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Abstract 

Individual tree crown segmentation from airborne laser scanning (ALS) data often fails to detect all 
trees depending on the forest structure. This paper presents a new method to produce tree lists 
consistent with unbiased estimates at area level. First, a tree list with height and diameter at breast 
height (DBH) was estimated from individual tree crown segmentation. Second, estimates at plot 
level were used to create a target distribution by using a k-nearest neighbour (k-NN) approach. The 
number of trees per field plot was rescaled with the estimated stem volume for the field plot. 
Finally, the initial tree list was calibrated using the estimated target distribution. The calibration 
improved the estimates of the distributions of tree height (error index (EI) from 109 to 96) and 
DBH (EI from 99 to 93) in the tree list. Thus, the new method could be used to estimate tree lists 
that are consistent with unbiased estimates from regression models at field plot level. 
 
 

 
1 Introduction 

Estimates of the size and position of every tree in a 
forest has become a realistic option with the 
commercial development of high-frequency airborne 
laser scanners and high-resolution digital aerial 
cameras. Many modern systems for forest management 
planning will require forest information at the 
individual tree level (Söderberg and Ledermann 2003, 
Backéus et al. 2005, Kärkkäinen et al. 2008) or, at the 
very least, information about the diameter at breast 
height (DBH) distribution (Maltamo et al. 2007). For 
the purpose of forest resource planning, it is also 
essential that the estimates are unbiased. 

Data from airborne laser scanning (ALS) can give 
information about the height and density of the tree 
canopy. Recent developments in ALS technology have 
increased the pulse repetition frequency, making high 
spatial coverage possible without decreased ground 
sampling rate. There are already commercial projects 
in Sweden where high ground sampling rate (≥10 
emitted pulses m-2) ALS data have been retrieved for 
large areas (≥ 100 000 ha) to produce estimates of 
forest variables for the forest industry. The high 
ground sampling rate ALS data can be used to measure 
tree canopy height and shape. By creating a canopy 
height model (CHM) from the ALS data and using an 
algorithm that identifies maxima in the canopy heights 
and divides the tree canopy into tree crown segments 
based on the height, it is possible to segment individual 
tree crowns (Brandtberg 1999, Hyyppä et al. 2001, 
Persson et al. 2002, Holmgren and Wallerman 2006, 
Solberg et al. 2006). Field data from the laser scanned 

area are needed to create statistical models to estimate 
variables relevant to forestry such as tree height, DBH 
and stem volume. A great advantage of single-tree 
methods is that the tree species can be estimated from 
canopy shape (Holmgren and Persson 2004). In 
coniferous-dominated boreal forests, individual tree 
detection methods could provide lists of estimated tree 
stems with associated variables such as position, tree 
height, DBH and tree species, at least for most of the 
dominant and subdominant trees. However, tree crown 
segmentation often fails to detect trees below the 
dominant tree layer or trees standing close together, 
and one tree crown segment may contain more than 
one tree (Persson et al. 2002). Therefore, the output 
from the tree crown segmentation will result in an 
underestimation of the stem density and stem volume. 
Further development of these methods is therefore 
needed to produce unbiased estimates from individual 
tree detection methods for field plots, forest stands or 
any other area unit. 

ALS is used operationally in Scandinavian forestry 
(Næsset and Bjerknes 2001, Næsset 2007). Typically, 
the height distribution of laser returns at georeferenced 
field plots is used to create regression models to 
estimate forest variables (Næsset 2004). A non-
parametric k most similar neighbour (k-MSN) method 
has also been applied to a combination of ALS data 
and aerial photographs (Packalén and Maltamo 2007). 
Once the regression models for plot-level estimates 
have been established with coefficients unique for the 
acquisition, estimates of forest variables can be 
aggregated to stand level (Næsset 2002). These 
methods are usually referred to as area-based methods 
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because the estimates are mean values of forest 
variables in an arbitrary area. Area-based methods 
have become operational in coniferous-dominated 
boreal forests because they produce estimates of mean 
tree height, mean DBH, basal area and stem volume 
with errors of the same size as from accurate field 
inventories (i.e. using several field plots within each 
forest stand) (Næsset and Bjerknes 2001, Næsset et al. 
2005, Maltamo et al. 2006). In addition, lower ground 
sampling rate data could be used than for individual 
tree detection methods, typically about one emitted 
pulse per square metre, which makes area-based 
methods cost-efficient.  

Area-based methods using only low ground sampling 
rate ALS data will, however, not provide information 
about tree species or tree lists. Thus, individual tree 
detection methods are an attractive option for the 
future. To address the underestimation of individual 
tree detection methods, Maltamo et al. (2004) 
combined a theoretical distribution function with the 
tree height distribution of the tree crown segments 
from ALS data and estimated a tree height distribution. 
The estimated distribution was used as a complement 
to predict the number of stems with smaller DBH. The 
tree crown segmentation resulted in an underestimation 
of stem density (root mean square error (RMSE)=74%, 
bias=61%) and stem volume (RMSE=25%, bias=24%), 
but estimation of tree height distribution reduced the 
error (stem density RMSE=49%, bias=6%; stem 
volume RMSE=16%, bias=8%) for field plots with 
approximately 100 trees each (plot size 625-1600 m2). 
Flewelling (2008) estimated the number of trees 
associated with each detected tree crown by using 
probability models, where features derived from the 
crown area were used as independent variables. The 
models produced unbiased estimates at stand level 
even though the proportion of matched tree crown 
segments was only 48% of the total number of 
matched trees and 74% of total matched basal area. 
However, a separate model was needed to handle 
unseen trees, that is trees that had not been matched to 
any of the detected trees. To further improve the 
estimation of individual trees, results from an area-
based method could be used to deduce whether the 
individual tree crown segmentation has identified all 
trees in an area. 

When deriving stand properties from ALS data and 
field plots, the remotely sensed data and field data need 
to be accurately co-registered to reduce errors 
(Gobakken and Næsset 2008), preferably with 
submetre accuracy. However, field data with such 
accurate positions are not always available. There are a 
number of techniques to automatically correct poorly 
co-registered datasets: Dorigo et al. (2010) found 67 % 
of the true field plot positions by searching for the best 
match between an ALS-derived tree crown height 

model and field plot tree positions and heights; 
Korpela et al. (2007) suggested a method that 
combines photogrammetric observations of tree tops 
and field triangulation; and Flewelling (2008) used a 
computer-assisted system and Voronoi tessellations to 
associate trees with individual tree crown segments. A 
method to cross-correlate tree position images for the 
co-registration of field and remotely sensed data has 
also been proposed by Olofsson et al. (2008). This 
technique requires input data from a remote sensing 
individual tree detection method (e.g. Erikson and 
Olofsson 2005). 

The aim of this study was to develop and validate a 
method to produce a list of individual trees, with each 
tree having estimated variables such as tree height, 
DBH and stem volume. The most important 
requirement is that the estimated tree list should 
produce unbiased estimates if estimated tree variables, 
such as stem volume, are aggregated over an area, for 
example a forest stand. The developed method 
combines analysis at the individual tree level and the 
field plot level. The idea is to use the information 
about most individual trees that can be measured 
directly in the high ground sampling rate ALS data and 
calibrate these results with estimates from area-based 
methods at plot level with high accuracy and low bias. 

2 Materials 

2.1 Study area 

The study area is 1989 ha and located in the north of 
Sweden (latitude 64 º 25’ N, longitude 14 º 50’ E) with 
elevation ranging from 325 to 658 m asl, which means 
that the site is located close to the local limit for 
productive forest. The dominating tree species are 
Norway spruce (Picea Abies), birch (Betula spp.) and 
Scots pine (Pinus Sylvestris). 

2.2 ALS data  

The ALS data acquisition was performed on 7 and 8 
August 2007 using a Leica ALS50-II system carried by 
a helicopter. The flying altitude was 600 m above 
ground level and the scan angle ±16°, resulting in a 
scan width of 375 m and a scan density of about 10 
emitted pulses m-2. The first and last returns for each 
pulse were recorded and used in the further analysis. 
Laser returns were classified as ground or non-ground 
using a progressive triangular irregular network (TIN) 
densification method (Axelsson 1999, 2000) in 
TerraScan software (Soininen 2004), and the ground 
returns were used to derive a digital elevation model 
(DEM). Laser canopy height (LCH) was derived by 
subtracting the relevant DEM value from each laser 
return. 
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2.3 Field data 

The area was divided into five strata using an 
existing forest map with associated stand register, and 
a total of 179 field plots were allocated (table 1). 

Different field plot radius and minimum DBH were 
selected for cost-efficiency because of the large 
number of stems in young forest compared to old 
forest.  

Table 1: Summary of field plot data. 

Stratum Selection criterion: 
Age (years) 

Selection criterion: 
Species composition 

Number of field plots Field plot radius (m) Minimum DBH (mm) 

1 25-74 >=60% pine 23 6 40 

2 25-74 >=60% spruce 29 6 40 

3 25-74 mixed forest 33 6 40 

4 ≥75 >=60% spruce 60 8 60 

5 ≥75 >=60% pine or 
mixed forest 

34 8 60 

Stratum Species composition (%) Stem volume (m3 ha-1) Stem density (ha-1) 

Pine Spruce Other Mean 5 
percentile 

95 
percentile 

Mean 5 percentile 95 
percentile 

1 61 25 14 40 28 59 1484 539 2847 

2 0 65 35 49 13 122 1524 654 2493 

3 31 40 29 43 6 132 1299 601 2440 

4 9 74 17 119 41 218 895 540 1450 

5 36 56 8 140 51 261 895 413 1577 

 

The positions of the field plots were measured using a 
Global Navigation Satellite System (GNSS). The 
Forest Management Planning Package (Jonsson et al. 
1993) was used to measure the trees in the field plots. 
Within the field plots, all trees with a DBH greater 
than the minimum DBH were measured using a 
calliper, and the tree species were recorded. The height 
was also measured for a subsample of the trees 
selected randomly with probability proportional to size 
(PPS) sampling proportional to basal area. The 
positions of the trees were registered relative to the 
centre of each field plot by measuring azimuth and 
distance with a compass and ultrasonic device, 
respectively. No position was registered for trees with 
a large inclination, that is with a horizontal distance 
greater than 3 m between the tree top and the position 
at breast height (3% of the total number of trees). The 
tree positions were clustered and the canopy had larger 
gaps than most managed forests in Scandinavia. The 
mean stem density was 1147 stems ha -1 and the mean 
stem volume was 96 m3 ha-1. 

 

 

3 Methods 

The method developed in this study is outlined in 
figure 1. The first step is estimation of individual trees. 
This includes automatic segmentation of individual 
tree crowns from ALS data and field plot matching to 
co-register the coordinates. The number of trees per 
segment is estimated and their height and DBH are 
estimated from regression models. The second step is 
estimation at the field plot level, which includes 
estimation of stem volume from regression, and 
estimation of percentiles of the tree height and DBH 
distributions by using a k-nearest neighbour (k-NN) 
approach. The last step is calibration of the tree list 
from the first step using a target distribution of tree 
height and DBH estimated at the field plot level from 
the second step. This includes removal of excess trees 
and addition of missing trees. 
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Figure 1. An outline of the method used in this study.

 

3.2 Estimation at plot level 

The result is estimates of stem 
density, stem volume, and 

percentiles of DBH and tree 
height for each plot 

3.2.1 Estimation of forest 
variables in field plots 

3.2.2 Estimation of distributions 
by using a k-NN approach 

3.3 Calibration of tree list from 
estimation at field plot level 

The result is a list of individual trees 
with variables consistent with the 

estimation at plot level 

Addition of trees to the list in 
percentiles where the plot 

estimation predicts more trees 

Removal of trees from the list in 
percentiles where the plot 

estimation predicts fewer trees 

3.1 Estimation at  
individual tree level 

The result is a list of tree candidates, 
each with variables diameter, height 

and stem volume 

3.1.1 Individual tree crown 
delineation 

3.1.2 Field plot matching 

3.1.3 Estimation of number of 
trees per segment 

3.1.4 Estimation of  
tree variables 
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3.1 Estimation at individual tree level 

3.1.1 Individual tree crown segmentation.  

Tree crowns were segmented automatically based on 
geometric tree crown models (Holmgren and 
Wallerman 2006). The segmentation process included 
several steps with different raster, all with a cell size of 
0.25 m × 0.25 m. A CHM was created from LCH data 
by setting the raster cell value to the maximum LCH 
value within each raster cell if this value was above a 2 
m height threshold, otherwise the cell was given a zero 
value. The height threshold was used to avoid the 
influence of rocks and low vegetation. Raster cells 
containing no laser returns were set to zero. However, 
some of these raster cells could be in a tree crown. 
Such zero-values within crowns were regarded as noise 
and were therefore filled using a morphological closing 
operation. This involved several steps. First, a binary 
canopy raster was derived from the CHM, in which a 
raster cell was set to one if the corresponding CHM 
raster cell had a value greater than zero, or was left as a 
zero-value otherwise. This binary canopy raster should 
define areas containing crowns. To remove zero-values 
of canopy raster cells located within crowns, closing 
was done with a structure element of 3 × 3 cells. The 
next step was to update the CHM based on the binary 
canopy raster in order to set non-zero values of the 
CHM at crown locations. Zero-values of the CHM 
were updated if the raster cell was at a tree crown 
location according to the binary canopy raster (value = 
one). Neighbour cells with values greater than zero 
within the smallest window needed to cover at least 
one value greater than zero were used to update the 
CHM raster cell. If only one non-zero value was found 
within the window, that value was assigned, otherwise 
the mean was used. 

A correlation raster was created based on both the 
CHM raster and LCH data. The correlation between 
geometric models of tree crowns and LCH values was 
calculated at each raster cell location of the correlation 
raster using generalized ellipsoids of revolution (GER). 
Pollock (1996) introduced the use of GER-based 
models of tree crowns for automatic detection of 
individual trees in aerial images. At each raster cell 
location, the cell value of the correlation raster was set 
to the maximum correlation from tests with several 
GER models. A correlation value was calculated by 
placing the centre of the GER at the cell location, 
setting the height (i.e. the vertical radius of the 
ellipsoid) to the value of the CHM at the cell location, 
and testing a horizontal radius. The tested horizontal 
radii of the GER were 0.5, 0.7,…, 4.0 m. To reduce the 
amount of false trees, a correlation value was only 
calculated for a GER model with a radius to height 
ratio ≥ 0.1 because, based on field experience, a 

smaller ratio would probably model an individual 
branch and not a whole tree. In addition, to avoid 
overfitting, correlation values were only calculated for 
GER models with at least 25 laser returns within the 
radius. 

The correlation raster was smoothed and used for 
segmentation. A starting point, a seed, was placed at 
each raster cell with a CHM value above a 2 m height 
threshold and with a positive correlation value. For 
each seed, the current location was updated by 
changing the position to the position of the neighbour 
cell (eight neighbours) with the highest value. This was 
repeated until the position could not be updated 
because a local maximum was reached. The seeds with 
the final location at the same local maxima defined a 
tree crown segment. A raster cell that had not been 
included in a segment but was enclosed by raster cells 
from the same segment was assigned to the 
surrounding segment. 

The result of the segmentation was tree crown 
segments, each including an individual tree or a group 
of trees. The maximum LCH value (H) within the 
segment was used to estimate the tree height. The area 
of a segment (A) was derived by counting the number 
of raster cells (0.25 m × 0.25 m) of a segment and the 
width (W) of a segment was then derived assuming that 
a tree crown was circular. 

3.1.2 Field plot matching.  

The field plot-measured tree positions had a precision 
of < 1 m but lower accuracy. This was because tree 
positions relative to the plot centre were measured with 
approximately decimetre accuracy but GNSS 
measurements of the plot centre could have a bias of 
several metres depending on the satellite configuration 
and poor receiving conditions of the satellite signals 
due to tree crowns. Therefore, the two coordinate 
systems, that is the local tree positions from the field 
inventory and the global coordinate system of the ALS 
data, needed to be co-registered before the field plot 
trees could be linked to the trees detected from ALS. 
To achieve this, the method by Olofsson et al. (2008) 
was used. In the search process, the estimated field plot 
centre was displaced up to ±20 m in the north-south 
direction and up to ±20 m in the east-west direction, 
giving a search area estimated from the expected 
GNSS error to be large enough to contain the real field 
plot centre. To compensate for possible compass 
errors, the field plot image was rotated 2° between 
each calculation (with minimum/maximum field plot 
rotation end values of ±16°). The standard deviation of 
the tree displacement precision was set to 0.75 m based 
on the precision of the field plot-measured tree 
positions. The size of the raster cell used in the field 
plot matching was set to 0.25 m × 0.25 m based on the 
stem density. 
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3.1.3 Estimation of number of trees per segment.  

Individual tree crown segmentation often produces 
segments that, in reality, contain several trees, which 
causes underestimation of the stem density (Persson et 
al. 2002). However, the shape and size of each tree 
crown segment could contain information about the 
actual number of trees, where, for instance, large and 
elongated segments probably contain several trees. To 
obtain an estimate of the correct stem density, a 
training dataset was used where the number of field-
measured trees for each tree crown segment was 
known.  

Segments close to a field plot boundary usually cover 
ground outside the field plot and it is not known how 
many trees they contain. The models for individual 
trees were therefore based only on segments where the 
centre was located inside a field plot and at least 2 m 
from the boundary, from now on referred to as 
reference segments (figure 2). The estimation of 
variables at the individual tree level did, however, 
include all segments where the centre was located 
inside a field plot. We excluded trees with a large 
inclination from the field data when estimating the 
models at the individual tree level, but included them 
when estimating the models at the field plot level and 
validating the estimated results. 

 
  

Figure 2. Example of polygons from segmentation of ALS 
data and field-measured trees shown as circles with radius 
proportional to DBH. The outer large circle represents the 
field plot and the inner large circle represents the area where 
the centres of the reference segments are located. 

Table 2: Variables used for analysis at the tree crown segment level. Variables 1 and 2 were derived from the laser data and 
variables 3-11 were derived from the field data. 

 Variable Description 

1 W , A is the area of the segment 

2 W/ Ws Ws is the mean of the segment widths within the same 
field plot 

3 N Number of field-measured trees within a segment 

4  Maximum field-measured DBH found within a segment 

5  Sum of field-measured DBH for the rest of the trees 
within a segment 

6  Maximum field-measured tree height found within a 
segment 

7  Mean of field-measured tree heights for the rest of the 
trees within a segment 

8  Maximum field-measured basal area found within a 
segment 

9  Sum of field-measured basal areas for the rest of the trees 
within a segment 

10  Maximum field-measured stem volume found within a 
segment 

11  Sum of field-measured stem volumes for the rest of the 
trees within a segment 

As a first step, mean values for the number of trees per 
segment were estimated for reference segments in the 
training dataset based on the variables Wj and Wj/ Ws,i,  

for each segment j, where Ws,i is the mean of segment 
widths within the same field plot i (table 2). Wj and Wj/ 
Ws,i, were selected because they showed the highest 
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correlation with the number of trees per segment of all 
available measures. The variables were divided into 
eight intervals of equal size. The number of intervals 
was selected based on the data to have a sufficient 
number of trees in each interval. Each reference 
segment was placed in the interval determined by the 
value of Wj and Wj/ Ws,i, for that segment, resulting in 
64 intervals. For each interval, the mean number of 
field-measured trees was calculated. As a second step, 
the number of trees within segments was predicted for 
all segments. To estimate the number of trees inside a 
segment, it was first placed in an interval determined 
by Wj and Wj/ Ws,i for that segment. The number of 
trees  inside the segment was estimated as the mean 
number of field-measured trees for segments in the 
same interval of Wj and Wj/ Ws,i in the training dataset. 

3.1.4 Estimation of tree variables.  

Regression models for the field-measured variables 4-
11 in table 2 were estimated using the reference 
segments. The regression was done separately for 
segments containing different numbers of field-
measured trees. For each segment, the variables 4-11 in 
table 2 were estimated as the weighted mean value of 
the regression result for segments containing different 
numbers of field-measured trees. The result was an 
estimate of variables for the largest tree in each 
segment (i.e. 4, 6, 8, and 10 in table 2) and an estimate 
of variables for the rest of the trees in the segment (i.e. 

5, 7, 9, and 11 in table 2). The latter estimate  was 
divided by the estimated number of trees minus one to 
obtain an estimate for the average tree: 

    (1) 

If the result for the DBH was below the minimum 
value for the field-measured DBH,  was reduced 
iteratively by one until the resulting DBH was above 
the minimum value. If the DBH was below the 
minimum value for the field-measured DBH even for 
one tree, the estimate was discarded. The estimates for 
the largest tree and the rest of the trees in all segments 
formed a list of tree candidates. 

3.2 Estimation at field plot level 

3.2.1 Estimation of forest variables in field plots.  

The mean of LCH, the standard deviation of LCH, 
percentiles of LCH, and the vegetation ratio were 
derived based on the LCH distribution by using 
vegetation returns at the field plot level. The vegetation 
ratio is defined as the number of vegetation returns 
divided by the total number of laser returns. To 
exclude laser returns from below the tree canopy (e.g. 
shrubs and rocks), vegetation returns were defined as 

laser returns with a vertical distance to the DEM > 1 m 
and > 10% of the maximum height within the field plot 
(e.g. Næsset 2002). 

A regression model was used to estimate the stem 
volume per hectare ( ) for each field plot i. To 
investigate the contribution from the available 
variables, different combinations were tested with best 
subset regression, and the following regression model 
was selected: 

(2) 

where  is the LCH 30th percentile,  is the LCH 
95th percentile and  is the vegetation ratio, defined 
as the number of vegetation returns divided by the total 
number of laser returns in a field plot. All variables 
had a p-value≤ 0.06 in the model and the variance 
inflation factor (VIF) was 1.207-4.183. 

The stem density (number of stems per hectare, ) 
was estimated for each field plot i from a regression 
model: 

 (3) 

where  is the standard deviation of LCH,  is 
the LCH 90th percentile and  is the vegetation ratio. 
All variables had a p-value ≤ 0.001 in the model and 
the variance inflation factor (VIF) was below 1.083. 

The distributions of tree heights, DBH and basal area 
have been estimated previously from ALS data. The 
Weibull distribution has been commonly used to 
describe tree size-related distributions such as DBH 
and basal area (Gobakken and Næsset 2004, Maltamo 
et al. 2007). Some results (Breidenbach et al. 2008) 
indicate that distribution methods may fail in strata 
with large gaps in the canopy. Distributions of DBH 
have also been estimated using percentiles with non-
parametric methods (Gobakken and Næsset 2005, 
Maltamo et al. 2006, Bollandsås and Næsset 2007). A 
comparison of a Weibull DBH distribution and DBH 
percentiles showed no significant difference between 
the two validated methods (Gobakken and Næsset 
2005). Maltamo et al. (2006) compared estimated 
DBH percentiles and a Weibull DBH distribution. Of 
these two, DBH percentiles resulted in the best result 
for estimation of stem volume. Studies have also 
shown that the parametric distribution methods are not 
suitable for estimation of multilayered forest (Kangas 
and Maltamo 2000). For the present study, we used 
tree height and DBH percentiles to estimate the target 
distributions because theoretical distributions were not 
suitable for use with the small field plots. 

For each field plot, the DBH percentiles and tree 
height percentiles were estimated from seemingly 
unrelated regression (SUR) models (Zellner1962), 
(table 3), where  is the mean of LCH,  is the 
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standard deviation of LCH, and the other symbols are 
as defined earlier. 

3.2.2 Estimation of distributions by using a k-NN 
approach.  

To estimate the final tree height and DBH 
distributions, we used a k-NN approach. The estimates 
of the stem volume, stem density and tree height and 
DBH percentiles (equations (2) and (3) and table 3) 

 

Table 3. Seemingly unrelated regression models for percentiles of tree height and DBH. 

 SUR model, separate for tree height and DBH percentiles 

 

Percentiles of 
tree height 

  
  
  
  
Percentiles of 

DBH 
 

  

  

  

  

 

were used to identify field plots with similar tree 
height and DBH distributions with the k-NN approach. 
The 10 field plots with the smallest sums of squared 
differences between the values were selected as the 
nearest-neighbour field plots. 

Tree height percentiles and DBH percentiles were 
derived from the field-measured trees in the nearest-
neighbour field plots. The field-measured trees at the 
nearest-neighbour plots were placed in a distribution 
matrix where each row corresponded to a tree height 
percentile class and each column to a DBH percentile 
class (table 4). 

The number of trees  in each matrix cell was 
multiplied by a scaling factor S: 

    (4) 

where  is the stem volume per hectare estimated 
from regression and  is the stem volume per 
hectare from nearest-neighbour field plots. The result 
was an estimated target distribution matrix (table 4),  
where each element corresponded to a tree height 
percentile and DBH percentile, and the value   

corresponded to the number of trees in the field plot in 
each combination of percentiles. The aim was to make 
the sum of the volume of the trees in the target 

distribution matrix consistent with  at the field plot 
level. 

3.3 Calibration of tree list from estimation at field 
plot level 
The aim was to predict tree lists with variables that 
produce unbiased estimates if aggregated over an area. 
Therefore, the list of individual tree candidates from 
the segmentation was calibrated using estimates of 
stem volume and estimates of tree height and DBH 
distributions at the field plot level. First, we calculated 
the distribution of the tree candidates from the 
segmentation by summing the number of tree 
candidates  in each percentile class given by the 
target distribution (table 4). Tree candidates with a 
height or DBH greater than the 100th percentile were 
excluded from the list. For each percentile class, the 
difference between the target distribution (i.e. the 
distribution estimated at field plot level by using the k-
NN approach) and the candidate distribution was 
calculated. If the number of tree candidates was too 
large according to the target distribution, that number 
of trees was excluded from the list.  
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Table 4. The distribution matrices used in the analysis. 

Field distribution Target distribution Tree candidate distribution 

   

   

   

 

If the number of tree candidates was too small, that 
number of trees was added to the list by selecting trees 
with correct height and DBH for the specific percentile 
class at random from the list of field-measured trees in 
the nearest-neighbour field plots. The aim was a list of 
trees with size distribution and stem volume consistent 
with the estimates at the field plot level. The results 
were aggregated to the field plot level, and the 
procedure was repeated 50 times to study the average 
accuracy of the estimation. 

3.4 Validation 

All steps in the method were validated by using leave-
one-out cross-validation. One field plot at a time was 
excluded from the dataset, and the rest of the dataset 
was used as reference data to estimate forest variables 
for the excluded field plot. This was done both for 
estimates at both the individual tree level and the field 
plot level. 

The RMSE and bias for stem volume were calculated 
as follows: 

  (5) 

 

   (6) 

where  is the observed and  is the predicted stem 
volume of field plot i and n is the number of field 
plots. Corresponding expressions were used to 
calculate the RMSE and bias for stem density. 

The error index (EI) for tree height, DBH and basal 
area in each field plot was also calculated. The EI 
measures the proportion of mismatches between two 

histograms based on given class boundaries and is, 
according to Reynolds et al. (1988), defined as: 

   (7) 

where  is the number of estimated trees to histogram 
class j,   is the number of actual trees in class j, m is 
the number of histogram classes, and   is the total 
number of actual trees. 

In this study, the tree height, DBH and basal area 
were divided into ten intervals each. 

4 Results 

4.1 Estimation of number of trees per segment 

Table 5 shows the result for the estimation of the 
number of trees per segment. Most of the segments 
contained one or two trees. The accuracy was high for 
segments that contained one or two trees (0.71 and 
0.65, respectively) and much lower for segments that 
contained three trees or more. The estimation had an 
overall accuracy of 0.60. 

4.2 Estimation of stem volume and stem density 

Estimation at the individual tree level only (table 6, 
methods 1a and 1b) resulted in a large RMSE and a 
large underestimation for stem density (52%, -35% and 
45%, -18%, respectively). Estimation of the number of 
trees per segment with mean values (table 6, method 
1b) resulted in a smaller RMSE and bias both for stem 
volume (34%, -3%) and stem density (45%, -18%) 
than estimation with one tree per tree crown segment 
(36%,-14% and 52%, -35%, respectively) (table 6, 
method 1a).  
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Table 5. Result for the classification of the number of trees in each segment. The columns correspond to the correct number of 
trees per segment according to field data and the rows correspond to the estimated number of trees per segment. 

 

Estimated 
number of 
trees 

Correct number of trees Correct 
fraction 

0 1 2 3 4 5 6 7 8 9 10  

0 0 3 0 1 0 0 0 0 0 0 0 0.00 

1 0 472 52 13 3 2 0 0 0 0 0 0.87 

2 0 166 130 65 28 8 4 1 0 0 0 0.32 

3 0 21 5 4 0 4 4 0 2 0 1 0.10 

4 0 6 12 9 8 0 1 0 2 0 1 0.21 

Correct 
fracetion 0.00 0.71 0.65 0.04 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.60 

Table 6. RMSE and bias for stem volume and stem density estimates, cross-validation results aggregated over field plots, relative 
to the mean values at the field plot level using the methods:  

1a, Estimation at the individual tree level; 1b, Estimation at the individual tree level including estimation of the number of trees 
per segments; 2, Estimation at the field plot level; 3a, Calibration of tree candidate list from results at the field plot level; 3b, 
Calibration of tree candidate list including estimation of the number of trees per segment from results at the field plot level. 

 

Method 

Stem volume Stem density 

RMSE Bias RMSE Bias 

(m3ha-1) (%) (m3ha-1) (%) (ha-1) (%) (ha-1) (%) 

1a. Individual tree level 35 36 -14 -14 595 52 -403 -35 

1b. Individual tree level + estimation of the 
number of trees per segment 

33 34 -2 -3 515 45 -208 -18 

2. Field plot level 35 36 0 0 421 37 -33 -3 

3a. Calibration of 1a with 2 36 37 4 4 421 37 -34 -3 

3b. Calibration of 1b with 2 36 37 2 2 421 37 -36 -3 

 

 
 

 Figure 3. Field-measured stem volume versus stem volume from three of the methods: 1b. Estimation at the individual tree level 
including estimation of the number of trees per segment, 2. Estimation at the field plot level, 3b. Calibration of tree candidate list 
including estimation of the number of trees per segment from results at the field plot level

.

Estimation at the field plot level (table 6, method 2) 
resulted in very little or no bias for stem volume (0%) 
and stem density (-3%). However, these are not 
estimates for individual trees. Calibration of the tree 

candidate list from the estimation at the field plot level 
(table 6, method 3a and 3b) reduced the RMSE and 
bias for stem density (37%,-3% and 37%, -3%, 
respectively). For stem volume, the results were 
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similar for all methods except for estimation at the 
individual tree level with one tree per tree crown 
segment which was an underestimation (-14%). Figure 
3 shows the field-measured stem volume and the 
volume estimated from different methods. The 
estimates are distributed on both sides of the one-to-
one line. The estimates are more accurate for small 
stem volume than for large stem volume. 

4.3 Estimation of tree-size distributions 

The EI was used to validate if the combined method 
improved the estimation of the tree-size distribution 

compared to estimates at the individual tree level. The 
EI, which measures the proportion of mismatches 
between two histograms, decreased after the 
calibration of the tree candidate list with the estimation 
at the field plot level. This was observed for the 
distributions of tree heights (109 to 96), DBH (99 to 
93) and basal area (92 to 89), although the difference 
was most obvious for the distributions of tree heights 
and DBH (table 7). The EI was considerably lower for 
estimation of distributions at the field plot level (82, 76 
and 69, respectively). 

Table 7. Error index for the distributions of tree heights, DBH, and basal area at the field plot level using the methods: 1a, 
Estimation at the individual tree level; 1b, Estimation at the individual tree level including estimation of the number of trees per 
segment;  

2, Estimation at the field plot level; 3a, Calibration of tree candidate list from results at the field plot level; 3b, Calibration of tree 
candidate list including estimation of the number of trees per segment from results at the field plot level. 

 

Method 

Error index 

Tree height DBH Basal area 

1a. Individual tree level 98 97 90 

1b. Individual tree level + estimation of the number of 
trees per segment 

109 99 92 

2. Field plot level 82 76 69 

3a. Calibration of 1 a with 2 96 92 89 

3b. Calibration of 1b with 2 96 93 89 

 

5 Discussion 

The use of individual tree-based methods based on 
ALS data is limited without including methods that 
also model the non-detected trees. The non-detected 
trees cause biased estimates if the individual tree 
estimates are simply aggregated to field plots or forest 
stands. This study has introduced a method to produce 
a list of trees (not just the trees that can be detected by 
finding local maxima in ALS data) using a 
combination of analysis at individual tree level and 
plot level. The method used individual tree detection 
followed by estimation of the number of trees per 
segment. In the next step, target distributions of tree 
heights and DBH at plot level were estimated by using 
a k-NN approach and rescaling with the plot-wise 
volume estimates. These target distributions were used 
to compensate for missing trees in the original 
individual tree detection. 

As expected, the individual tree detection 
underestimated the stem density (Persson et al. 2002, 
Maltamo et al. 2004). For this study area, clustered 
trees made the tree detection task more difficult 
compared to the more evenly distributed trees in most 
managed forests in Scandinavia. However, the 
estimation of the number of trees per segment using 
variables derived from ALS data reduced the negative  

 
 

bias for stem density estimates from -35% to -18%. For 
stem volume, the negative bias of -14% was replaced 
by a weak positive bias by using this method. One 
reason why the bias was not completely eliminated 
may be that individual tree detection underestimates 
the number of trees because a segment cannot be 
defined if there are too few laser returns within a tree 
crown. This usually occurs for small tree crowns. 

The area-based method resulted in an RMSE for 
stem volume at the plot level comparable to previous 
studies in spruce-dominated forest although the relative 
RMSE was larger due to a smaller mean stem volume 
(Maltamo et al. 2006, Næsset 2002, Næsset 2004). One 
error source may be that the field plot size was small. 
Trees standing close to a field plot boundary may have 
a large part of their branches on the other side. The 
proportion of deciduous forest was high compared to 
most boreal forests in Scandinavia, approximately 30% 
in strata 2 and 3, which may also degrade the accuracy 
(Næsset et al. 2004). For other studies, stratification of 
data and the use of separate regression models for 
different strata have improved the accuracy (Næsset et 
al. 2004). The strata definitions are based on, for 
instance, tree species composition and the strata are 
mapped by the interpretation of aerial photographs. For 
this study area, it would have been difficult to use 
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separate regression models based on tree species 
because many field plots contained a mixture of tree 
species. However, the aim of this study was to 
compare the different methods and their results relative 
to each other using the same dataset. 

We used a new technique to first estimate individual 
trees in whole field plots by using a k-NN approach 
and then multiply the number of stems with a scaling 
factor derived from stem volume estimates. This 
technique efficiently eliminated underestimations of 
stem volume and stem density. In several other studies, 
k-MSN approaches have been used to estimate forest 
variables with ALS data as input. One advantage of 
these techniques is that the covariance structure is 
reasonably maintained. For instance, Packalen and 
Maltamo (2007) predicted species-specific stand 
variables by using the k-MSN method without 
producing unrealistic combinations of estimates. For 
the present study, the k-NN approach was used to 
estimate distributions at field plot level because better 
estimates were achieved with this compared to 
regression estimates of percentiles and stem density. 
The elimination of the bias for stem density estimates 
after estimation of tree lists by using a k-NN approach 
and rescaling with the stem volume indicates that the 
applied method is useful to achieve accurate tree lists. 
Thus, there is no bias for stem volume and stem 
density estimates and the covariance structure is 
realistic. 

The estimation of tree height and DBH percentiles at 
the field plot level resulted in a much lower EI than did 
estimation at the individual tree level. After calibration 
of the tree list from the individual tree detection, the EI 
and RMSE increased as compared to the estimates at 
field plot level that defined the target distribution. One 
reason for this is that there are few trees in each field 
plot, and a small error in the estimated tree height or 
DBH will change the histogram. The target distribution 
includes more trees, and small errors will not change 
the histogram. Previous studies have reported EI for 
DBH distributions of 30%-43% in large field plots 
(3121 to 4219 m2) (Gobakken and Næsset 2004) and 
55%-78% in smaller field plots (300-1000 m2) 
(Gobakken and Næsset 2005, Bollandsås et al. 2007). 

6. Conclusions 

In this study, the bias for the estimates of stem volume 
and stem density from individual tree detection was 
reduced by using estimation of the number of trees per 
segment. The best estimates of distributions of tree 
height and DBH were obtained by using a k-NN 
approach with estimated percentiles at field plot level 
as reference variables. The stem volume of the trees in 
the calibrated tree list aggregated to field plot level had 

an estimation error (RMSE and bias) that was similar 
to the direct regression estimates of stem volume. 

The estimates of stem volume at field plot level were 
based on variables derived from the LCH. One 
problem with analysis at the field plot level is that the 
variables are derived from a population of trees and the 
accuracy of the estimates of these variables depends on 
the size of the field plots. For small field plots, tree 
crown segmentation is more flexible. To include 
variables derived from the tree crown segments, such 
as mean values, might improve the regression models. 
A mixture of tree species within field plots is also a 
motivation for tree crown segmentation because tree 
species information may be derived from the tree 
crown segments (Brandtberg et al. 2003, Holmgren 
and Persson 2004, Holmgren et al. 2008). The results 
for the calibrated tree list rely on the estimates from the 
area-based method, and better estimates would 
probably improve the end-result. To validate the 
method, it should be applied to another study area with 
managed boreal forest. To further improve the results, 
other input variables for the k-NN approach could be 
used. The selection method in this study was based on 
the Euclidean distance between field plot level 
estimates of tree height and DBH percentiles. A better 
option may be to use optimized weights for the 
percentiles of LCH. The EI was lower for the tree lists 
calibrated with results from the area-based method. 
Individual tree detection works best for larger trees and 
the area-based method probably adds most information 
for smaller trees. It may be possible to improve this by 
deriving larger trees from individual tree detection and 
calibrating the distribution according to results from 
the area-based method for smaller trees. This is in line 
with the method used by Maltamo et al. (2004). 
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