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Modulation of Olfactory Information in the Antennal Lobe of 
Spodoptera littoralis 

Abstract 
In order to respond appropriately to external stimuli, e.g. odours in the environment, 
insects have to evaluate these stimuli in a context of relevance and need. These 
decisions are, in turn, based on internal physiological status, such as mating status.  

In the cotton leafworm, Spodoptera littoralis, mating induces profound physiological 
changes that alter the behavioural output to fit with the current needs of the animal. In 
female S. littoralis, mating switches the behavioural attraction from food sources to 
oviposition sites and concurrently down- and up-regulates olfactory neuron sensitivity. 
This switch in olfactory sensitivity is correlated with a transient increase in dopamine 
levels in the primary olfactory brain centres, the antennal lobes. 

In male S. littoralis, mating induces a transient behavioural and olfactory inhibition 
towards female-emitted sex pheromone as well as to mating site-related odours. 
However, responses towards food sources remain constant. The shift in olfactory 
responsiveness is not correlated with changes in dopamine levels, but may be regulated 
by neuropeptides expressed in the olfactory system. Distribution patterns of 6 of the 
most abundant neuropeptides reveal distinct differential expressions within the antennal 
lobe glomerular array, providing the possibility for selective and state-dependent 
modulation of the olfactory system. 
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1 Introduction 

Olfaction is an essential sensory modality for the survival and reproduction of 
many animals, especially insects. Food sources, mates and oviposition sites are 
located and evaluated through the use of the olfactory apparatus. Despite 
growing knowledge of insect olfactory detection and processing very little is 
known about the modulation and regulation of the olfactory system. 

The objective of this thesis was to explore modulation of the peripheral and 
central olfactory systems in the Egyptian cotton leafworm, Spodoptera 
littoralis. This was achieved by comparing olfactory properties, such as 
sensitivity, between unmated and mated insects of both sexes. Through the use 
of behavioural, physiological, pharmacological and neuroanatomical 
techniques I have begun to elucidate the modulatory effects of internal factors, 
specifically change in mating status, on insect olfaction. 
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2 The Cotton Leafworm, Spodoptera 
littoralis 

The Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera, 
Noctuidae), is distributed in the Mediterranean countries of northern Africa and 
the Middle East. As a highly polyphagus insect, with larvae feeding on over 80 
plant species from 40 different families, S. littoralis is a serious pest on 
agricultural and economical important crops, e.g. cotton (Brown & Dewhurst, 
1975; Salama et al., 1971). 

Both male and female S. littoralis depend on olfactory cues to locate 
relevant resources in the environment. Such resources include nectar sources as 
well as possible mating and oviposition sites. Furthermore, males detect mating 
partners by tracking the female produced sex pheromone, consisting of at least 
6 individual components, (Z,E)-9,11-tetradecadienyl acetate (Z9,E11-14:Ac), 
(Z,E)-9,12-tetradecadienyl acetate (Z9,E12-14:Ac), (E)-11-tetradecenyl acetate 
(E11-14:Ac), (Z)-11-tetradecenyl acetate (Z11-14:Ac),  (Z)-9-tetradecenyl 
acetate (Z9-14:Ac) and tetradecyl acetate (14:Ac) (Malo et al., 2000). 

Using behavioural relevant odours, olfaction in S. littoralis has been studied 
at the peripheral (Binyameen et al., 2012; Guerrieri et al., 2012; Anderson et 
al., 1995; Ochieng et al., 1995) and the central nervous level  (Guerrieri et al., 
2012; Carlsson & Hansson, 2003; Carlsson et al., 2002; Anton & Hansson, 
1995; Anton & Hansson, 1994) as well as at the behavioural output level 
(Andersson et al., 2011; Anderson et al., 2003; Fan & Hansson, 2001; Fan et 
al., 1997). 
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3 The Insect Olfactory System 

The olfactory system of insects consists of the antennae, labial- and maxillary 
palps, as well as the olfactory brain centres, constituting the peripheral and the 
central parts, respectively. On the flagellum of the antenna, as well as on the 
labial- and maxillary palps, there are cuticular processes covering the surface. 
These cuticular formations, sensilla, contain the olfactory receptor neurons 
(ORNs) responsible for the detection of information about the odourous 
environment (Todd & Baker, 1999). The axons of the ORNs project into the 
primary olfactory centres of the brain, the antennal lobes (ALs), where they 
converge onto spherical neuropil structures, glomeruli (Hansson & Anton, 
2000; Todd & Baker, 1999). Local interneurons (LNs) transform the olfactory 
information before it is conveyed by projection neurons (PNs) to higher 
olfactory centres, including the mushroom bodies (MB) and the lateral 
protocerebrum (Hansson & Anton, 2000; Anton & Homberg, 1999). The MBs 
and the lateral protocerebrum each comprise a second order brain centre where 
olfactory input is further processed and integrated with other sensory 
modalities to produce a behavioural output. 
 

3.1 Peripheral Olfactory System 

Insect antennae come in a variety of shapes and sizes but can generally be 
subdivided into 3 segments; the scapus, the pedicellus and the flagellum (Keil, 
1999). The flagellum carries most of the olfactory sensilla yet other sensilla 
can be found on the labial- or maxillary palps (Keil, 1999). The number of 
antennal sensilla is dependent on the insects’ lifestyle, where males of some 
insect species often have more sensilla compared to females reflecting the 
sexual dimorphic need to detect sex pheromone cues (Blaney & Simmonds, 
1990). Irrespectively, adult insect antennae can carry tens of thousands of 
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sensilla ensuing high functional fidelity when “sieving” through the odorous 
environment (Keil, 1999). 

 

3.1.1 Olfactory Sensilla 

Morphology 

Insect olfactory sensilla can be distinguished based on their external 
morphology. Although their morphology may vary greatly, the sensilla may be 
classified as either single walled, including e.g. sensilla trichodea and s. 
basiconica, or double walled, e.g. s. coeloconica, where all have pores along 
the shaft of their cuticular wall (Keil, 1999). 

The internal morphology of the sensilla is characterised by a lymph-filled 
lumen, a varying number of bipolar ORNs and auxiliary cells (Keil, 1999). The 
ORNs are characterised by a soma that apically projects into the sensillum 
lymph where the outermost part of the dendrite forms a modified cilium (Keil, 
1999). In certain sensilla, the cilium remains unbranched (e.g. s. trichodea) yet 
in other sensilla the cilium gives rise to several branches (e.g. s. basiconica) 
(Keil, 1999). The olfactory receptors (ORs), the proteins that selectively bind 
the odour molecules, are expressed in the membrane of the cilium, as well are 
other receptors and ion channels (Stengl, 2010; Keil, 1999). Surrounding the 
ORN somata are three auxiliary cells, including the thecogen, the tricogen and 
the tormogen cells. The auxiliary cells wrap tightly around the ORNs and 
ensure that the sensillum lumen is physically and chemically separated from 
the rest of the internal antennal environment (Keil, 1999; Keil & Steinbrecht, 
1987; Keil, 1984). Furthermore, the auxiliary cells produce and excrete the 
sensillum lymph, which is characterised by a high concentration of K+ as well 
as a high concentration of Odour Binding Proteins (OBPs), Pheromone 
Binding Proteins (PBPs) and Odour Degrading Enzymes (ODEs) that are 
involved in the olfactory perireceptor events (Keil, 1999; Stengl et al., 1999). 

Function - Perireceptor events 

The structure and internal organisation and environment of the olfactory 
sensilla make them high fidelity detectors of odours. Once through the pores in 
the sensillum cuticle, the odour molecules are hypothesised to bind to OBPs or 
PBPs making otherwise lipophilic molecules more hydrophilic (Stengl, 2010; 
Kaissling, 2009; Stengl et al., 1999). This complex of odour molecule and 
OBP/PBP then traverses the sensillum lymph to the olfactory receptors located 
on the ORN cilium. At the receptor site, the odour molecule binds to the 
receptor and induces transduction (Vosshall & Hansson, 2011). It is currently 
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unclear whether the OBP/PBPs also binds to the receptor or dissociates from 
the odour molecule before receptor activation (Kaissling, 2009; Stengl et al., 
1999). 

After receptor activation it is paramount to have a fast termination of the 
response and removal of the odour molecule to allow for subsequent activation 
by the next stimulus (Kaissling, 2009; Stengl et al., 1999). However, it is not 
yet clear how this deactivation occurs; some experiments points to OBP/PBPs 
being involved in odour deactivation whereas other experiments suggest the 
involvement of esterases, the ODEs (Kaissling, 2009; Stengl et al., 1999).  

Function - Transduction 

Insect ORs span the membrane with 7 transmembrane (7TM) domains but do 
not share sequence similarities with conventional 7TM receptors, other G-
protein coupled receptors or vertebrate ORs (Silbering & Benton, 2010; 
Nakagawa & Vosshall, 2009). Furthermore, evidence suggests that insect ORs 
have an inverted topology so that the generic G-protein binding motif is 
located extracellularly (Benton et al., 2006). 

It is believed that each ORN only expresses one type of OR (Couto et al., 
2005; Nef et al., 1992) alongside the ubiquitous chaperone co-receptor, “Orco” 
(Vosshall & Hansson, 2011; Nakagawa et al., 2005; Larsson et al., 2004; Pitts 
et al., 2004; Krieger et al., 2003). Together, Orco and the expressed OR form a 
heteromeric complex that encompasses both an ionotropic (direct ion channel) 
and a metabotropic (through second messenger systems) mechanisms for signal 
transduction. Upon odour stimulation of the Orco/OR complex, induction of 
ionotropic and metabotropic currents results in a graded receptor potential that, 
at the spike initiation zone of the ORN, either increases the spike activity 
(excitation) or decreases spike activity (inhibition) (Rospars et al., 2010; 
Stengl, 2010; Nakagawa & Vosshall, 2009; Wicher et al., 2008). 

A common property of ORNs is that of selectivity and tuning. An ORN is 
said to be tuned to an odour molecule or a type of odour molecules when the 
ORN responds with the lowest threshold to that molecule (Todd & Baker, 
1999). The tuning of an ORN is imposed by the particular OR type expressed 
on the cilium membrane and how strong an affinity the receptor has to different 
odour molecules. An odour identity is encoded by ORNs with overlapping 
tuning spectra responding to the odour with different intensities through a so-
called “across fibre pattern” (Todd & Baker, 1999). The tuning of ORNs can 
vary greatly; pheromone-responding ORNs often respond only to one odour 
compound whereas certain plant-odour-responding ORNs often respond to 
several odours, e.g. alcohol or aldehydes (Todd & Baker, 1999). 
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Another aspect of ORN functionality is their sensitivity to odour 
concentrations. Insect ORNs have been suggested to function as flux detectors, 
reporting changes in abundance over time (Kaissling, 1998). But as with odour 
identity, odour concentration cannot be encoded by a single ORN; a decrease 
in firing activity could equally mean a lower concentration of an odour to 
which the receptor has a high affinity as well as a high concentration of an 
odour to which the receptor has a lower affinity (Todd & Baker, 1999). Rather, 
changes in concentrations are encoded by changes in spike frequencies 
between several ORNs where relative ratios of frequencies remain constant 
(Todd & Baker, 1999). 

3.2 Central Olfactory System 

The insect antennal lobes (ALs) receive input from the antennae and the labial- 
or maxillary labial palps (Anton & Homberg, 1999). The ALs are divided into 
spheriodal neuropilar structures, glomeruli, where the ORN axons make 
synaptic contacts with AL interneurons. The number of glomeruli is species-
specific, where e.g. moths have been shown to have approximately 60 
glomeruli (Hansson & Anton, 2000; Rospars & Hildebrand, 2000; Anton & 
Homberg, 1999). The glomeruli are arranged in one or more layers around a 
central fibrous core within the AL (Hansson & Anton, 2000; Anton & 
Homberg, 1999). In moths, as well as in some other insect taxa, one or several 
glomeruli are sexually dimorphic. The dimorphic enlarged glomeruli in male 
moths, located close to the antennal nerve entrance, constitute the 
macroglomerular complex (MGC) and have been shown to receive input from 
sex-pheromone sensitive ORNs (Hansson & Anton, 2000; Anton & Homberg, 
1999). Below the MGC are the sexually isomorphic ordinary glomeruli (OG) 
that receive input from non-pheromonal, plant-related odour sensitive ORNs 
(Anton & Homberg, 1999; Hansson & Christensen, 1999). Hence, with 
specifically tuned ORNs innervating specific glomeruli, each glomerulus 
becomes a physical landmark of an odour molecule or class of molecules. 
Consequently, glomeruli collectively create a chemotopic map of the odour 
representation (Hansson & Christensen, 1999). 

Surrounding the ALs are groups of cell bodies that in moths usually make 
up three clusters, including a lateral, a medio-dorsal and an antero-ventral 
cluster. However, in certain moth species, the lateral and the antero-ventral cell 
clusters are fused into one (Anton & Homberg, 1999). The cellular elements of 
the cell clusters comprise three different neuron types; PNs, LNs and 
centrifugal neurons (CNs) (Anton & Homberg, 1999).  Of these three neuronal 
types, the antennal lobe interneurons (PNs and LNs) are responsible for 
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organising the olfactory information from the antennae by selectively 
integrating the synaptic input from the ORNs (Hansson & Christensen, 1999) 
and the PNs then convey the transformed neural representations of the odour to 
higher order brain centres (Anton & Homberg, 1999; de Belle & Kanzaki, 
1999; Hansson & Christensen, 1999). 

 

3.2.1 Antennal Lobe Local Interneurons 

Local interneurons are confined to the ALs and have their cell bodies in cell 
clusters at the periphery of the AL (Anton & Homberg, 1999). In moths, 300-
400 LN somata are situated mainly in the large lateral cell cluster (Anton & 
Homberg, 1999; Homberg et al., 1988). Three morphologically different 
subtypes of LNs have been demonstrated in moths: (1) multiglomerular LNs 
with homogeneous arborisations throughout the AL; (2) multiglomerular LNs 
with heterogeneous, asymmetrical arborisations; and (3) oligoglomerular LNs 
with arborisations in only a few glomeruli (Anton & Hansson, 1994; Hansson 
et al., 1994; Christensen et al., 1993; Matsumoto & Hildebrand, 1981).  

3.2.2 Antennal Lobe Projection Neurons 

In moths, PNs have their somata located mainly in the medial cell cluster and 
have been shown to have uni- and multiglomerular dendritic arborisations 
within the AL (Anton & Homberg, 1999). The axons of PNs leave the ALs 
through one of several antenno-cerebral tracts, with the most prominent one 
being the inner antenna-cerebral tract (IACT) followed by the middle, the outer 
and the dorsal antenno-cerebral tracts (M-, O- and D-ACT, respectively) 
(Hansson & Anton, 2000; Anton & Homberg, 1999). 

Several subtypes of PNs have been described for moths based on the 
projection pattern and pattern of arborisation within the ALs and the 
protocerebrum (Anton & Homberg, 1999). Projection neurons found in the 
IACT arborise in the calyces of the ipsilateral MB and/or the ipsilateral 
protocerebrum, whereas PNs found in the MACT project solely to areas in the 
ipsilateral protocerebrum. Outer-ACT PNs project to the calyces of the 
ipsilateral MB and to both the ipsi- and contralateral protocerebra (Anton & 
Homberg, 1999). Projection neurons found in the DACT have only been 
described for M. sexta and are characterised by having their somata in a 
protocerebral cell cluster near the AL but having dendritic arborisations in the 
contralateral AL (Kanzaki et al., 1989; Homberg et al., 1988). 
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3.2.3 Olfactory Processing in the Antennal Lobes 

The major function of the antennal lobe circuitry is to receive odour 
information from the ORNs and re-shape this into meaningful neural 
representations that can be “read” and further processed by higher order brain 
centres (Hansson & Christensen, 1999). The ALs are the first brain centre 
where molecular information about odours is integrated and where spatio-
temperal characteristics of this information can be accentuated or attenuated 
(Hansson & Anton, 2000; Hansson & Christensen, 1999). With ORNs 
converging on the AL glomeruli, interneurons are presented with input that 
varies in quality, quantity, space and time. These parameters relate to natural, 
intermittent odour plumes and where and which antennae they hit. The 
integration of odour signals then becomes a matter of combining this 
information into activity patterns that reflect odour identity and concentration 
as well as timing of detection (Hansson & Christensen, 1999). 

Based on the ORN tuning specificity, two types of information can be 
relayed to the ALs: highly specific information regarding single compounds or 
more generalised information about classes of odour molecules. This have led 
to two hypothetical coding schemes: “labelled-line” and “across-fibre pattern” 
(Hansson & Christensen, 1999). In “labelled-line” coding, specifically tuned 
ORNs terminate in specific glomeruli. Hence, encoding and identification of an 
odour then becomes a matter of recognising which glomerulus is activated. 
Contrary, in “across-fibre pattern” coding, where ORNs with overlapping, 
broad tuning spectra result in activation of several glomeruli, the odour identity 
is encoded by the pattern of activation of ensembles of glomeruli (Hansson & 
Christensen, 1999). However, it should be noted that, based on empirical 
evidence, neither coding scheme alone can fully explain how information is 
represented in the ALs and a hybrid model, “across-label coding” for odour 
encoding has been suggested (Christensen & White, 2000). 

Most LNs are GABAergic, i.e. produce and release γ-amino butyric acid to 
the synaptic cleft, thereby exerting an inhibitory action on the postsynaptic 
neurons (Christensen et al., 1998b; Christensen et al., 1998a; Christensen et 
al., 1993; Waldrop et al., 1987). A commonly accepted theory is that periods 
of inhibition, caused by the GABAergic LNs, in odour-evoked responses 
represent lateral interactions between AL neurons. This can lead to contrast-
enhancement where lateral inhibition accentuates odour signals processed in 
one information stream while attenuating odour signals processed in a 
neighbouring stream (Sachse & Galizia, 2002; Hansson & Christensen, 1999). 
Yet, in the vinegar fly Drosophila melanogaster, cholinergic, excitatory LNs 
have recently been found (Bhandawat et al., 2007; Olsen et al., 2007; Shang et 
al., 2007). The presence of both GABAergic and cholinergic LNs indicate that 
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these neurons may function as a neural substrates for gain control, to enhance 
weak signals, and to dampen strong signals to ensure high fidelity of the 
olfactory system (Olsen & Wilson, 2008; Bhandawat et al., 2007; Olsen et al., 
2007; Shang et al., 2007; Wilson & Laurent, 2005; Wilson et al., 2004). Due to 
the oligo- and multiglomerular arborisation patterns, LNs have been suggested 
to act in cross-talk between glomeruli (Hansson & Christensen, 1999), where 
lateral interactions of excitatory and inhibitory interactions serves to broaden 
the tuning spectrum of the entire system (Wilson & Laurent, 2005; Friedrich et 
al., 2004; Friedrich & Laurent, 2004; Stopfer et al., 2003; Friedrich & Laurent, 
2001).  

 

3.2.4 Protocerebral Olfactory Centres 

The protocerebrum consists mostly of seemingly unstructured neural networks 
except for the MBs and the central complex (CC) (de Belle & Kanzaki, 1999). 
Even so, these neuronal networks have on several occasions been shown to be 
composed of accurately arranged neurons both in relation to position of cells 
and the pattern of their arborisations (de Belle & Kanzaki, 1999; Kanzaki et 
al., 1991). The protocerebral centres integrate input from different sensory 
centres, including but not limited to olfactory centres like the ALs, and 
coordinate motor and behavioural output (de Belle & Kanzaki, 1999). 

Morphology and function 

The prominent insect MBs consist of the cup-shaped calyces, the pedunculus 
and the α/α’ and ß/ß’/γ lobes (de Belle & Kanzaki, 1999). The MBs receive 
chemosensory and mechanosensory input originating from e.g. the ALs, the 
suboesophageal ganglion (SOG) and thoracic ganglia. Furthermore, projections 
from the visual centres have been reported from flies and honeybees (de Belle 
& Kanzaki, 1999). The MB intrinsic cells, the Kenyon cells (KCs), have their 
somata directly on top of the calyces and project their dendrites into the 
calyces. The KC axons project through the calyces and into the pedunculus and 
terminate in either of the lobes. From the MB lobes, two distinct tracts of 
output neurons connect the MBs with the lateral protocerebrum (de Belle & 
Kanzaki, 1999). 

The lateral protocerebrum (LPR) consists of a large number of unstructured 
neurons receiving extensive input from the MBs but also from other brain 
centres like the ALs, and the visual and mechanosensory centres (de Belle & 
Kanzaki, 1999). From the LPR, output neurons project mainly to motor centres 
and the thoracic ganglia but projections can be found throughout most of the 
brain as well (de Belle & Kanzaki, 1999). 
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Both the CC and the lateral accessory lobes (LAL) receive input from LPR, 
with the LAL receiving additional input from the CC. Both structures send 
axons into the thoracic ganglia and arborise within thoracic motor centres (de 
Belle & Kanzaki, 1999). 

Based on connectivity, the protocerebral olfactory neurons are likely 
involved in the integration of olfactory information with information from 
other sensory modalities such as mechanosensation and vision. The integrated 
information from the protocerebral centres is then relayed to motor output 
centres in the thoracic ganglia producing a behavioural output (de Belle & 
Kanzaki, 1999).   

Interestingly, protocerebral centres are not just relay stations for the 
integration of sensory inputs. The MBs have been demonstrated to be involved 
in olfactory memory formation and storage as well as olfactory learning 
(Blackiston et al., 2008; Strausfeld et al., 1998; Fan et al., 1997; Mercer & 
Flanagan, 1988; Mercer & Menzel, 1982).  
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4 Modulation of the Olfactory System 

For the insect to be able to accommodate constant changes in both the external 
and the internal environment, the nervous system has to be able to change 
accordingly. A fast and reversible way of achieving such changes is by 
modulating the olfactory system through the use of neuroactive chemicals, i.e. 
neuromodulators.  

4.1 Neuromodulation 

Alongside conventional neurotransmitters, such as acetylcholine and GABA, 
insect olfactory neurons are known to produce a large number of neuroactive 
substances (Nässel & Homberg, 2006; Nässel, 2002; Homberg & Müller, 
1999). These neuromodulators, including biogenic amines and neuropeptides, 
are known to be widely distributed within the olfactory system, especially the 
ALs and the MBs (Heuer et al., 2012; Nässel & Winther, 2010; Nässel & 
Homberg, 2006; Homberg & Müller, 1999). However, direct physiological 
function within the olfactory system has so far only been attributed to a small 
subset of these neuromodulators (Root et al., 2011; Ignell et al., 2009; Dacks et 
al., 2008). 

Biogenic amines and neuropeptides are thought to be co-released with the 
conventional neurotransmitters and involved in synaptic transmission of 
information. Both biogenic amines and neuropeptides are believed to act 
through G-protein coupled receptors (GPCRs / metabotropic receptors) with a 
second messenger system that involves up- or down-regulation of cytosolic 
cyclic adenosine monophosphate (cAMP) (Schlenstedt et al., 2006; Johnson et 
al., 2003; Hewes & Taghert, 2001; Osborne, 1996; Bodnaryk, 1982). 
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4.2 Biogenic Amines 

Over the last couple of decades, increasing amounts of information about 
biogenic amines have emerged. Distribution, pharmacological and biochemical 
analyses have revealed the presence and functionality of several amines 
(Osborne, 1996; Roeder, 1994), many of which have also been suggested to 
function as neuromodulators in the ALs (Homberg & Müller, 1999). Through 
immunolabelling studies, the biogenic amines have been suggested to be 
expressed in both LNs and/or CNs (Homberg & Müller, 1999). 

Strictly speaking, biogenic amines are any compound produced by life 
processes and contain one (or more) amine moiety, e.g. acetylcholine, 
melatonin, histamine, serotonin, dopamine, octopamine and tyramine. 
However, in the following part only serotonin, dopamine, octopamine and 
tyramine will be discussed. 

4.2.1 Serotonin 

5-hydroxytryptamine (serotonin) is widely spread throughout the insect 
nervous system (Nässel, 1988), and has been implicated in many physiological 
processes, e.g. development (Taylor et al., 1992), peripheral and central 
olfactory modulation (Dacks et al., 2008; Kloppenburg & Mercer, 2008; Siju et 
al., 2008; Hill et al., 2003; Hill et al., 2002; Kloppenburg et al., 1999; 
Macmillan & Mercer, 1987; Linn & Roelofs, 1986), olfactory learning (Wright 
et al., 2010; Mercer & Flanagan, 1988; Mercer & Menzel, 1982) as well as 
hearing, vision and mechanosensation (Homberg, 2002; Osborne, 1996) (for 
further information see Table 1).  

In the olfactory system, processes from serotonin-producing neurons have 
been found in the ALs across insect taxa although the arborisation pattern 
varies between individual species (Homberg & Müller, 1999). In certain 
species of cockroaches, beetles and locusts, these serotonergic neurons are 
ascending from the ALs into the protocerebrum (Homberg, 2002; Homberg & 
Müller, 1999; Breidbach, 1990). However, in moths and some cockroaches, 
these neurons have changed direction to become descending neurons from 
protocerebral centres and likely act as feedback circuits from higher order brain 
centres (Sun et al., 1993; Salecker & Distler, 1990).  

In the moths, serotonin has been shown to alter K+ conductances in AL 
neurons leading to spike broadening and increased input resistance of 
individual neurons (Kloppenburg & Mercer, 2008; Mercer et al., 1996; Mercer 
et al., 1995), as well as increased odour and concentration discrimination in 
ORNs (Dacks et al., 2008; Grosmaitre et al., 2001; Kloppenburg et al., 1999). 
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Table 1. Biogenic amines in insects  

Biogenic 
Amine 

Species Receptor type Receptor effectuation Tissue Sensory modality Physiological process Reference 

Dopamine Schistocerca gregaria 

Apis mellifera 

Locusta migratoria 

Drosophila melanogaster 

Rhodnius prolixus 

Blaberus giganteus 

Culex pipiens 

Leucophaea madera 

Metabotropic 

 

Activation of AC CNS 

PNS 

Salivary glands 

Flight muscle 

Visceral muscle 

Vision 

Taste 

Olfaction 

Mechanosensation 

 

 

Potentiation of flight motor 
pattern 

Motor output 

Salivary secretion 

Gut contraction 

Locomotion 

AKH release  

Osborne 
1996 

Homberg 
2002 

Octopamine Glossina morsitans 

L. migratoria 

Manduca sexta 

Periplaneta americana 

S. gregaria 

Spodoptera littoralis 

Heliothis virescens 

Bombyx mori 

A. mellifera 

D. melanogaster 

Phormia regina 

Acheta domesticus 

Metabotropic 

 

Activation of AC 

Increase in [Ca2+]cytosol 

Inactivation of AC in 
antennae and brain of H. 
virescens and B. mori 

CNS 

Flight muscle 

Endocrine organs 

Air sacs 

Visceral muscle 

Ovipositor 

Fat body 

Hemocytes 

Compound eyes 

Ocelli 

Chemosensory 
organs 

Chordotonal organs 

Proprioception 

Hearing 

Taste 

Vision 

Olfaction 

Pheromone response 

Mechanosensation 

 

Learning and memory 

Rhythmic behaviours 

Desensitisation 

Motivation 

Locomotion 

Glycogenolysis 

Sting response 

Feeding behaviour 

 

 

 

Roeder 1999 

Osborne 
1996 

Farooqui 
2007 
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Table 1 - continued.  

Biogenic 
Amine 

Species Receptor type Receptor 
effectuation 

Tissue Sensory modality Physiological process Reference 

Serotonin S. gregaria 

L. migratoria 

M. sexta 

Bombyx mori 

A. domesticus 

D. melanogaster 

P. americana 

R. prolixus 

D. melanogaster  

Teleogryllus commodus 

Ionotropic 

Metabotropic 

 

Potassium channels 

Sodium channels 

Calcium channels 

Activation of AC 

Inactivation of AC 

Activation of IP3 

CNS 

PNS 

Chordotonal 
organs 

Flight muscle 

Other muscles 

Visceral muscle 

Salivary glands 

Hearing  

Olfaction 

Pheromone response 

Vision 

Mechanosensation 

 

 

 

Suppression of flight motor 
pattern 

Motor output 

Salivary secretion 

Gut contraction 

 

Osborne 
1996 

Tierney 2001 

Homberg 
2002 

Tyramine P. americana 

A. mellifera 

B. mori 

L. migratoria 

D. melanogaster 

P. regina 

Trichoplusia ni 

Metabotropic Inactivation of AC 

Increase  in [Ca2+]cytosol 

 

Fat body 

Malpighian 
tubules 

Skeletal muscle 

Visceral muscle 

Pheromone gland 

Flight muscle 

CNS 

PNS 

Taste 

Vision  

Olfaction 

 

Glycogenolysis 

Diuresis 

Locomotion 

♀ reproductive organ 
contraction 

Pheromone production 

Appetite 

Flight 

Osborne 
1996 

Lange 2009 

AC, adenylate cyclase; AKH, adipokinetic hormone; [Ca2+]cytosol, cytosolic concentration of calcium; CNS, central nervous system; IP3, inositol triphosphate; PNS, peripheral nervous 
system 
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4.2.2 Dopamine 

Dopamine has been demonstrated in the PNS and CNS of several insect 
species and has been found to affect various sensory modalities, including 
vision, taste, mechanosensation and olfactory memory (Berry et al., 2012; 
Homberg & Müller, 1999; Osborne, 1996; Mercer & Menzel, 1982). 
Furthermore, dopamine is known to regulate the metabolisms of the classic 
insect hormones, juvenile hormone and ecdysteroids (Rauschenbach et al., 
2011; Gruntenko & Rauschenbach, 2008; Gruntenko et al., 2005a; Gruntenko 
et al., 2005b) (for further information see Table 1). 

The presence of dopaminergic neurons in the olfactory system of insects 
varies greatly among species (Homberg & Müller, 1999). However, in species 
where these neurons are found, evidence suggests that they function as wide-
field CNs with dendritic arborisations in both the protocerebrum and the SOG 
and axonal terminations in the AL (Homberg & Müller, 1999; Schafer & 
Rehder, 1989).  

Several dopamine-GPCRs have been found in the insect nervous system 
(Kahsai et al., 2012; Blenau & Baumann, 2001; Vallone et al., 2000; Kokay & 
Mercer, 1996; Roeder, 1994) and they appear to be connected to specific 
dopamine-sensitive adenylate cyclase (Bodnaryk, 1982; Bodnaryk, 1979a) 
regulating cAMP concentration and ion channel activity (Vallone et al., 2000; 
Missale et al., 1998). 
 

4.2.3 Octopamine 

Octopamine is thought to act as a hormone, a modulator and a transmitter in 
many invertebrate species (Farooqui, 2007; Roeder, 1999). Octopamine has 
been found in both neuronal and non-neuronal tissue and is likely to modulate 
almost every physiological process in invertebrates (Farooqui, 2007; Roeder, 
1999), including olfactory detection (Pophof, 2002; Grosmaitre et al., 2001; 
Pophof, 2000; Linn et al., 1992; Linn & Roelofs, 1992; Roelofs & Linn, 1987; 
Linn & Roelofs, 1986) and learning and memory (Farooqui et al., 2003; 
Menzel, 2001; Erber et al., 1993; Menzel et al., 1988). Octopamine is thought 
to act as a “stress-hormone” in the peripheral nervous system of insects, 
inducing increased muscle contraction, increased glycogenolysis and 
mobilization of lipids (Chapman, 1998; Orchard & Lange, 1984) (For further 
information see Table 1). 

In the CNS, a small number of octopaminergic neurons, including 
ascending thoracic dorsal unpaired median (DUM) and ventral unpaired 
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median (VUM) neurons, supply most neuropils of the insect brain (Bräunig, 
1991). These elaborate neurons send projections into the ALs, the MBs and in 
some insects also the lateral protocerebrum (Dacks et al., 2005; Homberg & 
Müller, 1999; Kreissl et al., 1994). 

Octopaminergic GPCRs (Roeder, 1999) are found in the antennae as well as  
throughout the insect brain, especially in the MBs (Brigaud et al., 2009; Han et 
al., 1998; Roeder & Nathanson, 1993) and cause an increase of the intracellular 
second messenger cAMP and an activation of cAMP-dependent protein kinase 
A (Hildebrandt & Muller, 1995b; Hildebrandt & Muller, 1995a; Roelofs & 
Linn, 1987; Linn & Roelofs, 1986; Bodnaryk, 1982; Bodnaryk, 1979a; 
Bodnaryk, 1979b).  

 

4.2.4 Tyramine 

Tyramine is a decarboxylation product of tyrosine and a precursor of 
octopamine (Roeder, 2005). Not much is known about the physiological 
function of tyramine in insects (Lange, 2009; Roeder, 2005). However, 
tyramine has been implicated in the muscle contraction of the locust oviduct 
(Lange, 2009; Donini & Lange, 2004). A mutant Drosophila line, honoka, with 
reduced tyramine receptor expression, shows few phenotypical differences 
compared with wild type flies. They are slightly hyperactive, impaired in 
certain olfactory tasks and show reduced tyramine-induced muscle contractions 
(Roeder, 2005; Nagaya et al., 2002; Kutsukake et al., 2000) (For further 
information see Table 1).  

Tyraminergic labelling has been found in the CNS, PNS and visceral 
muscle tissue, all stemming from a small set of DUM and VUM neurons 
located in the SOG and thoracic and abdominal ganglia (Lange, 2009; Downer 
et al., 1993). 

Tyramine receptor pharmacology suffers greatly from the lack of 
pharmacology tools and there are therefore only a few studies available 
(Roeder, 2005). The only pharmacological relevant antagonist, yohimbine, is a 
high-affinity antagonist of tyramine receptors and induces pharmacological 
effects similar to what is observed in flies with reduced expression of tyramine 
receptors (Roeder, 2005; Kutsukake et al., 2000). Evidence suggests that, 
whereas octopamine induces an increase in cAMP and/or intracellular Ca2+ 
concentration, tyramine induces a decrease in cAMP (Roeder, 2005; Roeder et 
al., 2003). 
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4.3 Neuropeptides 

Neuropeptides comprise a diverse group of signalling molecules and are 
thought to be involved in the regulation of several physiological processes.  
Other functions include inhibition of hormone production and myoinhibition 
(allatostatins), stimulation of hormone production (allatotropins) and 
myostimulatory (tachykinins) (Nässel & Winther, 2010) as well as functions as 
regulatory hormones in the heart, gut and reproductive tissue of insects (Spit et 
al., 2012; Nässel & Winther, 2010; Clark et al., 2008; Ejaz & Lange, 2008; 
Nässel & Homberg, 2006; Hill & Orchard, 2004; Clark & Lange, 2002; Lange, 
2001; Fuse et al., 1999; Kwok et al., 1999). In addition, based on distribution 
studies, many neuropeptides have been implicated to be involved in olfaction 
(Nassel & Winther, 2010).  

Neuropeptides with similar C-terminal ends from orthologous genes across 
species comprise a peptide family (Nässel & Winther, 2010; Nässel & Winther, 
2002; Vanden Broeck, 2001), and the most prominent neuropeptide families 
characterised in insects are A-type allatostatins, allatotropins, FMRFamide-
related peptides and tachykinin-related peptides (Nässel & Homberg, 2006; 
Schachtner et al., 2005). 

In the following section, a subset of the neuropeptide families, as relating to 
olfaction and olfactory processing, will be described. 

 

4.3.1 Tachykinins 

Tachykinin has been shown to be expressed in AL LNs and a small subset of 
CNs in several insect species (Berg et al., 2007; Neupert et al., 2007; Nässel & 
Homberg, 2006; Schachtner et al., 2005; Homberg & Müller, 1999). The high 
degree of similarity in tachykinin expression across taxa, especially amongst 
LNs, indicates an important function of tachykinin within the olfactory system 
(Nässel & Winther, 2010; Schachtner et al., 2005).  

Tachykinin is one of only two neuropeptides to have been functionally 
characterised within the olfactory system. Tachykinin signalling has been 
studied in Drosophila and tachykinin-releasing LNs have been shown to 
presynaptically inhibit ORNs and suppress synaptic transmission from ORNs. 
Furthermore, tachykinin-releasing LNs also modulate postsynaptic LN activity, 
possibly providing a release of inhibition in local circuits (Winther & Ignell, 
2010). The combined action of tachykinin on ORNs and LNs has been shown 
to alter the olfactory-guided behavioural choices towards certain food-related 
odours (Winther & Ignell, 2010; Ignell et al., 2009; Winther et al., 2006). 
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4.3.2 FMRFamide-Related Peptides 

The FMRFamide-related peptide (FaRP) superfamily includes the extended 
FMRFamides, the myosuppressins, short neuropeptide F (sNPF) and the 
sulfakinins (Predel et al., 2010; Marder et al., 1987). Immunocytochemical 
analyses, using antibodies against this family, have revealed extensive labelling 
of LNs, PNs and/or CNs across several species (Berg et al., 2007; Neupert et 
al., 2007; Nässel & Homberg, 2006; Iwano & Kanzaki, 2005; Schachtner et 
al., 2005; Homberg et al., 1990). This evolutionary conserved feature of FaRPs 
indicates a significant role of this family of neuropeptides in olfactory 
processing and modulation (Schachtner et al., 2005). However, no true 
olfactory function has yet been attributed any of these peptides, except for 
sNPF. Recently, sNPF signalling has been shown to presynaptically modulate 
ORNs, facilitating enhanced ORN activity (Root et al., 2011). Short 
neuropeptide F and insulin were demonstrated, through the expression of the 
sNPF receptor, to modulate odour-driven food search in starvation/satiety 
dependent behaviours (Root et al., 2011). 
 

4.3.3 Allatotropin 

Allatotropin has only been studied in a few insect species, including 
cockroaches (Neupert et al., 2012; Homberg & Müller, 1999), locusts 
(Homberg et al., 2004; Ignell, 2001) and moths (Berg et al., 2007; Schachtner 
et al., 2005; Schachtner et al., 2004). However, where allatotropin expression 
within the olfactory system has been reported, the distribution pattern looks 
strikingly similar, with only minor differences in the actual number of labelled 
cells (Schachtner et al., 2005). So far, no olfactory function has been 
established. 

 

4.3.4 Allatostatin 

Gene products of insect A-type allatostatins vary greatly in numbers between 
species; from 4 isoforms in D. melanogaster to 14 isoforms in cockroaches 
(Schachtner et al., 2005). Yet, immunolabelling studies have shown 
pronounced similarities between several species where AL LNs, PN and/or 
CNs have been labelled (Nässel & Homberg, 2006; Schachtner et al., 2005). 
Despite the large number of immunocytochemical studies, no olfactory 
function has been reported.  

 



29 

4.3.5 SIFamide 

Although only a few insect species have been examined in relation to 
SIFamide distribution, a striking pattern emerges; a very small number of 
SIFamide expressing neurons are present in the brain of these insects. These 
neurons have their somata in the pars intercerebralis and project branches to 
almost all centres of the brain (Neupert et al., 2012; Carlsson et al., 2010; 
Predel et al., 2010; Terhzaz et al., 2007; Verleyen et al., 2004). The conserved 
SIFamide distribution in diverse species such as dipterans and lepidopterans 
suggests that SIFamide has a significant function, not just in the olfactory 
system but on a global CNS level (Schachtner et al., 2005).  

SIFamide has been implicated in the control of sexual behaviours of D. 
melanogaster, where ablation of SIFamidergic neurons in the brain results in 
males indiscriminately courting both conspecific females and males (Terhzaz 
et al., 2007). This change in behaviour indicates that SIFamide modulation of 
olfaction is involved in the male-male pheromone recognition system that 
otherwise inhibits male-male courtship (Carlsson et al., 2010; Terhzaz et al., 
2007). 

 

4.3.6 MIPamides 

Myoinhibitor peptides (MIPamides) have until recently received very little 
attention and there are, therefore, not much known about this family. 
MIPamide distribution has, so far, only been reported for D. melanogaster 
(Carlsson et al., 2010) and P. americana (Neupert et al., 2012) where it seems 
to be confined to 10-15 LNs in D. melanogaster and 30-50 LNs in P. 
americana plus additional endocrine cells (Neupert et al., 2012; Carlsson et al., 
2010). 
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5 Summary of Results 

5.1 Modulation of Olfaction in Female Spodoptera littoralis 
(Papers I-II) 

Mating induces profound changes in the olfactory system of female S. 
littoralis. Naïve, unmated females are highly attracted to nectar sources 
(flowers of lilac, Syringa vulgaris) but only partially attracted to oviposition 
sites (leaves of cotton, Gossypium hirsutum). However, after mating, 
behavioural responses are now switched to a strong attraction to cotton 
whereas the attraction to lilac is abolished (Fig. 1A-B). This behavioural switch 
is mirrored at the neuronal level, where the olfactory input to the ALs is 
significantly modulated by mating. Electroantennographic and optical imaging 
analyses of odour detection revealed that responses to lilac volatiles were 
greatly reduced after mating, whereas responses to cotton volatiles were 
significantly enhanced. 

Through a series of high performance liquid chromatography analyses, we 
found that dopamine levels in the ALs changed as a consequence of mating. 
Shortly after mating a transient, but significant increase in dopamine levels in 
the olfactory system modulates the sensitivity of the system to both lilac and 
cotton volatiles. These changes could be mimicked by systemic injection of the 
biosynthetic dopamine precursor, L-DOPA1, into unmated females, which 
made them respond as if they were in fact mated. In contrast, removing 
dopamine from the system by injecting a depletion agent into mated females, 
made them respond as if they were unmated (Fig. 1C). 

                                                        
 

1. Dopamine does not cross the blood-brain barrier, in contrast to L-DOPA. Once inside the 
brain, L-DOPA is converted to dopamine through the dopamine biosynthetic pathway (Lehman et 
al., 2000; Livingstone & Tempel, 1983). 
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Figure 1: Mating-induced modulation of behavioural attraction of (a) unmated and (b) mated 
female Spodoptera littoralis to cotton and lilac in the wind tunnel. (c) Antennal lobe glomerular 
responses to cotton of female S. littoralis either unmated, sham injected, 24 h post-mated or 
unmated injected with L-DOPA. (d) Antennal lobe glomerular responses to cotton of female S. 
littoralis either unmated, sham injected, 3 h post-mated or unmated injected with αMT. Results in 
(c) and (d) were obtained with amounts of volatiles as released from a cotton plant and a cluster 
of lilac flowers during 10 min. 

 
The mechanism by which dopamine acts on the olfactory system is not 

known but dopamine may alter ORN excitability by regulating the production 
of second messengers (Bodnaryk, 1982; Bodnaryk, 1979a). In mammals, 
dopamine has been shown to depress olfactory input to the olfactory bulb in 
this way (Coronas et al., 1999; Hsia et al., 1999; Mania-Farnell et al., 1993). 
Alternatively or in addition, dopamine may act through protein kinases and 
regulate gene expression for e.g. olfactory receptors (Sands & Palmer, 2008; 
Eisenhardt et al., 2006; Vallone et al., 2000; Missale et al., 1998).  

Our results indicate that dopamine primarily acts on the peripheral olfactory 
system of the S. littoralis and preliminary in situ hybridisation analysis have 
revealed the expression of dopamine receptors (SlitDAR-1 and SlitDAR-2) in 
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olfactory receptor neurons of female S. littoralis (unpublished data). 
Furthermore, a pair of dopaminergic centrifugal neurons innervate the ALs of 
S. littoralis  (unpublished data) as seen in other moths (Klemm, 1976). It is 
plausible that these receptors and centrifugal neurons provide a substrate for 
peripheral and central dopaminergic olfactory modulation. Dopamine levels in 
the brain have previously been shown to be correlated with reproductive state 
in both insects and vertebrates (Serguera et al., 2008; Sasaki et al., 2007; 
Boulay et al., 2001; Sasaki & Nagao, 2001; Harris & Woodring, 1995). Yet, 
direct modulation of the olfactory system has only been shown in mice, in 
which increased dopamine levels in the olfactory bulb reduce sensitivity to 
male-produced social cues that would otherwise inhibit pregnancy (Serguera et 
al., 2008).  

Selective dopaminergic 
modulation of AL neuronal circuits 
could be responsible for the up- and 
down-regulation of neuronal 
responses to cotton and lilac volatiles, 
respectively. Yet, it is still unclear 
how insects, like S. littoralis, can 
distinguish between different plants. 
Many of the volatiles found in lilac 
and cotton headspaces are ubiquitous 
compounds found in many plants. 
However, the attraction of S. littoralis 
might be because of a subset of 
essential compounds, in addition to 
otherwise redundant, interchangeable 
compounds (Cha et al., 2011; Tasin et 
al., 2007). In cotton and lilac, the 
ratio between the two enantiomers of 
linalool, (R)-(−)- and (S)-(+)-linalool, 
is different. Yet, it has been observed 
in M. sexta that females can 
differentiate between these two 
enantiomers and that one signifies feeding source whereas the other is 
indicative of oviposition site (Reisenman et al., 2010). It is, therefore, highly 
plausible that female S. littoralis could be able to distinguish between the two 
enantiomers and, thus, utilize this information as a guide towards cotton versus 
lilac. 

Figure 2: Mating-induced modulation of
behavioural attraction of male Spodoptera
littoralis towards (a) cotton foliage, (b) calling
female S. littoralis and (c) lilac flowers in the
wind tunnel (mean ± SEM, n = 50). 
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5.2 Modulation of Olfaction in Male Spodoptera littoralis (Paper 
III) 

Mating also induces profound changes in the olfactory system of male S. 
littoralis. Naïve, unmated males are attracted to cotton (mating site) and lilac 
(food source) but even more so to pheromone-releasing females. However, 
directly after mating, behavioural responses to calling females and cotton are 
abolished. This inhibition of behavioural response is temporary and pre-mating 
response levels are restored by the following night (Fig 2). These mating-
induced changes were analysed with electroantennographic, single sensillum 
and optical imaging analyses, and we found that the behavioural inhibition 
towards pheromone and cotton volatiles were correlated to a remarkable 
lowered sensitivity of the antennae and ORN input to the ALs. Twenty-four 
hours later, the responses at both neuronal levels had also reverted to that of 
unmated males. This transient inhibition of olfaction and olfactory-guided 
behaviour is most likely an adaptive value to avoid remating a now unreceptive 
female (Fischer & King, 2008). Furthermore, it could also be a necessary 
period for refilling the sex accessory glands and for production of new 
spermatophores as suggested for the moth Agrotis ipsilon (Barrozo et al., 2011; 
Barrozo et al., 2010a; Barrozo et al., 2010b; Gadenne et al., 2001; Lachmann, 
2000; Duportets et al., 1998).  

Interestingly, mating does not alter the behavioural or the neuronal 
responses to lilac in male moths (Fig. 2) as it does in female S. littoralis. 
Because of this, we hypothesis that olfaction in males is characterised by two 
separate information streams; one for social cues, i.e. mate and mating sites, 
and one for food source-related odours. These two information streams are 
modulated differentially with the responses to social cues being regulated by 
internal factors such as mating status. 

5.3 Neuropeptides in the Antennal Lobes of Male Spodoptera 
littoralis (Paper IV) 

To elucidate the underlying mechanism of mating-induced olfactory 
modulation in males, we also conducted high performance liquid 
chromatography on excised male ALs. However, contrary to what we found in 
females, none of the biogenic amines changed in relation to mating in males, 
indicating separate modes of modulation between the two sexes. Another set of 
proposed neuromodulators are the neuropeptides. In view of the fact that only a 
small subset of neuropeptides has a characterised function in the olfactory 
system, we conducted a series of immunocytochemical experiments to identify 
prime candidates for future studies. 
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We found that five of the six neuropeptides screened for were expressed 
primarily in intrinsic AL LNs; tachykinin, FMRFamide-related peptides, 
allatotropin, allatostatin and MIPamide (Fig 3). However, a subset of the 
neuropeptides were also expressed in extrinsic, projection or centrifugal, 
neurons. These findings suggest that neuropeptide signalling occurs mainly 
within local circuits of the ALs but that crosstalk with other brain centres is 
also subject to peptidergic modulation. 

Within the ALs, we found conspicuous distribution patterns of the tested 
neuropeptides. Tachykinin, SIFamide and MIPamide were expressed 
homogeneously throughout all glomeruli whereas allatotropin and allatostatin 
were only expressed in the basal part of the glomeruli. FMRFamide had a 
dense expression pattern amongst the ordinary glomeruli but was almost 
devoid in the major glomerulus of the macroglomerular complex, the cumulus. 
This differential expression of neuropeptides within and amongst the glomeruli 
indicates differential function in processing of odours, e.g. pheromones and 
plant-related odours. Furthermore, differential expression offers the possibility 

Figure 3: Distribution patterns of neuropeptides within the antennal lobes of male Spodoptera 
littoralis. (a) Schematic drawing of the brain of S. littoralis with LemTK immunoreactive cell 
bodies (green), (b) allatostatin distribution within the antennal lobe and an extrinsic fibre
connecting the antennal lobe with higher order brain centres (arrow), (c) FMRFamide distribution
within the antennal lobe and (d) FMRFamide immunoreactive extrinsic neurons in the inner
antennocerebral tract (arrow). Scale bars = 50 µm. 
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of selective modulation of afferent and efferent neurons, i.e. ORNs and PNs, 
respectively.   

Interestingly, SIFamide, which is only expressed in extrinsic neurons, was 
recently found to be involved in the regulation of courtship behaviour in the D. 
melanogaster. If SIFamide expressing neurons are genetically removed, male 
D. melanogaster started to court both females and males equally (Terhzaz et 
al., 2007). It has, therefore, been suggested that SIFamide might be involved in 
the detection and processing of pheromones that normally prevent males from 
courting other males (Carlsson et al., 2010). 

Allatotropin and allatostatin are known to regulate the production and 
release of juvenile hormone, which stimulates filling of sex accessory gland 
and production of spermatophers. Filling of the sex accessory glands, in turn, 
stimulates release of allatotropin, creating a feedback loop (Stay & Tobe, 2007; 
McNeil & Tobe, 2001). It is, therefore, plausible that, after mating when males 
are depleted of spermatophores, an induction of the allatostatin-allatotropin-
juvenile hormone system is also accountable for the observed decrease in 
olfactory responses of male S. littoralis. 

The presence and distinctive distribution patterns of the neuropeptides and 
the possibility for selective and physiological state-dependent modulation of 
the olfactory system could ensure neuronal and behavioural plasticity in 
response to changing internal and external environments. 
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6 General Conclusions 

In the four papers presented in this thesis, I have described how mating alters 
the olfactory system of female and male Spodoptera littoralis. Although we 
still only know relatively little about insect olfaction, I believe that our findings 
offer an important contribution to how internal states can modulate the 
olfactory system. 

Mating affects the olfactory system of female S. littoralis (Papers I and II). 
This modulation is caused by an increase in dopamine levels in the olfactory 
system (Paper II) and results in a shift in olfactory preference and a concurrent 
change in olfactory sensitivity to food source and oviposition site related 
odours (Papers I and II). Similarly, in males, mating induces a change in the 
olfactory system, with a transient inhibition of behavioural and olfactory 
responses to pheromones and mating site related odours (Paper III). 

Neuropeptide distribution in the antennal lobes of males was investigated to 
elucidate prime candidates for future studies on mating-induced modulation of 
olfaction. Distinct patterns were found for 6 neuropeptides and revealed a rich 
neural substrate for the modulation of olfactory integration (Paper IV). 

 
Based on these findings, future studies of the olfactory system in S. 

littoralis will be aimed at elucidating additional modulatory mechanisms, how 
these affect mating-induced changes as well as other changes in the olfactory 
system and how this relates to the coding of odours. With the advancement in 
molecular techniques available for the study of insect chemical ecology, a 
multitude of facets can be explored. Characterisation of olfactory receptors as 
well as receptors involved in synaptic transmission will offer great advances in 
our understanding of how odours are processed. This can then be related to the 
behavioural output of physiological state and context-dependent choices.  
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