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Host-Parasite Adaptations and Interactions Between Honey 
Bees, Varroa mites and Viruses 

Abstract 
The ectoparasitic mite, Varroa destructor, has become the largest threat to apiculture 
and honey bee health world-wide. Since it was introduced to the new host species, the 
European honey bee (Apis mellifera), it has been responsible for the near complete 
eradication of wild and feral honey bee populations in Europe and North America. 
Currently, the apicultural industry depends heavily on chemical Varroa control 
treatments to keep managed colonies alive. Without such control the mite populations 
in the colony will grow exponentially and the honey bee colony will succumb to the 
development of overt virus infections that are vectored by the mite typically within 
three years.    

Two unique sub-populations of European honey bees (on Gotland, Sweden and in 
Avignon, France) have adapted to survive for extended periods (over ten years) without 
the use of mite control treatments. This has been achieved through a natural selection 
process with unmanaged mite infestation levels enforcing a strong selection pressure. 
This thesis reveals that the adaptation acquired by these honey bee populations mainly 
involve reducing the reproductive success of the parasite, that the different populations 
may have evolved different strategies to do so, and that this mite-resistant trait is 
genetically inherited. In addition, results of this thesis demonstrate that chemical mite 
control treatments used by beekeepers to inhibit the mite population growth within a 
colony can actually worsen bee health by temporarily increasing the bee’s susceptibility 
to virus infection. 

The results of this thesis highlight the impact that apicultural practices otherwise 
have on host-parasite interactions and the development of disease in this system. 
Possible solutions to the threat of Varroa are discussed such as the potential to breed 
for mite-resistant honey bees, which may offer a sustainable long-term solution, and the 
need for better general beekeeping techniques that reduce the use of chemical 
treatments and inhibit the spread of disease.    
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1 Introduction 
The European honey bee (Apis mellifera; Figure 1) is the most valuable insect 
pollinator globally. An estimated 35 % of human food consumption depends 
on insect pollination and of those crops, over 90 % of them rely on honey bee 
pollination services (Klein et al., 2007). Pollination services for agricultural 
crop production have been estimated at €22 billion in Europe and €153 billion 
world wide (Gallai et al., 2009). Additionally, the value of honey production 
by honey bees in Europe alone is about €140 million. Even though the honey 
bee can be economically valuated for its services and products used by 
humans, the honey bee’s role in sustaining natural plant biodiversity as an 
ecosystem service provider is immeasurable (Biesmeijer et al., 2006; Potts et 
al., 2010). 

Recent catastrophic mass honey bee colony losses are causing overall 
population declines in the United States and Europe. This occurrence is 
drastically threatening the apicultural industry, while causing economic and 
ecological pressures on agricultural crop production and ecosystem services 
respectively. Although a variety of causal agents have been suggested to 
explain these colony losses, recent reports point to the spread of honey bee 
diseases and parasites as an explanation for these mass colony losses 
(Neumann & Carreck, 2010; Ratnieks & Carreck, 2010), which ironically is 
facilitated through intensified management practices of the beekeeping 
industry (Fries & Camazine, 2001). 

The ectoparasitic mite, Varroa destructor, is at the core of colony losses 
worldwide and has been responsible for the nearly complete eradication of wild 
and feral honey bee populations in Europe and North America since it was 
introduced to this new honey bee host species (Guzman-Novoa et al., 2010; Le 
Conte et al., 2010). No other pathogen has had such a large impact on 
beekeeping or honey bee research through the history of apiculture. The mite 
weakens the honey bee’s immunity and their susceptibility to other 
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environmental stressors and vectors lethal honey bee viruses (Boecking & 
Genersch, 2008). Currently, the apicultural industry depends heavily on 
chemical Varroa control treatments to keep managed colonies alive. These 
chemical controls can leave residues in hive products, have negative impacts 
on honey bee health, and remove selective pressures that would be required for 
host or parasite adaptations towards a stable host-parasite relationship (see 
section 3.4). Therefore, there is an urgent need for a sustainable solution to the 
threat of Varroa mites for the economic viability of apiculture and agriculture, 
as well as for honey bee health, conservation and for ecosystem services.  

Understanding the interactions and adaptations between honey bees and 
Varroa mites is an essential first step towards achieving a long-term 
sustainable solution. This thesis presents aspects of host-parasite adaptations 
and interactions by investigating unique honey bee populations that, through 
natural selection, have adapted to be able to survive Varroa mite infestation 
without beekeeping management or Varroa control (Papers I, II & III). 
Further, interactions between honey bees, Varroa mites, the honey bee viruses 
vectored by Varroa, and the chemical Varroa control treatments used by 
beekeepers are explored in this work (Paper IV).  

 
Figure 1. European honey bee (Apis mellifera) pollinating apple blossoms (Photo: B. Locke).  
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2 Honey bees 
This section focuses on the specific features of honey bees that are important 
for understanding the host-parasite system presented in this thesis. For a more 
thorough description of honey bee biology, see for example The Biology of the 
Honey Bee (Winston, 1991). 

2.1 Honey bee societies 

Honey bees are eusocial insects living in perennial colonies with overlapping 
generations, cooperative brood care and a reproductive division of labor. The 
colony consists of three castes: female worker bees which can number between 
15000-50000 depending on the time of year with a peak in the summer and a 
dearth in the winter; a few hundred male drones usually present in the spring; 
and one reproducing female queen bee (Figure 2). All three castes have four 
developmental life stages: egg, larva, pupa, and adult. All except for the adult 
stage occur in single hexagonal wax comb cells built by the bees within the 
nest. These immature stages (collectively referred to as brood) are immobile 
and completely dependent on the care of their sisters for their own survival. 
Due to the haplodiploid system, fertilized eggs become diploid females and 
unfertilized eggs become haploid male drones. Whether a fertilized egg will 
develop into a worker bee or a queen depends on the quality of the food they 
are fed by their sisters during larval development.  

Worker bees rarely reproduce and instead devote their lives to helping raise 
their sisters. While worker bees still have the possibility to lay unfertilized 
eggs, the pheromones of the queen inhibit this behavior within the colony. The 
queen bee lays all the eggs for the colony at a rate of 2000 per day on average. 
The queen mates once in her life with several drones and is able to store all the 
sperm in her spermatheca for her entire life of about three years. Workers and 
drones have a life span of about 6 weeks with the exception of overwintering 
worker bees that can survive up to 8 months in a winter cluster. Drones have 
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only one purpose – to mate with virgin queens. Upon copulation the drone will 
die while any drones that did not manage to mate will be expelled from the 
colony in the autumn.  

The female worker bees perform all the tasks of the colony (except for egg 
laying) based on a temporal division of labor that is loosely dependent on their 
age. Young adult workers begin with cleaning, building comb, and tending to 
brood, at which point they are called nurse bees. After two to three weeks the 
adult workers will begin foraging for pollen to feed their brood, and for nectar 
to concentrate into honey and store in the hive as the winter food supply. 

2.1.1 The superorganism 

Within a honey bee colony there is a reproductive division of labor, with a few 
reproductive individuals (queens and drones) and sterile workers that normally 
do not reproduce themselves but are essential for maintaining colony function. 
These two groups are analogous to the germ cell line and cells of somatic 
tissue of a multicellular organism respectively. Further, the division of labor 
within the worker caste specializing on different tasks is analogous to organ-
like functions. As a single cell will not survive outside a human body and as 
the human body will not die without that cell, so the individual worker bee will 
not survive without the colony and it is not needed to maintain colony survival. 
The honey bee colony is analogous to a multicellular organism and for this 
reason has been referred to as a superorganism (Wilson & Sober, 1989). 

The colony growth and reproductive fitness depend entirely on the 
reproductive efforts of a single queen bee. However, swarming is a process 
where the colony divides into two or more new colonies and produces new 
queens (Figure 2). This event is thus considered a form of colony-level 
reproduction where the colony reproduces as a single unit. Although some 
reproductive fitness may be achieved through the production of drones, 
swarming is fundamental for colony fitness (Moritz & Southwick, 1992). This 
colony-level reproduction makes studying honey bee host-parasite interactions 
and disease epidemiology complex, as they have two levels where selective 
pressures can have an effect – at the individual and the colony level. This is an 
important consideration both for the evolution of pathogen virulence but also 
for the evolution of host adaptations towards disease resistance or tolerance. 

2.1.2 Honey bee epidemiology 

Honey bee parasites and pathogens need to be successful at multiple levels 
within the honey bee superorganism in order to reproduce and disperse to new 
hosts. The first step requires successfully infecting an individual at which point 
the pathogen must then be able to infect additional individuals to assure a 
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sufficient parasite load within the colony. Finally, the pathogen must 
successfully gain access and infect new colonies. The ability of a pathogen to 
advance through these different levels depends on its virulence. Virulence is 
defined as the degree to which the infection decreases the host survival or 
reproduction and is adaptive only so far as to increase pathogen fitness. A 
virulence trade-off can occur when the virulence is either too high that the host 
dies before the pathogen is able to infect a new host, or when the virulence is 
too low that transmission opportunities for the pathogen are lost. The mode of 
disease transmission plays a significant role in the natural selection process of 
host-parasite interactions by influencing the evolution of pathogen virulence 
(Lipsitch et al., 1996). Therefore, adaptations by either the bees or the parasite 
are affected by the availability of different transmission routes.  

For honey bees, horizontal transmission can occur either between honey bee 
colonies or between individuals within the colony. Vertical transmission occurs 
through reproduction, either at the colony level from mother colonies to 
swarms or at the individual level from infected queens to eggs (Fries & 
Camazine, 2001). If vertical transmission is the main route for infections to 
spread, then it can be predicted that less virulent relationships between the host 
and parasite evolve because the pathogens depend on the success of host 
reproduction. However if transmission is mainly via horizontal routes then the 
pathogen can be expected to evolve with higher virulence since opportunities 
exist to spread to other hosts after the host dies and host death may even 
enhance transmission.  

There is often a contrast between individual- and colony-level virulence that 
is seen with many honey bee pathogens and therefore requires that the 
interactions at both levels be studied. Pathogens that are virulent at the 
individual level are often not as virulent at the colony level and vice versa. An 
example of a honey bee pathogen that is not virulent at the individual level but 
can be very virulent at the colony level is deformed wing virus (DWV), 
described in detail in section 3.3.1 of this thesis as well as being the focus of 
Paper IV. In contrast, sacbrood virus (SBV) and the fungal disease 
chalkbrood, are examples of pathogens highly virulent at the individual level 
but not at the colony level.  

2.2 Honey bee disease defense 

The honey bee nest cavity maintains a relatively constant temperature and 
humidity providing an ideal environment for parasites and pathogens. Further, 
with thousands of individuals within a colony having close contact (from 
casual contact to trophallaxis), numerous and diverse opportunities for 
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pathogen transmission are possible. Despite this high potential for disease, the 
individual level honey bee immune response system is not well developed 
compared to other insects and lacks about 30% of the immune system genes 
that are known for various dipteran species (eg. Drosophilia melanogaster, 
Anopheles gambiae; Evans et al., 2006). Instead, honey bees rely largely on 
colony-level adaptive pathogen resistance mechanisms for disease defense, 
which collectively have been coined social immunity (Cremer et al., 2007). 

2.2.1 Social immunity 

Social immunity results from the cooperation of individuals within the colony 
to decrease the risk of disease transmission and has evolved due to selection at 
both the individual and colony level. This type of defense can consist of 
behavioral, physiological and organizational adaptations to prevent the 
entrance, establishment, and spread of disease within the colony. Examples of 
Social immunity are described in detail in the Varroa tolerance and resistance 
host traits section in relation to the work of this thesis (see section 4.2) and are 
investigated in Paper I. 

The reduced innate individual immunity mentioned above suggests that 
honey bees either rely more heavily on colony level adapted behaviors for 
defense since the death by disease of an individual does not greatly effect the 
reproductive success of the colony, or that during their natural evolution they 
have not been exposed to heavy pathogen pressures.  

Although there are a variety of colony level mechanisms such as social 
immunity that limit disease transmission within the colony, there are very few 
described mechanisms where honey bees limit disease transmission between 
colonies (Fries & Camazine, 2001). The lack of adaptive strategies for 
combating horizontal transmission between colonies may demonstrate that 
throughout honey bee evolution this type of disease transmission has not 
induced a strong selection pressure. However, intensified apicultural practices 
are changing the adaptive pressures on honey bees and their diseases.  

2.3 Apiculture 

Apiculture, or the craft of keeping bees, is dated back as far as 2500 BC and 
probably started when bee swarms settled in a basket, clay pot, or tree log that 
could be taken and placed together with other colonies in what we call an 
apiary or a bee garden. Honey bee colonies were historically kept with little 
disturbance until it was time to harvest honey, which in most cases entailed the 
complete destruction of hives. For this reason, swarms were encouraged and 
then collected to provide a next generation of bee colonies. Although hive 
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structures have adapted through the centuries to suit local conditions, relatively 
little change occurred in beekeeping techniques until the invention of the 
movable frame hive in 1852 by Rev L.L. Langstroth where wax combs, still 
built by the bees but in wooden frames, could be individually removed from 
the hive structure (Figure 2). This new hive caused a revolution in beekeeping 
practices as it enabled beekeepers to base their management methods on swarm 
prevention instead of swarm encouragement and eliminated the necessity to 
destroy the hive when harvesting honey. A movable frame hive meant that wax 
comb could be removed to harvest honey and put back into the hive without 
damage. There was no longer a need to keep a close watch over swarming 
colonies since controlling the hives at predetermined dates could now prevent 
swarming. Apiaries could be kept away from the home or transported to forage 
on distant agriculture crops and if a colony was to die, the framed wax combs 
could be kept and stored for re-use in new colonies.  

For a full description of the development of apiculture, see Crane (1983). 

2.3.1 Apiculture and honey bee epidemiology 

Today, apiculture is a threatened industry largely due to the spread of honey 
bee diseases. Paradoxically, apicultural management practices actually 
encourage the spread of disease and increase pathogen virulence by facilitating 
pathogen transmission routes (Fries & Camazine, 2001). For example, 
beekeeping methods often involve preventing natural swarms, which reduces 
colony level vertical transmission opportunities for pathogens that would 
encourage low virulence. When colonies are kept in large numbers in close 
proximity and colony equipment and contaminated hive material is exchanged 
between colonies, horizontal transmission opportunities for pathogens increase 
dramatically encouraging increased virulence. To make matters worse, the 
pesticides and antibiotics that are administered to colonies by beekeepers to 
treat infections have been shown to actually cause additional damage to bee 
health (Haarmann et al., 2002; Johnson et al., 2009; Paper IV). 
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Figure 2. Queen bee (top left); worker bees with Varroa mites on their thoraxes (top middle); 
drone bee between worker bees (top right); swarm of bees hanging in a tree branch (middle left); 
hive frame with wax-sealed honey cells on the periphery surrounding central papery-capped 
worker pupae (middle right); four Langstroth movable frame bee hives (bottom; Photos: B. 
Locke).    
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3 Varroa mites 
The Varroa mite (V. destructor) is an exotic and relatively recent invasive 
species to parasitize the European honey bee (A. mellifera). The mite was first 
described as Varroa jacobsoni Oudemans (Acari: Varroidae) from its natural 
host the Asian honey bee (Apis cerana) in Java, Indonesia (Oudemans, 1904). 
The Varroa mite did not receive much attention by scientists until a host shift 
occurred and it became a pest on A. mellifera in Europe. The mite was first 
found in Europe in 1977 and in North and South America in 1977 and 1971 
respectively (Ruttner & Ritter, 1980). Since then it has spread throughout the 
world with the help of honey bee importations (Oldroyd, 1999; Boecking & 
Genersch, 2008). Today only Australia (Anderson & Trueman, 2000; 
Rosenkranz et al., 2010), Northern Scandinavia (Anon., 2010), and some 
extremely isolated island populations (Tentcheva et al., 2004; Shaibi & Moritz, 
2010) remain free of Varroa. Based on DNA analysis of V. jacobsoni mites 
collected in Asia, genetic variation revealed a “species complex” and a new 
distinct species was described as V. destructor (Anderson, 2000; Anderson & 
Trueman, 2000). This species is the only identified Varroa species parasitizing 
European honey bees and is therefore the only mite species discussed from 
here onward throughout this thesis. Several mitochondrial haplotypes of V. 
destructor have been identified, but only two are able to reproduce in A. 
mellifera colonies: the Korean haplotype which has a world-wide distribution; 
and the Japanese/Thailand haplotype which has only been reported in Japan, 
Thailand, and North and South America, and is considered less virulent than 
the Korean type (de Guzman et al., 1998; de Guzman & Rinderer, 1999; 
Anderson & Trueman, 2000; Garrido et al., 2003; Munoz et al., 2008). By use 
of microsatellite markers, Solignac et al (2003, 2005) found a lack of genetic 
variation within these two haplotypes and considered them to have a quasi-
clonal population structure. 
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3.1 Mite biology 

The Varroa mite is a highly specific brood parasite that relies completely on its 
host’s biology for its own survival and propagation by feeding on bee 
hemolymph and by reproducing in brood cells. A bee independent life stage 
does not exist. This section focuses on the aspects of mite biology that are 
important to this thesis. A more detailed review of mite biology can be found 
in Rosenkranz et al (2010).   

Adult female Varroa mites are reddish brown in color and are flat and oval 
in shape (1.1mm x 1.6mm; Figure 3). They have two distinct life stages: a 
phoretic phase spent on the adult bees traveling within or between colonies; 
and a reproductive phase that occurs in the capped brood cells during honey 
bee pupal development. Generally, mites are significantly more often found in 
brood cells than on adult bees, with up to 90 % of the colony’s mites found 
within the brood (Boot et al., 1993; Rosenkranz & Renz, 2003). Varroa mites 
have a distinct sexual dimorphism and males, being significantly smaller and 
less sclerotized than females, are unable to survive outside the protection of the 
brood cell (Ifantidis, 1983; Figure 3). 

3.1.1 Phoretic phase 

During the phoretic phase the mite can be found between the abdominal 
segments of the adult bee where they can reach the intersegmental membrane 
for feeding. To optimize the ability of finding an appropriate brood cell for 
reproduction, female mites preferentially travel on nurse bees (Kraus, 1993). 
The female mite enters brood cells of 5th instar larvae just before cell capping 
(Boot et al., 1992) and is attracted by chemical volatiles from the larval cuticle 
(Le Conte et al., 1989; Aumeier et al., 2002). Mite infestation occurs at a 
higher frequency in drone brood than in worker brood (Fuchs, 1990). Possible 
explanations for this occurrence are:  

 
 Drone pupae require three days more for development, which could 

allow the maturation of more mite offspring,  
 Nurse bees more frequently visit drone larvae, thereby increasing the 

opportunity for mite infestation (Calderone & Kuenen, 2003),  
 Drone larvae produce slightly higher quantities of certain esters involved 

in larvae attractiveness to mites, and over a longer time (Le Conte et al., 
1989; Calderone & Lin, 2001).  

3.1.2 Reproductive phase 

During the reproductive phase, the female mite synchronizes her egg laying 
with the development of the bee pupa. Oogenesis is triggered by volatiles of 
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the host larva (Garrido & Rosenkranz, 2004) and the first egg is laid 
approximately 60-70 hours after cell capping (Ifantidis, 1983). The first egg is 
normally unfertilized and develops into a male since Varroa are haplodiploid. 
The mother mite continues to lay fertilized eggs at 30-hour intervals that 
develop into female offspring (Rehm & Ritter, 1989; Martin, 1994). A 
normally reproducing mother mite is able to lay up to five female eggs in 
worker brood and up to six female eggs in drone brood (Martin, 1994, 1995). 
The mite offspring develop through proto- and deutonymph mobile stages and 
proto- and deutochrysalis immobile stages (Figure 3). The developmental time 
takes about 5.8 days for females and 6.6 days for males from hatching until the 
adult molt (Ifantidis, 1983; Rehm & Ritter, 1989). Both female nymphal stages 
and males are soft-bodied mites lacking sclerotized chelicera strong enough to 
pierce the pupa cuticle to feed and so rely completely on their mother to 
provide a feeding site on the developing bee during their development (Donzé 
& Guerin, 1994). Mating takes place within the cell between adult brothers and 
sisters (Donzé et al., 1996). Only mature adult female mites will survive 
outside the brood cell and immature female mites, along with the adult male, 
will die when the bee emerges.  

 
Figure 3. Female Varroa mite developmental stages with an adult male mite to the right (Photo: 
B. Locke).  
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Mite reproductive success is defined as the ability of a mother mite to produce 
at least one viable, mature, mated female offspring before the developing bee 
pupa hatches as an adult. Successful mite reproduction therefore requires the 
maturation of at least two eggs laid by the mother mite inside the brood cell: a 
male mite and a sister female mite, who must mate before bee eclosion. Mating 
takes place immediately after the last molt of the female offspring. All mature 
mated daughter mites will enter the colony’s mite population along with their 
mother to find a new brood cell for reproduction. A mother mite that lays no 
eggs, lays only one egg, produces no male offspring, or begins laying eggs too 
late in relation to larval development, will not contribute any progeny to the 
mite population.  

The reproductive rate of the mite in European honey bee colonies is 
approximately 1.45 in worker brood (Martin, 1994) and 2.2 in drone brood 
(Martin, 1995). Because of these rates and the ability of mother mites to 
reproduce multiple times during their life span (Fries et al., 1994), the mite 
population growth can be exponential. 

3.2 Effects of Varroa on bee health 

By feeding on bee hemolymph, the mite is a significant stressor on honey bee 
health causing a variety of physical and physiological effects for both 
individual bees and the colony. The bee pupa is injured physically by the 
repeated piercing of its soft body tissue by the mite’s chelicerae during Varroa 
feeding. At the same time, the loss of hemolymph interferes with organ 
development (Schneider & Drescher, 1987). As an adult, the bee has a reduced 
body weight and lifespan (De Jong et al., 1982) while foragers suffer from a 
reduced learning capability (Kralj et al., 2007) with a prolonged absence from 
the hive and a lower return rate, possibly due to reduced navigational abilities 
associated with Varroa parasitization (Ruano et al., 1991; Kralj & Fuchs, 
2006).  

The honey bee colony-level fitness is reduced in two ways by mite 
infestation: drones have a decreased flight performance and therefore a lower 
chance to mate (Duay et al., 2002) and the colony suffers from a reduced 
ability to produce swarms (Fries et al., 2003; Villa et al., 2008).  

The most devastating colony-level effects of Varroa mite infestation are 
actually caused indirectly by honey bee viruses that are vectored by the mite. It 
is the development of overt viral infections associated with Varroa infestation 
that ultimately cause the honey bee colony to collapse (Ball & Allen, 1988; 
Bailey & Ball, 1991; Boecking & Genersch, 2008). This relationship between 



 21 

Varroa and viruses is discussed in detail in the following section and is an 
important relationship studied in Paper IV.  

Varroa infestation can affect honey bee colony performance by a reduction 
in colony growth and honey production before clinical symptoms are 
recognized by beekeepers. Therefore damage thresholds have been established 
to help identify a mite infestation level where irreversible colony damage and 
economic loss occurs. Fries et al (2003) and Rosenkranz et al (2006) found 
independently, that if mite infestation rates exceeded 30% of the adult bee 
population during the summer, the colony would not survive the following 
winter. When the mite was first introduced to Europe over 30 years ago, 
studies found 7000 to 11 000 mites in a colony 4 years after the initial 
infestation (Ritter & Perschil, 1982; Fries et al., 1994). At that time the 
economic threshold was determined to be 200 fallen mites per day in July 
(Ritter et al., 1984). Now it is unusual to find such high mite infestation and 
control treatments are required to avoid colony losses when the natural mite 
drop exceeds 10 mites per day in July. Colony mite loads that exceed 3000 
mites indicate the colony is close to collapse (Boecking & Genersch, 2008). 
Such thresholds however vary in seasonality, colony brood production and the 
presence of associated viruses. Poor beekeeping skills can also affect colony 
losses and the build up of the Varroa populations due to a lack of mite 
treatment or poor timing of treatments (Delaplane & Hood, 1997; Currie & 
Gatien, 2006, see section 3.4).  

The presence of viruses and their interactions with Varroa is key to this 
changing mite infestation threshold over the years and is essential in 
understanding colony collapse. It is the viral infections vectored by Varroa that 
ultimately kill a colony within 1-3 years if the mite population in the colony is 
not reduced by beekeepers (Boecking & Genersch, 2008). Because of this, wild 
and feral honey bee populations in Europe and North America have been 
nearly completely eradicated since the introduction of the mite and control 
methods are essential for keeping managed honey bee colonies alive. 

3.3 Varroa and honey bee viruses  

Before the arrival of Varroa, most if not all viruses were mainly present as 
covert infections in A. mellifera colonies (Bailey & Ball, 1991). Covert 
infections are defined as conditions in which the virus is present in the host 
without clear disease symptoms and have the ability to remain fully competent 
and reemerge later to cause overt infections (Burden et al., 2003). The ‘normal 
situation’ with honey bee viruses, of an absence of disease symptoms, changed 
when the Varroa mite was introduced.  
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There are over 18 identified and characterized honey bee viruses, many of 
which are suggested to be associated with mite infestation to various degrees 
(Bailey & Ball, 1991; Martin, 2001; Tentcheva et al., 2004; Shen et al., 2005; 
Chen & Siede, 2007; Ribière et al., 2008; Carreck et al., 2010; Martin et al., 
2010). While feeding on bee hemolymph the mite vectors some of these honey 
bee viruses, which can cause severe disease or mortality at the individual 
and/or colony level (Bailey & Ball, 1991; Martin, 2001; Shen et al., 2005; 
Chen et al., 2006; de Miranda & Genersch, 2010). The mite is not just a 
mechanical vector for viruses but also functions as an alternative replicative 
host or biological vector for certain viruses (Ongus et al., 2004; Yue & 
Genersch, 2005; Gisder et al., 2009). This significantly enhances the 
epidemiology potential and lethality of the virus infection (Moeckel et al., 
2011). In fact, the viruses play an important role in colony collapse due to mite 
infestation as shown by field observations and supported by modeling 
approaches (Bowen-Walker et al., 1999; Nordström et al., 1999; Martin, 2001; 
Sumpter & Martin, 2004; Tentcheva et al., 2004; Todd et al., 2007; Berthoud 
et al., 2010; Carreck et al., 2010; Martin et al., 2010).  

In order to prevent colony mortality, management strategies are 
implemented by beekeepers to reduce the mite population within the colony 
and thereby limit the transmission opportunities for potentially lethal virus 
infections. Without such treatment the exponential mite population growth 
would lead to increased virus transmission causing overt viral infections that 
ultimately result in colony mortality (Martin, 2001; Boecking & Genersch, 
2008). 

3.3.1 Deformed wing virus 

The best studied relationship of a virus vectored by Varroa is that between the 
mite and deformed wing virus (DWV), which today has become the most 
prevalent honey bee virus and is highly associated with Varroa mite infestation 
and colony collapse (de Miranda & Genersch, 2010; Genersch & Aubert, 
2010). DWV is a positive single-stranded RNA virus (Lanzi et al., 2006) 
pathogenic to both honey bees and bumble bees (Genersch et al., 2006) and 
can be detected in all life stages of honey bees whether visible disease 
symptoms are present or not (Chen et al., 2005; Yue & Genersch, 2005; 
Tentcheva et al., 2006). DWV can be transmitted horizontally within the 
colony through trophallaxis, feces, and salivary gland secretions and between 
individuals through venereal transmission from drones to queens during 
mating, as well as vertically from infected queens to their progeny (Chen et al., 
2006; Chen & Siede, 2007; Yue et al., 2007; De Miranda & Fries, 2008). 
These transmission routes however do not cause overt symptoms but instead 
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only maintain the virus in the colony. According to theories in evolutionary 
epidemiology, vector-borne transmission often results in more virulent 
infections (Ewald, 1994). In fact, DWV usually exists within a colony with no 
apparent symptoms when Varroa mite infestation is low or absent (Nordström 
et al., 1999) and overt viral infections depend on a severe infestation with a 
large mite population (Martin et al., 1998; Martin, 2001). As the mite 
population grows within a colony, increased opportunity for viral transmission 
will lead to the development of an overt infection that ultimately kill the 
colony. Therefore, the virulence of the mite is related to its ability to vector 
these viruses. Consequently, the viruses with a new vector transmission route 
will become more virulent, as the virus’ virulence is in general a measure of 
mite abundance.  

The clinical symptoms of DWV include adult bee deformities such as 
deformed wings, shortened body size and abdomen, and reduced vigor and 
longevity (Bowen-Walker et al., 1999; Martin, 2001; Tentcheva et al., 2006; 
Figure 4). Although deformed bees usually have higher DWV titers than non-
deformed bees, it is not the titers alone that result in deformities but rather how 
and when DWV is transmitted. Although DWV is the sole cause of the 
symptoms (Moeckel et al., 2011), they only appear naturally during 
circumstances of Varroa-mediated transmission during the pupal stage 
(Bowen-Walker et al., 1999; Yue & Genersch, 2005; Gisder et al., 2009). The 
mite also weakens the bee’s immune system, suppressing the expression of 
immune related genes and increasing viral titers in the bee, both of which 
reduce worker survivorship and colony fitness (Yang & Cox-Foster, 2005, 
2007). Not only is DWV transmitted by the mite, but it also replicates within 
the mite and individual bee symptoms seem to be related to whether the virus 
was replicating or not in the infesting mite during the pupal stage of bee 
development (Yue & Genersch, 2005; Gisder et al., 2009).  
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Figure 4. Honey bee in the center of photo with symptoms of DWV: deformed wings and 
shortened abdomen (Photo: B. Locke). 

The paradox of the virus-mite-bee interaction is that it is the otherwise 
‘normally’ low virulence of DWV that enables Varroa infested pupae to 
complete development despite the virus infection resulting in the bee emerging, 
releasing the mite to infect another pupa to reproduce again and sustaining the 
virus epidemic that ultimately becomes lethal at a colony level when the 
majority of the individuals are damaged. This contrast between individual- and 
colony-level virulence is seen for other bee pathogens as well, emphasizing the 
need to study interactions at both levels.  

3.4 Control of Varroa 

A major obstacle to the development of mite tolerance in the European honey 
bee is intensive beekeeping practices including mite control. Since the mite has 
been introduced to the western world, beekeepers use methods to remove the 
mite from colonies, therefore eliminating the selective pressure of mite 
infestation that would be required for adaptations towards parasite tolerance or 
resistance in the bees, or towards lower virulence in the mites (Fries & 
Camazine, 2001). Further, these mite control methods are often based on 
chemicals and can be problematic for several reasons: 
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 Chemical residues that are fat soluble can build up in hive products and 
especially in wax comb (Bogdanov et al., 1998; Wallner, 1999; 
Bogdanov, 2006; Martel et al., 2007).  

 Mites can develop resistance to effective acaricides rendering them 
ineffective as a class of miticide (Milani, 1995, 1999; Hillesheim et al., 
1996; Sammataro et al., 2005).  

 Some methods can cause damage to bees (Imdorf et al., 1990, 1999; 
Charriere & Imdorf, 2002). 

 
The honey bee is unusually sensitive to a range of chemical insecticides 
(Stefanidou et al., 2003; Thompson, 2003; Barnett et al., 2007), likely due to a 
relative deficit of detoxification enzymes (Yu et al., 1984; Claudianos et al., 
2006). Little is known about the interactions between pesticides, the bees, and 
bee pests or pathogens. Pesticides and/or pathogens when studied in isolation 
or at the individual bee level may not appear to cause harm but sub-lethal 
effects may accumulate or interact to become significant at the colony level. A 
single infection may cause no harm to a colony but when exposed to a 
pesticide at the same time it may cause colony death (Pettis et al., 2012). The 
quantification of the interactions between parasites, virus infections, and the 
pesticides used to control Varroa at the various developmental stages of the 
honey bee is central to Paper IV. 

Chemical treatments of honey bee diseases, even if successful at the colony 
level in the short term, have not eradicated the problem of pathogens at the 
population level. This is particularly important if the pathogen has a high 
infectivity and transmission rate (Moritz et al., 2010). Treatments targeting a 
single pathogen will not cure the problem if the real difficulty exists through 
interactions between multiple pathogens or pathogens and other stressors.  
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4 Host-parasite interactions 
Honey bee societies, the Varroa mites that infest them, and the honey bee 
viruses that are vectored by the mites, together form a complex system of host-
parasite interactions. Coevolutionary theories in the study of host-parasite 
interactions indicate that antagonistic reciprocal selection pressures will lead to 
an “arms race” with a series of adaptations and counter-adaptations by the host 
and the parasite (Thompson, 1994). Such antagonistic interactions actually 
accelerate molecular evolution compared to selection pressures of 
environmental changes (Paterson et al., 2010). The evolutionary dynamics of 
host-parasite coevolution can lead to a relatively stable relationship between 
the host and parasite with fitness optimality for both by means of a natural 
selection process (Schmid-Hempel, 2011). However, this coevolutionary 
process has been hindered for the European honey bee host since apicultural 
practices remove the mite and consequently the selective pressures required for 
such a process.  

4.1 Honey bee tolerance and resistance to Varroa 

In host-parasite interactions, host tolerance is defined as the ability to reduce 
the effect of the parasite, while host resistance is the ability to reduce the 
fitness of the parasite and in most cases resistance and tolerance are correlated 
(Lipsitch et al., 1996; Schmid-Hempel, 2011). Coevolution theory predicts that 
parasites will have an evolutionary advantage over their host due to their faster 
evolution through a shorter generation time (Hafner et al., 1994; Schmid-
Hempel, 2011). However, in this particular study system, the Varroa mite is of 
clonal origin with low genetic variation (Solignac et al., 2005) and the honey 
bee has a 10-fold higher recombination rate than any other higher order 
eukaryote (Beye et al., 2006). These aspects provide the honey bee host with 
an evolutionary advantage in the arms race with Varroa, as the mite’s options 
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for genetic adaptation are limited compared to those of the bee. For this reason, 
adaptations of resistance or tolerance due to coevolution are most often 
discussed in general literature from the host’s perspective (the honey bee), in 
contrast to adaptations of virulence by the parasitic mite. 

4.2 Varroa tolerance and resistance host traits 

A variety of honey bee characteristics have been suggested or shown to 
influence and regulate mite population dynamics. The following sections 
describe some important traits that have been linked with Varroa tolerance or 
resistance in bees and are investigated in Papers I & II. Environmental 
conditions have also been suggested to play a role in the development of the 
Varroa mite population within a colony (Dejong et al., 1984; Moretto et al., 
1991b), however it is more likely that this is only observed through the indirect 
effect of environmental factors that regulate honey bee brood amounts or the 
activeness of certain host defense behaviors.  
 

4.2.1 Behavioral defense 

A well-known behavioral defense is grooming behavior, where honey bees 
groom themselves and other nestmates resulting in the capturing and damaging 
of adult mites (Peng et al., 1987; Moosbeckhofer, 1992; Boecking & Ritter, 
1993; Moretto et al., 1995). Hygienic behavior, another well-known behavioral 
defense of honey bees, is the ability to detect and remove dead or diseased 
brood (Rothenbuhler, 1964; Spivak, 1996; Boecking & Spivak, 1999). A 
variation of hygienic behavior involves the ability to detect and remove mite-
infested brood and has been termed Varroa-sensitive hygienic behavior 
(Spivak, 1996; Ibrahim & Spivak, 2006; Harris, 2007). The removal of mite-
infested brood however does not necessarily include the death of the mite and 
most mites escape during the removal process (Boecking & Spivak, 1999). 
Nevertheless, this behavior results in an interruption of the mite’s reproductive 
cycle that ultimately could slow down the mite population growth in the 
colony.   

It is not well known how the bees are able to recognize the mite on 
nestmates during grooming behavior or within brood cells during hygienic 
behavior since the Varroa mite has a similar cuticular hydrocarbon profile to 
their host bee (Nation et al., 1992) used for chemical mimicry especially within 
the brood cells (Martin et al., 2001; Salvy et al., 2001). It may be that mite-
infested brood are recognized by an unspecific stress reaction of the pupae 
(Aumeier & Rosenkranz, 2001).  
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Bee defense behaviors are highly variable between bee species and races 
(Fries et al., 1996; Moretto, 2002) and quantifying the trait accurately depends 
strongly on the methods used. Recently it has been discovered that damage to 
the dorsal surface of the mite, a characteristic that has been used to quantify 
grooming behavior, is actually a normal birth defect of mites (Davis, 2009). 
Further, mutilated mites may have been damaged after they have died naturally 
or by other insects such as ants that scavenge on bottom boards in colony 
debris (Rosenkranz et al., 1997). 

4.2.2 Population dynamics of the host 

Colony size and temporal dynamics are honey bee characteristics that are 
known to greatly influence the mite population given the importance of brood 
amounts for mite reproduction (Fries et al., 1994; Calis et al., 1999) and 
include the incidence of swarming, brood production, the ratio of drone to 
worker production, and the ratio of adult bees to brood (Boot et al., 1993, 
1994; Wilkinson & Smith, 2002). 

Drone brood provides better reproductive conditions for the mite and the 
amount of available drone brood in a colony therefore greatly influences the 
population dynamics of the mite (Calis et al., 1999). The duration of the 
capped pupal phase of bee development is a limiting factor for the 
development of mite offspring and could reduce the mite population dynamics 
in the colony (Buchler & Drescher, 1990). However, a shorter capped pupal 
phase may result in negative effects on the vitality of the hatching worker bee 
(Bienefeld & Zautke, 2007), and a shorter developmental time may also result 
in more brood cycles per season (Martin, 1998), which would provide the mite 
with more reproductive cycles.  

4.2.3 Control of mite reproduction 

One effective host strategy to prevent the growth of the Varroa population 
from reaching devastating levels within the honey bee colony, would be to 
control and limit the parasite’s reproductive ability (Fries et al., 1994; 
Rosenkranz & Engels, 1994). This can be achieved through host adaptation 
that either adjust the host’s population demographics important for mite 
reproduction (as mentioned above, such as reducing drone brood availability), 
or alter the chemical ecology of volatiles that are important for initiating (or 
inhibiting) mite oogenesis (Nazzi & Milani, 1996; Trouiller & Milani, 1999; 
Garrido & Rosenkranz, 2004; Nazzi et al., 2004) and influencing the 
attractiveness of the brood for infesting mother mites (Aumeier et al., 2002). 
Mite reproduction is important for Varroa population dynamics and variable 
reproductive rates have been observed since the first infestation on European 
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honey bees (Anderson, 2000). The ability of the host to reduce the reproductive 
success of their infesting mites is the main trait investigated in Papers I, II & 
III.  

4.3 Breeding for mite resistance 

Breeding Varroa-resistant bees is considered to be the only real long-term 
solution to the Varroa mite problem in contrast to the short-term Varroa 
chemical treatments. For this reason, many different tried by bee researchers 
and bee breeders in the beekeeping industry have attempted to produce mite-
resistant lines of European honey bees for commercial use (Buchler et al., 
2010; Rinderer et al., 2010). A well-known attempt for selecting mite 
resistance was the introduction to the United States and subsequent selective 
breeding of ‘Russian bees’ that apparently, by natural selection, developed 
mite tolerance or resistance in Eastern Russia where the natural boundaries 
between A. cerana and A. mellifera meet (Rinderer et al., 2001). Hygienic 
behavior and Varroa-sensitive hygienic behavior are other well-known traits 
involved in selective breeding programs in the United States (Spivak, 1996; 
Boecking & Spivak, 1999; Harbo & Harris, 2001, 2005; Spivak & Reuter, 
2001; Ibrahim & Spivak, 2006). Various reports have confirmed at least partial 
tolerance and a slower increase of the Varroa mite population in these different 
breeding programs with Russian bees (De Guzman et al., 2007; Tarpy et al., 
2007; de Guzman et al., 2008), hygienic bees (Ibrahim et al., 2007) and 
Varroa-sensitive hygienic bees (Harris et al., 2003). However, none of these 
breeding programs offer sustainable long-term solutions and they still require 
regular mite population monitoring and periodic mite control treatment (Tarpy 
et al., 2007; Rosenkranz et al., 2010).  

In Europe, breeding strategies take a different direction with more emphasis 
placed on maintaining the local genetic diversity in bee races that have adapted 
to the different environments and selection for mite resistance is based on low 
natural mite infestation rates produced through natural selection rather than 
selecting for specific traits (Buchler et al., 2010). Investigating the breeding 
potential of a naturally evolved mite-resistant trait was the objective of Paper 
III.   

Selective breeding programs often involve simultaneous selection for a 
variety of traits such as increased honey production and gentleness, which may 
reduce the efficacy of specific selection for disease resistance. Natural 
selection acting on both the bees and the mites is a process towards co-
adaptation in the host-parasite system and is therefore likely to produce more 
sustainable results.  
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Although some breeding efforts have been successful at enhancing Varroa 
tolerance, none have shown convincing evidence of producing a honey bee 
stock with long-term sustainability of mite tolerance or resistance without the 
need of mite control treatment. 

4.4 True mite-resistant honey bees 

4.4.1 Asian honey bees 

The Varroa mite is not considered a threat to its natural host the Asian honey 
bee (A. cerana) for several reasons. A. cerana is known to detect and remove 
worker pupae that are infested with mites, thereby limiting mite reproduction 
to the small proportion of drone pupae present in the colony (Koeniger et al., 
1981; Boot et al., 1999; Rath, 1999). Single drone pupae infested with multiple 
mites become too weak from the intense parasitization to open their hard 
cocoon cap themselves and die within the brood cell causing entombing of the 
mites that consequently become trapped in the cells and die with the pupa 
(Boecking et al., 1999; Rath, 1999). Furthermore, the adult grooming behavior 
towards phoretic mites is very active in A. cerana (Peng et al., 1987; Boecking, 
1992). These adaptations prevent the mite population from reaching large 
numbers. The mite population growth rate produces a negative feedback loop 
in A. cerana colonies that rarely results in damage to infested colonies.  

Unfortunately, the co-existent relationship between Varroa and its original 
host species is of limited use when the European honey bee is considered. In A. 
mellifera colonies, the mites are able to reproduce in worker brood and 
“entombing” of mites in drone pupae is not seen. The grooming behavior found 
in A. cerana also exists in A. mellifera but to a much lower extent and is much 
less pronounced (Fries et al., 1996), even though it is a trait widely used for 
selective breeding with the European bee (see section 4.3). Interestingly, the 
mite appears to be better adapted to reproduction within A. cerana drone brood 
than in A. mellifera brood, yet mite population growth is faster and exponential 
in A. mellifera due to the exploitation of the worker brood (Boot et al., 1995, 
1997). Mite resistance in the Asian honey bee has evolved through natural 
selection over many years. 

4.4.2 African and Africanized honey bees 

Varroa mite resistance has also been demonstrated for specific honey bee races 
of the new host, A. mellifera; for example A. m. scutellata in Africa (Allsopp, 
2006) and honey bees of African origin (Africanized bees) in South and 
Central American (Correa-Marques et al., 2003; Carneiro et al., 2007; 
reviewed in Rosenkranz, 1999).  
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Africanized bees in tropical America are well documented to have a stable 
host-parasite relationship with V. destructor and apiculture in this area does not 
need mite control treatment (Moretto et al., 1993; Rosenkranz & Engels, 1994; 
Guzman-Novoa et al., 1999; Mondragon et al., 2005). However, no single 
clear explanation for their resistance exists. Varroa tolerance and resistance 
traits have been well studied in these bees and a variety of defense 
mechanisms, such as behavioral traits (Moretto et al., 1991a; Correa-Marques 
& De Jong, 1998; Boecking & Spivak, 1999; reviewed in Rosenkranz, 1999) 
and reduced mite reproductive ability (Medina et al., 2002; Martin & Medina, 
2004; Mondragon et al., 2006), have been suggested to explain their resistance. 
The mite reproductive success in South America has shifted from about 50 % 
of the mites reproducing (Dejong et al., 1984) to over 80 % (Carneiro et al., 
2007) and the initial lower mite fertility on Africanized bees compared to 
European honey bees (Rosenkranz & Engels, 1994) has not been observed 
subsequently (Garrido et al., 2003) although they maintain their overall 
resistance to mites. This change in Varroa reproductive success may be due to 
a replacement by the more virulent mite haplotype in the region, but it 
nevertheless demonstrates the difficulty in isolating a single major factor 
explaining the resistance of Africanized bees to mites, especially since an 80 % 
successful mite reproduction rate is an equivalent to that seen for mite 
susceptible European honey bee races (Medina & Martin, 1999; Correa-
Marques et al., 2003; Papers I & II).   

The Varroa mite situation is far less documented in Africa compared to 
South America. Nevertheless, since the mite was first detected in South Africa 
in 1997, a stable host-parasite relationship has developed and these bees do not 
need mite control treatment (Allsopp et al., 1997).  

In tropical South America and in Africa, the wild and feral populations of 
honey bees comprise a much larger proportion of the overall honey bee 
population than in temperate North America and Europe where the majority of 
bees are managed (Moritz et al., 2007). This means that most of the honey bee 
population in South America and Africa is subject to natural selection 
pressures towards adaptive resistant mechanisms to Varroa infestation. These 
naturally adapted traits can then be passed to managed colonies through natural 
mating events between the wild and managed bees and could be an explanation 
for the overall mite-tolerance seen in both South America and in Africa.  

Africanized bees are more or less genetically identical to the original A. m. 
scutellata race from Africa that was first introduced to the continent (Schneider 
et al., 2004). This bee race has a variety of characteristics that have contributed 
to their successful invasion and replacement of the European honey bee race 
genetics in the population (Schneider et al., 2004). The African and 
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Africanized bee races may also have different genetic or environmental 
advantages compared to the European races for survival in tropical climates 
that can indirectly affect Varroa infestation and reproduction, making direct 
comparison of individual tolerance or resistance traits between them difficult. 

4.5 European honey bee races surviving with Varroa mites 

Around the world and in different climates, there have been periodic reports of 
unique feral and unmanaged European honey bee races surviving mite 
infestation for long periods without mite control treatment (DeJong & Soares, 
1997; Kefuss et al., 2004; Fries et al., 2006; Le Conte et al., 2007; Seeley, 
2007). These reports suggest that some level of tolerance to the pest has been 
established and even possibly a sustainable host-parasite co-adaptation 
between A. mellifera and V. destructor. Although these populations have been 
described, the nature of their co-adaptation process between V. destructor and 
its new host species still remains to be fully explained. These surviving 
populations may hold an answer to achieving a stable relationship between 
European races of A. mellifera and V. destructor. What all these populations, in 
different climates and in different geographic regions, have in common is that 
they are not managed by beekeepers or are wild or feral, and that they are 
therefore exposed to natural selective forces. Two populations, of which are in 
focus of this thesis (Papers I, II & III) are described in detail below. 

4.5.1 Gotland, Sweden 

In 1999, an isolated honey bee population of 150 colonies was established on 
the southern tip of Gotland. The colonies came from a variety of locations 
around Sweden with different genetic backgrounds and were equally infested 
with an average of 50 Varroa mites in each colony. These colonies were to be 
part of a selection experiment to evaluate if the mites would eradicate an 
isolated population of bee colonies under natural Nordic conditions. For this 
purpose, the colonies were unmanaged, allowed to swarm freely and did not 
receive any mite control treatments. The experiment was called the “Bond 
Project, Live and Let Die” as some colonies would live and some would be let 
to die. The bees in this project have thus become known as the ‘Bond Bees’. A 
central hypothesis to the Bond Project was that beekeeping management 
strategies inhibited the natural development of mite resistance in two main 
ways: 
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1. Swarm prevention inhibits colony level vertical transmission pathways, 
increasing the emphasis on horizontal transmission pathways, which 
may result in the evolution of more virulent mites. 

2. Mite population control treatments remove the selective pressure of 
heavy mite infestation that would be required for natural selection to 
shape host adaptations towards tolerance and resistance. 

 
The Bond Bees have been continuously monitored for swarming, winter losses, 
mite infestation rates in the fall, and bee population size in the spring since the 
beginning of the project (Fries et al., 2003, 2006). Many of the bee colonies 
swarmed in the first two years of this project, but by the third year the 
increased mite infestation had weakened the colonies and the swarming rate 
decreased significantly (Fries et al., 2003).  

Within the first three years more than 80 % of the colonies in this project 
died (from 150 to 21 by 2002) due to the rapid build up of mite infestations 
rates well over the winter mortality threshold (Fries et al., 2003, 2006). 
Nevertheless, more than ten years post mite introduction, a small number of 
colonies still remain that have survived without mite control and have 
established themselves as a hybrid sub-population (Paper I).  

After the initial losses, the mite infestations rates in the fall decreased, 
winter mortality decreased and the incidence of swarming increased again as 
colonies were again strong enough to do so (Fries et al., 2006). Although 
swarming reduced the mite infestation in the mother colonies of this 
population, it was not enough to prevent the development of high mite levels in 
the fall. Therefore, it was concluded that the ability to swarm probably does not 
limit the mite population growth enough to fully explain the survival of the 
Bond Bees (Fries et al., 2003).  

The recovery of the population suggested that an adaptive process has 
occurred in the bees, the mites, or both through natural selection and co-
evolution. In order to determine whether it was the bees or the mites that have 
adapted, a cross transfer experiment was performed in 2007 to test if the source 
of mites affected the mite population growth in the Bond Bees, using a group 
of unrelated colonies previously treated with mite control and with regular 
beekeeping management as a control group (Fries & Bommarco, 2007). 
Results demonstrated an 82 % lower mite population growth rate in Bond Bees 
compared to control colonies, irrespective of the mite source. It was concluded 
that the low mite growth rate was linked to characteristics of the host and not 
of the parasite (Fries & Bommarco, 2007). 

The next step in understanding how the Bond Bees are able to survive with 
mite infestation was to identify colony characteristics that may be involved in 
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resistance or tolerance towards the mite (Paper I) and examine the heritability 
of any such traits to determine the practical use of the population for breeding 
mite resistance in managed colonies (Paper III).  

4.5.2 Avignon, France 

Another well-known population of European honey bees that have survived 
Varroa mite infestation for an extended period is found in Avignon, France. 
Here, Le Conte et al (2007) established a collection of feral colonies and 
abandoned managed colonies from different locations around France where no 
mite control treatments have been used for 2 to 3 years previously on any of 
the colonies. The Varroa mite infestation and mortality was monitored and 
compared to a group of unrelated, managed control colonies. Swarming was 
not prevented and management was limited to harvesting honey. For over 7 
years (1999-2005) there was no significant difference in the mortality of the 
collected mite-tolerant colonies compared to the control colonies. Other 
observations of this study include an initial difference in swarming which was 
higher in the collected mite-tolerant colonies but seemed to level out over the 
study. A significant difference in honey production was observed, with the 
control colonies producing almost twice the amount of honey of the mite-
tolerant colonies (Le Conte et al., 2007).  

Like the Bond Bees, exposure to the selective pressure of natural mite 
infestation has resulted in adaptations either by the host, the parasite, or both in 
this Avignon honey bee population, enabling their long-term survival despite 
mite infestation. The mite tolerance or resistance traits of the Avignon 
population and how they compare to traits of the Bond Bees on Gotland is the 
topic of Paper II. 

 
Figure 5. Locations near the two mite-surviving honey bee populations investigated in this thesis. 
The Bond Bee research ‘laboratory’ at Skåls Gård on Gotland, Sweden (left) and the Sénanque 
Abbey lavender fields near Avignon, France (right).  



 35 

5 Thesis aims 
The overall aim of this thesis was to gain a deeper understanding of the host-
parasite interactions between honey bees and Varroa mites in order to establish 
a sustainable solution to the threat of V. destructor infestation in apiculture. 
Reports of honey bee colonies surviving Varroa mite infestation without 
treatment has presented a possible way to study Varroa and honey bee 
coevolution through natural host-parasite adaptations in European honey bees. 
An additional aim of this thesis was to identify potential effects that current 
Varroa control acaricide treatments have on the host-parasite interactions 
within this system, including the viruses that are so closely associated with 
Varroa infestation.  

The more specific aims of this thesis can be broken down according to the 
four Papers: 

 
I. Although a few honey bee populations surviving extended periods with 

Varroa mites have been documented, none of these populations have been 
characterized for Varroa resistance or tolerance mechanisms that may have 
evolved to explain their long-term survival. Paper I was an exploratory 
investigation of the population on Gotland, Sweden known as the Bond 
Bees that has been surviving Varroa infestation for over ten years without 
beekeeping management. The aim was to identify any honey bee colony-
level defense mechanisms that may be linked to, or suggested to be 
important for mite tolerance or resistance. 

II. The results of the study presented in Paper I indicated that the bees on 
Gotland Sweden were able to survive Varroa infestation for such a long 
time without Varroa control by beekeepers because the mite’s 
reproductive success was reduced in some way by unknown host factors. 
The aim of Paper II was to investigate mite reproductive success in 
another documented population of mite surviving honey bees in Avignon, 
France and compare data with the Gotland populations to identify 
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similarities or differences between these two geographically and 
genetically separate populations that have both been experiencing similar 
selective pressure of uncontrolled, natural mite infestation levels.  

III. Since a potential sustainable solution to the threat of Varroa is to breed 
mite-resistant honey bees, the aim of Paper III was to determine the 
breeding potential of the mite-resistant trait identified in the population on 
Gotland. The inheritance of the reduced mite reproductive success 
demonstrated in this population was investigated by examining the 
phenotypic variation of this trait that can be attributed to genetic variation 
in the F1 generation of artificially inseminated crosses of the Bond Bees 
and control colonies along with reciprocal hybrid crosses.  

IV. Finally, Paper IV aims to gain deeper understanding of the interactions 
between the bee, the mite, the viruses associated with the mite, and the 
chemical acaricides that the apicultural industry regularly uses to control 
mite infestation, both at the colony level and individual level. In order to 
investigate the impact of a common mite control substance (tau-
fluvalinate) on honey bee virus infections, the virus infection dynamics 
before and during a mite removal treatment were examined and compared 
to control colonies that were not treated with this substance.   
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6 Methods 
This section summarizes some of the research methods used in the four papers 
of this thesis. For a more complete description of the experimental designs 
used for each study, refer to the individual papers in the following chapters of 
this thesis.  

6.1 Experimental colonies 

The control colonies used in the first three studies of this thesis (Papers I, 
II & III) were unrelated to the mite-surviving colonies on Gotland or Avignon 
but were in the same general location, had previously been treated for mite 
control and were exposed to regular beekeeping management. The control 
colonies in Paper IV were in the same location as the test colonies and had 
similar mite infestation rates but where not treated with Apistan™ (strips of 
tau-fluvalinate) during the investigation, while test colonies were treated with 
Apistan™. 

6.2 Estimating honey bee and Varroa mite population dynamics 
(Papers I & IV) 

Mite infestation rates in pupae and on adult can be combined with estimates of 
colony size to calculate the total number of mites in the colony. From this 
information, the proportion and distribution ratio of mites in brood or on adult 
bees can be determined. 

6.2.1 Colony size estimations 

Population estimates of adult bees, worker brood and drone brood were made 
using the Liebefeld Estimation Method in order to determine colony size 
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(Imdorf et al., 1987). These estimates were performed over time intervals to 
determine temporal dynamics of colony size. 

6.2.2 Mite infestation rates 

Samples of approximately 200-300 worker bees were taken from the brood 
chamber of the hive to determine the phoretic Varroa mite infestation rate on 
adult bees. The bees from each sample were counted and then washed in soapy 
water to dislodge the mites. Using a strainer the mites were separated from the 
bees and both were counted to calculate the proportion of mites per bee (De 
Jong et al., 1982; Fries et al., 1991).  

The proportion of mite-infested pupae was determined by opening 100-200 
randomly selected pupal cells and counting the number of pupae infested with 
at least one mite, either in the field or from cut pieces of comb brought to the 
laboratory. 

6.2.3 Calculating mite distribution 

Samples for determining mite infestation rates were taken on the same day as 
the colony size measurements. The total number of mites on the colony’s adult 
population was estimated by multiplying the mite infestation rates of adults by 
the number of adult bees in the colony. The total number of mites in brood was 
calculated similarly, using the colony brood estimations. The total numbers of 
mites on adults and in brood were added to estimate the total number of mites 
in the colony. The mite distribution was calculated as the proportion of the 
total mite population within the colony on either adult bees or in brood. The 
mite distribution was used as a measure for brood attractivity. 

6.3 Investigating behavioral defenses (Paper I) 

6.3.1 Hygienic behavior 

The method used for determining hygienic behavior was chosen for its 
practicality in the field. One hundred pupae in each colony were marked and 
killed by piercing the pupal capping with a small insect pin (Palacio et al., 
2000). One hundred cells in the same brood area were marked without being 
killed to serve as a within-colony control. The proportion of pupae that were 
removed 12 and 24 hours after pin killing was recorded. These proportions 
expressed the brood removal rate, or hygienic behavior of the colony. 

6.3.2 Grooming behavior 

Colony debris, including damaged mites, was collected using bottom board 
metal slide-in trays. The proportion of total mites found in colony debris that 
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were damaged was recorded and used as a quantitative measure of adult bee 
grooming behavior (Bienefeld et al., 1999). 

6.4 Assessing Varroa mite reproductive success (Papers I, II & 
III) 

Brood frames containing worker bee pupae that have been sealed for 
approximately 190 hours but before pupal eclosion, which occurs at 
approximately 280 hours of bee development, were brought into a laboratory 
for dissection. There are four main stages of pupal development during this 
time frame that can be categorized based on their appearance. These are: i) the 
yellow thorax stage (between 190-235 hrs); ii) the grey wing pad stage (235-
260 hrs); iii) the grey thorax stage (260-270 hrs); iv) the resting adult (270-280 
hrs). These stages are depicted in Figure 6. The yellow thorax stage of the 
pupae is the longest stage and is the earliest stage of pupa exocuticle 
sclerotization. The male mite typically does not become an adult until the pupal 
age is around 210 hours (Martin, 1994). Immature male mites are extremely 
difficult to distinguish from early stage immature female mite offspring so any 
yellow thorax stage infested pupa where the male mite was not positively 
identified was recorded as ‘uncertain’ to eliminate biased recordings. 

Each pupal cell was opened carefully using forceps. The pupa was removed 
from the cell and examined under a stereomicroscope to ensure that no mite 
progeny were accidentally discarded with the pupa. The developmental stage 
of the pupa was determined based on the appearance description given by 
Martin (1994).  

Complete mite families from cells infested with a single mother mite were 
removed using a fine artist’s paintbrush and examined under a 
stereomicroscope. For each pupal cell, the following information was 
collected: i) whether the mother mite had reproduced; ii) the total number of 
offspring; iii) the developmental stage of each individual mite offspring; iv) 
whether an alive male mite was present or absent; v) the number of dead mite 
offspring. 

The collected information was used to determine the reproductive success 
of the mother mite, measured as the ability to produce at least one viable mated 
female offspring when the developing bee hatches from the cell. A typical mite 
family that may be seen when the pupal age is roughly 260 hours and the mite 
has reproduced successfully is depicted in Figure 7. 
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Figure 6. Pupal developmental stages examined for mite reproduction from left to right: yellow 
thorax; grey wing pads; grey thorax; resting adult (Photo: B. Locke). 

 
Figure 7. Typical Varroa mite family seen when the pupal age is approximately 260 hours and 
the mother mite has reproduced successfully (Photo: B. Locke).   

The information collected was also used to identify which parameter was most 
often responsible for any reproductive failure. Such failure could depend on 
infertility, absence of male offspring, high proportion of mite offspring 
mortality, or delayed egg-laying by the mother mite. Delayed egg-laying was 
determined by comparing the developmental stage of the pupae with the 
developmental stage of the mite offspring using the mite ontogenic 
development chart found in Martin (1994). This chart made it possible to 
determine the number of present mite offspring, if any, that will potentially 
develop to maturity before the bee hatches (Figure 8). 
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6.5 Instrumental insemination of queen bees (Paper III) 

Instrumental insemination is a reliable method to control honey bee mating and 
allows the creation of specific crosses that would otherwise be difficult to 
obtain naturally. It is used widely in apiculture for breeding and honey bee 
stock improvement and has become an essential tool for research. For our 
purposes, instrumental insemination was used to create crosses of mite resistant 
and mite susceptible honey bee populations and vice versa. Queens were 
inseminated with semen collected from single drones from the desired 
population. Replicates of different crosses were difficult to obtain in our study 
due to low survival of inseminated queens after introductions to new colonies 
(Paper III). Similar difficulties have been experienced by other studies using 
similar techniques (Perez-Sato et al., 2009; Unger & Guzman-Novoa, 2010). 

6.6 Molecular detection of honey bee viruses (Paper IV) 

The honey bee viruses that we were interested in detecting are positive single-
stranded RNA viruses and, thus, the molecular detection techniques we used 
were based on RNA extraction (Grabensteiner et al., 2001; Chen et al., 2005; 
Genersch et al., 2006; Blanchard et al., 2007, 2008).  

6.6.1 RNA extraction 

RNA was extracted from bulk samples of four different sample types: adult 
bees; pupae without Varroa mites; pupae that were infested with Varroa; and 
the associated infesting Varroa mites. A QIAcube® automated extraction robot 
(QIAGEN®) was used to extract the RNA from 100 μl of each bulk sample 
homogenized in RLT buffer (QIAGEN®). The RNeasy® protocol for plant 
tissues (QIAGEN®) was used. RNA is easily degraded so the storage methods 
prior to virus detection are crucial for maintaining the quality of the extracted 
nucleic acid. For this reason, the bulk samples were stored at -20°C until RNA 
could be extracted after which the extracted RNA was stored as two 50 μl 
aliquots at -80°C until subsequent virus analysis (Chen et al., 2007). 

6.6.2 RT-qPCR 

The polymerase chain reaction (PCR) is a molecular technique used to 
exponentially amplify copies of a fragment of a DNA molecule. Two 
complimentary oligonucleotide fragments, known as primers, are used to bind 
to the target region on the DNA molecule. An enzyme is used to copy the DNA 
molecules together with the primers in a repetitive reaction during cycles of 
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repeated heating and cooling to amplifying the target fragment. Honey bee 
virus detection was performed using a variant of the PCR technique known as 
RT-PCR, referring to the detection of RNA by converting it into 
complementary DNA (cDNA) with reverse transcriptase (RT) followed by 
standard PCR. Real-time quantitative PCR (qPCR) methods detect the product 
as it accumulates (in ‘real’ time) and determines the number of new DNA 
molecules formed in each reaction. The number of cycles required for a sample 
product to reach a particular threshold is called the quantification cycle (Cq) 
value and differences in the Cq value reflect the differences in initial amount of 
the product. Real time RT-qPCR is a standard technique for quantitative 
diagnosis of honey bee pathogens.  

An additional assay for β-actin, a commonly used internal reference gene 
(Lourenco et al., 2008) using intron-spanning primers (De Miranda & Fries, 
2008) was used to normalize the RT-qPCR data for differences between 
samples in the quality and quantity of the RNA. The amounts of virus and β-
actin in each sample were determined using the Bio-Rad iScript™ One-Step 
RT-qPCR Kit with SYBR® Green as the detection chemistry, 96-well optical 
qPCR plates, and the Bio-Rad Chromo4™ thermocycler. Each assay was 
performed with one negative H2O control and five positive controls, obtained 
from 10-fold serial dilutions of purified PCR product of known concentration 
and covered 6 orders of magnitude. 

6.6.3 Data conversion, transformation and normalization 

Cq-values were used to obtain the absolute amounts of virus and β-actin RNA 
in each reaction, which was then converted to estimate amounts per bee 
through the different reaction and extraction dilution factors. Log 
transformation was used to render the data suitable for parametric analysis. The 
virus titer and mite infestation rate data for each colony were normalized to the 
average pre-treatment value for all colonies to avoid statistically significant 
effects purely due to natural, preexisting differences between colonies. 
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7 Results and discussion 
Through a natural selection process with unmanaged mite infestation levels 
enforcing a strong selection pressure, honey bee colonies have adapted 
mechanisms enabling them to survive for extended periods without the use of 
mite control treatments. By investigating two distinct populations of such mite 
surviving colonies (on Gotland and in Avignon), this thesis reveals that the 
adaptation acquired by the colonies to survive Varroa infestation mainly 
involves reducing the reproductive success of the parasite in some way 
(Papers I & II), that the different populations may have evolved different 
strategies to do so (Paper II), and that this ability is genetically inherited 
(Paper III). In addition, the results of this thesis demonstrate that chemical 
mite control treatments used by beekeepers to inhibit the mite population 
growth within a colony can actually worsen the health situation for the bee 
colony by temporarily increasing the bee’s susceptibility to virus infection 
(Paper IV). 

7.1 Honey bee adaptations reduce mite reproductive success 
(Papers I & II) 

A clear and significant reduction in the reproductive success of the Varroa 
mites was observed in the Bond Bees on Gotland and in the mite surviving 
population in Avignon when compared to the control colonies in the same 
locations (Figure 9).  

The reduced fecundity and reduced ability to produce viable female 
offspring clearly had an impact on the mite population growth rate and could 
explain the lower mite infestation rates in the mite-surviving population. 
Further, this ability to suppress the mite’s reproductive success and thus the 
mite population growth will consequently delay the virus infection build up in 
the colony, ultimately avoiding colony mortality caused by the virus. Fewer 
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mites in the colony to vector the viruses means that virus transmission is 
reduced to less effective transmission pathways within the colony such as 
vertical or horizontal oral transmission, which rarely leads to colony mortality 
(de Miranda & Genersch, 2010; see section 3.3). This secondary effect of the 
adaptation to reduce the mite’s reproduction may help explain the long-term 
survival of both these populations without Varroa control treatment. However, 
the observed 30 % reduction in the mite reproductive success is not enough to 
prevent the mite population from reaching mite infestation mortality threshold 
levels.  

 
Figure 9. Mean proportions with standard error bars of successfully reproducing mother mites in 
the Varroa mite-surviving colonies and the mite-susceptible control colonies on Gotland, Sweden 
and in Avignon, France. 

7.2 Differences between two distinct Varroa-resistant 
populations (Paper II) 

Both the Avignon and the Gotland populations of mite surviving colonies 
have experienced similar selection pressures through natural mite infestation. 
This is a unique feature of these colonies compared to most other European 
honey bee populations whose mite population is controlled by apicultural 
management and treatment. Through these similar selection pressures, both 
populations have evolved a similar colony-level mite-resistant trait, namely the 
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ability to reduce the overall reproductive success of their infesting mites 
(Figure 9). However, when the mite reproductive parameters were investigated 
more closely, differences between these two populations became apparent. In 
the Bond colonies on Gotland, delayed egg-laying by the mother mite was the 
most frequent cause of failure to produce a mature mated female offspring 
before eclosion of the bee pupa. The second major cause of reproductive 
failure was the high proportion of dead mite offspring (Table 1). In contrast, 
the mite surviving population in Avignon had a significantly larger proportion 
of infertile mites compared to the local control colonies and delayed egg-laying 
was a secondary contributing factor to the majority of mite reproductive 
failures (Table 1). The proportion of infertile mites was also significantly 
different between the two mite surviving populations, demonstrating a distinct 
difference between them regarding the major parameters involved in reduced 
mite reproduction. Furthermore, there were no drastically significant 
differences between the control colonies on Gotland and in Avignon, 
highlighting that these surviving population are in fact unique among the larger 
managed population of honey bees in Europe.  

It has been demonstrated that bee colonies expressing Varroa-sensitive 
hygiene (VSH) may selectively remove pupae with reproducing mites resulting 
in a bias in the estimated proportion of infertile mites recorded from the 
remaining infested cells (Harbo & Harris, 2005; Ibrahim & Spivak, 2006). This 
may be the mechanism or an explanation for the observed high proportion of 
infertile mites in the Avignon population. On Gotland however, the delayed 
egg laying may be caused by differences in pupal volatiles that can inhibit the 
initiation of egg-laying of mother mites (Nazzi & Milani, 1996; Garrido & 
Rosenkranz, 2004; Nazzi et al., 2004).     

Although both populations on Gotland and in Avignon experienced similar 
natural selection pressure, these populations have different life history traits 
and different environmental factors that would also be involved in their 
adaptive response to mite pressure. In general, it can be expected that different 
traits would be favored in different populations living in distinct environments 
especially in traits involved in a coevolutionary relationship (Thompson, 
1999).  
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7.3 Heritability of colony-level reduced mite reproductive 
success (Paper III) 

The mean proportion of successfully reproducing mother mites was drastically 
lower in all F1 generation colonies that contained genetic material (either 
maternal or paternal) from the Bond Bees compared to the crosses between 
control queens and control drones (Figure 10). This result suggests that the 
ability of the Bond Bees to suppress the mite’s reproductive success is 
genetically heritable. Recently three quantitative trait loci (QTL) have been 
identified in a genomic screen of drones produced by F1 hybrids of the Bond 
Bees and found to have a highly significant impact on the reproductive success 
of the mite, primarily through epistatic effects (Behrens et al., 2011).  

Due to a low survival of inseminated queens in this heritability experiment, 
it was not possible to establish replicate colonies of different F1 cross 
combinations. Therefore, it was not possible to differentiate the mode of 
inheritance, maternal vs. paternal, which requires further study. However, the 
expression of this trait in the F1 colonies with only paternal origin from the 
Bond Bees is indicative of a genetic basis for its expression, as opposed to a 
maternal or an environmental effect. 

 
Figure 10. The distribution of mite reproductive success in the colonies of each of the four 
genotypic groups: SS, Surviving x Surviving; SC, Surviving x Control; CS, Control x Surviving; 
and CC, Control x Control. The median values (dark blue diamonds with lines), the maximum 
and minimum values (grey lines); and the 25th to 75th percentile of the data (boxed area), are 
presented. 
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Individuals within a honey bee colony have variation in relatedness and 
heritable traits due to the polyandrous mating behavior of the queen. This 
results in different patrilines, which can reduce the probability of individuals in 
a colony sharing alleles. Although some individuals may possess mite resistant 
genes, if not enough individuals share this genotype it will not influence the 
resistance at the colony level (Perez-Sato et al., 2009). Therefore, colony level 
phenotypes are less consistent in the expression of traits in the next generation 
and may require strong selection on drones in the population to ensure that 
many patrilines share a particular trait. Controlling the paternal source is the 
most difficult part of selective breeding programs with honey bees. This may 
explain why artificial selection has not yet been sustainably successful at 
producing mite-resistant honey bees and why natural selection, that includes 
selection on the drones in the population, has provided long-term mite 
surviving populations on Gotland and in Avignon. 

7.4 Additional adaptations of the mite-surviving honey bee 
population on Gotland (Paper I) 

In 2008, the control colonies on Gotland were also not treated against Varroa 
in order to allow a natural mite population development for comparison with 
the Bond Bees. During the summer of 2009, the control colonies had a 
significantly faster mite population growth rate than the Bond Bees (Figure 11) 
and all the control colonies died the following winter.  

 
Figure 11. Mean Varroa mite 
infestation rates in surviving Bond 
colonies and control colonies during the 
late summer of 2009 with standard error 
bars.  

 
 
 

 
Neither hygienic nor grooming behavior was found to be significantly higher in 
the Bond colonies than in control colonies and therefore they are not 
considered likely explanations for the survival of this population. This result 
suggests that the attention given by mite-resistance breeding programs to these 
behavioral defense traits (Buchler et al., 2010; Rinderer et al., 2010; see 
section 4.3) may be misplaced. These behavioral traits were not favored in the 
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adaptation process through natural selection pressures, as opposed to these 
artificial breeding programs. Artificial breeding programs aimed at increasing 
the expression of these behavioral traits for mite resistance are challenged with 
the difficulty of accurately measuring hygienic or grooming behavior, which 
usually results in an overestimation, as was likely the case for this study as well 
for grooming behavior. For example, dimples on the dorsal shield of the mite, 
which are usually considered to be a sign of damage caused by bees during 
grooming behavior, have recently been shown to actually be mite birth defects 
(Davis, 2009). Bees may also damage already dead mites in colony debris 
(Rosenkranz et al., 1997).  

The amount of adult bees, worker brood, and drone brood were 
significantly lower in the Bond colonies than in control colonies (Figure 12). 
These parameters did not correlate with the mite infestation rates and were 
therefore not considered to be a consequence of mite infestation. Since mites 
reproduce in brood cells with a preference for drone brood (Fuchs, 1990), the 
reduced brood availability of the Bond colonies, particularly the reduced drone 
brood amounts, drastically limits mite reproductive opportunities. A model 
developed by Calis et al (1999) predicts that more brood, longer brood rearing, 
and a larger number of drone brood, dramatically increases the mite population 
growth. Therefore, the reduced population size of the Bond Bee colonies may 
be an adaptive characteristic to limit the mite population growth and could 
perhaps be an even greater adaptive strategy than their ability to reduce mite 
reproduction. 

 
Figure 12. Mean amounts of a) adult bees, b) worker brood and c) drone brood with standard 
error bars for surviving Bond colonies and control colonies on Gotland in 2008. 

7.5 Effects of a chemical Varroa control treatment on honey bee 
virus infections (Paper IV) 

Given the strong influence that Varroa-mediated transmission has on colony 
level deformed wing virus (DWV) titers, the expectation of this study was that 
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removal of the mites from the colony using an acaricide treatment would in 
turn reduce the DWV titers in the colony (Bowen-Walker et al., 1999; Martin 
et al., 2010). On the contrary, the results of this study showed an initial 
increase in DWV titers in adult bees, Varroa mites, and both mite infested and 
uninfested pupae of the colonies that received the tau-fluvalinate treatment 
(Figure 13). This increase in DWV coincided with the most potent chemical 
effect of the treatment and could potentially be a consequence of debilitating 
direct effects of tau-fluvalinate on honey bee physiology and/or immune 
system responses that cause an increased susceptibility to DWV infection. A 
subsequent progressive decrease in DWV was observed in the treated colonies 
after the initial increase and is at least partly due to the removal of Varroa-
mediated transmission (as a result of the treatments effectiveness of mite 
removal) but may also be a recovery of the host’s immune system to the 
presence of the tau-fluvalinate after an initial shock. Black queen cell virus 
(BQCV) and sacbrood virus (SBV) also slightly increased in titers following 
the initial treatment application in some host stages, however much less 
pronounced than for DWV. Furthermore, their subsequent dynamics appeared 
random rather than directional. This study only demonstrates the colony level 
changes in viral infections during an actual acaricide treatment but can not 
make inferences on the long-term dynamics of virus infections in colonies that 
are either treated or not.  

An interesting additional observation from this study was the large 
difference in DWV titers between Varroa mites in treated and untreated 
colonies at the end of the treatment period (Figure 13). At the cellular and 
biochemical level, fluvalinate blocks the voltage-gated sodium ion transport 
channels (Narahashi, 1996; Rosenkranz et al., 2010) that regulate osmotic 
pressure. The channels are frequently a target for viruses that use osmotic 
pressure to burst cells to release newly formed virus particles (Stauffer & 
Ziegler, 1989; Kunzelmann et al., 2000; Hoffmann et al., 2008). A variable 
proportion of Varroa mites are themselves a host for DWV (Yue & Genersch, 
2005) and have higher elevated DWV titers compared to mites that do not 
replicate DWV. Synergistic interactions between fluvalinate and DWV at the 
sodium transport channels may cause mortality for mites with replicating 
DWV. Mites that do not replicate DWV and thus have lower titers could 
survive fluvalinate treatment. This argument, however plausible, is based on 
the observations of only one colony that still had mites remaining at the end of 
the treatment and needs further investigations.  
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Figure 13. Pre-treatment normalized DWV, BQCV and SBV titers of uninfested pupae, infested 
pupae, adult bees and Varroa mites in acaricide treated colonies and untreated colonies for the 
duration of the acaricide treatment. Week 0 represents the pre-treatment sample. Titers are given 
on a log10 scale and the dotted straight lines indicate the limit of detection of the RT-qPCR assays. 
The error bars denote standard errors.   
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8 Conclusions and future challenges 
The only documented sustainable tolerance to Varroa mites in European honey 
bees are of colonies that have not been selected by humans, but have been 
exposed to natural selection pressures. Both the Gotland and Avignon 
populations presented in this thesis share the fact that they have been 
unmanaged, enabling natural selection (as opposed to artificial) to shape the 
evolution of their mite resistance and ability to reduce the mite’s fitness. This 
highlights the impact that apicultural practices otherwise have on these host-
parasite interactions (Fries & Camazine, 2001), and suggests a human 
interference in coevolution between species. Further, this adapted resistance 
has evolved incredible fast by natural selection.  

A deeper understanding of how honey bee colonies naturally coevolve with 
parasites and understanding the mechanisms behind such coevolution, is 
necessary for establishing long-term sustainable honey bee health management 
strategies in apiculture. Further, deeper knowledge of virus-vector 
epidemiology and interactions will be important in order to implement 
effective techniques for managing different virus infections.  

Further work is required on the interactions between the many honey bee 
colony stressors in this complex system, including effects of Varroa mites, the 
viruses associated with Varroa, the variety of harsh treatments used to control 
Varroa, and intensified apicultural management practices. Some open 
questions developed from the studies included in this thesis are:  

 
 What are the mechanistic explanations behind the bees’ ability to 

suppress mite reproductive success and how does it differ between the 
Gotland and Avignon population? 

 What is the relative importance of the reduced colony size compared to 
the reduced mite reproduction for the long-term survival of mite-infested 
colonies? 
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 What is the mode of inheritance for the reduced mite reproduction trait 
and can this trait be used in breeding mite-resistance? 

 Since mite infestations remain quite high in the mite-surviving 
populations and visible virus symptoms are present, have these 
populations also evolved a level of resistance or tolerance to the actual 
virus infections? 

 How does the adaptation of reduced mite reproductive success influence 
the coevolution of the viruses vectored by the mite in these populations?  

 How does the chemical control treatment interact with the virus at a 
biochemical level in both the bee and the mite? 

 Does the virus infection have any adverse effects on the mite while it is 
replicating? 

8.1 Practical aspects 

The disadvantage of natural selection is that it neglects features that are 
important for apiculture. The mite-surviving bee populations, although 
possessing a mite-resistant trait that can be genetically inherited (Papers I, II 
& III), may have evolved other characteristics that are undesirable for 
beekeepers such as small colony size resulting in small honey yields (as with 
the Gotland population) or may be overly aggressive (as with the Avignon 
population). A practical next step to the work achieved in this thesis is to 
introduce genetics of the mite-surviving bees into established breeding 
programs to determine if they can maintain their resistant traits under artificial 
selection for commercially viable traits in apiculture. 

Selecting for reduced mite reproduction requires tedious examinations of 
mites in brood and may not be a practical selection-breeding avenue for 
beekeepers without laboratory facilities. The results from this thesis would 
perhaps indicate that a more realistic approach for breeding mite resistance 
would be to select for colonies with low mite population growth. This would 
eliminate the bias for certain traits that could be difficult to maintain in the next 
generations or are of relative little significance compared to other traits, and 
avoid the need for tedious inspections in all colonies.  

Studying the synergistic interactions between pathogens and pesticides is a 
research field in its infancy. However, the few studies that have been 
conducted regarding this aspect of bee health (Alaux et al., 2010; Pettis et al., 
2012; Paper IV), have all shown that these interactions have a negative impact 
on bee health. Therefore, we need not only to develop strategies that increase 
bee tolerance or resistance to specific disease but we also need to develop 



 55 

strategies that reduce potentially harmful interactions between multiple 
pathogens or pathogens and pesticides.  

As apicultural management techniques greatly influence the health of the 
honey bee colonies, strategies for better beekeeping practice in general are 
urgently needed that can reduce pathogen virulence by inhibiting the critical 
infection pathways that management otherwise induces. This could be 
accomplished through integrative management, disease awareness education 
and monitoring, and improved (disease conscious) beekeeping methods. This 
will not only improve colony health but also ensure the quality and safety of 
honey and other honey bee products by reducing the need for chemicals or 
antibiotics as disease control treatments. 

 
Figure 14. A Beekeeper’s smoker plugged up after a hard days work with the bees (Photo: B. 
Locke).  
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