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6

1Dep. of Forest Resource Management, 2Dep. of Wildlife, Fish and Environmental Studies, 3Dep. of

Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Ume̊a, Sweden
4Skogforsk, Uppsala, Sweden 5Know IT, Stockholm, Sweden 6Sogeti, Solna, Sweden

Abstract. Mathematical programming and computers have been used for several decades to solve complex
and long term forest management planning problems. The ever increasing demand on the forest ecosystem
to produce wood and other goods and services poses a corresponding demand on a forest decision support
system. As a response to meet new requirements the development of the Heureka system was initiated at
SLU in 2002 and a first version of the system was released in 2009. Based on a common kernel, a number
of applications of the system for different problem areas and users have been developed. The three main
applications are made up by an interactive stand simulator, a tool for long term forest level planning
containing an optimization module, and a simulator for regional analyses. The system contains models
for growth projections, simulation of treatments, estimation of recreation values and carbon sequestration,
and habitat suitability. It is also possible to make projections under different climate scenarios. In addition
the system includes a number of supporting applications for importing data from different sources, for field
inventory, and for comparing and ranking alternative management plans.
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1 Introduction

Long term forest management planning is an exceed-
ingly complex task. A multitude of possible actions
stretching over time and space will determine what
ecosystem functions and services are delivered. Already
in the 60’s practitioners combined mathematical pro-
gramming and computers to analyse and find solutions
to large scale forest management problems (Martell et al.
1998). While decision support systems (DSS) initially
were focused on timber management, there are now a
great number of forest DSS that cover a wide range of
aspects (Johnson et al., 2007).

Forest DSS can be classified along a large number of
dimensions. One is to differentiate them on stand, forest
or landscape level systems, and systems for regional or
national assessment. Examples of stand level systems
are Silva (Pretzsch et al., 2002), CAPSIS (Courbaud et
al., 2001), and MOTTI (Hynynen et al., 2005). These
systems allow the user to do detailed studies of the re-
sults of different stand management regimes. MELA

(Siitonen et al., 1999), Monsu (Pukkala, 2004), FMPP
(Jonsson et al., 1993) and SGIS (Næsset, 1997) are ex-
amples from Scandinavia of forest DSS that are address-
ing long term planning problems. As is not uncommon
among forest level systems they assist the user by opti-
mizing a forest planning problem. Among systems aim-
ing at regional and national assessment you tend to find
systems that simulate the development of the forest sys-
tem.

The first forest DSS tended to have a rather narrow
problem domain, i.e. they were created for a specific
and well-defined problem. Especially over the last 10
years there has been a tendency that systems are devel-
oped to cover a wider domain (Reynolds et al. 2008).
The Heureka forest DSS (SLU, 2010) follows this trend.
Built on the same platform, Heureka offers support for
stand, forest and regional analysis and planning. From
the same kernel different economic, ecosystem and social
models can be reached, allowing for a problem to be ap-
proached from a number of different angles. Today, the
system can handle economic values, silvicultural treat-
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ments and harvesting, timber production, forest fuels,
biodiversity, recreation, and carbon sequestration.

The Heureka research program spent eight years in
developing the forest DSS before the first version was
released in 2009. The Heureka program had from the
outset the objective of developing software for users both
within and outside the research community. The target
group includes a wide range of different users and needs,
starting from the small-scale forest owner to large com-
panies and authorities, and the system is intended both
for applied planning and research.

The system contains a suite of applica-
tions which are freely available for downloading
(http://heureka.slu.se/wiki): StandWise (figure 1),
an interactive simulator for stand-level analysis and
includes visualisation in 2D and 3D; PlanWise (figure 3
and 4), intended for forest-level planning with a built-
in optimization tool; RegWise for regional scenario
analyses; PlanEval for multi-criteria decision making
of plans generated in PlanWise; PlanStart, the entry
point to the system in which the user imports data from
different sources to a dedicated database; and Ivent, a
new mobile application for carrying out field inventory.

The purpose of this paper is to give a description of
the system as an example of the new generation of multi-
purpose forest DSS that is emerging. It will show how
a system built on modern systems architecture can en-
hance the ability to achieve the adaptability needed to
meet the diverse challenges facing forestry today.

2 System architecture

The purpose of the system architecture was to obtain
a system that should be easy to modify. Especially, it
should be easy to add new models. The system structure
is multi-tier, with three main layers called Base layer,
Domain layer, and Application Layer. Each layer may
be divided into a number of subsystems, each with its
own sub-layers (figure 2).

The domain layer contains a number of subsystems.
For example, one is called ProductionModel and con-
tains growth models, volume functions, mortality mod-
els, and recruitment models. Another subsystem is
called TreatmentModel and contains all models for simu-
lating treatments (silvilculture and harvest operations).

A similar structure is proposed by the IBM Rational
Unified Process, and has been used in frameworks such
as IBM’s San Francisco (Evans, 2004, chapter 4). The
advantage of defining the layers this way, rather than
proposed by for example Microsoft, is that the num-
ber of dependencies between layers are few, while the
pertinence between classes within the same layer, and
especially within the same subsystem, is strong. A low
degree of dependency and a high degree of pertinence are

two cornerstones to obtain a modifiable system (Your-
don, 1979).

A programming standard document was written for
the software developers. Design patterns were adopted,
for example “MVC”, “Façade”, “Dependency Inver-
sion”, “Strategy”, “State”, and “Reflection” (Gamma
et al., 1995).

The system was developed in Visual Studio 2005, us-
ing C# as programming language. The database is Mi-
crosoft SQL Server 2005. All code will soon be migrated
to Visual Studio 2010 and .NET 4.0, which supports
easy implementation of parallel programming for multi-
cored processors. This will speed up computation times,
which are now a limiting factor for solving large prob-
lems. The field application for sample plot inventory
(Ivent) is a Windows Mobile application.

3 Hierarchical forest model

In Heureka, a forest is represented as a hierarchy. At
the top level, the top area node contains one or more sub
area nodes in a recursive way, so there can be an arbi-
trary number of area levels. For example, the top level
may be a region, which may be divided into districts,
which in turn may be divided into municipalities. The
area node at the bottom of the area node tree contains a
number of treatment units. A treatment unit is the low-
est level at which a treatment activity is defined, such as
a thinning. The treatment unit is normally equivalent
to a stand. The treatment unit is in turn divided into a
number of cells. Each cell is linked to a reference unit,
which is usually a sample plot, real or simulated. Each
sample plot contains a number of trees. The separation
of cells and sample plots allows for having a database of
sample plots, with a many-to-one relation, so that differ-
ent cells can share the same sample plot. This is useful
when using imputation such as kNN for simulating or
assigning data when actual measurements data are not
available.

4 Input data

The system was designed to handle “next generation”
data in terms of detailed, tree-level data retrieved partly
from high-resolution laser scanning and other remote
sensing imagery. But models and import functions are
available so that stand-level data, such as mean age and
tree species distribution, is used as input in models that
generate tree lists from theoretical diameter distribu-
tions (adult trees) or height distributions (saplings in
young stands). Data from a number of different sources
can be imported.
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Figure 1: Heureka stand-level management simulator StandWise

5 Handling models

The purpose of an analysis can be exploration (the-
oretical), decision-making (practical), or somewhere in
between. An example of an exploratory question is if
there were no tree mortality, how would that affect eco-
nomic results or habitat suitability for a certain species?
In that case, it is convenient for the user to be able
to turn off the mortality model and run the scenario.
On the other hand, if the purpose is planning and the
results are intended for actual management decisions,
the requirement on prediction accuracy and realism is
more critical. In Heureka, The user must take notice
of whether a certain model is more predicative, or more
explorative.

The majority of models in the system are in one way

or another linked to the development of the trees and
treatments applied. The development of the tree layer
is based on single-tree models for growth, ingrowth, and
mortality. Different models can be selected. For ex-
ample, the user can select from three different growth
models and three different height functions. New mod-
els can easily be added by a programmer, and a new
model will “tell” the system itself that is available.

6 Simulation of management program

alternatives

The treatment program generator is one of the main
components of the system. It automates the computa-
tion of a large set of alternatives individually adapted to
each treatment unit. There are three different manage-
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Figure 2: Overview of the Heureka system architecture.

ment system types on which treatment schedules can be
based on: even-aged, uneven-aged, or unmanaged. The
generation of a set of management schedules for a stand
then consists of (i) selection of management system, (ii)
determining what treatments that should be included
and rules for how these should be applied. For exam-
ple, the rules for the generation of management sched-
ules may be that even-aged management and unman-
aged management should be simulated. In even-aged
management, a setting can be made on how thinning
should be performed (thinning from below or above),
how many times a stand can be thinned during a ro-
tation, and within what limit the rotation length can
be varied. Treatments that can be simulated today are
planting, natural regeneration, sowing, cleaning, thin-
ning, selection felling, final felling, removal of seed trees,
tree retention, and fertilization. In addition, a stand can
be wholly or partly set aside for nature conservation.

Of course, it is almost impossible to define a unique
set of rules for each stand when the number of stands
is large. Therefore, the user can classify the forest into
groups, called forest domains. A forest domain is created
by defining conditions. For example, a forest domain
could be called “Old pine stands”, to which a stand is
classified on the condition that pine volume should be
at least 50 % of the total volume in the stand, and that
the mean age should be at least 100 yrs. In the next
step, settings for what treatments and rules for their
application are associated with each forest domain. A

set of such instructions are stored in a box called control
category. For example, a control category could be called
“Pine management”, and have specific rules for how pine
stands should be managed.

7 Optimization

An optimization tool for formulating and solving lin-
ear and mixed-integer programming problems is built-in
(figure 3). It uses the ZIMPL programming language
(Koch 2004, Koch 2009) to which a graphical user in-
terface with syntax checking and highlighting has been
developed.

Opening size constraints can be automatically gener-
ated resulting in a so called EARM model developed
by Goycoolea et al. (2005). There is a built-in func-
tion to compute adjacency pairs, and enumeration of
harvest blocks (combinations of polygons) that meet a
given maximum opening size tolerance.

8 Biodiversity

To compare different plans or scenarios with respect to
biodiversity, a number of habitat suitability models have
been developed, and are available as a stand-alone GIS
program. The program contains six different habitat
suitability models. Each model represents an indicator
species. Together, these models are proposed to measure
to what degree a certain forest landscape or plan can
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Figure 3: Interface to Heureka’s optimization model, which uses ZIMPL as optimization programming language.

host a variety of species with different ecological niches
(Edenius and Mikusiñski, 2006; Mikusiñski and Edenius,
2006). The GIS program is based on ArcGIS Engine
(ESRI) and requires an ArcGIS runtime license to run.

9 Reports and visualization

A report builder enables creating tables and graphs,
for a single treatment unit or for a whole forest area.
A map viewer (figure 4) is included with which the user
can create thematic maps for those variables and utilities
that the system can make projections for. To be able to
display maps, the user must supply a forest polygon map
in shape file format. The user can make a report or map
for almost any variable that is handled by the system.

In StandWise, a 2D- and 3D-viewer enables the user
to interact with the map (figure 1). Strip roads can
be drawn and trees can be selected for harvesting, or
the user can let the program select trees automatically.
A unique feature of the stand-level visualization is that

the actual stand boundaries are displayed, and there is
also support for visualizing a digital terrain model. The
same data is used in PlanWise, so the user can switch
between the applications, with the same forest area or
stand opened simultaneously.

10 Ranking of plans

PlanWise allows the user to develop and inspect dif-
ferent solutions. Due to the ease by which treatments
can be defined, stands redistributed on forest domains,
and new solutions created with the built-in optimizer,
the user can easily create a large number of alternative
plans. Although plans can be presented in various ways
PlanWise is not ideal for comparing and choosing among
plans. For this purpose PlanEval was developed.

PlanEval is a multi-criteria decision making tool inte-
grated with PlanWise (Korosuo et al. 2011). It shares
the same tools for presentation as PlanWise, meaning
that graphs and maps as well as scalar values can be
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Figure 4: Screenshot from PlanWise showing a map over projected recreation index in a future period.

presented for the user. The integration also means that
all data of the plans created in PlanWise are accessible
in PlanEval.

The decision maker (DM) works through the choice
process through five steps. (1) Once the DM is con-
nected to the database all plans appear on a list. The
DM marks the plans that should be subject to analyses.
(2) The DM defines the hierarchy of objectives and cri-
teria by creating an analog to a catalog structure. The
structure can be of arbitrary width and depth. (3) The
DM defines for each criterion, i.e. for each end node
of the structure, what aspect of the plan is of interest
and how it should be presented. The DM has at the
disposal the entire PlanWise database with hundreds of
items that can be presented as scalars, graphs or maps.
(4) The DM evaluates (i) the relative importance of ob-
jectives and criteria in the hierarchy of objectives and
(ii) evaluates the relative value of the plans for each cri-

terion. The DM can choose between the multi-criteria
methods Analytical Hierarchical Process, AHP (Saaty
1994), and direct point allocation. When evaluating the
plans, data is presented as defined in step (3). (5) When
all the evaluations have been performed the summary re-
sult is presented in a table. It is then possible to analyze
why – what criteria and which evaluation – has rendered
a plan a specific value.

The tool is designed for a dynamic process. The DM
can anytime go back and make changes, whether it be
the plans, the hierarchy, the multi-criteria method or
the item and mode of presentation of a criterion. In
a test of PlanEval by Korosuo et al. (2011) the DM
made use of this capability by redefining the objective
hierarchy. What appeared to be a valuable feature of
the integration with PlanWise was the ease by which
data could be accessed from the database. The test also
indicated that the methodology for how the tool should
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be used to be truly appreciated by a DM needs to be
developed.

11 Concluding remarks

The Heureka system offers opportunities to enter new
research areas or to attack old problems with renewed
confidence. What are the challenges? The list presented
by Martell et al. (1998) could still inspire to give a
few examples. Massive spatial and temporal hierarchies
make it necessary to work through a sequence of stages
with different degree of detail at each stage. Heureka
makes it easy to make plans. Combine this with more
precise and detailed data sources and there are options
for other ways to structure the planning process of larger
forest owners. Heureka makes it possible to simultane-
ously analyze a range of different ecosystem functions
and services, which enables new kinds of regional anal-
yses. For instance, biofuel occurrence and carbon se-
questration can be projected which makes it possible to
couple an analysis to energy models at a national scale.

The forest is surrounded by many stakeholders with
competing objectives. The multi-resource nature of
Heureka makes it an ideal platform for studying how
multi-criteria decision making should be implemented,
also when there are several stakeholders.

Forests are complex biological systems that interact
with complex social systems. This requires that dif-
ferent specialists, such as computer scientists, opera-
tions researchers and specialists in natural and social
sciences, work together. The Heureka project proved
that focusing on a well-defined and dedicated task, such
as providing a multi-resource forest DSS, promoted co-
operation over scientific boundaries. We are confident
that Heureka will continue to foster that spirit.

All software can be downloaded free of charge, see
http://heureka.slu.se/wiki for instructions.
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