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Estimation of Canopy Structure and Individual Trees from Laser 
Scanning Data 

Abstract 
During the last fifteen years, laser scanning has emerged as a data source for forest 
inventory. Airborne laser scanning (ALS) provides 3D data, which may be used in an 
automated analysis chain to estimate vegetation properties for large areas. Terrestrial 
laser scanning (TLS) data are highly accurate 3D ground-based measurements, which 
may be used for detailed 3D modeling of vegetation elements. 

The objective of this thesis is to further develop methods to estimate forest 
information from laser scanning data. The aims are to estimate lists of individual trees 
from ALS data with accuracy comparable to area-based methods, to collect detailed 
field reference data using TLS, and to estimate canopy structure from ALS data. The 
studies were carried out in boreal and hemi-boreal forests in Sweden. 

Tree crowns were delineated in three dimensions with a model-based clustering 
approach. The model-based clustering identified more trees than delineation of a 
surface model, especially for small trees below the dominant tree layer. However, it 
also resulted in more erroneously delineated tree crowns. Individual trees were 
estimated with statistical methods from ALS data based on field-measured trees to 
obtain unbiased results at area level. The accuracy of the estimates was similar for 
delineation of a surface model (stem density root mean square error or RMSE 32.0%, 
bias 1.9%; stem volume RMSE 29.7%, bias 3.8%) as for model-based clustering (stem 
density RMSE 33.3%, bias 1.1%; stem volume RMSE 22.0%, bias 2.5%). 

Tree positions and stem diameters were estimated from TLS data with an automated 
method. Stem attributes were then estimated from ALS data trained with trees found 
from TLS data. The accuracy (diameter at breast height or DBH RMSE 15.4%; stem 
volume RMSE 34.0%) was almost the same as when trees from a manual field 
inventory were used as training data (DBH RMSE 15.1%; stem volume RMSE 34.5%). 

Canopy structure was estimated from discrete return and waveform ALS data. New 
models were developed based on the Beer-Lambert law to relate canopy volume to the 
fraction of laser light reaching the ground. Waveform ALS data (canopy volume RMSE 
27.6%) described canopy structure better than discrete return ALS data (canopy volume 
RMSE 36.5%). The methods may be used to estimate canopy structure for large areas. 
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1 Introduction 

Forest resources are important because of their economic value as well as their 
ecological values and different ecosystem services. Inventories of forest 
resources are conducted on a variety of scales. National forest inventories 
(NFI) and national inventories of landscapes provide information about the 
forest state at national and regional level to authorities and researchers, 
Environment protection agencies and regional authorities need forest 
information to identify areas of high ecological value. Forest owners need 
stand maps with associated forest variables such as stem volume and habitat 
type for forest management planning but also more detailed information, 
especially in forest stands that are candidates for forest management actions. 
Forest inventory requires consideration of the desired accuracy and the 
available resources (i.e., technical and financial). 

During the last century, statistical sampling approaches based on field 
measurements (e.g., trees measured in sample plots or relascope point 
measurements) have been used to collect information regarding the state of 
forest resources for large areas (e.g., Jonsson et al., 1993), in particular 
national forest inventories (Axelsson et al., 2010). For the purpose of stand-
wise forest management planning, inventories are often done by more 
subjective measurements of forest stands (Ståhl, 1992). After the introduction 
of aerial images, manual photo interpretation has been used to delineate forest 
stands and determine forest variables such as tree species, tree height, and stem 
volume (Axelson, 1993). Three-dimensional (3D) interpretation of aerial 
images was introduced early in the history of aerial images by using stereo 
photogrammetric methods, which may be used to determine tree species and 
stem volume for forest management planning (Åge, 1985).  

Manual photo interpretation is one remote sensing technique, where remote 
sensing refers to a technology to obtain information about properties of the 
earth and different objects from a distance. Interpretation of satellite imagery is 
another remote sensing technique, which may be combined with field 
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measurements of sample plots to automatically produce wall-to-wall estimates 
of forest variables (Nilsson, 1997) or habitat maps (McDermid, 2006). Data 
from radar sensors carried by satellites or aircrafts can also be used to derive 
information useful for forest inventory (e.g., Magnusson, 2006; Sandberg et 
al., 2011). With the development of new sensors and positioning devices, laser 
scanning technologies have become available, providing highly accurate 3D 
coordinate measurements of vegetation and ground. The rapid development of 
electronics during the last decades has made these technologies affordable and 
widely available. This presents efficient ways of obtaining information for 
large areas (McRoberts et al., 2010). Further development of automated 
methods to analyze the data is essential to utilize the vast amount of data 
produced by the sensors. 

1.1 Laser scanning 

1.1.1 Distance measurements 

Data from laser scanning are 3D coordinate measurements of light reflections 
from the ground and other objects. Laser scanning is based on Light Detection 
And Ranging (LiDAR). The laser scanner emits laser light and measures the 
light reflected back from different objects. The distance to the objects can be 
determined with one of two different principles: Time-of-flight or continuous 
wave (Petrie & Toth, 2009b). With the time-of-flight principle, the laser 
scanner emits a short pulse of light and measures the time it takes for the light 
to be reflected back. The distance may be determined since the speed of light is 
known. With the continuous wave principle, the laser scanner emits 
continuous, phase modulated light and measures the phase of the reflected 
light. The distance may be determined since the phase of the light acts as a 
fingerprint unique for the time when it was emitted. Continuous wave 
measurements are usually more accurate than time-of-flight measurements. 
However, the maximum range of continuous wave measurements is the length 
of the modulated wavelength, which is typically around 100 m (Petrie & Toth, 
2009b). 

1.1.2 Discrete return and waveform laser data 

Most commercial laser scanning systems deliver discrete returns, also known 
as point laser data. The discrete returns represent high intensity peaks in the 
reflected light corresponding to surfaces from which the light has been 
reflected (figure 1). The discrete returns are derived during the data acquisition 
from the received signal. Common criteria for detection of a discrete return are 
when the intensity value reaches a maximum (i.e., peak detection), when the 
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intensity value exceeds a defined threshold (i.e., leading edge detection) or 
when the intensity value of a peak exceeds a fraction of the peak maximum 
(i.e., constant fraction detection) in which case the received signal must be 
saved temporarily (Stilla & Jutzi, 2009). Due to limitations in the electronics of 
most laser scanning systems, only sufficiently spaced peaks are distinguished 
as separate returns. However, with the development of sensors and electronics, 
waveform laser data have also become available from commercial laser 
scanning systems. Waveform laser data are intensity values of the reflected 
laser light measured at short, regular intervals (Stilla & Jutzi, 2009). Waveform 
laser data describe the whole backscattered signal and allow for more detailed 
processing, for example, derivation of returns from the waveforms using more 
advanced algorithms (Persson et al., 2005).  

 
Figure 1. The emitted pulse is reflected from different surfaces, resulting in a waveform that can 
be used to derive discrete returns. The waveform may also be decomposed into Gaussian 
components and deconvolved to obtain more detailed information about the reflecting surfaces. 

The intensity value is a measure of the energy flux (i.e., the received power 
per area unit). Assuming a diffuse reflecting surface equal to or larger than the 
laser footprint, the received optical power Pr is described by equation 1 (Wehr, 
2009) 

 

  (1) 

First return

Last return

Intermediate
returns
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where PT is the transmitted power, τtotal is the total transmission (i.e., the 
transmission of the receiver objective, the optical interference filter, and the 
scanning device as well as the two-way transmission of the atmosphere), ω is 
the divergence of the laser beam, D is the diameter of the receiving aperture, R 
is the distance from the laser scanning system to the reflecting surface, and 
σcross is the cross-section of the reflecting surface. The cross-section σcross is 
proportional to the product of the reflectance ρ and the illuminated area As of 
the reflecting surface (Danson et al., 2009). The surface roughness may also be 
included as a term Ω in the denominator of the cross-section to describe the 
spreading of the reflected light from the surface (Equation 2; Wagner et al., 
2006).  

 
   (2) 

 
Assuming that the influence of the receiver and amplifier as well as the 

atmosphere is constant, the received waveform depends mainly on the emitted 
pulse and the reflecting surface. Since the emitted pulse is not infinitely short, 
the received waveform will be the convolution between the emitted pulse and 
the surface properties (Stilla & Jutzi, 2009). Deconvolution of the waveform is 
necessary to distinguish surfaces separated by a smaller distance than the order 
of the length of the emitted pulse. The duration of the emitted pulse is typically 
4-10 ns, which means that the length of the pulse is around 1.2-3 m. 

A common model is to assume that a cluster of scatterers may be described 
by a Gaussian function (Equation 3) 

 

   (3) 
 

where ti specifies the position of cluster i,  is the amplitude of the cluster, and 
si is the standard deviation or the width of the cluster. Since the emitted pulse 
may also be approximated with a Gaussian function (Wagner et al., 2006), the 
resulting convoluted signal is another Gaussian function, which has appealing 
properties for deconvolution (Roncat et al., 2011). After deconvolution, the 
position, amplitude, and standard deviation may be derived for each echo by 
modelling the waveform as a series of Gaussian components. If reference data 
for calibration of the laser scanning system are available, it is possible to derive 
the backscatter cross-section for each component (Wagner et al., 2006). 
Gaussian models are computationally heavy and assume symmetry of the 
emitted pulse as well as the scatterers. Therefore, B-splines have been 
suggested for the modelling of waveforms (Roncat et al., 2011). 
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For a given laser scanning system and assuming that the transmission is 
constant, the intensity value of the reflected light depends on the power of the 
emitted pulse, the size and reflectance of the reflecting surface, and the 
distance from the scanner to the reflecting surface (Danson et al., 2009). 
Additionally, the gain of the sensor might be adjusted depending on the 
conditions at the moment when the light is received. To estimate the 
reflectance properties of the reflecting surface in physical units, information 
about the power of the emitted pulse, the sensor gain, and the distance to the 
reflecting surface is necessary.  

1.1.3 Airborne laser scanning 

Airborne laser scanning (ALS) is usually based on the time-of-flight principle 
(Petrie & Toth, 2009b). To determine the coordinates of the laser reflections, 
the position and orientation of the laser scanning system is measured with a 
global positioning system (GPS) and an inertial measurement unit (IMU) to 
keep track of the direction of each emitted pulse as well as the position of the 
laser scanning system at every moment (El-Sheimy, 2009). The GPS and IMU 
are complementary. The GPS provides position and velocity while the IMU 
provides orientation information based on accelerometers. The IMU can also 
detect and correct missing or erroneous GPS measurements. The IMU residual 
errors are calibrated using the GPS measurements (El-Sheimy, 2009). ALS 
data are geo-referenced from the distances measured by the laser scanning 
system and the position and orientation information provided by the GPS and 
IMU. 

The general spatial distribution of the ALS measurements on the ground is 
determined by the scanning mechanism of the laser scanner, the scan angle, the 
flying altitude and speed, and the pulse repetition frequency (Petrie & Toth, 
2009a). The scan angle is the maximum angle of the laser beam from the 
vertical direction. A larger scan angle or a higher flying altitude or speed will 
result in a smaller measurement density (i.e., density of measured points on the 
ground) but a higher spatial coverage. A higher pulse repetition frequency will 
result in a higher measurement density. The beam divergence is the angle at 
which the light of the laser beam spreads. The beam divergence and the flying 
altitude determine the footprint, which is the area covered by the laser beam on 
the ground. 

The accuracy of the measurements on hard surfaces is typically around ±0.5 
m in the horizontal direction and ±0.2 m in the vertical direction from a flying 
altitude of around 1000 m (Habib, 2009). The development of ALS technology 
has increased the pulse repetition frequency, making high spatial coverage 
possible without decreased measurement density. The pulse repetition 
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frequency of the first experimental profiling pulsed laser systems was 
approximately 100-400 Hz (Nelson et al., 1988a; Nelson et al., 1988b). At the 
time when laser scanning became commercially available, the pulse repetition 
frequency had increased around ten times, resulting in a measurement density 
of around 0.1 m-2 from a flying altitude of 640-825 m (Næsset, 1997). A few 
years later, laser scanning systems with a pulse repetition frequency of 83 kHz 
had been developed, resulting in a measurement density of around 10 m-2 from 
a flying altitude of 400 m (Hyyppä & Inkinen, 1999). Current laser scanning 
systems typically use a pulse repetition frequency of around 150 kHz, resulting 
in a measurement density of around 10 m-2 with a larger scan angle to enable 
higher spatial coverage (Vastaranta et al., 2012). Modern ALS systems can 
emit a new pulse without waiting for the reflection from the previous pulse, so-
called multiple pulses, which enables higher pulse repetition frequencies for 
higher flying altitude (Petrie & Toth, 2009b). State-of-the art ALS systems 
have pulse repetition frequencies up to 500 kHz (ALTM PEGASUS HD500 
Summary Specification Sheet, 2012). 

1.1.4 Terrestrial laser scanning 

Terrestrial laser scanning (TLS) provides highly accurate 3D coordinate 
measurements of light reflections from the surfaces surrounding the scanner. 
TLS systems using continuous wave distance measurements as well as TLS 
systems using time-of-flight distance measurements are common. TLS systems 
have also been developed for collecting waveform laser data (Jupp et al., 
2005). TLS systems may also be classified by their coverage (Staiger, 2003; 
Petrie & Toth, 2009c): i. Panoramic-type TLS systems rotate around a vertical 
axis to provide a full 360° horizontal coverage and typically a minimum 180° 
vertical coverage (i.e., a hemispheric coverage). ii. Hybrid TLS systems also 
provide a 360° horizontal coverage but the vertical coverage is restricted to 
50°-60°. iii. Camera-type scanners have a limited field of view similar to an 
ordinary camera, typically 40° × 40°. New sensors such as distance cameras 
will make the equipment needed for the data collection more portable and the 
cost will most likely be lower. TLS data are geo-referenced from the distances 
measured by the laser scanning system, the angles of the laser beam in the 
horizontal and vertical plane, and the position of the laser scanner, usually 
measured with a high precision GPS. 

1.1.5 Processing chain 

The processing of laser scanning data typically consists of steps similar to 
those used in digital image processing (Gonzalez & Woods, 2008): Data 
acquisition, pre-processing, segmentation, representation with feature 
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extraction from the segments, and classification (Holmgren, 2003). The 
acquisition of laser data is described in the preceding sections. The pre-
processing of laser scanning data includes geo-referencing of the laser 
measurements as well as strip adjustment and quality assurance. Pre-processing 
of waveform laser data may also include derivation of returns. For the purpose 
of forest inventory, the pre-processing step includes classification of the returns 
into ground returns and possibly other classes such as vegetation or buildings, 
exclusion of erroneous laser measurements, and derivation of a digital 
elevation model (DEM) from the ground returns.  

The purpose of the segmentation step is to assign data to different groups 
based on coordinates or other properties such as the intensity values of the laser 
returns. The segmentation may be done directly from the laser data or from 
pixels (i.e., surface models) or voxels (i.e., volume elements, representing 
values on a regular grid in three dimensional space; analogous to pixels in three 
dimensions) derived from the laser data. Detailed models of objects can be 
derived from the point clouds with 3D modelling (Pfeifer & Briese, 2007; 
Rönnholm et al., 2007). The features may be extracted from the shapes of the 
objects or from the distribution of laser returns within the objects. The 
classification step may be realised with a classification scheme to assign the 
objects into different groups or with other statistical models or pattern 
recognition methods to estimate information of interest. The classification may 
be based on reference data or training data (i.e., measurements or observations 
of the information of interest for a subsample of objects covered by the laser 
scanning data) or on previously established models of the relationship between 
the information of interest and extractable features. A statistical approach may 
also be used to control the parameters of the earlier steps in the processing 
chain, for example, the parameters of the segmentation or the selection of 
features. 

1.1.6 Use of laser scanning for forest inventory 

Since ALS measures both the height of vegetation elements and the ground, it 
is possible to derive information about the vegetation from the data. Derivation 
of information about vegetation from remotely sensed data is usually done by 
establishing models based on the relationship between the remotely sensed data 
and reference data, also known as training data, for the information of interest. 
In the case of vegetation, the reference data are field observations or 
measurements. The established models can be applied to the whole area 
covered by the remotely sensed data to estimate the information of interest. 
ALS data provide unique possibilities for automated analysis of the ground 
height and properties of the vegetation for large areas. 
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A second possibility provided by laser scanning data is to derive 
information that is unrealistic to measure manually. ALS data are 
measurements of the ground, the vegetation, and other objects. The vegetation 
measurements are reflections from foliage and branches, and the spatial 
distribution of the measurements are related to the distribution of the canopy of 
the trees and shrubs. TLS data can also be used to measure vegetation. The 
measurements may be used to derive information about the stem forms for 
forest management planning or about the canopy structure for ecological 
applications. Such detailed information is difficult and expensive to measure 
manually. 

During the last fifteen years, ALS data have been used for estimation of 
forest variables such as tree height and stem volume (Nilsson, 1996; Næsset, 
1997; Hyyppä & Inkinen, 1999). Two main approaches are used for estimation 
of forest variables from ALS data (Hyyppä et al., 2008): i. Area-based methods 
when mean and total values of forest variables per area unit measured in field 
plots are used as training data for statistical models or pattern recognition 
methods to estimate the same variables from features extracted from the ALS 
data in raster cells. ii. Individual tree methods when tree crowns are delineated 
from the ALS data and sometimes linked to field-measured trees to train 
models for estimation of stem attributes. Area-based approaches are based on 
the strong correlation between forest variables and features extracted from the 
ALS data and require only low density ALS data. On the other hand, they 
require larger training datasets than individual tree methods. Individual tree 
methods enable high precision forestry and provide more information about the 
forest. On the other hand, they require denser ALS data and more complex 
algorithms (Hyyppä et al., 2008). Linking of tree crowns delineated from ALS 
data to field-measured trees requires positions of the field-measured trees, 
which has been a limitation due to the additional manual field work. The 
approaches may also be combined in different ways to utilize their respective 
advantages. 

1.2 Area-based methods for airborne laser scanning 

An area-based method in the context of airborne laser scanning for forest 
inventory is an approach to estimate summary values of forest variables in area 
units, for example, mean tree height or stem volume per hectare, from variables 
derived from ALS data in area units, typically with a size of 100-500 m2. The 
estimation is done by deriving and selecting variables from the ALS data that 
are correlated with forest variables measured in geo-referenced field plots and 
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creating models with the field-measured values as dependent variables and the 
ALS variables as independent variables (Næsset & Bjerknes, 2001). 

Due to differences between the laser scanning systems and the due to the 
vegetation properties (e.g., phenology) during the acquisition of the ALS data, 
the coefficients of the models are unique for each acquisition. When the 
models have been established, the models can be used to estimate the same 
forest variables for the whole area covered by ALS data from the same 
acquisition and the estimates can be aggregated to stand level (Næsset, 2002). 
Using separate models for different strata may increase the accuracy of the 
estimation (Næsset et al., 2004). Stratification of the area is often done by 
photo interpretation of the tree species composition in forest stands. 

The most common variables derived from the ALS data are measures of the 
distribution of the height above the ground of ALS returns (i.e., percentiles) 
and density measures of the vegetation such as the fraction of ALS returns 
above a certain threshold, for example, 2 m above the ground (Næsset et al., 
2004), where the ground level is represented by a DEM derived from the ALS 
data. Other approaches have also been used. For example, stem volume or 
biomass can be estimated with a regression model from canopy volume defined 
as the entire volume between the top of the canopy and the ground surface. The 
canopy volume is calculated for different canopy height intervals as the mean 
height of first returns multiplied by the fraction of first returns occurring in the 
specified height interval (Hollaus et al., 2009c). The variables may also include 
measures of the horizontal structure of the ALS data (Pippuri et al., 2011) or 
information about individual tree crowns that may be derived from the ALS 
data and aggregated over each field plot or raster cell (Holmgren & Wallerman, 
2006). 

The estimation may be done with multiple regression models or with non-
parametric methods. Non-parametric methods are estimation techniques with 
little a priori knowledge about the relationship between the dependent and 
independent variables (Altman, 1992), for example, k nearest neighbours (k-
NN; Hudak et al., 2008) or random forest (Breidenbach et al., 2010b). Non-
parametric methods generally require larger training datasets since the 
estimation is based on having “sufficiently” similar observations while a 
regression model will interpolate or extrapolate well for even a few 
observations, provided a strong linear relationship (Moeur & Stage, 1995). An 
additional estimation method is k most similar neighbours (k-MSN; Packalén 
& Maltamo, 2007), where the similarity between observations is based on 
canonical correlations and Mahalanobis distance. One advantage of k-NN and 
k-MSN methods is that the covariance structure between the different forest 
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variables is reasonably maintained if k is equal to one since the estimation is 
based on imputation of observations. 

k-MSN has been applied to a combination of ALS data and aerial images to 
estimate tree species specific stand variables with promising results (Packalén 
& Maltamo, 2007). An advantage of k-MSN is that the estimates are consistent 
in the sense that, for example, the total stem volume per area unit is exactly the 
sum of the stem volume of the different tree species. Forest variables related to 
vegetation height and density may be estimated from ALS data with high 
accuracy but estimation of tree species composition is more accurate when 
including optical data such as aerial images (Bork & Su, 2007) or satellite 
imagery (Nordkvist et al., 2012). ALS data have also been combined with 
features extracted from aerial images and a priori information (i.e., site 
condition, main tree species, and stand development) from a stand register to 
estimate forest variables (Maltamo et al., 2006b). 

Area-based methods produce estimates of mean tree height, mean diameter 
at breast height (DBH), basal area, and stem volume with errors of the same 
size as from accurate sampling-based field inventories (i.e., using several field 
plots within each forest stand; Holmgren, 2004; Maltamo et al., 2006a; Næsset, 
2007; Säynäjoki et al., 2008; Breidenbach et al., 2010b). Stand delineation and 
estimation of stand variables are possible for large areas using automated and 
computationally efficient methods (Hollaus et al., 2009a; Koch et al., 2009). 
Area-based methods are cost-efficient since lower measurement density of the 
ALS data than that needed for individual tree methods is sufficient, with 
typically around one emitted pulse per square metre (Säynäjoki et al., 2008). 
However, most of the currently used area-based methods only consider the 
vertical distribution of the ALS data, which does not make use of the 3D 
structure of the ALS data. Additionally, estimation of forest variables in raster 
cells makes it difficult to derive information about tree species or lists of tree 
stems. 

1.2.1 Diameter distributions 

The distributions of tree height, DBH, and basal area in forest stands are often 
described with Weibull functions where the parameters may be estimated from 
stand variables measured in field such as total basal area and stem volume 
(e.g., Maltamo, 1997). The parameters of the Weibull function are simple to 
estimate and Weibull functions may be fitted to various distributions (Bailey & 
Dell, 1973). The parameters of Weibull functions may be estimated from forest 
variables estimated from ALS data (Maltamo et al., 2004). The parameters 
have also been estimated directly from ALS data for DBH and basal area 
distributions (Gobakken & Næsset, 2004; Breidenbach et al., 2008). Non-
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parametric distributions of tree height, DBH, and basal area may also be 
described using percentiles. Percentiles of DBH distributions have been 
estimated from ALS data using area-based methods with partial least squares 
regression and seemingly unrelated regression (Gobakken & Næsset, 2005; 
Bollandsås & Næsset, 2007). DBH distributions have also been estimated from 
ALS data with k-MSN imputation of field plots (Packalén & Maltamo, 2008; 
Maltamo et al., 2009). The result from individual tree methods may be 
combined with measures of ALS data at plot level to estimate the distribution 
of tree height and DBH (Holmgren & Wallerman, 2006). To make the stem 
number, total basal area, and stem volume at area level consistent, the 
distributions may be adjusted using calibration estimation (Maltamo et al., 
2007). The tree size distributions are abstractions of the state of the forest 
stands. Parametric distributions are based on assumptions of the distributions 
of tree sizes and may not fully describe multi-layered forest stands. Non-
parametric distributions (e.g., percentiles) are more flexible but rely on models 
created from the training data, which means that they generally require larger 
training datasets. 

1.2.2 Canopy structure 

The canopy structure can be defined as the spatial distribution of vegetation 
material (i.e., tree stems, foliage, and branches) of the trees and shrubs in an 
area. Canopy structure is related to the distribution of tree heights and DBH as 
well as the tree species composition. The vertical vegetation structure is the 
distribution of vegetation material as a function of height above ground. This is 
of interest for vegetation succession (Falkowski et al., 2009) and fire behaviour 
modelling (Hall et al., 2005) as well as for habitat studies (Brokaw & Lent, 
1999), for example, habitat mapping of bird species (Lefsky et al., 2002; Hill et 
al., 2004; Clawges et al., 2008). The horizontal vegetation structure is useful, 
for example, for identification of aforestation on less used pasture land and for 
mapping of the arctic or alpine tree line (Rees, 2007). 

Large area monitoring of vegetation attributes relevant for nature 
conservation is today based on interpretation of optical remotely sensed data 
combined with field inventory (Vierling et al., 2008). However, vertical 
vegetation structure is difficult to estimate from optical remotely sensed data. 
High density airborne laser scanning provides detailed information about the 
height distribution of vegetation elements (Shugart et al., 2010). This 
information can be used for describing the vegetation structure and, to some 
degree, obtaining information about the height and density of different canopy 
layers, the shrub layer, and the field layer. This offers the potential to carry out 
detailed mapping that is not possible with currently operational remote sensing 
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technique as well as efficient mapping for large areas. Canopy structure has 
this far mostly been estimated with area-based approaches from ALS data. 

Canopy layers 

Leaf area index (LAI) is the total one-sided leaf area per unit ground surface 
area (Wilson, 2011). LAI has been estimated from discrete return ALS data 
(Morsdorf et al., 2006; Solberg et al., 2009; Korhonen et al., 2011). Leaf area 
density (LAD) is the total one-sided leaf area per unit of layer volume (Wilson, 
2011). LAD can be interpreted as profiles of LAI, and the sum of the LAD 
over all layers is the LAI (Morsdorf et al., 2006). The exact value of LAD is 
costly and laborious to measure since it requires destructive sampling of trees. 
LAD has been estimated from the decay rate of the returns derived from 
deconvolved waveform ALS data together with the fraction of ALS returns in 
different height intervals (Adams et al., 2012). The decay rate was also found 
to be useful to differentiate returns from foliage from those from branches, 
stems, understory, and the ground. 

Crown coverage of trees may be estimated with high accuracy from ALS 
data (Holmgren et al., 2008a). Since part of the laser light will pass through 
gaps in a canopy (Harding, 2009), mapping of the understory is also possible to 
some degree (Hill & Broughton, 2009; Martinuzzi et al., 2009). Single-layered 
and multi-layered stand structures may be separated using the shape of the 
distribution of discrete return ALS data (Maltamo et al., 2005) or the height 
variability of local maxima in a canopy surface model derived from the ALS 
returns (Zimble et al., 2003). The height of the herbaceous layer, understory 
shrub, and overstory tree layer has been estimated from the average height of 
all laser returns falling in each height interval (Su & Bork, 2007). 
Characterization of forest ecological variables is possible from the vegetation 
cover in different height intervals as described by the height distribution of 
ALS returns (Miura & Jones, 2010). By fitting, for example, a Weibull 
function to the height distribution of ALS returns, a quantitative measure of the 
vertical vegetation structure may be derived (Coops et al., 2007). To describe 
multi-layered forest stands better, the use of mixture models has been proposed 
(Jaskierniak et al., 2011). Waveform ALS data from the experimental SLICER 
system at NASA have been used to estimate a canopy height profile (CHP) that 
quantitatively represented the relative vertical distribution of canopy surface 
area and seemed to be correlated with a CHP measured in field, defined as a 
relative distribution of plant area as a function of height (Harding et al., 2001). 
The analysis included a method to account for occlusion of the laser energy by 
canopy surfaces, transforming the backscatter signal to a CHP. 
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Even if several studies have modelled the vertical vegetation structure from 
ALS data, few of them have validated the results against detailed field 
measurements. Harding et al. (2001) estimated canopy height profiles for four 
selected forest stands from ALS data from SLICER using measurements from 
a telephoto lens calibrated to measure distances as reference data. Hilker et al. 
(2010) estimated canopy volume profiles for four forest stands from discrete 
return ALS data and compared them with canopy volume profiles estimated 
from terrestrial laser scanning. Hosoi et al. (2010) estimated LAD in a forest 
plot from discrete return ALS data and compared with LAD estimated from 
TLS data. Adams et al. (2012) estimated LAD from waveform ALS data and 
compared the results with LAD derived from destructive sampling in ten field 
plots. All four studies showed reasonably good agreement between the 
estimates from ALS data and field measurements. 

Modelling approaches 

The effects of canopy structure on the ALS waveform may be described by a 
3D radiative transfer model (RTM; Ni-Meister et al., 2001; Morsdorf et al., 
2009; Yang et al., 2010). To characterize the canopy structure and physical 
properties, RTMs have also been used to invert the waveform (Koetz et al., 
2006). The canopy component of the waveform can be defined as the product 
of the fractional cover at the zenith of the reflected ALS signal and the 
volumetric backscattering coefficient of the canopy while the ground 
component can be defined as the product of the gap fraction and the volumetric 
backscattering coefficient of the ground (Armston et al., 2011). By assuming 
that the respective volumetric backscattering coefficients are constant within a 
local area, the fractional cover may be estimated (Armston et al., 2011). 

By modelling the waveform as a series of Gaussian components, 
information can be derived about the position, amplitude (corresponding to the 
intensity value), and width of each echo. If reference data are available for 
calibration, the cross-section of each echo may be derived (Wagner et al., 
2006). By observing that the total area of collision must be equal to the 
footprint area, it is possible to calculate the cross-section of subsequent echoes 
from the first echo (Wagner et al., 2008). Information about the cross-section is 
useful for vegetation classification since the cross-section of the vegetation 
echoes is generally smaller than that of the ground echoes and the cross-section 
of the forest ground echoes is generally larger than the total cross-section of the 
canopy echoes (Wagner et al., 2008). The amplitude and the echo width may 
also be used directly for tree species classification combined with the number 
of echoes from the canopy (Heinzel et al., 2010). However, the echo width is 
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not included in the current discrete return LAS format, which makes it 
impossible to use data in that format for analyses including the echo width. 

The forest structure may also be described from clustering in three 
dimensions of ALS returns to delineate tree crowns and understory separately 
(Barilotti et al., 2008). The structure of the dominant tree layer has been 
described from a normalized digital surface model (nDSM; i.e., a raster where 
the value of each raster cell is the maximum height above the DEM of the ALS 
returns within the raster cell) by delineating convex objects of the canopy 
separated by concave areas using an edge-based segmentation (Höfle et al., 
2008). The approach was to let each tree be represented by one or several 
segments. The ALS returns originated from decomposed waveform ALS data. 
The echo width and backscatter cross-section of the ALS returns were related 
to different deciduous tree species. 

Lower vegetation 

Lower vegetation such as grass and herbs are of interest in forest areas as well 
as in agricultural landscapes and areas with floodplain vegetation (Huthoff, 
2007). The use of ALS data to study lower vegetation layers has not yet been 
thoroughly investigated. Cobby et al. (2001) used segmentation based on the 
standard deviation of ALS data in 10 × 10 m windows to classify pixels as 
short or tall vegetation. The short vegetation height (i.e., grass and cereal 
crops) was estimated as proportional to the logarithm of the standard deviation 
of ALS data. The root mean square error (RMSE) was 14 cm for short 
vegetation height and 17 cm for underlying topography. Straatsma & 
Middelkoop (2007) used the 95th percentile of the laser returns to estimate the 
vegetation height and the percentage of laser returns falling within the height 
interval of the vegetation to estimate density for herbaceous vegetation in the 
lower Rhine floodplain. To identify the alpine or arctic tree line, a 
classification scheme can be used to classify laser returns as shrubs and trees or 
open land (Rees, 2007). The fraction of open land may then be estimated as 
well as the average size of each patch of shrubs and trees or open land. The 
occurrence of small trees in a forest-tundra ecotone may be estimated from the 
fraction of ALS returns above a height threshold (Næsset & Nelson, 2007; 
Thieme et al., 2011) or with regression models based on height and density 
measures derived from the ALS data in raster cells (Nyström et al., 2012). ALS 
data from different acquisitions have been calibrated with histogram matching 
to analyse the change over time of low vegetation from multi-temporal ALS 
data (Nyström et al., 2011). 
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1.2.3 Classification of vegetation using intensity data 

Intensity values are available also for discrete return ALS data (i.e., the 
amplitudes of the returns). The intensity data provide an additional possibility 
to characterize vegetation and estimate ecological variables (Ussyshkin & 
Theriault, 2011). A high negative correlation has been reported between the 
mean canopy cover and First Return Intensity in Canopy stratum (FRI_C) as 
well as a high positive correlation between mean grass cover and FRI_C from 
ALS data with a wavelength of 1064 nm (Miura & Jones, 2010). In other 
words, sparse canopies resulted in lower intensity values of first returns. First 
Return Intensity in Ground stratum (FRI_G) was positively correlated with 
mean canopy cover and the amount of fallen trees, which was explained as 
dense canopies being correlated with fallen trees in the study area and fallen 
trees resulting in higher intensity values since the light was reflected against 
solid surfaces. Korpela (2008) classified understory lichen vegetation from the 
intensity values of discrete return ALS data with a wavelength of 1064 nm. 
The intensity values were calibrated using a so-called normalization process 
based on natural target surfaces (e.g., gravel and a grass field) to minimize the 
influence of the varying distance from the scanner and automatic gain control, 
which improved the separability of lichens from other surfaces. The energy 
losses through a canopy have been modelled for discrete return ALS data by 
using detailed field data including measurements of tree crowns and mapping 
of the understory (Korpela et al., 2012). The probability of receiving a return 
from the understory was smaller for a pulse that had already produced a return 
from the overstory. Compensation for transmission losses was not possible for 
the intensity values of returns from the understory (Korpela et al., 2012). 
However, waveform ALS data may be useful for this. 

1.2.4 Area-based methods versus individual tree methods 

Most of the currently used area-based methods only consider the vertical 
distribution of the ALS data. The vertical distribution of ALS data might be 
similar, for example, for a single-layered forest stand and for a multi-layered 
forest stand. The ALS data have an obvious 3D structure that contains 
information about the tree crowns. To make use of this, analysis of the 3D 
structure or surface models derived from the ALS data is an attractive option. 
This has so far mostly been done using individual tree methods where 
individual tree crowns (ITC) are delineated from the ALS data. 
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1.3 Individual tree methods for airborne laser scanning 

Individual tree methods are algorithms to delineate tree crowns from high 
density ALS data and estimate stem attributes and lists of trees based on the 
delineated tree crowns. Individual tree crowns can also be delineated from high 
resolution digital aerial images (e.g., Hirschmugl et al., 2007). The height and 
shape of the top of the canopy can be derived from ALS data. If the 
measurement density is high enough, individual tree crowns can be delineated 
from the ALS data and the height, diameter, and shape of the tree crowns can 
be derived. Many modern forest management planning systems require 
information at individual tree level (Söderbergh & Ledermann, 2003; Backeus 
et al., 2005; Kärkkäinen et al., 2008) or at least about the DBH distribution in 
forest stands (Maltamo et al., 2007). For the purpose of forest management 
planning and forecasting, unbiased estimates are also essential. 

1.3.1 Surface model methods 

Automatic delineation of individual tree crowns from ALS data can be done by 
deriving a surface model representing the top of the canopy and identifying 
local maxima in the surface model as tree tops. A common approach is to 
derive an nDSM by defining a raster where the value in each raster cell is equal 
to the height of the top of the canopy above the ground. The ground level is 
represented by a DEM derived from the ALS data. The raster cell size is 
usually 0.25 × 0.25 to 0.5 × 0.5 m depending on the density of the ALS data. 
The nDSM may be derived from the maximum height of the ALS returns 
within each raster cell (Hyyppä & Inkinen, 1999) or by interpolation of the 
highest ALS returns (Persson et al., 2002). The surface model is filtered to 
remove small variations in the tree crowns and local maxima are identified as 
tree tops. The surface model is usually delineated by region growing around 
the local maxima (Hyyppä et al., 2001; Solberg et al., 2006) or by watershed 
segmentation (Persson et al., 2002). Other delineation approaches are, for 
example, spatial wavelet analysis (Falkowski et al., 2006) or detection of cone 
shaped objects using the Hough transform (Van Leeuwen et al., 2010).  

A priori knowledge about the relative proportions of tree crowns may be 
used to control the shapes of the delineated segments to avoid too elongated 
horizontal segments (Hyyppä et al., 2001), to fit a parabolic surface to the 
height of each delineated segment and select the size of the smoothing filter 
that results in a small sum of residuals (Persson et al., 2002), or to select the 
size of the window where the local maximum is detected based on tree height 
(Popescu et al., 2002) and tree species (Popescu & Wynne, 2004). 
Rasterization of ALS data will result in a loss of information since the accurate 
coordinates of the ALS returns are approximated into raster cell positions and 
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the value in each raster cell is a combination of several ALS returns. Following 
Axelsson (1999), the original data should be used as long as possible in the 
filtering and modelling process. This can be achieved by using the correlation 
between generalized ellipsoids of revolution (GER) and the ALS returns 
(Holmgren & Wallerman, 2006; Holmgren et al., 2012). A correlation surface 
(CS) can be derived by placing the centre of a GER in each raster cell, 
selecting the radius of the GER with the maximum correlation, and setting the 
raster cell value to the maximum found correlation. Delineation of individual 
tree crowns may then be done from the CS using, for example, watershed 
segmentation. Delineation from surface models can identify most of the trees 
in the dominant tree layer of coniferous-dominated hemi-boreal and boreal 
forests, but only a smaller fraction of the trees below the dominant tree layer 
can be identified in this way (Persson et al., 2002; Solberg et al., 2006). 

1.3.2 Three-dimensional methods 

Since parts of the laser light can pass through gaps in the canopy, the ALS data 
include measurements of surfaces below the dominant tree layer. This makes it 
possible to derive a DEM also in dense forests (Kraus & Pfeifer, 1998; 
Axelsson, 1999; Harding, 2009). Additionally, measurements may originate 
from small trees and shrubs below the dominant tree layer. These properties 
may be used to delineate individual tree crowns in three dimensions from ALS 
data. The delineation may be done with k-means clustering where the initial 
values for the clustering are derived from local maxima in an nDSM or by 
other means of identifying tree tops from the ALS data (Morsdorf et al., 2003; 
Gupta et al., 2010). The accuracy of clustering methods compared to 
delineation from surface models has only been validated in a few studies, but 
current results indicate that delineation from a surface model using a priori 
knowledge about tree crowns may result in equal or higher accuracy than k-
means clustering in three dimensions (Vauhkonen et al., 2011). The delineation 
may also be done by region growing from the tree tops and downwards of ALS 
returns (Lee et al., 2010) or voxels (Vaughn et al., 2012). Another approach is 
to first determine an approximate number of stems by clustering of the ALS 
data below the dominant tree layer and then use the estimated stem number for 
delineation of individual tree crowns with a normalized cut algorithm applied 
to voxels derived from the ALS data (Reitberger et al., 2009). Normalized cut 
divides data into groups based on the total feature dissimilarity between the 
different groups as well as the total feature similarity within the groups (Shi & 
Malik, 2000). The features were the mean intensity values and mean width of 
echoes from calibrated waveform ALS data within each voxel. The normalized 
cut has resulted in a larger fraction of identified trees, especially for trees 
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below the dominant tree layer, and a slight increase in erroneously delineated 
trees compared to watershed segmentation of an nDSM (Reitberger et al., 
2009). 

1.3.3 Tree species classification 

A great advantage of individual tree methods is that tree species classification 
of individual trees may be done from the ALS data, which is particularly useful 
for field plots with a mixture of tree species. Tree species classification of 
individual tree crowns delineated from surface models derived from discrete 
return ALS data can be done based on the first moments of the height and 
intensity data distributions within each tree crown segment (Brandtberg et al., 
2003) as well as other variables derived from the height and intensity data 
distributions, from the fraction of first returns, and from a parabolic surface 
fitted for each tree crown segment (Holmgren & Persson, 2004), which has 
also been confirmed by later studies (Donoghue et al., 2007; Ørka et al., 2009). 
By describing the extent of the tree crowns with alpha shape metrics, additional 
variables can be derived to both classify tree species and estimate DBH 
(Holmgren et al., 2008b; Vauhkonen et al., 2008). This kind of analysis utilizes 
more details of the ALS data together with the knowledge of the shape of tree 
tops and tree crowns (Holmgren & Persson, 2004; Vauhkonen et al., 2009). 
Tree species classification of individual trees has also been done with good 
results from a combination of discrete return ALS data and multi-spectral aerial 
images (Holmgren et al., 2008b). 

Tree species classification may also be done from waveform ALS data. 
Since the waveform data describe the reflected light in more details, it is 
possible to derive the intensity value and width of the echoes and also the 
backscatter cross-section if calibration data are available. Tree species 
classification of individual tree crowns delineated from surface models is 
improved by including variables derived from the echo width, the backscatter 
cross-section, and the total number of echoes within the tree crowns 
(Reitberger et al., 2008b; Hollaus et al., 2009b; Heinzel & Koch, 2011). Tree 
species classification may also be done for individual tree crowns delineated in 
three dimensions. So far, this has been done for waveform ALS data based on 
intensity value and echo width (Reitberger et al., 2008a). Additionally, the 
Fourier transform may be applied to the waveform to derive information about 
the distribution of returned intensity values along the pulse, which is related to 
the positions of branches in the tree crowns. This approach has been shown to 
improve the tree species classification (Vaughn et al., 2012). 
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1.3.4 Estimation of stem attributes and tree lists 

Individual tree methods could produce lists of tree stems with associated 
positions and tree heights for most of the dominant and subdominant trees in 
coniferous hemi-boreal and boreal forests. If field reference data from the laser 
scanned area are available, statistical models or pattern recognition methods 
can be created to estimate variables relevant for forest management planning 
such as DBH and stem volume (Persson et al., 2002; Vauhkonen et al., 2010). 
However, individual tree methods often fail to identify trees below the 
dominant tree layer and trees standing close together (Persson et al., 2002; 
Reitberger et al., 2009). Hence, the result is likely to be an underestimation of 
the stem density and stem volume per area unit when aggregated over forest 
stands or other area units. 

1.3.5 Aggregation to plot or stand level 

If the individual tree method does not identify all trees, the result will be biased 
if the estimates are simply aggregated over field plots or forest stands. The use 
of individual tree methods is limited without taking this into consideration. The 
failure of individual tree methods to identify all trees has been addressed with 
several approaches. Maltamo et al. (2004) fitted a theoretical expected tree size 
function to the distribution of tree heights estimated with an individual tree 
method. The theoretical function was used as a complement to predict the 
number of trees with lower heights and derive a more complete tree size 
distribution. The tree crown delineation resulted in an underestimation of stem 
density (RMSE 74%, bias -61%) and stem volume (RMSE 25%, bias -24%), 
but estimation using an expected tree height function reduced the error (stem 
density RMSE 49%, bias -6%; stem volume RMSE 16%, bias -8%) for field 
plots with approximately 100 trees each (plot size 625–1600 m2). Hyyppä et al. 
(2005) suggested delineation of tree clusters rather than individual trees from 
ALS data. However, it was also noted that estimation of stem volume from 
segments containing several trees required further investigation. Statistical 
approaches have been used for this purpose. The properties of the delineated 
segments may be used to estimate the number of trees per segment and 
associated stem attributes based on field reference data including tree positions 
and stem attributes. The results from different approaches indicate that such 
statistical analysis may improve the accuracy and in some cases even 
outperform area-based methods (see Discussion; Flewelling, 2008; Lindberg et 
al., 2008; Breidenbach et al., 2010a; Holmgren et al., 2010; Lindberg et al., 
2010b). 
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1.3.6 Co-registration with field reference data 

The extents of the delineated segments represent properties of the trees such as 
height and crown diameter. One approach to estimate stem attributes from the 
delineated segments has been to assume that the tree heights can be measured 
directly from the delineated segments (Hyyppä et al., 2008) and that the DBH 
can be calculated from the tree height and the crown diameter using regional 
allometric functions (Vastaranta et al., 2012). However, the accuracy of such 
estimations is limited by the imprecision of the allometric functions when 
applied to varying stem density and silvicultural history (Villikka et al., 2008; 
Vauhkonen et al., 2010). Due to this, field reference data including tree 
positions and stem attributes at the individual tree level are preferable. This is 
usually achieved by allocating field plots in the forest area and measuring the 
position and DBH of all trees and the height of a subsample of trees. By co-
registering the individual tree crowns delineated from the ALS data and the 
field-measured trees, models can be created to estimate stem attributes. 
Common models are regression models (Persson et al., 2002) but also random 
forest (Yu et al., 2011) and k-MSN (Vauhkonen et al., 2010). 

The co-registration must be accurate enough to reduce errors (Gobakken & 
Næsset, 2009), preferably with sub-metre accuracy. However, field data with 
such accurate positions are not always available, in particular due to errors in 
GPS measurements below a canopy. A number of approaches have been 
developed for automatic co-registration of poorly positioned datasets 
consisting of individual tree positions. The positions of individual trees 
identified from remotely sensed data may be used to map the tree positions in 
field whereupon other points can be positioned using triangulation (Korpela et 
al., 2007). Individual tree crown segments may be associated with field-
measured trees using Voronoi tessellations (Flewelling, 2008). The position of 
the field plot may be determined by minimizing the sum of the difference 
between the heights of field-measured trees and the height of an nDSM at the 
tree positions within a specified search window, taking into account if the tree 
belongs to the dominant tree layer or a lower canopy layer (Dorigo et al., 
2010). Additionally, the effect of angle count sampling field inventory can be 
taken into account (Dorigo et al., 2010). Position images of field-measured 
trees and individual tree crowns can be cross-correlated and the position of the 
field plot may be determined by maximizing the correlation within a specified 
search window (Olofsson et al., 2008). 

The positions of individual trees can be determined in field by measuring 
the positions of the trees relative to the field plot centre and measuring the 
position of the field plot centre with a high precision GPS. The tree positions 
relative to the field plot centre may be determined from manual measurements 
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of the direction and distance of each tree (Yu et al., 2010) or with automated 
methods such as distance measurements to three known positions close to the 
field plot centre using an ultrasound instrument (Lämås, 2010). Even though 
electronic equipment can be used to save the measurements automatically, the 
field workers still have to measure each tree individually. Terrestrial laser 
scanning is an additional option, which provides a possibility for automated 
measurements of tree positions and details of the stems. 

1.4 Terrestrial laser scanning 

The 3D coordinate measurements from TLS can be used to derive information 
about tree stems, foliage, and branches of trees and shrubs. This provides 
possibilities for automated measurements of forest stands for forest 
management planning as well as for ecological studies. This may be used for 
detailed measurements at selected sites of special interest, for estimation using 
a statistical sampling approach, or for collection of training data for wall-to-
wall remotely sensed data. An important use of TLS data is for estimation of 
vegetation structure and canopy volume profiles (e.g., Lovell et al., 2003; 
Henning & Radtke, 2006b; Hosoi et al., 2010). However, concerning 
applications for TLS, the emphasis of this thesis lies on estimation of stem 
properties to use as training data for ALS data. 

1.4.1 Methods for three-dimensional modelling of tree stems 

A common way to estimate tree positions and stem diameters from TLS data is 
to first find approximate tree positions and stem diameters from the data, select 
laser reflections in narrow cylinders based on the approximate values, and 
finally fit circles along the stems. The tree positions and diameters are 
determined most efficiently from the lower part of the stems where less foliage 
obscures the measurements. Hence, a DEM must first be derived from the TLS 
data to determine the height above the ground of the laser reflections (Thies & 
Spiecker, 2004). Approximate tree positions and diameters can then be found 
using manual detection (Hopkinson et al., 2004), skeletonization (Gorte & 
Pfeifer, 2004), a clustering algorithm (Bienert et al., 2007; Király & Brolly, 
2007; Maas et al., 2008), or the Hough transform (Aschoff et al., 2004). 
Circles can be fitted along the stems with least squares regression from TLS 
data selected based on the approximate tree positions and stem diameters 
(Pfeifer et al., 2004; Watt & Donoghue, 2005). To filter out laser reflections 
not originating from the stems, an iterative process may be used by fitting a 
circle, removing laser reflections with too large residuals, and re-fitting the 
circle (Henning & Radtke, 2006a). The laser reflections may also be filtered by 
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fitting a plane for the nearest neighbours of each laser reflection and removing 
laser reflections where the plane fitting accuracy is below a certain threshold 
based on the assumption that the planes will fit better to laser reflections from 
the tree stems and worse for laser reflections from the foliage (Pfeifer et al., 
2004). 

Additional information about the stems may be derived with more complex 
models. Wezyk et al. (2007) modelled tree stems from TLS data by fitting 
convex hulls to the laser reflections and estimating DBH and basal area from 
the convex hulls. Thies et al. (2004) used TLS data collected at multiple 
positions around the centre of a field plot to model tree stems with overlapping 
cylinders. The cylinders were fitted from the root of the tree and upwards along 
the stem until a preselected maximum RMSE was exceeded. 

1.4.2 Potentials of terrestrial laser scanning in forest inventory 

TLS could be used to collect information about tree stems in the field that is 
measured manually today. The time spent on measuring the stem diameters and 
in some cases tree positions manually could be used for collecting other data in 
the field plots. Additionally, TLS offers the potential to collect information 
about stems that is currently not measured. Forest inventories often include 
assessments of the quality of a subsample of trees and the fertility of the field 
plots. However, a conventional field inventory does not assess the quality of all 
trees in the field plots and includes no information about stem forms or taper 
curves and the positions of branches since this is almost impossible to achieve 
with manual measurements. 

TLS offers the potential to obtain detailed information about the stems. It 
can be expected that forest inventories using TLS will provide timber quality 
of standing trees with high accuracy (Thies & Spiecker, 2004). Pfeifer & 
Winterhalder (2004) created detailed models of tree stems and branches by 
estimating the direction of each branch and fitting closed B-spline curves along 
the stems and branches. This information is almost impossible to achieve with 
manual measurements in a conventional forest inventory. 

1.4.3 Combination of airborne and terrestrial laser scanning 

The combination of data from TLS and ALS offers the potential to implement 
a forest inventory system with minimal need for manual measurements. The 
tree stems estimated from TLS data may be used as training data for models to 
estimate stem attributes from ALS data. For this purpose it might not be 
necessary to find all trees in a given area from the TLS data as long as the 
selection is representative of all trees. 
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The combination has been used to measure canopy structure (Lovell et al., 
2003; Hilker et al., 2010; Hosoi et al., 2010). TLS and ALS data have also 
been co-registered at the tree level for the purpose of forest management 
planning (Lindberg et al., 2010a; Lindberg et al., 2011). Stem lists derived 
from TLS and ALS have been linked using properties of the stems estimated 
from TLS data assuming high precision positioning in the field (Fritz et al., 
2011). However, since GPS positions measured below a canopy are less 
accurate, the positions of the data collected in field must in practice be 
adjusted, which may be done by correlation of tree position images (Olofsson 
et al., 2008). When using TLS data for the field measurements, the co-
registration must also take into account the zones in the TLS data that are 
obscured from the scanner (Lindberg et al., 2010a; Lindberg et al., 2011). 
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2 Objectives 

The objective of this thesis is to further develop the methods to estimate 
information about individual trees and canopy structure from laser scanning 
data. This includes further development of methods for 3D modelling of tree 
crowns from ALS data and tree stems from TLS data, development of 
statistical methods for estimation of stem attributes from individual tree crowns 
delineated from ALS data, development of methods for combination of TLS 
and ALS data at tree level, and development of methods for estimation of 
vertical vegetation structure from ALS data. The specific objectives for papers 
I-IV are 

 
I To develop and validate a method to estimate a list of individual trees 

with associated stem attributes such as tree height, DBH, and stem 
volume. The most important requirement is that the tree list should 
result in unbiased estimates when aggregated over an area, for example, 
a forest stand. The idea is to use the information that can be derived 
about individual tree crowns from high density ALS data and calibrate 
these results with estimates from area-based methods at plot level. 

II To develop and validate methods to delineate tree crowns from ALS 
data using more a priori knowledge and to estimate individual trees and 
associated stem attributes from the delineated tree crowns with a 
statistical model. The idea is to use the information about the dominant 
tree layer from segmentation of a surface model and then use 3D 
methods to derive information about lower trees. The requirements for 
unbiased estimates are the same as for paper I. 

III Firstly, to develop and validate a method to automatically estimate tree 
positions and DBH from TLS data. Secondly, to develop a method to 
automatically link the tree stems found from the TLS data with tree 
crown segments delineated from ALS data and compare the accuracy of 



35 

ALS estimates trained with TLS data with the corresponding estimates 
trained with manual field measurements. 

IV To develop and validate automated methods to estimate vertical 
vegetation structure from ALS data to represent the shrub layer and one 
or several tree layers and to compare different methods of estimating 
vegetation volume profiles from waveform ALS data and discrete return 
ALS data.  
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3 Material and methods 

3.1 Material 

3.1.1 Study areas 

The study areas used in this thesis were located in boreal and hemi-boreal 
forest in Sweden (figure 2). The dominant tree species were Norway spruce 
(Picea Abies), Scots pine (Pinus Sylvestris), and birch (Betula spp.). 

3.1.2 Field data 

Field plots were allocated in the study areas (table 1). 

Table 1. Study areas used in the papers. 

Paper Area  Lat Long Nature types Field plots Number of 
field plots 

I Fiskåvattnet 64° N, 14° E Boreal forest near 
the tree line 

Circular, 6 and 8 
m radius 

179 

II Krycklan 64° N, 19° E Boreal forest Circular, 12 m 
radius 

105 

III Remningstorp 58° N, 13° E Hemi-boreal 
forest 

Rectangular,  
80 × 80 m 

6 

IV Remningstorp 58° N, 13° E Hemi-boreal 
forest and pasture 
land 

Circular, 12 m 68 
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Figure 2. Map over Sweden and the study areas Fiskåvattnet, Krycklan, and Remningstorp. 

The positions of the field plots were measured using a high precision GPS. 
All trees with a DBH larger than a defined limit within the field plots were 
measured using a calliper and the height was measured for a subsample of 
trees. The positions of the trees were measured relative to the GPS positions 
using an ultra-sound device (Lämås, 2010) or a total station. The stem volume 
was calculated for the subsample of trees where the height was measured in 
field (e.g., Brandel, 1990). To estimate the tree height and the stem volume of 
all trees, species specific regression models were created for tree height and 
stem volume as functions of DBH. 

For paper IV, the extents of the crowns of all trees and shrubs higher than 3 
dm were also measured. The measurements were used to model vegetation 
volume profiles as the sum of the volume of all crowns in 1 dm height intervals 
above the ground. 
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3.1.3 Airborne laser scanning data 

The average measurement density of the ALS data was 10 emitted pulses m-2 
(paper I), 15 returns m-2 (paper II), 30 returns m-2 (paper III), and 7 emitted 
pulses m-2 (paper IV). The first and last returns for each pulse were recorded. 
Laser returns were classified as ground or non-ground using a progressive 
triangular irregular network (TIN) densification method (Axelsson, 1999; 
Axelsson, 2000) implemented in the TerraScan software (Soininen, 2004), and 
the ground returns were used to derive a DEM. For paper IV, waveform data 
were also recorded. 

3.1.4 Terrestrial laser scanning data 

For paper III, TLS data were collected using an Optech ILRIS-3D scanner with 
a 40º × 40º field of view. One centrally located scanner position was used in 
each field plot. The complete 360º scenes in the horizontal plane were 
collected by scanning one scene at a time, rotating the scanner, and rectifying 
the scenes against each other 

3.2 Methods 

The creation of the models used to estimate forest variables from the ALS data 
and the validation of the estimated forest variables were done with leave-one-
out cross-validation for one field plot at a time for all papers. 

3.2.1 Estimation of tree lists from airborne laser scanning by combining single-
tree and area-based methods (Paper I) 

Paper I describes a new method to estimate lists of trees from individual tree 
crown segments delineated from ALS data. The tree crown segments were 
delineated from an nDSM derived from ALS data and features were extracted 
from the properties of the segments. The number of trees in each segment as 
well as mean values of the DBH, stem volume, and tree height in each segment 
was estimated based on the extracted features. The estimated number of trees 
was assigned to each segment and the estimated forest variables were assigned 
to the trees, resulting in a tree list for each field plot. As a second step, the tree 
list was calibrated using target distributions of tree height and DBH estimated 
at plot level. If the number of tree candidates was too large according to the 
target distribution, the corresponding number of trees was excluded from the 
list. If the number of tree candidates was too small, the corresponding number 
of trees was added to the list from a field database. The total number of trees 
was chosen to make the total stem volume in the field plot equal to the stem 
volume estimated from a regression model at plot level. 
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3.2.2 Estimation of tree lists from airborne laser scanning using model-based 
clustering and k-MSN imputation (Paper II) 

Individual tree crowns were delineated from the ALS data based on geometric 
tree crown models. A CS was derived where each raster cell value was set to 
the maximum correlation found using tests with geometric tree models. The 
correlation was calculated between z-values of laser returns and h-values of 
generalized ellipsoids for the x- and y-values of the laser returns. The CS was 
smoothed and delineated with watershed segmentation around local maxima. 
In a second step, a model-based clustering approach based on k-means 
clustering was used to divide the ALS data into clusters in three dimensions. 
The segments from the CS were used as fixed cluster centres. Additionally, 
four times as many flexible cluster centres were initially placed at regular 
distances in the field plot. The flexible cluster centres were allowed to move 
freely during the clustering and the fixed cluster centres were allowed to move 
vertically with restrictions but were fixed in the horizontal plane. Additionally, 
the clustering was weighted to make ALS returns assigned to one segment 
more difficult to assign to a cluster corresponding to a different segment and to 
make ALS returns close to the top of the canopy more difficult to assign to a 
flexible cluster. A parabolic surface was fitted for each flexible cluster and the 
distance measure for the clustering included the distance of a return above the 
parabolic surface. Finally, clusters were joined based on the vertical alignment 
and the distance between the cluster centres. The field-measured trees were 
linked to the resulting clusters. Trees were imputed to the clusters based on 
features extracted from the spatial distribution of ALS data in each cluster. As 
a comparison, the field-measured trees were linked to the segments and trees 
were imputed to the segments based on features extracted from the segments. 

3.2.3 Estimation of stem attributes using a combination of terrestrial and 
airborne laser scanning (Paper III) 

Stem positions and diameters were estimated from TLS data in an automated 
processing chain. Initial positions and diameters were estimated using an 
adapted Hough transform of stem projection images derived from the density 
of laser reflections in a height span of 1-2 m above the ground. The initial 
estimations were used to select laser reflections in a cylinder for each tree stem 
and circles were fitted along the stem. Linear functions were fitted for the 
position and diameter of the fitted circles, approximating the tree stem with a 
tilted cone. The linear functions were used to select a new set of laser 
reflections and circles were fitted along the tree stem again. Finally, the DBH 
was estimated by fitting a linear function for the diameters and calculating the 
diameter at 1.3 m above the ground. The stem positions were co-registered and 
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linked with tree crown segments delineated from a CS derived from ALS data 
based on geometric tree crown models. The co-registration masked the 
obscured zones in the field plot depending on where trees were found in the 
TLS data. The linked stems were used as training data for regression models to 
estimate DBH, tree height, and stem volume. The accuracy of the estimated 
stem attributes were compared with stem attributes estimated from ALS data 
using manually measured trees as training data. 

3.2.4 Estimation of 3D vegetation structure from waveform and discrete return 
airborne laser scanning data (Paper IV) 

Paper IV describes new automated methods to estimate vertical vegetation 
structure from ALS data. In one method the waveform ALS data were used 
directly (direct waveform (a)) and in a second method care was taken to first 
compensate for the shielding effect of higher vegetation layers on reflections 
from lower layers based on the Beer-Lambert law (normalized waveform (b)). 
ALS waveform profiles were derived by summing the intensity values of the 
ALS waveforms in 1 dm height intervals for direct waveform (a) and 
normalized waveform (b). In a third method returns were derived from the 
ALS waveform using the Expectation–Maximization (EM) algorithm 
(waveform points (c)) and in a fourth method conventional, discrete return 
ALS data from the laser scanning system were used (system points (d)). ALS 
point profiles were derived by summing the number of ALS returns in 1 dm 
height intervals for waveform points (c) and system points (d).  

Vegetation volume profiles were derived in 1 dm height intervals from the 
field data assuming that each tree crown was an ellipsoid and each shrub was a 
half-ellipsoid standing on the ground. The vegetation volume profile was used 
rather than biomass profiles or LAD since it was feasible to measure in a large 
number of field plots. The total vegetation volume (defined as the sum of the 
vegetation volume in each field plot) was estimated from the ALS profiles 
based on the Beer-Lambert law. Vegetation volume profiles were estimated by 
rescaling the ALS profiles with the estimated total vegetation volume. The 
vegetation volume in height intervals ≤30 dm, ≤100 dm, and >100 dm was 
estimated as the sum of the vegetation volume profile in those intervals. 
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3.2.5 Validation 

The validation was done using RMSE (equation 4) and bias (equation 5) 
 

  (4) 
 

   (5) 
 

where  is the estimated value and Yj is the true value of a forest variable in 
plot j or a stem attribute of tree j, and n is the number of plots or trees, 
respectively. The error index (EI; Reynolds et al., 1988) was calculated for the 
distributions of tree heights, DBH, and basal area as well as the vegetation 
volume profiles (equation 6) 

 
  (6) 

 
where  is the estimated value in interval k, Fk is the true value in interval k, 
m is the number of intervals, and NT is the sum of Fk over all intervals. 
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4 Results 

The results from the four papers are summarized in the following sections. 

4.1 Estimation of tree lists from airborne laser scanning by 
combining single-tree and area-based methods (Paper I) 

Estimation of one tree per delineated segment resulted in a negative bias for the 
stem volume and stem density when aggregating the tree lists to field plot level 
(table 2; 1a). Estimation of a number of trees with stem attributes per segment 
improved the accuracy, and the bias of the estimated stem volume was close to 
zero when aggregating the tree lists to field plot level (table 2; 1b). Estimation 
with an area-based method at field plot level (i.e., estimation of distributions 
and no tree lists) resulted in very small bias for stem volume and stem density 
(table 2; 2). However, calibration of the tree lists with the area-based estimates 
resulted in tree lists with almost the same accuracies as the area-based 
estimates when aggregating the tree lists to field plot level (table 2; 3a and 3b). 
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Table 2. Plot-level RMSE and bias of stem volume and stem density estimates aggregated over 
field plots using the methods: 1a. Estimation at the individual tree level, 1b. Estimation at the 
individual tree level including estimation of the number of trees per segment, 2. Estimation at the 
field plot level, 3a. Calibration of tree candidate list from results at the field plot level, 3b. 
Calibration of tree candidate list including estimation of the number of trees per segment from 
results at the field plot level. 

Method Stem volume (m3ha-1) Stem density (ha-1) 

RMSE Bias RMSE Bias 

1a. Individual tree level 35 (36%) -14 (-14%) 595 (52%) -403 (-35%) 

1b. Individual tree level + estimation 
of the number of trees per segment 

33 (34%) -2 (-3%) 515 (45%) -208 (-18%) 

2. Area-based, field plot level 35 (36%) 0 (0%) 421 (37%) -33 (-3%) 

3a. Calibration of 1a with 2 36 (37%) 4 (4%) 421 (37%) -34 (-3%) 

3b. Calibration of 1b with 2 36 (37%) 2 (2%) 421 (37%) -36 (-3%) 

 
The error indexes of the estimated tree lists were smaller when estimating 

one tree per delineated segment (table 3; 1a) than when estimating a number of 
trees with stem attributes per segment (table 3; 1b). Estimation with an area-
based method at field plot level resulted in the smallest error indexes (table 3; 
2). Calibration with the area-based estimates improved the error indexes for 
both the tree lists from one tree per delineated segment (table 3; 3a) and the 
tree lists from a number of trees per segment (table 3; 3b). 

Table 3. Mean error index (unitless) for the distributions of tree heights, DBH, and basal area at 
the field plot level using the methods: 1a. Estimation at the individual tree level, 1b. Estimation at 
the individual tree level including estimation of the number of trees per segment, 2. Estimation at 
the field plot level, 3a. Calibration of tree candidate list from results at the field plot level, 3b. 
Calibration of tree candidate list including estimation of the number of trees per segment from 
results at the field plot level. 

Method 

 

Error index 

Tree height DBH Basal area 

1a. Individual tree level 0.98 0.97 0.90 

1b. Individual tree level + estimation 
of the number of trees per segment 

1.09 0.99 0.92 

2. Area-based, field plot level 0.82 0.76 0.69 

3a. Calibration of 1a with 2 0.96 0.92 0.89 

3b. Calibration of 1b with 2 0.96 0.93 0.89 
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4.2 Estimation of tree lists from airborne laser scanning using 
model-based clustering and k-MSN imputation (Paper II) 

The accuracy of the stem volume was higher for tree lists estimated with k-
MSN imputation from the model-based clustering (table 4; 2) than for tree lists 
estimated with k-MSN imputation from delineation of a CS (table 4; 1) when 
aggregated to field plot level. The accuracy of the stem density was lower for 
the tree lists estimated from model-based clustering. 

Table 4. Plot-level RMSE and bias of stem volume and stem density estimates aggregated over 
field plots, using the methods: 1. Delineation of a CS and 2. model-based clustering, both with k-
MSN imputation of individual trees. 

Method Stem volume (m3ha-1) Stem density (ha-1) 

RMSE Bias RMSE Bias 

1. Delineation of a CS 
followed by k-MSN imputation 

45.5 (29.7%) 5.9 (3.8%) 372.9 (32.0%) 22.7 (1.9%) 

2. Model-based clustering 
followed by k-MSN imputation 

33.7 (22.0%) 3.8 (2.5%) 388.1 (33.3%) 12.8 (1.1%) 

 
The error indexes were higher for the model-based clustering (table 5; 2) 

than for delineation of a CS (table 5; 1). 

Table 5. Mean error index (unitless) for the distributions of tree heights, DBH, and basal area at 
the field plot level using the methods: 1. Delineation of a CS and 2. model-based clustering, both 
with k-MSN imputation of individual trees. 

Method 

 

Error index 

Tree height DBH Basal area 

1. Delineation of a CS 
followed by k-MSN imputation 

0.68 0.64 0.60 

2. Model-based clustering 
followed by k-MSN imputation 

0.72 0.68 0.62 
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The model-based clustering was capable of delineating tree crowns also in 
the understory below the dominant tree layer (figure 3). 

 
Figure 3. Example of a birch-dominated field plot with understory; photograph from field, 
upwards view (top left), photograph from field, horizontal view (bottom left), and side view of 
ALS data with different symbols showing different clusters from model-based clustering (right). 

The fraction of field-measured trees that were linked to delineated tree 
crowns was higher for the model-based clustering than for segmentation of the 
CS model, especially for trees with smaller DBH in field plots with higher 
basal area-weighted mean tree height (i.e., trees in the understory below the 
dominant tree layer; figure 4). However, the model-based clustering also 
resulted in more segments that could not be linked to any field-measured tree. 
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Figure 4. DBH distribution of different strata; pine-dominated (top), spruce-dominated (middle), 
and mixed or deciduous-dominated (bottom). The black bars are all trees, the red bars are trees 
that were linked to tree crowns delineated with the model-based clustering, and the blue bars are 
trees that were linked to tree crowns delineated from the CS. 

4.3 Estimation of stem attributes using a combination of 
terrestrial and airborne laser scanning (Paper III) 

The RMSE of the DBH estimated from TLS data was smallest for birch, 
second smallest for pine, and largest for spruce. The bias was negative for pine, 
positive for spruce, and close to zero for birch (figure 5). 
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Figure 5. The residuals of DBH estimated from TLS data versus manually measured DBH for 
pine (a), spruce (b), and birch (c). 

A greater fraction of trees with large DBH were linked to tree crowns 
delineated from ALS data compared to trees with small DBH (figure 6). This 
was the case both for trees found from TLS data and trees from the manual 
field inventory. 

 
Figure 6. DBH distribution of trees found from TLS (a) and trees from manual field inventory 
(b). The black bars are all trees and the red bars are trees that were linked to tree crowns 
delineated from ALS data. 
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The accuracy of the DBH and stem volume estimated from ALS data when 
using trees found from TLS data as training data was almost the same as when 
using trees from the manual field inventory as training data (table 6). 

Table 6. Tree-level RMSE and bias of DBH and stem volume estimated from ALS data for the two 
different training datasets. 

Training data Number of trees 
in training data 

RMSE Bias 

DBH  (mm) (mm) 

TLS data 933 46.0 (15.4%) -1.0 (-0.3%) 

Manual field inventory 1508 45.1 (15.1%) 0.4 (0.1%) 

Stem volume  (dm3) (dm3) 

TLS data, model based only on spruce 
trees 

723 200.4 (34.6%) 39.7 (6.8%) 

TLS data, weighted model based on 
trees from all species 

933 197.4 (34.0%) 19.8 (3.4%) 

Manual field inventory, model based 
only on spruce trees 

1411 200.2 (34.5%) 27.4 (4.7%) 

 

4.4 Estimation of 3D vegetation structure from waveform and 
discrete return airborne laser scanning data (Paper IV) 

The RMSE of the total vegetation volume was smallest for the normalized 
waveform (b), second smallest for the waveform points (c), third smallest for 
the direct waveform (a), and largest for the system points (d). The bias of the 
total vegetation volume was also smallest for the normalized waveform (b) and 
largest for the system points (d) although the bias was very small (figure 7). 
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Figure 7. Total vegetation volume estimated from direct waveform (a), normalized waveform (b), 
waveform points (c), and system points (d) for the 68 field plots. Field plots dominated (≥70% of 
basal area) by pine are marked ‘x’, spruce ‘o’, birch ‘·’, oak ‘*’, other broadleaf ‘+’ and mixed 
forest ‘Δ’. 

The mean error index was smallest for the normalized waveform (b) and 
waveform points (c), second smallest for the direct waveform (a), and largest 
for the system points (d) (Table 7). 

Table 7. Mean error index (unitless) for the different estimated vegetation volume profiles. Note 
that the error index is only comparable within each row. 

 Direct 
waveform (a) 

Normalized 
waveform (b) 

Waveform 
points (c) 

System points 
(d) 

Error index original profiles 0.58 0.58 0.54 0.62 

Error index mean height adjusted 
profiles 

0.43 0.39 0.39 0.46 

Error index profiles with area 
rescaled to field data 

0.50 0.44 0.46 0.52 

Error index profiles with area 
rescaled to field data and mean 
height adjusted 

0.35 0.29 0.30 0.37 
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The methods developed may be used for estimation of vegetation volume 

profiles for large areas and transects of vegetation density (figure 8). 

 
Figure 8. Example of a photograph from a pine-dominated field plot with understory (top), 
vegetation volume profiles (middle), and a transect of vegetation volume from the same area 
(bottom; colour scale, blue indicates low values and red indicates high values). The field plot and 
the second vegetation volume profile from the left are at approximately the same location. 
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5 Discussion 

5.1 Individual tree crown delineation 

The fraction of field-measured trees that were linked to tree crowns delineated 
from ALS data was larger for trees with a larger DBH. This was the case for 
tree crowns delineated from surface models as well as tree crowns delineated 
in three dimensions with the model-based clustering approach. The delineation 
identified larger trees, especially in the dominant tree layer, which is consistent 
with earlier studies (Persson et al., 2002). More trees with a smaller DBH (<20 
cm) were linked to tree crowns delineated with the model-based clustering 
approach than to tree crowns delineated from a surface model, especially in 
field plots with higher mean tree height. This suggests that the model-based 
clustering approach is more successful at identifying trees in the understory 
below the dominant tree layer. However, the model-based clustering approach 
resulted in more erroneously delineated tree crowns that were not linked to any 
field-measured tree. Those un-linked clusters may correspond to parts of larger 
trees or to trees with a DBH smaller than the criterion to measure a tree in the 
field. This is also consistent with earlier studies (Reitberger et al., 2009). This 
means that some of the delineated tree crowns that were linked to smaller field-
measured trees could be erroneously delineated tree crowns. 

The CS model was based on a priori knowledge about the shape of tree 
crowns. Earlier studies have shown that this approach is successful for 
delineation of tree crowns under various forest conditions and may result in 
equal or higher accuracy than k-means clustering in three dimensions 
(Vauhkonen et al., 2011). Three-dimensional delineation of tree crowns could 
also benefit from using a priori knowledge about the tree crowns. In paper II, 
this was achieved by fitting a parabolic surface to the top of each cluster and by 
joining clusters that were close enough along a vertical axis. This was a new 
approach compared to earlier 3D analysis of individual tree crowns (e.g., 
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Barilotti et al., 2008; Wang et al., 2008; Reitberger et al., 2009; Gupta et al., 
2010). 

Even when statistical methods are used to estimate lists of trees based on 
the properties of the delineated tree crowns, individual tree methods generally 
underestimate the number of trees. One reason is that tree crowns cannot be 
delineated if they contain too few ALS returns. This applies in particular to 
smaller trees. Additionally, only part of the laser light can pass through the 
higher layers of the canopy, which means that the measurements will not cover 
the area completely (e.g., Harding, 2009). Due to this occlusion effect, 
especially trees below the dominant tree layer will give rise to very few of no 
ALS returns. Hence, usually only a subset of tree crowns may be delineated 
from ALS data and it is difficult to estimate the complete tree size 
distributions. 

5.2 Estimation of tree lists from individual tree methods 

In this thesis, three different statistical approaches were used to estimate lists of 
trees from individual tree crowns delineated from ALS data (i.e., not just the 
trees that can be identified by detecting local maxima in ALS data): i. 
Estimation of the number of trees and forest variables per tree crown using a 
classification approach and regression respectively (paper I). ii. Adjustment of 
the tree lists derived from delineated tree crowns with target distributions of 
tree heights and DBH at plot level and rescaling with the plot-wise volume 
estimates (paper I). iii. Imputation of trees to the delineated tree crowns using 
k-MSN (paper II). All approaches resulted in a smaller RMSE and bias at plot 
level than estimation of one tree per delineated tree crown.  

In paper I, estimation of one tree per segment resulted in an underestimation 
of stem density and stem volume. The classification and regression approach 
reduced the error. In another study, probability models have been used to 
estimate the number of trees associated with each delineated tree crown with 
features extracted from the crown areas as independent variables (Flewelling, 
2008). The models resulted in unbiased estimates at stand level even though 
the fraction of linked tree crown segments was only 48% of the total number of 
trees and 74% of total basal area. However, a separate model was needed to 
handle unseen trees (i.e., trees that had not been linked to any of the delineated 
tree crowns). 

In paper I, adjustment using the tree size distributions and stem volume in 
the field plots reduced the bias even further. The accuracy of the stem volume 
estimated from adjusted tree lists was similar to direct regression estimates at 
plot level. The study area in paper I is situated in boreal forest near the tree line 
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and has a high fraction of deciduous and mixed forest. Furthermore, the radii of 
the field plots were only 6 and 8 m. Hence, estimation of forest variables from 
ALS data is more difficult for this study area than for coniferous-dominated 
forest and using field plots with larger radii, especially estimation of tree size 
distributions. 

Finally, the k-MSN approach in paper II resulted in a high accuracy at plot 
level, which is consistent with previous studies (Breidenbach et al., 2010a; 
Holmgren et al., 2010). k-MSN imputation of stem properties from harvester 
data based on the ALS data in each segment has been used to estimate tree lists 
(Holmgren et al., 2010). For estimation of several correlated variables, it is 
difficult to fit parametric models. Breidenbach et al. (2010a) used a similar 
imputation approach that they named semi-ITC to estimate the properties of the 
trees contained in each segment. The results were more accurate than estimates 
from regression models at area level. 

The model-based clustering resulted in a large number of small clusters that 
were not linked to any field-measured trees. However, the properties of the un-
linked clusters differed from the linked clusters. Hence, the result of the 
imputation was not impaired by the un-linked clusters. The accuracy was 
similar to the imputation of segments. Three-dimensional analysis of individual 
trees might have more advantages in multi-layered forests than in managed 
boreal forests where statistical analysis of tree crown segments delineated from 
a surface model provides high accuracy and small bias. 

5.3 Canopy structure 

Paper IV presented new methods for estimation of vegetation volume profiles 
from waveform ALS data as well as discrete return ALS data. The methods 
were based on a model where the Beer-Lambert law was used to describe the 
total vegetation volume measured in field as a function of the penetration ratio 
(i.e., the fraction of laser light reaching the ground) derived from ALS data. 
Exact measurements of LAD are extremely laborious. However, the vegetation 
volume profile is probably highly correlated with LAD, which means that the 
total vegetation volume is correlated with LAI. LAI has previously been 
estimated from ALS data with models based on the Beer-Lambert law and 
penetration ratio (Solberg et al., 2009). 

Additionally, paper IV presented a new algorithm to normalize the intensity 
values of the received ALS waveforms based on the intensity that is reflected 
from higher layers of vegetation. The normalization was also based on the 
Beer-Lambert law. This approach has not been used for modelling of ALS data 
from terrestrial vegetation before, but it is was inspired by bathymetric laser 
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scanning, where the light pulse in the water is attenuated exponentially based 
on water clarity (Guenther et al., 2000). The normalization algorithm was a 
simplification and approximation. The diameter of the laser footprint at ground 
level is typically a few dm and most of the surfaces within a footprint are not 
spread along the beam. Hence, it might be more appropriate to first aggregate 
waveforms over a slightly larger area, for example, one square meter, and then 
apply a normalization algorithm to the aggregated waveforms. If calibration 
data are available, the backscatter cross-section for each component of the 
waveform can be derived (Wagner et al., 2008). The cross-section of the first 
reflecting surface can be derived directly from the amplitude and width of the 
corresponding component. The cross-sections of subsequent components can 
be calculated by observing that the total area of the reflecting surfaces should 
be equal to the footprint (Wagner et al., 2008). 

The results indicate that estimation of vegetation volume profiles is feasible 
and may be used for creation of 3D vegetation models for large areas. Even 
though the differences between the methods were small, they suggest that 
waveform ALS data describe the vegetation structure more accurately than 
discrete return ALS data and that processing of the waveforms may improve 
the result. 

The methods require field measurements of the total vegetation volume 
from a number of field plots as training data for rescaling of the ALS profiles. 
However, field-measurements of the vegetation volume profiles are not 
needed. Before rescaling, the ALS profiles represent the relative amount of 
vegetation material at different heights above the ground, although the ALS 
profiles cannot be compared for different field plots since the distance to the 
scanner varies, which means that the intensity value varies accordingly. 
Additionally, the laser scanning system used in paper IV did not provide 
information about the sensor gain. A possible use of the ALS profiles without 
rescaling would be for manual interpretation. 

5.4 Area-based methods versus individual tree methods 

Individual tree methods provide information about most trees in the dominant 
tree-layer, but smaller trees below the dominant tree layer often cannot be 
delineated. The estimates from area-based methods have low bias, which 
makes it possible to calibrate the estimated DBH and tree height distributions 
to better describe the field-measured distributions (Maltamo et al., 2007). 
However, small field plots contain too few trees for estimation of distributions. 
In that case, individual tree methods may better describe the tree size 
distribution in the field plots. A mixture of tree species within the field plots is 
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also a motivation for individual tree methods since tree species classification 
may be done of the delineated tree crowns (Brandtberg et al., 2003; Holmgren 
& Persson, 2004; Vauhkonen et al., 2008). 

Most currently used area-based methods only consider the vertical 
distribution of the ALS data. Individual tree methods generally operate in 3D 
or 2.5D (i.e., surface models), which means that more information is extracted 
from the ALS data. Information from individual tree methods can be utilized in 
area-based approaches. This may be done, for example, by using the 
distribution of heights from delineated tree crowns as independent variables for 
estimation of tree size distributions (Holmgren & Wallerman, 2006) or by 
deriving stem attributes based on delineated tree crowns and regional 
allometric functions, aggregating the stem attributes to plot level, and using the 
aggregated values as training data for an area-based method (Vastaranta et al., 
2012) or as independent variables for an area-based method (Hyyppä et al., 
2012). Information about the number of trees in different height classes could 
also be valuable for describing the vertical vegetation structure.  

Imputation of trees based on features extracted from delineated tree crowns 
may be seen as a combination of individual tree methods and area-based 
methods, utilizing more details than if the ALS data are aggregated to plot 
level. This is consistent with such approaches having resulted in a higher 
accuracy than regression estimates at plot level (Breidenbach et al., 2010a). In 
paper II, imputation was done based on tree crowns delineated in 3D with 
model-based clustering, which was a new approach. 

5.5 Combination of airborne and terrestrial laser scanning 

Paper III presented a new method to combine TLS and ALS data at the 
individual tree level for estimation of DBH, stem volume, and tree height. Tree 
stems found from TLS data were used as training data for tree crown segments 
from ALS data. The training data included only the subset of trees for which 
the accuracy of the stem diameter estimated from TLS data was likely to be 
high (i.e., the method did not require TLS estimates for all trees). The accuracy 
of the estimates from ALS data when using TLS data as training data was 
almost as high as when using manual field inventory as training data. The 
method could reduce the need for manual field measurements, which means 
that the field inventory could be done more efficiently and with a smaller risk 
for human errors. 

Canopy structure could also be estimated using a combination of TLS and 
ALS data. Vegetation volume profiles derived from field data have 
considerable uncertainty and using TLS data is a possibility to obtain more 
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accurate measurements of the canopy structure. Detailed models of the tree 
stems, foliage, and branches may be created from TLS data at tree level 
(Pfeifer & Winterhalder, 2004; Cote et al., 2009) or at plot level (Henning & 
Radtke, 2006b; Van der Zande, 2008; Van der Zande et al., 2011). Canopy 
structure has been studied using a combination of TLS and ALS data (Lovell et 
al., 2003; Hilker et al., 2010; Hosoi et al., 2010; Jung et al., 2011) but more 
research is needed to make use of the full potential to model tree stems, 
foliage, and branches.  

5.6 Estimation of stem diameters from terrestrial laser scanning 

The errors of the DBH estimated from TLS data were partly due to other trees 
and foliage obscuring the measurements of the tree stems. The RMSE of the 
estimated DBH was larger for spruce trees than for pine trees, which is 
consistent with spruce trees having denser branches. Noise reduction is 
essential to select the laser reflections exclusively from the tree stems. For this 
purpose, methods from image analysis and digital photogrammetry are useful, 
although domain specific methods are required to take the obscuring effect of 
foliage into account (Pfeifer & Winterhalder, 2004; Cheng et al., 2007). 

The success of the estimation of stem diameters is dependent on that laser 
reflections are captured from a large enough part of the tree stem. This means 
vertically along the part of the stem that should be estimated and from a large 
enough horizontal section of the stem. If the tree stem is obscured by other 
trees or foliage, the accuracy of the estimated stem diameter will be lower. One 
solution to this is to collect TLS data at multiple positions. However, in that 
case, criteria are also needed to verify that laser reflections are captured from a 
large enough part of the stem. To achieve this it is useful to estimate the 
accuracy of the estimated DBH directly from the laser reflections. If the 
accuracy is lower than requested, additional data may be collected at another 
position. If the estimates are used as training data for remotely sensed data, it 
may be feasible to select the tree stems where the accuracy is likely to be high.  
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5.7 Conclusions 

The main findings in this thesis are summarized in the following bullet points. 
 Delineation of tree crowns from a surface model based on a priori 

knowledge about the shape and proportion of the tree crowns identifies 
most of the trees in the dominant tree layer of coniferous-dominated boreal 
forest and has been shown to perform at least as well as some 3D methods. 
Three-dimensional methods may also benefit from using a priori 
knowledge about the tree crowns. 

 Delineation of individual tree crowns from ALS data often fails to identify 
trees standing close together and trees below the dominant tree layer. To 
derive lists of individual trees, the delineated tree crowns can be linked to 
field-measured trees, and models can be created to estimate a number of 
trees with associated stem attributes for each delineated tree crown. The 
accuracy of such statistical analysis when aggregated to plot or stand level 
is comparable to the accuracy of area-based methods. 

 The accuracy of tree lists derived with statistical approaches from 
delineation of surface models was similar to the accuracy of tree lists 
derived with statistical approaches from 3D methods when aggregated to 
plot level. 

 TLS provides a possibility to find tree positions and estimate stem 
diameters automatically. If the stems will be used as training data for 
individual tree methods, the tree positions must be co-registered, in which 
case the error of GPS measurements below a canopy as well as the obscured 
sectors in the TLS data must be taken into account. 

 Furthermore, if the stems found from TLS data will be used as training data 
for individual tree methods, it may be possible to use only a subset of trees 
where the accuracy of the estimates from the TLS data is likely to be high. 
The accuracy may be estimated directly from the laser reflections together 
with properties of the estimated stems. 

 Characterization of canopy structure is possible from ALS data using 
statistical models trained with field measurements of total vegetation 
volume. The accuracy using waveform ALS data is slightly higher than 
when using discrete return ALS data. 

 One limitation for analysis of canopy structure is that the field 
measurements are laborious but simplified measurements introduce errors. 
This could be improved by using TLS to measure the canopy structure. 
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5.8 Future work 

The model-based clustering was a first attempt to develop an algorithm for 
delineation of tree crowns from ALS data in three dimensions using a priori 
knowledge about the shape and proportion of the tree crowns. The parameters 
of the model were selected subjectively. One way to improve the modelling 
would be to run the algorithm with different combinations of parameter values 
and select the combination resulting in the most accurate delineation, meaning 
that a large fraction of field-measured trees would be linked to delineated tree 
crowns (i.e., small omission error) and a large fraction of the delineated tree 
crown would be linked to field-measured trees (i.e., small commission error). 
Additionally, the principles of the model-based clustering could be improved 
by introducing other distance measures to better model the shape and density 
of tree crowns. 

The model-based clustering was validated in a predominantly managed 
boreal forest. Compared to delineation of a surface model, the model-based 
clustering identified a larger fraction of small trees below the dominant tree 
layer. To make use of this, the model-based clustering should be validated in a 
multi-layered forest. The measurement density of the ALS data should be high 
to make sure that enough measurements originate from lower vegetation layers. 
Waveform ALS data could be useful for obtaining more information about 
lower layers. 

Since the model-based clustering delineates the whole tree crown and not 
just the top of the tree crown, classification of tree species could be improved 
compared to delineation of tree crowns from surface models. This is especially 
so for multi-layered forests where the tree crowns in the dominant tree layers 
could potentially be separated from the understory. Also for this purpose, 
waveform ALS data could be useful in order to base the tree species 
classification on the echo width and other variables derived from the 
waveforms. 

The methods for estimation of vegetation structure could be used to create 
raster maps describing the vegetation density in different height layers for large 
areas. This information could be analyzed together with data on the occurrence 
of different species (i.e., plants as well as animals). The vegetation structure 
could also be used as input to habitat models, where properties of the whole 
landscape are combined to predict the chances for occurrence of species in the 
landscape. 

ALS and TLS data have previously been combined for estimation of canopy 
structure. This has been based on the density of ALS returns and TLS 
reflections in voxels. Another approach would be to delineate tree crowns from 
the ALS and TLS data based on a priori knowledge of the shape and 
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proportion of tree crowns. Such model-based analysis could improve the 
estimation of the vegetation structure since information could be derived even 
for tree crowns containing only a few ALS returns or TLS reflections. 
However, care must be taken to create appropriate models that can represent all 
frequently occurring natural shapes and proportions. 

The stem form and the positions of branches can be derived from TLS data. 
Such detailed analysis is not possible from ALS data, but line features 
representing the stems and branches can be derived from ALS data, for 
example, using a combination of k-means clustering and principle component 
analysis (Ko et al., 2010). This information could be combined with detailed 
information about the stems and branches derived from TLS data. 

The normalization algorithm used to compensate the waveform intensity 
values for the shielding effect of higher vegetation layers on reflections from 
lower layers was a simplification and approximation. It has only been validated 
by comparison of the results from estimation of canopy structure in paper IV. 
The algorithm should be validated using simulations of scattering of laser light 
and compared with radiative transfer models. If the results from the 
simulations are promising, the algorithm should be validated further in an 
experimental setting with laser measurements of tree crown models with 
known reflectance properties and real tree crowns with known geometry. 

The wavelength of the currently used airborne laser scanners for terrestrial 
mapping is usually 1064 nm, which is in the near-infrared spectrum. The laser 
scanning systems are constructed to measure the topography, but the 
wavelength is still useful for vegetation measurements. To improve analysis of 
the vegetation, laser scanners with other wavelengths could be introduced. This 
has been done in experimental systems (Wallace et al., 2012). To make best 
use of the data, laser scanners with different wavelengths could be validated in 
an experimental setting with tree crown models with known reflectance 
properties and real tree crowns with known geometry. 
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