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ABSTRACT 

 

Several oncogenes and tumor-suppressor genes are involved either as early or 

late event in thyroid gland carcinogenesis. Human FHIT (fragile histidine triad) gene 

is highly conserved gene whose loss of function may be important in the development 

and/or progression of various types of cancer. We undertook this study to analyze 

FHIT and p53 gene status in different benignant and malignant thyroid tumors. Status 

of these genes as well as intensity of apoptosis were analyzed in tumor tissues by 

molecular genetic methods, immunohistochemistry, and FACS-scan analysis. The 

majority of the malignant thyroid cancers displayed aberrant expression of FHIT 

gene, concominant with p53 gene inactivation. This is followed by low rate of 

apoptosis which may be important in the development and/or progression of thyroid 

cancer. We found higher incidence of p53 mutation and aberrant processing of FHIT 

mRNA in malignant tumors (papillary, follicular, medullary and anaplastic 

carcinomas) and in those tumors with distant metastasis. The growth of p53
-
/FHIT

- 

follicular carcinoma of human origin was much faster in nude mice than p53
+
/FHIT

+ 

follicular carcinoma, and mice had shorter survival rate. Our results show a 

correlation between aberrant FHIT and p53 expression, low rate of apoptosis, and 

malignancy. Concomitant aberration of FHIT gene and p53 could be responsible for 

development of highly malignant types of thyroid cancer and may be considered as a 

prognostic marker for these tumors.  

 

Key words: FHIT, p53, apoptosis, benign thyroid gland lesions, thyroid cancer 
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INTRODUCTION 

 

Thyroid gland tumors exhibit a broad spectrum of neoplastic pathology, 

ranging from benign colloid adenomas to fatal anaplastic carcinomas [1]. Several 

oncogenes (ras, ret, trk) and tumor-suppressor genes (p53, Rb, p16/CDKN2, p21
waf1) 

have been associated with this kind of tumors. Ras oncogene activation is an early 

event and appears to be involved in the genesis of follicular adenoma and carcinoma 

[2]. Three other genetic and/or epigenetic alterations play a role in PTC pathogenesis: 

activating mutation of ras genes, c-met overexpression and downregulation of E-

cadherin in papillary carcinoma. Recently, another major player in papillary 

carcinoma etiopathogenesis has been reported: the BRAF gene. Papillary carcinoma is 

one of the human cancers displaying the highest prevalence of BRAF mutations, 

which occur almost always in the same hot spot (V600E). The finding of a high 

prevalence of BRAF mutations, together with the involvement of ras mutations and 

ret/PTC rearrangements in the majority of papillary carcinomas, points to the crucial 

role played by alterations at the ret/ras/BRAF/MAPK signal transduction pathway in 

the pathogenesis of papillary carcinoma [3]. Generally, mechanisms governing the 

transformation of normal thyroid cells into carcinoma are not well understood. 

Thyroid epithelium is the second most common tissue type (after blood) where fusion 

gene products are critical for the early development of cancer [4]. The ret gene is 

frequently inverted or translocated to form the fusion genes ret/PTCs [5] but those 

genes alone are insufficient to cause cancer and require the simultaneous or 

accumulated activation of multiple gene products to progress from early differentiated 

stages to undifferentiated stages of malignancy. 
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The FHIT gene, located in 3p14.2 is very often inactivated in various types of 

cancer [6-8]. The mechanisms of FHIT inactivations are bialelic deletions, loss of 

heterozygosity, aberrant methylation, while point mutations are rare [9-11]. FHIT is 

encoded at FRA3B, the most frequent fragile site in human genome and FHIT loss is 

a frequent event in carcinogenesis [8]. 

Loss of FHIT protein expression and abnormal FHIT transcripts, including 

deletions of exons and insertions, are found in a high percent in lung and breast 

cancers [6,12-14] as well as in head and neck cancers [15]. FHIT is a putative tumor 

suppressor and belongs to the histidine triad superfamily of nucleotide-binding 

proteins. Re-expression of FHIT in cancer cell lines with FHIT-deletions suppressed 

their ability to form tumors in mice [16]. Analysis of preneoplastic and neoplastic 

lesions from the lungs of smokers has indicated that events that lead to lack of 

expression of FHIT are the earliest and the most frequent identified genetic changes in 

lung cancers [6]. 

Several studies indicate the aberration of FHIT gene in thyroid cancer. McIver 

et al. [17] found abnormal RNA processing as a common event in thyroid neoplasms. 

Zou et al. [2] described defective FHIT gene in both benign and malignant thyroid 

tumors, suggesting that the inactivation of this tumor suppressor gene is likely to be 

an early event in the pathogenesis of some forms of thyroid neoplasms. 

Gene p53 is another important gene in thyroid cancer progression. Some data 

suggest that p53 mutations are involved in thyroid carcinogenesis and may play an 

important role in the malignant transformation of thyroid cells as well as thyroid 

tumor progression [18]. Alteration in p53 contribute to development of metastatic 

forms of follicular thyroid carcinoma [19]. 
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The aim of this study was to determine the prognostic significance of FHIT 

and p53 genes alterations in thyroid lesions. To investigate whether the FHIT gene is 

important in thyroid tumor carcinogenesis, we screened the FHIT gene for alterations 

in different thyroid benign and malignant lesions. We also investigated mechanisms 

of FHIT gene inactivation and correlated our results with status of p53, and intensity 

of apoptosis.  
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Materials and methods  

 

Patients and tissue specimens  

Normal thyroid tissue, benign thyroid lesions (adenomatous goiter, follicular 

adenoma, thyroiditis, Graves disease and Hutrle adenoma) and malignant tumors 

(papillary, follicular, medullary and anaplastic carcinoma) were obtained from 

Department of Head and Neck Surgery, Hospital Ana Costa and Santa Casa da 

Misericordia and School of Medicine, Metropolitan University Santos, Brasil, from 

Clinical Hospital "Sestre milosrdnice", Zagreb, from General Hospital Slavonski 

Brod, from Clinical Hospital Center Zagreb, Department of Otorhinolaryngology and 

Head and Neck Surgery "Salata", Zagreb and from Croatian Tumor Bank [20]. All 

specimens were obtained during routine surgery. The tissue were snap frozen in liquid 

nitrogen shortly after surgical removal and stored at –800C. A part of each frozen 

tumor sample was also embedded in paraffin. Sections of each paraffin block were 

stained with hematoxylin and eosin to confirm the exact tissue analyzed. The study 

included 62 men and 213 women with age range between 18 and 72 years (mean age, 

48.8 years). 

 

Immunohistochemical analysis 

Immunohistochemical detection of FHIT was done using the anti-FHIT rabbit 

polyclonal antibody (1:80 dilution; Zymed, USA). The endogenous  peroxidase 

activity was quenched by methanol containing 3% hydrogen peroxide (Sigma, 

Taufkirchen, Germany). Nonspecific binding was blocked by applying normal rabbit 

serum in a humidity chamber at a dilution of 1:10 for 30 min. Primary rabbit anti-

FHIT antibody was applied overnight at 40C. The secondary antibody (goat to mouse 
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immunoglobulins, DAKO, Denmark) was applied for 1 hour at room temperature. 

Peroxidase-antiperoxidase (PAP rabbit, DAKO) conjugate diluted 1:100 in 

phosphate-buffered saline (PBS) was applied for 45 min at room temperature. The 

slides were stained with diaminobenzidine tetrahydrochloride (DAB, Sigma) and then 

counterstained with hematoxylin.  

Control staining was performed by omitting the primary antibody. As positive 

control in immunohistochemical studies, we used paraffin slides of the lung cancer 

positive for FHIT protein. 

The localization and level of specific immunostaining for each slide was 

evaluated in the whole tumor area. The relative level of specific immunostaining and 

its localization were judged. The relative intensity of cell immunostaining was 

evaluated semiquantitatively, so that no staining was denoted (0), weak staining was 

denoted (1), moderate (2), and strong (3). Each sample was assessed independently by 

two observers. There was a 95 % initial agreement between them. 

  

Loss of heterozigosity analysis 

Tumor DNAs were extracted from frozen tumor tissue obtained during routine 

surgery of patients with thyroid gland lesions and stored at –80°C. All tumor 

specimens were examined by routine hematoxylin-eosin staining to determine the 

proportion of tumor cells in the sample (it had to be more than 80%). Control normal 

DNA was extracted from peripheral blood of patients. Frozen-tissue and blood DNA 

extraction was performed using proteinase K digestion and phenol chloroform 

extraction.  

To analyze LOH at the FHIT gene locus, we used D3S1300 dinucleotide 

repeat and D3S4103 trinucleotide repeat and VNTR analysis as it was described 
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previously [15]. LOH at the p53 gene locus was also anlyzed by VNTR analysis and 

highly informative exogenic (CA)n repeat as it was previously described [21]. 

LOH was defined by visible change in allele:allele ratio in tumors compared 

with matching normal tissue. Allelic deletion of FHIT was judged by a positive LOH 

at any of the two sites. 

 

p53 mutations analysis 

p53 gene mutations analysis was performed by SSCP analysis of all p53 gene 

exons. Mutations were detected by direct sequencing of the relevant genomic DNA 

fragments with aberrant profile in SSCP analysis using CircumVent TM Termal 

Cycle dideoxy DNA sequencing kit (New England Biolabs) according to the 

manufacturer's instructions. Mutations were additionally confirmed using 

fluorescence-based dideoxy sequencing on Applied Byosistems Model 373A 

automated sequencer. 

 

RNA extraction and reverse transcription  

Total RNA from tissues was extracted using RNAzolTMB reagent (Biogenesis, 

Poole, UK) according to manufacturer's protocol. Recovered RNA was assayed by a 

260/280 nm ratio. 

The RT-PCR reaction was performed in a total volume of 40 µl. Total RNA 

(10 µg), 0.4 mM oligo (dT)18 (New England Biolabs), and QH2O up to 24 µl were 

prepared. After incubation for 10 min at 70˚C the mixture was quickly cooled on ice 

and 16 µl of RT reaction mixture containing 8 µl of 5 x First strand buffer 

(Invitrogen)(250 mM Tris HCl pH 8.3, 375 mM KCl, 15 mM MgCl2), 4 µl of 0.1M 

DTT (Invitrogen), 2 µl 10 mM deoxynucleotide mixture (dATP, dTTP, dCTP and 
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dGTP, 10 mM each)(Roche), 2 µl of Rnase inhibitor (40 U/µl)(Roche) was added. 

The reaction proceeded in GeneAmp 2400 (Applied Biosystems) at  45˚C for 2 min. 

Followed by the addition of 400 units of SuperScriptTMRnaseH- reverse transcriptase 

(200 U/µl)(Invitrogen), the reaction was incubated at 45˚C for 60 min. The reaction 

was inactivated at 70˚C for 15 min and at 94˚C for 3 min. The cDNA was used as a 

template in the following PCR reactions. 

 

FHIT gene expression analysis 

The FHIT gene expression analysis was performed by nested RT-PCR method as it 

was described previously [15]. Half of microliter of cDNA was used for PCR 

amplifications with primers 5U2 and 3D2 from FHIT exons 1 and 10, respectively. 

Amplification was carried out in 25 µl volume. The PCR mixture consisted of 0.5 µl 

of cDNA, 2.5 µl of 10xPCR buffer II (Applied Biosystems), 1.5 mM of MgCl2, 50 

µM of each dNTP, 5 pmol of each specific primer, and 1U of Taq DNA polymerase 

(Applied Biosystems). The PCR consisted of an initial denaturation step at 950C for 5 

min, followed by 45 cycles of 30 sec at 960C, 30 sec at 560C, and 45 sec at 720C. 

Final extension lasted 10 min. Two microliters of first PCR products were used for 

nested PCR amplifications with primers 5U1 and 3D1 from FHIT exons 3 and 10, 

respectively. The PCR products were resolved by agarose gel electrophoresis (1.5% 

agarose stained with 0.5 µg/ml ethidium bromide). RT-PCR products were directly 

sequenced after isolation of bands from low melting agarose and purification on 

columns. The sequencing of aberrant PCR products was performed as described 

previously [22]. 

 

Analysis of apoptosis  
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FACScan analysis of apoptosis was performed according to the procedure of 

Sard et al. [23]. Two million cells per sample were fixed with 2% paraformaldehyde 

in PBS, washed twice with TBS (50 mM Tris-HCl in saline solution), and 

permeabilized for 1 min with ice cold acetone. Staining was performed by incubating 

cells for 1 hr at 370 C in 25 µl of TUNEL reaction mixture – In Situ Cell Death 

Detection Kit (Roche, Germany). Samples were analyzed by FACScan (Becton 

Dickinson, Erembodegem-Aalst, Belgium). 

 

Cultivation of primary carcinoma cells 

Surgical specimens were collected into sterile vessels containing RPMI 1640 

medium with 10% heat inactivated fetal calf serum and 5% human serum. Informed 

consent was obtained from all patients from whom surgical specimens were obtained. 

Tumor tissue, without necrosis, was mechanically disrupted, placed into medium, cut 

into small pieces and pressed through a nylon sieve. Cells were introduced into T-75 

flasks with RPMI 1640 medium supplemented with 9% fetal calf serum (FCS), 1% 

calf serum and 5% human serum, 2 mM L-glutamine and 20 mM HEPES. Tumor cell 

cultures were maintained as monolayers. The initial inoculum was about 1.8 x 105 

cells per T-75 flask, and cells were cultivated in RPMI 1640 medium supplemented 

with transferrin (5 µg/ml), selenic acid (5 ng/ml) and HEPES (20 mM). Cells were 

store frozen (2 x 106 cells/ampule) in liquid nitrogen with 70% medium, 20% FCS 

and 10% DMSO. Two primary cultures of follicular carcinoma were established. One 

cell line was p53
-
/FHIT

- and another was p53
+
/FHIT

+. Both cell lines were inoculated 

into nude mice. 

 

Tumorigenicity in nude mice 
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Follicular thyroid carcinoma cells from primary culture were inoculated s.c. 

into dorsal region of 4 seven week old nude mice. The tumor volume for each mouse 

was determined by measuring in two directions and calculated as tumor volume = 

length x (width)2/2. 

 

Statistical analysis  

Descriptive statistics are presented as mean ± standard deviation. For ordinary 

data, descriptive statistics are presented with median and percentiles or as 

percentages. The table was analyzed with Fisher’s exact test. Box-Whisker plots were 

generated in the basic module of the program Statistica. The correlation between 

apoptosis and FHIT gene status was analyzed with the Wilcoxon rank-sum test. 
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Results 

 

FHIT protein expression in thyroid lesions 

 Three hundred and five samples of normal thyroid tissue (30 samples), benign 

(41 samples of adenomatous goiter, 28 of follicular adenoma, 30 of thyroiditis, 27 of 

Graves disease and 25 of Hürtle adenoma) and malignant (45 samples of papillary 

carcinoma, 40 of follicular carcinoma, 28 of medullar carcinoma and 11 of anaplastic 

carcinoma) thyroid lesions were examined for the presence of FHIT protein (Table 1). 

The observed staining pattern was essentially identical in all positive lesions and was 

represented by the weak to strong cytoplasmic staining of normal or tumor cells 

(Figure 1A, 1B, 1C and 1D). 

 Of 30 normal thyroid tissue that were examined 29 (96%) were positive for 

FHIT protein and the majority of samples 23 (76%) showed a moderate expression of 

FHIT protein. Only 6 (20%) samples of normal thyroid tissue showed a strong 

expression of FHIT protein  (Figure 1A) and one sample was negative. 

FHIT protein expression was more frequent in benignant than in malignant 

thyroid lesions. Of 151 benign thyroid lesions that were examined, 142 (94 %) were 

positive for FHIT protein and 66 (44 %) showed a moderate expression of FHIT 

protein (Figure 1B). The majority of adenomatous goiter (41%), follicular adenoma 

(53%), Graves disease (48%) and Hürtle adenoma (44%) samples showed a moderate 

FHIT protein expression. Only in thyroiditis majority of samples (64%) showed 

strong immunohistochemical staining of FHIT protein (Table 1).  

On the contrary, the most malignant thyroid lesions were negative for FHIT 

protein, 59 (48 %) of 124 examined. The majority of follicular carcinoma (50%), 

medullary carcinoma (68%), anaplastic carcinoma (73%) samples showed a negative 
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FHIT protein expression. Only in papillary carcinoma majority of samples (44%) 

showed strong immunohistochemical staining of FHIT protein (Table 1)(Figure 1C 

and 1D).  

 

Loss of heterozygosity  

One hundred sixty and five samples of benign (30 samples of adenomatous 

goiter, 20 of follicular adenoma, 20 of thyroiditis, 22 of Graves disease and 19 of 

Hürtle adenoma) and malignant (11 samples of papillary carcinoma, 17 of follicular 

carcinoma, 15 of medullary carcinoma and 11 of anaplastic carcinoma) thyroid 

lesions were examined for the loss of heterozygosity (LOH) at the FHIT and p53 

genes loci (Table 2, 3 and 4). 

To analyze LOH at the FHIT gene we used two microsatellite markers within 

the FHIT gene, D3S1300 dinucleotide repeat and D3S4103 trinucleotide repeat. 

Normal DNA showed one (homozygous, not informative patients) or two 

(heterozygous, informative patients) bands at both microsatellite markers. Allelic 

deletion of FHIT was judged by a positive LOH at any of the two sites. The LOH of 

FHIT gene was more frequent in malignant than in benignant thyroid lesions. Of 111 

benignant thyroid lesions analyzed, 103 (92.8%) were heterozygous for analyzed loci 

and only 4 (3.9%) demonstrated LOH of the FHIT gene (2 adenomatous goiter, 1 

follicular adenoma and 1 Hürtle adenoma) (Table 2). Of 54 malignant thyroid tumors 

analyzed, 50 (92.6%) were heterozygous and 28 (56%) demonstrated LOH of the 

FHIT gene (Table 3 and 4). Figure 2. represents the example of FHIT gene LOH at 

D3S4103 locus.  

To analyze LOH at the p53 gene we used highly informative exogenic (CA)n 

repeat. The LOH of p53 gene was also more frequent in malignant than in benign 
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thyroid lesions. Of 111 benign thyroid lesions examined, 90 (81.1%) were 

heterozygous and only 1 Hürtle adenoma (1.1%) demonstrated LOH of the p53 gene 

(Table 2). Of 54 malignant thyroid tumors analyzed, 44 (81.5%) were heterozygous 

and 18 (40.9%) demonstrated LOH of the p53 gene (Table 3 and 4). 

LOH of the FHIT gene was more frequent event in malignant thyroid tumors 

than p53 gene LOH. 

 

FHIT gene expression  

 FHIT gene status was examined by RT-PCR analysis for the presence of 

aberrant FHIT transcripts (Tables 2-4). According to the results, tumor samples were 

divided into two categories: FHIT normal and FHIT aberrant (exon missing). The size 

of normal PCR product (normal FHIT gene status) was 814 bp, and the sizes of 

aberrant products were from 350-690 bp (Figure 3). 

 Of 111 benign thyroid lesions analyzed, in 4 (3.6 %) aberrant FHIT gene 

transcripts were found (Table 2). Of 54 malignant thyroid tumors analyzed, in 19 

(35.2 %) aberrant FHIT gene transcripts were found (3 papillary carcinoma, 1 

follicular carcinoma, 7 medullary carcinomas and 8 anaplastic carcinomas) (Table 3 

and 4). Anaplastic carcinomas displayed mutations in FHIT gene in almost all cases. 

Deletions were found in 5 cases and insertions in 3 cases of anaplastic carcinomas. In 

5 malignant tumors FHIT gene status was not analyzed (Table 4). 

 

FHIT gene expression and apoptosis  

 Results of FHIT gene expression in malignant thyroid tumors were correlated 

with the rate of apoptosis in the same tumors. The rate of apoptosis in tumors with 

normal FHIT transcript was between 35% and 68% (mean value 57.4%) and in 
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tumors with aberant transcripts was between 6% and 28% (mean value 16.7%). There 

was statistically significant lower rate of apoptosis in tumors with aberrant FHIT 

transcripts (p<0.01) (Figure 4).  

 

p53 gene mutation analysis 

 Results of p53 gene mutation analysis in benign lesions are summarized in 

Table 2. The majority of benignant thyroid lesions do not display mutation in p53 

gene. Only one follicular adenoma showed point mutation at codon 237 (ATG>ATT) 

resulting in Met>Ile amino acid change. 

Results of p53 gene mutations analysis in malignant thyroid tumors are 

summarized in Tables 3 and 4 and Figure 4. Gene p53 was mutated in one papillary 

carcinoma, single point mutation at codon 237 was present resulting in Met>Ile amino 

acid change, while second tumor showed LOH at p53 locus. Both tumors displayed 

concomitant mutation in FHIT gene and had distant metastases. Mutations in p53 

locus were much more frequent event in two malignant forms of thyroid neoplasms: 

medullary and anaplastic carcinomas. Eight out of 15 medullary carcinomas harbored 

single point mutation or LOH. In two tumors CGA>TGA point mutation at codon 213 

(Arg>Termination) was found and in one TGT>TAT mutation at codon 238 

(Cys>Tyr). 

 Anaplastic carcinomas displayed mutations in p53 gene in almost all cases. 

p53 gene was mutated in 7 tumors (LOH in 2 cases and point mutations in 5 cases) 

(Table 4). The point mutation GTA>GAA at p53 gene codon 193 (His>Leu) was 

found in one anaplastic carcinoma, but in extranodular metastasis of the same tumor 

another mutation, GGC>GGT at the p53 gene codon 248, was found (Figure 5). 
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Anaplastic tumors which harbored mutations in both genes displayed relative 

low percentage of apoptosis but not statistically significant (Figure 6). 

 

Tumorigenicity in nude mice 

Nude mice were inoculated with 2 x 107 cells of primary cultures of two 

folicular carcinoma. Morphological, genetical and immunohistochemical 

characteristics are shown in Table 5. The molecular genetic changes in p53
-
/FHIT

- 

tumor were: LOH and point mutation of p53 gene at codon 234 (TAC>TGC resulting 

with aminoacid mutation Tyr>Cys), exon 5-8 missing together with LOH of FHIT 

gene and low rate of apoptosis (5%). In p53
+
/FHIT

+ tumour p53 and FHIT genes 

were not mutated and apoptosis rate was much higher (39%). p53
-
/FHIT

- tumors 

growth was much faster than p53
+
/FHIT

+ tumors and this difference was statistically 

significant (p<0.01) (Figure 7) and mice survival rate was shorter.  
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Discussion 

Our results showed that FHIT gene is disrupted in thyroid lesions and hence, 

loss of FHIT protein function, together with aberration of p53 gene, increased tumor 

cell proliferation and low rate of apoptosis may be important in the development 

and/or progression of thyroid cancer. Recently we obtained similar results on head 

and neck sqamous cell carcinomas [15]. We also found higher incidence of p53 

mutation and aberrant processing of FHIT mRNA in more advanced undifferentiated 

tumors (in metastatic papillary and follicular, medullary and particularly in anaplastic 

carcinomas). 

The pattern of abnormal FHIT transcript in our present study as well as in Zou 

et al study [2] is similar to those reported in lung, breast and head and neck cancers 

[6,10,15,24]. The majority of aberrant FHIT trancripts lack exons 4-5, 5-7, 5-8 or 4-8. 

In addition we as well as Zou et al. described deletions (between exons 4 and 5) and 

insertions (replacing exons 5-8) [2]. Given that defective FHIT genes were found in 

both benign and malignant thyroid tumors, the innactivation of FHIT gene is likely to 

be an early event in the pathogenesis of some forms of thyroid neoplasms. 

 Truncated FHIT transcripts were observed frequently alongside full length 

transcripts. Sequence analysis of the truncated gene transcripts revealed mainly exon 

skipping and alternate RNA processing events. Generalized defect in transcription 

control and fidelity could have a significant effect on tumor progression, subtly 

altering transcription patterns of many genes simultaneously and potentially creating 

changes in cellular growth [17]. Our results strongly indicate that aberrant mRNA 

processing is more common in more advanced tumors, particularly in anaplastic 

carcinomas.  
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 Aberrant expression of FHIT gene is related to cell proliferation and apoptosis 

[15]. Overexpression of the FHIT gene induces cell apoptosis and alteres cell-cycle 

processes. The apoptotic cell population markedly increased, and cells accumulated in 

S-phase after FHIT transduction. Ji et al. [25] suggested that the FHIT gene, when 

delivered at high efficiency into HI2 199 lung cancer cells by a recombinant 

adenoviral vector, functions as a tumor suppressor gene both in vitro and in vivo.  

Sard et al. [23] transferred FHIT gene into lung cancer cell line H460 lacking FHIT 

protein expression. Gene transfer resulted in reversion of tumorigenicity. A significant 

inhibition of cell growth was observed in transfected cells, and again a high rate of 

apoptosis induced DNA strand breaks in stable clones. FACScan analysis showed an 

apoptotic rate of 44-47% compared with a 15% level in the control H460 cells. Our 

results support clinical relevance of transfection experiments. Observed growth 

inhibitory effect of FHIT re-expressing cells could be related to apoptosis and cell-

cycle arrest and link the tumor-suppressor activity of FHIT protein to its proapoptotic 

function. A role of FHIT protein as a proapoptotic factor is in agreement with the 

structural and biochemical studies indicating that FHIT-Ap3A complex is the native 

FHIT form involved in cellular signaling and apoptosis in human tumors to a decrease 

in Ap3A level [26,27]. 

In our study results of FHIT gene expression in malignant thyroid tumors were 

correlated with the rate of apoptosis in the same tumors. The rate of apoptosis in 

tumors with normal FHIT transcript was between 35% and 68% (mean value 57.4%) 

and in tumors with aberant transcripts was between 6% and 28% (mean value 16.7%). 

There was statistically significant lower rate of apoptosis in tumors with aberrant 

FHIT transcripts (p<0.01). 
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The inactivation of tumor suppressor genes is considered to be a critical event 

in the multi-step genetic process leading to the development of most cancers [28,29]. 

Loss of heterozygosity in FHIT locus is relatively frequent event in thyroid cancer as 

one of the mechanisms for inacivation in this gene. Several authors have investigated 

the incidence of LOH in thyroid neoplasms [30,31]. Zou found the highest incidence 

of LOH in follicular carcinomas, with chromosome 2p and 3p the most frequently 

affected sites. Fine mapping of 3p showed LOH clustered in the telomeric region 

(3p21-ter) as well as at D3S1300 (3p14.2) where FHIT was located [2,32]. LOH in 

3p.14.2 region is highly localized to the microsatellite marker D3S1300, which 

displayed LOH in 73% of informative cases, while neighbouring microsatellite 

markers (D3S1234, D3S1481, D3S1480) had much lower rates of LOH (14-44%). 

This suggests selective allelic deletion in the D3S1300 region [17]. 

LOH of FHIT gene has been associated with both benign and malignant 

thyroid lesions suggesting that FHIT aberration may be an early event in development 

of thyroid cancer [2,33], although some data do not support an association between 

FHIT loss and the stage, histological grade or outcome in human thyroid cancer. Our 

data suggest strong difference in the FHIT aberration between benign and malignant 

thyroid lesions. Benign lesions have much less incidence of FHIT loss in comparison 

to malignant. Follicular carcinomas in our study show relatively high incidence of 

LOH at FHIT loci. 

There is considerable controversy concerning when p53 mutations arise during 

thyroid tumor development [34-36]. The p53 gene has been implicated as a tumor 

suppressor gene whose inactivation by mutation has been noted in a variety of human 

malignancies. Cultured cells harboring p53 mutations are unable to grow when 

transplanted in vivo [37] suggesting that the timing of p53 mutation is a crucial step in 
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tumor progression. Some data have shown that p53 affects proliferative capabilities of 

thyroid cells in vitro [38]. Loss of p53 function could lead to genome destabilization 

promoting development of additional mutations [5]. Alternatively, p53 gene loss may 

lead to deregulation in apoptotic pathways, shifting the balance between the anti-

apoptotic and pro-apoptotic signals.  

Most data suggest that p53 mutations are involved in the transformation of 

thyroid cells and thyroid tumor progression [18,32,38-41]. Mutation of the p53 gene 

are associated with the most aggressive histologic types of thyroid tumors, such as 

undifferentiated carcinoma, and that the alterations of this gene represent a late 

genetic event in human thyroid carcinogenesis [32]. Our results as well as those of 

other authors show that p53 mutations are mainly present in poorly differentiated 

tumors and almost exclusively in those papillary and folicullar carcinomas with 

distant metastases. Inactivation of p53 may confer these neoplasms with aggressive 

properties, and further loss of differentiated functions. Fagin et al. [41] confirmed that 

in both anaplastic tumors and cell lines, examples of heterozygous and homozygous 

p53 mutations were identified. Transition observed in all positive anaplastic thyroid 

carcinoma samples involved CpG mutation. Because the cytosine in the CpG 

dinucleotide on codon 273 has been found to be methylated in vivo, the high mutation 

rate at this site in anaplastic carcinoma could be due to deamination of the methylated 

cytosine and replacement by a thymine. Mutations in different locations of p53 gene 

may have different biological consequences. Several mutations including that of 

codon 273, showed loss of transcriptional activity due to impairment of p53 binding 

to specific DNA recognition sequences [41,42]. Therefore this mutation may confere 

growth advantage to cells harboring mutations of oncogenes. 
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Both p53 and FHIT tumor suppressor gene mutations have been found 

frequently in undifferentiated thyroid carcinomas [2,43,44], but infrequently in 

differentiated thyroid cancers [45] and more commonly in anaplastic and poorly 

differentiated tumors [46]. Asakawa and Kobayashi [47] think that subsequent p53 

mutation may have caused the follicular neoplasm to transform to anaplastic 

carcinoma in some cases. Powell thinks that FHIT and p53 gene loss may occur prior 

to lose of differentiated structures in  advanced cancers. Thus as genes that control 

growth and apoptosis are mutated, the genotype of a given thyroid tumor may not 

reflect the observed phenotype, which may explain the missleading diagnosis 

associated with differentiated and poor thyroid outcome [48,49].  

The mechanisms responsible for the transformation of normal thyroid cells 

into carcinoma are not well understood. To define the role of RET, PTC3 and p53 

genes together with gene FHIT in thyroid cancerogenesis, Powell et al. [5] 

intercrossed RET/PTC3 transgenics with p53
-/- mice. This new strain, RET/PTC3 p53-/-

succumb to rapidly growing and large multilobed thyroid tumors containing mixtures 

of both well and poorly differentiated, highly proliferative follicular epithelial cells. 

Similarly, expression of FHIT protein was reduced in early tumors and undetected in 

older tumors irrespective of tumor histopathology [5]. The analysis of thyroid tumors 

that develop in RET/PTC3 p53-/- or RET/PTC1+ p53-/-  mice [50] have revealed an 

important role of p53 gene loss in the progression of differentiated thyroid cancer into 

an advanced poorly differentiated malignancy. 

In our study, p53
+
/FHIT

+ tumour p53 and FHIT genes were not mutated and 

apoptosis rate was much higher (39%). p53
-
/FHIT

- tumors growth was much faster in 

nude mices than p53
+
/FHIT

+ tumors and this difference was statistically significant 

(p<0.01) and mice survival rate was shorter.  
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In conclusion, our results show a correlation between aberrant FHIT and p53 

expression, low rate of apoptosis, and malignancy. Our results support the hypothesis 

that FHIT gene alteration is involved in development of thyroid gland lesions and that 

aberrant FHIT and p53 genes could be a prognostic marker in highly malignant 

thyroid lesions.  

 

 

 

Acknowledgements 

We thank following pathologists for help with the pathological classification of tumor 

samples: Angelo Sementilli and Fabrio R. Lima from the Hospital Ana Costa, Santos, 

Leda V. Carvalho from  the Hospital Santa Casa da Misericordia, Santos and Walter 

P.G. Decker from the Casa de Saude de Santos.  

 



Kresimir Pavelic et al.  23 

References 

 

1. N.R. Farid, Y. Shi, M.J. Zou, Molecular basis of thyroid cancer, Endocr Rev. 

15 (1994) 202-232. 

2. M. Zou, Y. Shi, N.R. Farid, S.T. Al-Sedairy, M.C. Paterson, FHIT gene 

abnormalities in both benign and malignant thyroid tumours, Eur J Cancer 35 

(1999) 467-472. 

3. M. Sobrinho-Simoes, A. Preto, A.S. Rocha, P. Castro, V. Maximo, E. 

Fonseca, P. Soares, Molecular pathology of well-differentiated thyroid 

carcinomas, Virchows Arch September 28th 2005 1-7 on line  

4. T. Mizuno, S. Kyoizumi, T. Suzuki, K.S. Iwamoto, T. Seyama, Continued 

expression of a tissue specific activated oncogene in the early steps of 

radiation-induced human thyroid carcinogenesis, Oncogene 15 (1997) 1455-

1460. 

5. D. Jr Powell, J.P. Russell, G. Li, B.A. Kuo, V. Fidanza, K. Huebner, J.L. 

Rothstein, Altered gene expression in immunogenic poorly differentiated 

thyroid carcinomas from RET/PTC3p53-/- mice, Oncogene 20 (2001) 3235-

3246. 

6. G. Sozzi, M.L. Veronese, M. Negrini, R. Baffa, M.G. Cotticelli, H. Inoue, S. 

Tornielli, S. Pilotti, L. DeGregorio, U. Pastorino, M.A. Pierotti, M. Ohta, The 

FHIT gene at 3p14.2 is abnormal in lung cancer, Cell 85 (1996) 17-26. 

7. K. Kastury, R. Baffa, T. Druck, M. Ohta, M.G. Cotticelli, H. Inoue, M. 

Negrini, M. Rugge, D. Huang, C.M. Croce, J. Palazzo, K. Huebner, Potential 

gastrointestinal tumor suppressor locus at the 3p14.2 FRA3B site identified by 

homozygous deletions in tumor cell lines, Cancer Res. 56 (1996) 978-983. 

8. M. Ohta, H. Inoue, M.G. Cotticelli, Y. Kastury, R. Baffa, J. Palazzo, Z. 

Siprasvili, M. Mori, P. McCue, T. Druck, The human FHIT gene, spanning the 

chromosome 3p14.2 fragile site and renal carcinoma-associated T(3;8) 

breakpoint, is abnormal in digestive tract cancers, Cell 84 (1996) 587-597. 

9. S. Zöchbauer-Müller, K.M. Fong, A. Maitra, S. Lam, J. Geradts, R. Ashfaq, 

A.K. Virmani, S. Milchgrub, A.F. Gazdar, J.D. Minna. 5’ CpG island 

methylation of the FHIT gene is correlated with loss gene expression in lung 

and breast cancer, Cancer Res 61 (2001) 3581-3585. 



Kresimir Pavelic et al.  24 

10. M. Negrini, C. Monaco, I. Vorechovsky, M. Ohta, T. Druck, R. Baffa, K. 

Huebner, C.M. Croce, The FHIT gene at 3p14.2 is abnormal in breast 

carcinomas, Cancer Res. 56 (1996) 3173-179. 

11. K.M. Fong, E.J. Biesterveld, A. Virmani, I. Wistuba, Y. Sekido, S.A. Bader, 

M. Ahmadian, S.T. Ong, F.V. Rassool, P.V. Zimmerman, G. Giaccone, A.F. 

Gazdar, FHIT and FRA3B 3p14.2 allele loss are common in lung cancer and 

preneoplastic bronchial lesions and are associated with cancer-related FHIT 

cDNA splicing aberrations, Cancer Res. 57 (1997) 2256-2267. 

12. I.I. Wistuba, C. Behrens, A.K. Virmani, G. Mele, S. Milchgrub, L. Girarg, 

J.W. Fondon, H. Garner, B. McKay, F. Latif, M.I. Lerman, S. Lam, High 

resolution chromosome 3p allelotyping of human lung cancer and 

preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous 

sites of 3p allele loss and three regions of frequent breakpoints, Cancer Res. 

60 (2000) 1949-1960. 

13. G. Sozzi, L. Sard, L. De Gregorio, A. Marchetti, K. Musso, F. Buttitta, S. 

Tornielli, S. Pellegrini, M.L. Veronese, G. Manenti, M. Incarbone, A. Chella, 

Association between cigarette smoking and FHIT gene alterations in lung 

cancer, Cancer Res. 57 (1997) 2121-2123. 

14. M. Campiglio, Y. Pekarsky, S. Menard, E. Tagliabue, S. Pilotti, C.M. Croce, 

FHIT loss of function in human primary breast cancer correlates with 

advanced stage of the disease, Cancer Res. 59 (1999) 3866-3869. 

15. K. Pavelić, Š. Križanac, T. Čačev, M. Popović Hadžija, S. Radošević, I. Crnić, 

S. Levanat, S. Kapitanović, Aberration of FHIT gene is associated with 

increased tumor proliferation and decreased apoptosis - clinical evidence in 

lung and head and neck carcinomas, Molecular Med. 7(2001) 442-453. 

16. Z. Siprashvili, G. Sozzi, L.D. Barnes, P. McCue, A.K. Robinson, V. Eryomin, 

L. Sard, E. Tagliabue, A. Greco, L. Fusetti, G. Schwartz, M.A. Pierotti, 

Replacement of FHIT in cancer cells suppresses tumorigenicity, Proc Natl 

Acad Sci USA 94 (1997) 13771-13776. 

17. B. McIver, S.K. Grebe, L. Wang, I.D. Hay, A. Yokomizo, W. Liu, J.R. 

Goellner, C.S. Grant, D.I. Smith, N.L. Eberhardt,  FHIT and TSG101 in 

thyroid tumours: aberrant transcripts reflect rare abnormal RNA processing 

events of uncertain pathogenetic or clinical significance, Clin Endocrinology 

52 (2000) 749-757. 



Kresimir Pavelic et al.  25 

18. M. Zou, Y. Shi, N.R. Farid, p53 mutations in all stages of thyroid carcinomas, 

J Clin Endocrinol Metab. 77 (1993) 1054-1058. 

19. Z Sapi, G Lukacs, M Sztan, J Papp, E Olah. Contribution of p53 gene 

alterations to development of metastatic forms of follicular thyroid carcinoma, 

Diagn Mol Pathol.  4 (1995) 256-260. 

20. R. Spaventi, L. Pečur, K. Pavelić, Z.P. Pavelić, Š. Spaventi, P.J. Stambrook, 

Human tumor bank in Croatia: a possible model for a small bank as a part of 

the future European tumor bank network, Eur J Cancer 30A (1994) 419. 

21. P. Berggren, G. Steineck, J. Adolfsson, J. Hansson, O. Jansson, P. Larsson, B. 

Sandstedt, H. Wijkstrom, K. Hemminki, P53 mutations in urinary bladder 

cancer,  Br J Cancer 84 (2001) 1505-1511. 

22. L. Virgilio, M. Shuster, S.M. Gollin, M.L. Veronese, M.Ohta, K. Huebner, 

C.M. Croce,  FHIT gene alteration in head and neck squamous cell 

carcinomas, Proc Natl Acad Sci USA 93 (1996) 9770-9775. 

23. L. Sard, P. Accornero, S. Tornielli, D. Delia, G. Bunone, M. Campiglio, M.P. 

Colombo, M. Gramegna, C.M. Croce, M.A. Pierotti, G. Sozzi, The tumor-

suppressor gene FHIT is involved in the regulation of apoptosis and in cell 

cycle control. Proc Natl Acad Sci USA 96(1996) 8489-8492. 

24. R.H. Hruban, A.D.M. van Mansfeld, G.J.A. Offerhaus, D.M.J. van Weering, 

D.C. Allison, S.N. Goodman, T.W. Kensler, K.K. Bose, J.L. Cameron, J.L. 

Boss, K-ras oncogene activation in adenocarcinoma of the human pancreas. A 

study of 82 carcinomas using a combination of mutant enriched polymerase 

chain reaction analysis and allele-specific oligonucleotide hybridization, Am J 

Pathol. 143 (1993) 545-554. 

25. L. Ji, B.L. Fang, N. Yen, K. Fong, J.D. Minna, J.A. Roth, Induction of 

apoptosis and inhibition of tumorigenicity and tumor growth by adenovirus 

vector-mediated fragile histidine triad (FHIT) gene overexpression, Cancer 

Res. 59 (1999) 3333-3339. 

26. H.C. Pace, P.N. Garrison, A.K. Robinson, L.D. Barnes, A. Draganescu, A. 

Rosler, G.M. Blackburn, Z. Siprasvili, C.M. Croce, K. Huebner, C. Brenner, 

Genetic, biochemical, and crystallographic characterization of FHIT-substrate 

complexes as the active signalling from of FHIT, Proc Natl Acad Sci USA 95 

(1988) 5484-5489. 

 



Kresimir Pavelic et al.  26 

27. L.L. Kisselev, J. Justesen, A.D. Wolfson, L.Y. Frolova, Diadenosine 

oligophosphates (AP(N)A), a novel class of signaling molecules? FEBS Lett 

427(1998) 157-163. 

28. A.G. Knudson, Antioncogenes and human cancer, Proc Natl Acad Sci USA 90 

(1993)10914-10921. 

29. R.A. Weinberg, Tumor suppressor genes, Science 254 (1991) 1138-1146. 

30. K. Tanimoto, S. Hayashi, E. Tsuchiya, Y. Tokuchi, Y. Kobayashi, K. Yoshiga, 

T. Okui, M. Kobayshi, T. Ichikawa, Abnormalities of the FHIT gene in human 

oral carcinogenesis, Br J Cancer 82 (2000) 838-843. 

31. M.F. Denissenko, A. Pao, M. Tang, G.P. Pfeifer, Preferential formation of 

benzo(α)pyrene adducts at lung cancer mutational hotspots in p53, Science 

274 (1996) 430-432. 

32. R Donghi, A. Longoni, S. Pilotti, P. Michieli, G. Della Porta, M.A. Pierotti, 

Gene p53 mutations are restricted to poorly differentiated and undifferentiated 

carcinomas of the thyroid gland, J Clin Invest. 91 (1993) 1753-1760. 

33. H.W. Chang, M. Aoki, D. Fruman, K.R. Auger, A. Bellacosa, P.N. Tsichlis, 

L.C. Cantley, T.M. Roberts, P.K. Vogt, Transformation of chicken cells by the 

gene encoding the catalytic subunit of PI 3-kinase, Science 276 (1997) 1848-

1850. 

34. P. Komminoth, The RET proto-oncogene in medullary and papillary thyroid 

carcinoma. Molecular features, patophysiology and clinical implications, 

Virchows Archiv 431(1997) 1-9. 

35. G.Z. Qin, J.Y. Park, S.Y. Chen, P. Lazarus, A high prevalence of p53 

mutations in premalignant oral erythroplakia, Int J Cancer 80 (1999) 345-348. 

36. C. Soravia, S.L. Sugg, T. Berk, A. Mitri, H. Cheng, S. Gallinger, Z .Cohen, 

S.L. Asa, B.V. Bapat. Familial adenomatous polyposis-associated thyroid 

cancer: a clinical, pathological, and molecular genetic study,  Am J Pathol. 

154 (1999) 127-135. 

37. S. Battista, M.L. Martelli, M. Fedele, G. Chiappetta, F. Trapasso, G. De Vita., 

C. Battaglia, M. Santoro, G. Viglietto, J.A. Fagin, A. Fusco, A mutated p53 

gene alters thyroid cell differentiation, Oncogene 11 (1995) 2029-2037. 

38. F. Moretti, A. Farsetti, S. Soddu, S. Misiti, M. Crescenzi, S. Filetti, M. 

Androli, A. Sacchi., A. Pontecorvi, p53 re-expression inhibits proliferation 



Kresimir Pavelic et al.  27 

and restores differentiation of human thyroid anaplastic carcinoma cells, 

Oncogene 14 (1997) 729-740. 

39. X. Matias-Guiu, M. Cuatrecasas, E. Musulen, J. Prat, p53 expression in 

anaplastic carcinomas arising from thyroid papillary carcinomas, J Clin 

Pathol. 47(1994) 337-339. 

40. S. Kikuchi, H. Hiraide, S. Tamakuma, M. Yamamoto, Expression of wild-type 

p53 tumor suppressor gene and its possible involvement in the apoptosis of 

thyroid tumors,  Surg Today 27(1997) 226-233. 

41. J.A. Fagin, K. Matsuo, A. Karmakar, D.L. Chen, S.H. Tang, H.P. Koeffler, 

High prevalence of mutations of the p53 gene in poorly differentiated human 

thyroid carcinomas, J Clin Invest.  91 (1993) 179-184. 

42. S.E. Kern, J.A. Pietenpol, S. Thiagalingam, A. Seymour, K.W. Kinzler, B. 

Vogelstein, Oncogenic forms of p53 inhibit p53-regulated gene expression, 

Science 256 (1992) 827-830. 

43. T.J. Chang, T.C. Tsai, Y.L. Wu, H.M. Yang, C.W. Chi, A.H. Yang, C.H. Lee, 

Abnormal transcripts of FHIT gene in thyroid cancer, Oncol Rep. 5 (1998) 

245-247. 

44. Q.Y. Duh, R.F. Grossman. Thyroid growth factors, signal transduction 

pathways, and oncogenes, Surg Clin N Am. 75 (1995) 421-437. 

45. S.K. Grebe, B. McIver, I.D. Hay, P.S. Wu, L.M. Maciel, H.A. Drabkin, J.R. 

Goellner, C.S. Grant, R.B. Jenkins, N.L. Eberhardt, Frequent loss of 

heterozygosity on chromosomes 3p and 17p without VHL or p53 mutations 

suggests involvement of unidentified tumor suppressor genes in follicular 

thyroid carcinoma, J Clin Endocrinol Metab. 1997;82:3684-691 

46. T. Ito, T. Seyama, T. Mizuno, N. Tsuyama, T. Hayashi, Y. Hayashi, K. Dohi, 

N. Namamura, M. Akiyama, Unique association of p53 mutations with 

undifferentiated but not with differentiated carcinomas of the thyroid gland. 

Cancer Res. 52 (1992) 1369-1371. 

47. H. Asakawa, T. Kobayashi, Multistep carcinogenesis in anaplastic thyroid 

carcinoma: a report, Pathology 34 (2002) 94-97. 

48. A. Arezzo, R. Patetta, P. Ceppa, G. Borgonovo, G. Torre, F.P. Mattioli, 

Mucoepidermoid carcinoma of the thyroid gland arising from a papillary 

epithelial neoplasm, Am Surg. 64 (1998) 307-311. 



Kresimir Pavelic et al.  28 

49. M.L. Carcangiu, T. Steeper, G. Zampi, J. Rosai, Anasplastic thyroid 

carcinoma. A study of 70 cases. J Am Clin Pathol.  83 (1985) 135-158. 

50. K.M. La Perle, S.M. Jhiang, C.C. Capen, Loss of p53 promotes anaplasia and 

local invasion in ret/PTC1-induced thyroid carcinomas, Am J Pathol. 157 

(2000) 671-677. 

 

 

 

 

 

 

 

 



Kresimir Pavelic et al.  29 

FIGURE LEGENDS 

 

FIGURE 1. Immunohistochemical analysis of FHIT protein. A. Normal thyroid 

tissue, strong immunostaining (3); B. Adenomatous goiter, moderate immunostaining 

(2); C. Papillary carcinoma, weak immunostaining (1); D. Anaplastic carcinoma, 

negative immunostaining (0). Immunohistochemistry was performed on formalin-

fixed, paraffin-embedded tissue specimens (magnifications: A i B, 250X; C i D, 

1000X). 

 

FIGURE 2. Loss of heterozygosity (LOH) analysis of D3S4103 polymorphic marker 

in thyroid cancer. M, DNA marker pBR322/MspI; N, Normal tissue; T, Tumor tissue. 

1, heterozygous sample with LOH; 2, 3, heterozygous sample without LOH.  

 

FIGURE 3. Expression of the FHIT gene by nested RT-PCR. 

Normal FHIT products in three adenomatous goiters (lines A1, A2 and B2) and one 

follicular adenoma (line B1), 706 bp. Aberant FHIT products in two papillary 

carcinomas (lines A3 and A4), 360 bp, and two anaplastic carcinomas (lines B3 and 

B4), 620 bp. 

 

FIGURE 4. Correlation between FHIT gene status and percent of apoptosis in tumor 

cells. There was statistically significant lower rate of apoptosis in tumors with 

aberrant FHIT transcripts (p<0.01). 

 

FIGURE 5. Direct sequencing of PCR products containing a p53 gene mutations. A. 

The point mutation GTA>GAA at p53 gene codon 193 (His>Leu) was found in one 
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anaplastic carcinoma, but in B. extranodular metastasis of the same tumor another 

mutation, GGC>GGT at the p53 gene codon 248, was found. 

 

FIGURE 6. Percent of apoptosis in tumor cells in two groups of anaplastic 

carcinomas, p53 MUT / FHIT MUT and p53 WT / FHIT MUT. 

 

FIGURE 7. Tumorigenicity of follicular thyroid carcinoma cells from primary 

culture. The p53
-/FHIT

- cells or p53
+/FHIT

+ cells were injected s.c. into nude mice 

and tumor sizes and survival were measured. p53
-
/FHIT

- tumors growth was much 

faster than p53
+
/FHIT

+ tumors and this difference was  statistically significant 

(p<0.01). 

 
TABLE 1. Expression of FHIT protein in benign and malignant thyroid lesions 
 
 
 
 

FHIT protein status – expression (%) 
Thyroid lesion (No. analyzed) 

0 (negative) 1 (weak) 2 (moderate) 3 (strong) 

BENIGNANT THYROID LESIONS     

Adenomatous goiter (41) 3 (7) 8 (20) 17 (41) 13 (32) 

Follicular adenoma (28) 3 (11) 3 (11) 15 (53) 7 (25) 

Thyroiditis (30) 0 (0) 1 (3) 10 (33) 19 (64) 

Graves disease (27) 1 (4) 3 (11) 13 (48) 10 (37) 

Hürtle adenoma (25) 2 (8) 2 (8) 11 (44) 10 (40) 

MALIGNANT THYROID TUMORS     

Papillary carcinoma (45) 12 (27) 3 (7) 10 (22) 20 (44) 

Follicular carcinoma (40) 20 (50) 3 (8) 6 (15) 11 (27) 

Medullary carcinoma (28) 19 (68) 2 (7) 1 (4) 6 (21) 

Anaplastic carcinoma (11) 8 (73) 3 (27) 0 (0) 0 (0) 
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TABLE 2. Status of genes FHIT and p53 in benignant thyroid lesions 
 
 
 

FHIT gene status  p53 gene status BENIGNANT THYROID LESIONS 

(No. analyzed) N/EM/LOH WT/Point mutation/LOH 

Adenomatous goiter (30)   

27/30 (90%) N WT 

1/30 (3%) EM 8 WT 

2/30 (7%) LOH WT 

Follicular adenoma (20)   

18/20 (90%) N WT 

1/20 (5%) EM 5-7 ATG>ATT, Met> Ile (codon 237) 

1/20 (5%) LOH WT 

Thyroiditis (20)   

20/20 (100%) N WT 

Graves disease (22)   

21/22 (95%) N WT 

1/22 (5%) EM 8 WT 

Hürtle adenoma (19)   

17/19 (90%) N WT 

1/19 (5%) N LOH 

1/19 (5%) EM 5-7 + LOH WT 

 
 
N – Normal transcript; EM – exon missing; LOH – loss of heterozygosity; WT – wild type 
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TABLE 3. Status of genes FHIT and p53 in malignant thyroid tumors 
 

Thyroid tumor (No. analyzed) FHIT gene status  p53 gene status 

Patient No. TNM N/EM/LOH WT/Point mutation/LOH 

Papillary carcinoma (11)   

1 T4 N1a M0 LOH ND 

2 T2 N0 M0 LOH ND 

3 T1 N0 MO N WT 

4 T4 N0 M1 EM 8 ATG>ATT, Met>Ile (codon 237) 

5 T2 N0 M1 EM 5-7 + LOH LOH 

6 T1 N1a M0 EM 8 + LOH WT 

7 T2 N0 M0 N WT 

8 T2 N0 M0 LOH WT 

9 T2 N0 M0 LOH ND 

10 T2 N0 M1 LOH LOH 

11 T4 N1a M0 LOH LOH 

Follicular carcinoma (17)   

1 T3 N0 M1 LOH ND 

2 T2 N0 M0 LOH ND 

3 T2 N0 M0 EM 5-7 + LOH ND 

4 T3 N1 M0 N WT 

5 T2 N0 M1 N LOH 

6 T3 N0 M1 LOH LOH 

7 T2 N0 M0 LOH WT 

8 T2 N0 M0 N WT 

9 T3 N0 M1 LOH LOH 

10 T2 N0 M0 ND LOH 

11 T2 N0 M0 ND WT 

12 T2 N0 M0 LOH ND 

13 T2 N0 M1 N LOH 



Kresimir Pavelic et al.  33 

14 T3 N0 M1 N LOH 

15 T2 N0 M1 N LOH 

16 T2 N0 M0 LOH ND 

17 T2 N0 M0 LOH WT 

Medullary carcinoma (15)   

1 T2 N1a M0 LOH ND 

2 T2 N1a M0 LOH ND 

3 T3 N1a M1 N TGT>TAT, Cys>Tyr (codon 238) 

4 T2 N1a M1 EM 8 LOH 

5 T2 N0 M1 N CGA>TGA, Arg>Term (codon 213) 

6 T2 N1a M1 EM 4-8 LOH 

7 T3 N1a M0 EM 4-8 + LOH WT 

8 T3 N1a M0 72 bp insertion WT 

9 T2 N1a M0 EM 5-7 + LOH WT 

10 T3 N1a M1 N CGA>TGA, Arg>Term (codon 213) 

11 T2 N1a M0 LOH LOH 

12 T3 N1a M1 EM 8 LOH 

13 T2 N0 M1 EM 4-8 + LOH WT 

14 T3 N1a M0 N WT 

15 T2 N1a M1 N LOH 

 
N – Normal transcript; EM – exon missing; LOH – loss of heterozygosity; WT – wild type; ND – not 
determined 
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Table 4. Status of genes FHIT and p53, FHIT protein expression, apoptosis and survival in anaplasic carcinomas 
 
 

Patients FHIT gene status 
FHIT protein 

expresson 
p53 gene status Apoptosis Survival 

No. N/EM/LOH 0 (neg), 1 (weak) WT/Point mutation/LOH % months 

1 29 bp deletion + LOH 0 LOH 10 < 10 

2 839 bp deletion + LOH 0 LOH 16 < 10 

3 85 bp deletion 0 

1GTA>GAA, His>Leu (codon 193) 

2GGC>GGT (codon 248) 
7 6 

4 ND 1 CGT>CAT, Arg>His (codon 273) 4 10 

5 180 bp deletion 0 GGC>GGT (codon 248) ND 7 

6 ND 1 WT 28 12 

7 72 bp insertion + LOH 0 CGC>CCC, Arg>Pro (codon 238) 35 10 

8 180 bp deletion 0 WT 5 < 10 

9 9 bp insertion + LOH 1 WT 31 18 

10 839 bp insertion 0 CCT>TCT, Pro>Ger (codon 141) 22 12 

11 ND 0 WT 18 10 
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N – Normal transcript; EM – exon missing; LOH – loss of heterozygosity; WT – wild type; 1 primary anaplastic carcinoma; 2 extranodular metastasis 
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Table 5. Properties of two established thyroid cancer primary cell cultures 
 
 
 

Type of cell 
culture 

Morphology 
Doubling time 

(h) 
Immunohistochemistry 

marker (positive) 
Cytogenetics p53 FHIT Apoptosis (%) 

Growth in nude 
mice 

Follicular 
carcinoma 

polygonal flat-
to-spindle-like 

growing 
adherently as 

monolayer 

24 
cytokeratin 

neurofilament 
vimentin 

complex 
chromosomal 

changes 

Mutation at 
codon 234 

(TAC→TGC), 
LOH 

EM 5-8 
LOH 

5 + fast 

Follicular 
carcinoma 

polygonal flat 
growing 

adherently as 
monolayer 

36 

cytokeratin 
vimentin 
desmin 

neurofilament 

near diploid 
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Figure 1. 
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Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Expression of the FHIT gene by nested RT-PCR. 
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Figure 4. 
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Figure 5. 
 
 
 
 

A. Primary anaplastic carcinoma 
 
 
 
 
 
 

 
 
 
 
 
 
 

B. Extranodular metastasis 
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Figure 6. 
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Figure 7. 
 
 
 
 

 
 
 
 
 
 


