme of an experimental model showing the position of the cannulas for 

the CSF pressure recording in the aqueduct of Sylvius and the cisterna magna, as well 

as a cannula in the lateral ventricle and “T” connection to the cannula in the cisterna 

magna used for  an intraventricular or intracisternal infusion of the mock CSF, 

respectively. 
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Figure 2. The cats’ ventriculogram 120 min after aqueductal blockage.  Stain steel 

cannula in lateral ventricle is used for application of contrast.  Contrast is seen in 

lateral and third ventricles, and in cannulas. Plastic cannula, which is positioned in 

aqueduct of Sylvius,   causes the complete aqueductal occlusion (there is no contrast 

in the fourth ventricle and subarachnoid space). 
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Figure 3. Cerebrospinal fluid (CSF) pressure (cm H2O) in the brain ventricles (BV; 

black symbols) and the cisterna magna (CM; open symbols) in cats with occluded 

aqueduct (A, n=5) and those without such an occlusion (B, n=5) during 120 min. The 

values are mean ± S.E.M.  
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Figure 4. Cerebrospinal fluid (CSF) pressures (cm H2O) in cats in isolated brain 

ventricles (BV; black symbols) and in the cisterna magna (CM; open symbols) during 

infusion of the mock CSF (the arrows show start and the end of an infusion) into the 

lateral ventricle and thereafter. A. The rate of the infusion was 7.0 µL/min (n=5). B. 

The rate of the infusion was 13.0 µL/min (n=5). The values are mean ± S.E.M. 

*p<0.05 
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Figure 5. Cerebrospinal fluid (CSF) pressures (cm H2O) of control cats in the brain 

ventricles (BV; black symbols) and the cisterna magna (CM; open symbols) during 

infusion of the mock CSF into the lateral ventricle at 7.0 µL/min (n=3); 26.0 µL/min 

(n=4); 52.0 µL/min (n=6) or 100.0 µL/min (n=4) rates of infusion. The values are 

mean ± S.E.M. 
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Table 1. Cerebrospinal fluid (CSF) pressure (cm H2O) in the brain ventricles (BV) 
and in the cisterna magna (CM) in animals with  occluded aqueduct under the control 
conditions (control) and  5 min (5 min) after the beginning a mock CSF infusion (7.0, 
13.0 and 52.0 µL/min) either into the cisterna magna or the lateral ventricle.  
____________________________________________________ 
Infusion into the cisterna magna                                                                   
 
Infusion rate                          CSF pressure (cm H2O)                       
                                                
                                                 control                5 min 
 
 
7.0 µL/min                   BV     10.0±0.8             11.0±0.8     
  (n=3)                         CM     10.0±0.9             11.3±1.0 
 
13.0 µL/min                  BV     10.3±0.2             12.8±0.4 
   (n=4)                         CM     9.3±0.4               12.4±0.4 
 
52.0 µL/min                  BV     10.8±0.8             23.0±1.3 
    (n=4)                        CM     10.3±0.9             22.5±1.2 
 
 
Infusion into the lateral ventricle 
 
Infusion rate                              CSF pressure (cm H2O) 
                                                             
                                                    control                5 min 
 
7.0 µL/min                        BV    9.8±0.8            10.7±1.2              
 (n=5)                                CM   9.7±0.7            10.6±1.1 



 43 

 
13.0 µL/min                      BV    10.3±0.4           12.8±0.5 * 
    (n=5)                            CM    9.6±0.4             10.3±0.5 
 
52.0 µL/min                      BV     11.3±1.5           37.5±0.9 * 
 (n=4)                               CM      9.8±1.2            23.5±3.8 
__________________________________________________ 
* p<0.05 when compared to CM.  
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