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Characterization of the Prion Protein in Relation to Normal 
Cellular Function and in Disease 

Abstract 
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a 
group of rare and fatal neurodegenerative disorders that can affect both human and 
animals. Evidence indicates that the key event in prion disease pathogenesis is the 
conformational conversion of the normal cellular prion protein (PrPC) into an 
aggregated isoform called the scrapie prion protein (PrPSc). The normal function of 
PrPC is still not known but the protein is essential for transmission of prion diseases. 
Defining the physiological activities of PrPC is crucial for understanding the normal 
function and pathogenesis of prion diseases. In this thesis, the proteolytic cleavages and 
shedding of PrPC were studied. PrPC was shown to be released from the cell by three 
different mechanisms. The first mechanism released a N-terminal fragment of PrPC by 
α-cleavage, the second released the full length PrPC and a C-terminal fragment without 
GPI-anchor via an extreme C-terminal cleavage and a third mechanism released PrPC in 
association with exosomes. It was also shown that a deletion in the α-cleavage site 
inhibited the α-cleavage of PrPC and that the α-cleavage likely took place at the cell 
surface. Metalloproteases have been suggested to be involved in the different 
cleavages. Here, it was shown that metalloproteases were involved in the cleavage of 
the extreme C-terminal end, but not in the α-cleavage of PrPC.  

 
Nor98/atypical scrapie was identified in Norway for the first time in 1998. 

Characterization of the molecular and genetic properties in two Swedish cases of Nor98 
showed that unique proteinase K (PK)-resistant fragments are present in Nor98-
affected sheep. The existence of two PK-resistant fragments that share overlapping 
regions suggests that at least two distinct PrP conformations are present in brain 
extracts from affected sheep.  

 
Chronic wasting disease (CWD) affects cervids in North America. Here, it was 

shown that the PrP sequence of cervids in Scandinavia is similar to genotypes 
connected with CWD susceptibility in North American cervid species. Also, the 
European moose was shown to have a unique variation in codon 109 with 109K/Q and 
109Q/Q. 
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Abbreviations 
Three and one letter codes for the 20 naturally occurring amino acids 

Alanine Ala A 
Arginine Arg R 
Asparagine Asn N 
Aspartic acid Asp D 
Cysteine Cys C 
Glutamic acid Glu E 
Glutamine Gln Q 
Glycine Gly G 
Histidine His H 
Isoleucine Ile I 
Leucine Leu L 
Lysine Lys K 
Methionine Met M 
Phenylalanine Phe F 
Proline Pro P 
Serine Ser S 
Threonine Thr T 
Tryptophan Trp W 
Tyrosine Tyr Y 
Valine Val V 
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Other abbreviations used 
 

Aβ Amyloid β-peptide 
aa Amino acid 
Ab Antibody 
ADAM A disintegrin and metalloproteinase 
APP Amyloid-β precursor protein 
BSE Bovine spongiform encephalopathy 
C1 C-terminal fragment of PrP with GPI-anchor, generated by the α-

cleavage 
C1-S C-terminal fragment of PrP without GPI-anchor, generated by the 

α-cleavage and cleavage in the extreme C-terminal end 
C2 C-terminal fragment of PrP generated by the β-cleavage 
CDS Coding sequence 
CJD Creutzfeldt-Jakob disease 
CWD Chronic wasting disease 
DNA Deoxyribonucleic acid 
Dpl Doppel (prion-like protein) 
ER Endoplasmic reticulum 
FFI Fatal familial insomnia 
FL Full-length PrP 
FL-S Full-length PrP without GPI-anchor 
FTIR Fourier-transform infrared 
GPI Glycosylphosphatidylinositol 
kDa Kilodalton 
mAb Monoclonal antibody 
mRNA Messenger ribonucleic acid 
MWS Moose wasting syndrome 
N1 N-terminal fragment of PrP generated by the α-cleavage 
N2 N-terminal fragment of PrP generated by the β-cleavage 
ORF Open reading frame 
PK Proteinase K 
PMCA Protein misfolding cyclic amplification 
PNGaseF Peptide: N-glycosidase F 
Prnd Dpl gene 
PRNP/Prnp PrP gene 
PrP Prion protein 
PrPΔ121-123 Deletion mutant of the prion protein 
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PrP27-30 PK-resistant core of PrPSc 
PrPC Cellular prion protein 
PrPSc PK resistant, disease-associated form of PrP 
PrPwt Wild-type PrP 
ROS Reactive oxygen species 
SEM Scanning electron microscopy  
Sho Shadoo (prion-like protein) 
Sprn Sho gene 
TACE Tumor necrosis factor-α-converting enzyme 
TEM Transmission electron microscopy 
Tg mice Transgenic mice  
TSE Transmissible spongiform encephalopathy 
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1 Introduction 

1.1 Background 

Prion diseases are a group of fatal neurodegenerative disorders that can affect 
both human and animals. Historically, the term “slow virus” was used to define 
the poorly defined disease-causing agent. Treatments known to inactivate 
viruses did not prevent infectivity (Alper et al., 1966) and the disease was later 
found to be caused by an unconventional infectious agent. In 1997 Stanley B. 
Prusiner was awarded the Nobel Prize for his discovery of prions and the term 
prion was introduced to describe the proteinaceous infectious particle. 
Enrichment of infectious material resulted in the isolation of a partially 
protease resistant core of 27-30 kDa in size (Bolton et al., 1984). Protein 
sequencing of this fraction allowed the identification of a cellular gene, the 
prion protein gene (PRNP) that encodes a protein known as the cellular prion 
protein (PrPC). As the infective protein component (PrPSc) and the cellular 
prion protein share the same amino acid sequence, the distinctive properties of 
prions are determined by posttranslational modifications. In the early 1990s, 
prion diseases got public attention with the “Mad cow disease” or bovine 
spongiform encephalopathy (BSE).  

1.2 Prion diseases 

All prion diseases are collectively called transmissible spongiform 
encephalopathies (TSEs). Most TSEs are characterized by a long incubation 
period but once symptoms appear the disease progress rapidly leading to brain 
damage and death. Neuropathologically the disorders include deposition of 
amyloid plaques that produce a spongiform degeneration of the brain. The 
plaque deposits and regions of the brain affected vary depending on the prion 
strain and host. In addition, no inflammatory reactions are elicited upon 
infection.  
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1.2.1 Human prion diseases 

Prion diseases in humans are relatively rare and can occur in a sporadic, 
genetic or transmissible form (Belay, 1999). Sporadic forms of prion diseases 
are evenly distributed across the world and arise due to spontaneous misfolding 
of the PrP or due to age related somatic mutations of the PRNP. Sporadic 
Creutzfeldt-Jakob disease (sCJD) accounts for around 85% of the prion 
diseases and are the most common human prion disease. Sequencing of the 
PRNP has provided information that codon 129 polymorphism leads to the 
protein containing either methionine (Met) or valine (Val) (Alperovitch et al., 
1999). Compelling evidence has shown that homozygosity for Met at codon 
129 constitutes a risk for development of prion diseases. It has also been shown 
that methionine homozygotes are overrepresented among patients with sCJD.  

 
All genetic or inherited cases of prion diseases include coding mutations in 

the PRNP. To date, over 40 different mutations in the PRNP have been shown 
(Colby & Prusiner, 2011). The genetic prion diseases have been classified as 
Gerstmann-Sträussler-Scheinker syndrome (GSS), familial (f) CJD and fatal 
familial insomnia (FFI). In GSS, the most common mutation is the proline (P) 
to leucine (L) substitution at codon 102 (P102L). In contrast to other inherited 
human prion diseases, GSS has unique neuropathologic features that consist of 
widespread PrP plaques. Previous studies have also shown the presence of a 
low molecular weight N- and C-terminally truncated PrP fragment that 
represent a molecular marker for this disorder (Parchi et al., 1998). Familial 
CJD accounts for 5-10% of all CJD cases and has in general an earlier age of 
onset than other CJDs and the phenotype resembles that of sCJD (Meiner et al., 
1997). The most common form of fCJD is associated with mutations at codon 
200 in the PrP sequence. A subtype of fCJD and FFI are both associated with a 
point mutation at codon 178 together with Met or Val in the polymorphic 
codon 129 of the PrP sequence (Gambetti et al., 1995). The D178N, 129M 
allele segregates with FFI while the D178N, 129V allele segregates with fCJD. 
In FFI, the clinical course is dominated by progressive insomnia that is 
ultimately fatal (Manetto et al., 1992) and the neuropathology of the disease 
shows marked neuronal loss, but spongiform changes or plaques are rarely 
demonstrated which has raised the question whether FFI should be classified as 
a TSE.  

 
Infectious or transmissible forms of prion diseases include kuru, iatrogenic 

(i) CJD and variant (v) CJD. Kuru is a prion disease of humans that reached 
epidemic proportions in a defined population of Papua New Guinea (Johnson, 
2005). The disease was transmitted during cannibalism in which members of 
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the tribe ate brain tissue of dead relatives due to religious reasons. Iatrogenic 
CJD is caused by exposure of prions due to injections of prion-contaminated 
growth hormones, implantation of dura mater grafts and through contaminated 
neurosurgical instruments (Johnson, 2005). In 1994 a novel form of a human 
prion disease named vCJD was described (Will et al., 1996). Biochemical, 
neuropathologic and transmission studies have pointed to that vCJD resulted 
from prions being transmitted from cattle with bovine spongiform 
encephalopathy (BSE) to humans via consumption of contaminated meat 
products. From 1996 to 2001 the incidence of vCJD in the United Kingdom 
increased (www.doh.gov.uk) but since then, the number of cases appears to 
have declined. Moore than 200 people has died of vCJD, mostly in Great 
Britain. A single case of vCJD heterozygous at codon 129 has been reported 
(Kaski et al., 2009), all other vCJD-affected individuals have been Met 
homozygous at codon 129. 

1.2.2 Animal prion diseases 

Scrapie 
Scrapie in sheep and goats was discovered over 200 years ago and was the first 
TSE to be identified (Plummer, 1946). The disease is characterized by intense 
pruritus and affected sheep rub and scrape until the wool is scratched off. 
Amino acid polymorphisms at codon 136 (A or V), 154 (A or H) and 171 (R or 
Q) have been reported to be associated with scrapie susceptibility (Belt et al., 
1995). The VRQ variant is considered the most susceptible while the ARR 
variant is considered most resistant to classical scrapie. In 2003, as a result of a 
decision in EU, a breeding program was set up to reduce the susceptible 
genotypes and improve the resistance by selectively breeding for the ARR 
genotype (EU, 2003). Experiments and epidemiological studies have shown 
that the spread of scrapie mainly occurs by horizontal transmission, either by 
prions being spread in the environment or direct transmission between sheep 
(Hoinville, 1996). In Sweden, there has only been one report of scrapie when 
two ewes in the same flock were diagnosed with the disease in 1986 (Elvander 
et al., 1988). Western immunoblotting performed on brain homogenates from 
these two cases displayed the typical molecular characteristics of classical 
scrapie (Klingeborn et al., 2006).   

BSE 
In 1986, the first case of BSE appeared in the UK and was followed by a 
massive epidemic with around one million infected animals (Nathanson et al., 
1997). The most accepted theory on the origin of BSE is that it was a 
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consequence of recycling infection by feeding cattle with meat and bone meal 
(MBM). MBM is a product of the rendering industry and it is primarily used as 
a protein supplement to cattle. In the late 1970s, the extraction method was 
changed in the rendering process and it is thought that this change allowed a 
larger fraction of scrapie prions from sheep or sporadically generated bovine 
prions to survive in the MBM, resulting in the widespread infection of cattle. In 
1988, the use of animal-derived food supplement was banned in the UK and 
four years after the ban the cases began decreasing (Collee & Bradley, 1997a; 
Collee & Bradley, 1997b).  

Atypical BSE 
Atypical BSE that differ from classical BSE has been reported in different 
countries (Tranulis et al., 2011). The atypical BSE agents have been classified 
into two types, the L- and H-types, relating to the lower and higher molecular 
weight of the unglycosylated band observed. After analysis of the coding 
sequence of the PRNP a genetic cause to the disease seemed unlikely as the 
coding sequence did not reveal any unusual features. In 2001, an active 
surveillance program was started in Europe to control, prevent and eradicate 
TSEs. BSE had never been diagnosed in Sweden until 2006 when one case was 
identified through the surveillance program. The case was a 12-year-old cow 
identified as an H-type BSE variant (Gavier-Widen et al., 2008).  

Other animal prion diseases 
Transmissible mink encephalopathy (TME) is a TSE that affects ranched mink 
(Liberski et al., 2009). Outbreaks seem to result from feeding minks with 
contaminated food containing prions. Feline spongiform encephalopathy (FSE) 
is a prion disease known to affect domestic and captive feline species 
(Sigurdson & Miller, 2003). The disease was first observed in the UK in 1990 
and it is possible, although not proven, that animals got affected by eating 
contaminated bovine meat. Exotic ungulate encephalopathy (EUE) is a TSE of 
exotic zoo ruminants (Imran & Mahmood, 2011). The disease was overlapping 
with the BSE epidemic and the affected animals had been fed MBM.  

Nor98  
In 1998, an atypical form of scrapie was identified in Norwegian sheep for the 
first time and subsequently named Nor98 (Benestad et al., 2003). The Nor98 
cases were identified within the framework of the Norwegian national 
surveillance program for scrapie. According to collected data from 20 
European countries, Nor98 has been shown to be a widespread disease 
(Fediaevsky et al., 2008). Interestingly, affected animals seem to occur most 
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frequently in sheep with genotypes considered to confer a high resistance to 
scrapie infection (Klingeborn et al., 2006; Gavier-Widen et al., 2004; Benestad 
et al., 2003). Nor98 has in addition to that, also been very rare in sheep 
carrying the VRQ genotype, which is considered to be the most susceptible 
genotype for classical scrapie. These findings are not in line with the breeding 
program set up for eliminating the most susceptible genotype variants to 
scrapie and may call for a revaluation. Moum et al. (2005) investigated the 
PRNP in 38 Norwegian cases and showed that Nor98 was highly associated 
with polymorphisms at codons 141 and 154. 

 
Nor98 cases differ from classical scrapie in several features. In classical 

scrapie for example, the predominance of the histopathological leasions is in 
the brain stem while Nor98 cases show pathology in the cerebral and cerebellar 
cortices (Benestad et al., 2003). The clinical presentation and epidemiology of 
Nor98 also differ from classical scrapie (Benestad et al., 2008). Nor98 cases 
are widely distributed geographically and normally only one or very few cases 
are seen in a flock and Nor98 cases are also generally older than classical 
scrapie cases. Major differences are also seen in detailed mapping of the PrP-
fragments after proteinase K (PK) treatment and western blot. Classical scrapie 
displays a typical triplet pattern comprising the di- mono- and unglycosylated 
band migrating between 18 and 30 kDa (Klingeborn et al., 2006). After PK 
treatment, Nor98 PrP-fragments display a distinct multiple band pattern with a 
characteristic fast migrating band about 11-12 (Arsac et al., 2007; Nentwig et 
al., 2007; Gretzschel et al., 2006; Benestad et al., 2003) or 7-8 kDa (Nentwig 
et al., 2007; Klingeborn et al., 2006). The disagreement regarding the 
estimated molecular mass of this prominent band of lower molecular mass is 
most likely due to different electrophoretic conditions used in the experiment 
or due to different PK conditions. By using a gradient SDS-PAGE Götte et. al. 
(2011) showed that the lower molecular weight band involved two separate PK 
resistant fragments with molecular masses of approximately 5 and 8 kDa. 
Proteinase K resistant low molecular weight band containing ragged N- and C-
termini has been described in other prion diseases such as GSS in humans 
(Tagliavini et al., 1994). Nor98 could represent a valuable model for 
investigating pathogenesis of GSS and vice versa but it can only be speculated 
if both diseases involve similar pathomolecular mechanisms. Mutations 
described for GSS have not been detected in Nor98 and no mutations in the 
PRNP that can be correlated to Nor98 have been observed (Nentwig et al., 
2007).  However, the distribution of the disease is widespread, only single 
cases in a flock are affected, Nor98 cases are generally older and there is a lack 
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of genetic evidence for the disease. These findings together might suggest that 
Nor98 is a spontaneous or a sporadic prion disease.  

CWD 
Chronic wasting disease (CWD) is an emerging prion disease of deer, elk and 
moose. Of all mammalian prion diseases, CWD is likely the most efficiently 
transmitted and it is the only prion disease known to affect free-ranging 
animals. CWD was first described in 1967 and was reported as a TSE in 1978 
on the basis of histopathology of the brain (Williams & Young, 1980). 
Presently, the disease occurs only in parts of USA and Canada but has been 
found in South Korea where it was introduced via import from Canada (Walsh 
& Miller, 2010; Kim et al., 2005). PrPSc has been shown to accumulate in 
skeletal muscle, blood, saliva, urine and feces, even in asymptomatic deer. 
How CWD is spread is not assured but hypotheses range from spread via direct 
contact, exposure through grazing in areas contaminated by prion-infected 
secretions or via decomposed carcasses. There are concerns that CWD prions 
will cross the species barrier into new hosts, including humans. Indirect studies 
of human susceptibility to CWD however, suggest that the risk is low. People 
have been exposed to CWD for many years since several million deer and elk 
hunters consume venison in the US and Canada. To study the human species 
barrier, Kong et al. inoculated transgenic mice expressing human PrP or elk 
PrP with elk CWD prions (Kong et al., 2005). Elk PrP expressing mice 
developed disease only 118-142 days post-inoculation, while human PrP 
expressing mice did not develop any symptoms of disease after more than 657-
756 days. Two other studies also reported that human PrP overexpressing mice 
were not susceptible to CWD prions (Sandberg et al., 2010; Tamguney et al., 
2006).  

 
Genetic studies of CWD have shown that there is a correlation between the 

PrP amino acid sequence and susceptibility to CWD infection. Polymorphisms 
at codon 95 (Q or H) and 96 (G or S) in the PrP sequence have been described 
in white-tailed deer (Odocoileus virginianus) (Johnson et al., 2006). The Q95H 
and the G96S were linked to reduced susceptibility to CWD, but the disease 
has been identified in white-tailed deer of all genotypes. In a study of CWD in 
Rocky Mountain elk (Cervus Canadensis nelsoni) a polymorphism at codon 
132 (methionine (M) or leucine (L)), corresponding to codon 129 in humans, 
were found (O'Rourke et al., 1999). Homozygosity for M (132MM) was 
overrepresented in CWD-affected elk compared with elk heterozygous for M 
and L (132ML). However, a study in Wapiti (Cervus elaphus nelsoni) revealed 
that in the CWD affected cases, the three PrP codon 132 genotypes were 
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represented in proportion to their abundance in sampled populations and all 
three genotypes showed equivalent susceptibility to infection (Perucchini et al., 
2008). Mule deer (Odocoileus hemionus) carry a polymorphism at codon 225 
(serine (S) or phenylalanine (F)) (Jewell et al., 2005). The heterozygote 225SF 
animals were associated with longer incubation periods compared to animals 
homozygous for serine (225SS).  

1.3 The cellular prion protein 

1.3.1 The PRNP 

The prion protein gene (PRNP in humans and Prnp in mouse) is highly 
conserved across species. In mammals, the DNA sequence of the open reading 
frame (ORF) encoding PrP generally exhibits around 90% similarity (Schatzl 
et al., 1995). In humans, the PRNP is a single copy gene positioned on 
chromosome 20. The human PRNP comprises two exons separated by a single 
intron with the entire ORF located in exon two (Fig. 1) (Puckett et al., 1991). 
The Prnp of mice, sheep and cattle contains three exons with the protein 
coding sequence located in the third exon (Fig. 1) (Inoue et al., 1997; 
Westaway et al., 1994; Basler et al., 1986). PrP mRNA is found primarily in 
neuronal cells (Kretzschmar et al., 1986) but is also normally expressed in a 
variety of other tissues (Brown et al., 1990). The mRNA is constitutively 
expressed in the brains of adult animals but highly regulated during 
development (Moser et al., 1995; Mobley et al., 1988). 

 
Figure 1. Schematic presentation of the human and bovine prion protein gene. The coding 
sequence (CDS) is situated within exon two in the human PRNP and within exon three in the 
bovine PRNP. (The Gene accession nos. in the NCBI database is human NG_009087 and bovine 
AC_00017)   

 
Two paralogs of the PrP, the Doppel protein and the Shadoo protein, have 

been identified. The doppel protein (Dpl) encoded by the Dpl gene (Prnd) is 
located downstream of the Prnp and is thought to have arisen by a duplication 
of the Prnp (Tranulis et al., 2001; Moore et al., 1999). Overall, the Prnd 
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protein product shares 25% identity and 50% similarity with the C-terminal 
domain of PrP. The similarities suggest that these two proteins may share some 
biological properties. At present, experimental data of Dpl is incomplete in 
regard to the possible involvement of Dpl in relation to PrP. Dpl is for example 
mainly expressed in testis but at very low levels in the brains and other tissues 
of adult mice. The difference in the expression pattern between Dpl and PrP 
indicated that Dpl is unlikely to be relevant to similar cellular roles as PrP. 
However, expression of Dpl in Prnp knockout mice resulted in a 
neurodegenerative phenotype that was rescued by the presence of PrP (Moore 
et al., 2001). The PrP-like protein Shadoo (Sho) is another protein that show 
structural homology with PrP. Sho was detected via comparative gene analysis 
(Premzl et al., 2003) and the Sho gene (Sprn) is located on chromosome 10 in 
humans, which are distinct from Prnp and Prnd. Although the function of Sho 
is unknown, its expression pattern overlaps that of PrP in the brain (Watts et 
al., 2007).  

Figure 2. Alignment of the PrP sequence from human (P04156), cattle (P10279), sheep 
(NP001009481), European moose (AFF27617), Syrian hamster (P04273), mouse (AFF27617) 
and rabbit (AAC48679). Protein accession nos. according to the NCBI database. The multiple 
sequence alignment was done using ClustalW.  
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1.3.2 Cellular biology  

Biosynthesis 
The mammalian PrP gene encodes a protein of approximately 250 aa that is 
highly conserved between species (Fig. 2). The mature protein can be divided 
in two regions, a flexible and unstructured N-terminal region and a C-terminal 
globular region arranged in three alpha helices interspersed with an antiparallel 
beta-sheet (Fig. 3).  

 

 
 

Figure 3. Cartoon of the three-dimensional structure the globular domain from the recombinant 
human PrP (residue 125 to 226), which contain three alpha-helices and a short anti-parallel beta 
sheet. The flexible N-terminal tail is represented by dots. The figure was prepared in the program 
MacPyMOL using the accession no. 1QLX from the RCSB protein data bank.  

 
 
PrPC contains several distinct domains, including an N-terminal signal 

peptide, an octapeptide repeat (OR) region, a central hydrophobic region that is 
highly conserved, and a C-terminal hydrophobic portion that functions as a 
signal for addition of a glycosylphosphatidylinositol (GPI) anchor (Fig. 4). 
Human PrP consists of five copies of the octa repeat region (Fig. 2), in cattle 
however, six octa repeats are common but five repeats have also been shown 
(Nakamitsu et al., 2006; Goldmann et al., 1991).  
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Figure 4. Schematic illustration of the human PrPC primary translational product. The N-terminal 
signal peptide is cleaved off during the biosynthesis of the protein. The octarepeat region (OR) is 
believed to be essential for the binding of metal ions and the hydrophobic region is highlighted. 
PrP consists of an unstructured N-terminal region and a globular C-terminal domain. The 
consensus secondary structure in the C-terminal domain includes two β-strands and three α-
helices. The two glycosylation sites are shown with attached sugar groups represented as CHO. 
The disulfide bond is represented by the connection between α-helix 2 and 3.  The C-terminal 
signal sequence is cleaved of and replaced with a GPI-anchor in the mature protein. The cleavage 
sites are indicated by arrows.  

 
PrPC is synthesized in the rough endoplasmic reticulum (ER). It is then 

passaged via the Golgi before it is transported to the cell surface where it is 
anchored to the plasma membrane via the GPI anchor. Throughout the 
biosynthesis, PrPC undergoes a number of post-translational modifications (Fig. 
4). The N-terminal signal peptide is removed by peptidases, N-linked 
oligosaccharide chains are added at two asparagines, a disulfide bond is formed 
between two cystein residues, and a GPI anchor is attached (Haraguchi et al., 
1989; Stahl et al., 1987). The glycosylation will result in di-, mono-, or un-
glycosylated forms with molecular weights of around 34, 28 and 25 kb, 
respectively (Russelakis-Carneiro et al., 2002) (Fig. 5A). The N-linked 
oligosaccharide chains added initially in ER are modified in the Golgi to yield 
a complex chain that is resistant to endoglycosidase H (Caughey et al., 1989) 
but can be cleaved off by Peptide-N-glycosidase F (PNGase F), giving rise to a 
27 kDa full length PrP (Fig. 5A). The size of the complex oligosaccharides and 
the GPI anchor in relation to the polypeptide is substantial (Fig. 5B). 
Glycosylation of both asparagine sites yields over 400 different forms of PrP 
(Endo et al., 1989). The physiological significance of these differences in 
glycosylation pattern remains unknown but observations have been made that 
different prion strains exhibit different patterns of glycosylation (Somerville et 
al., 2005). It has also been suggested that the glycosylation is important and 
promotes correct folding of newly synthesized PrP as well as for trafficking 
and processing of PrP (Ermonval et al., 2003).  
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Figure 5. Glycosylation of PrP. A. Lane 1, schematic representation of the electrophoretic 
mobility of the three differently glycosylated moieties of PrPC (un-, mono-, and diglycosylated). 
Lane 2, the deglycosylated form of PrPC after treatment with PNGase F. B. Illustration of the 
globular C-terminal domain in human PrP indicating the position of N-linked oligosaccharides 
(Modified from Collinge J, Neurol Neurosurg Psychiatry 2005;76:906-919). 
 

The GPI-anchored PrPC is localized predominantly in detergent-insoluble 
micro domains rich in cholesterol and sphingolipids in the plasma membrane, 
also named lipid rafts (Taylor & Hooper, 2006). It has been shown that PrPC 
after being exposed on the cell surface are subjected to endocytosis and 
recycled between the endocytic compartment and the plasma membrane (Zhao 
et al., 2006; Harris, 1999; Vey et al., 1996; Shyng et al., 1994). 

 

1.3.3 Post-translational cleavages 

Our own work and that of others, with transfected cell lines as well as with 
brain tissue, have shown that PrPC is subjected to two post-translational 
cleavages (Zhao et al., 2006; Chen et al., 1995; Harris et al., 1993; Stahl et al., 
1990) as illustrated in Fig. 6. One cleavage, referred to as the α-cleavage, 
occurs between the alternative amino acid residues K110/H111/M112 to yield a 
11-kDa soluble N-terminal fragment called N1 and a 18-kDa C-terminal 
fragment called C1 that is still attached to the membrane via the GPI anchor. 
The α-cleavage occurs within a hydrophobic segment that is highly conserved 
which underlines the importance of this processing (see Fig. 2, human PrP 112-
138). The hydrophobic region is characterized as amyloidogenic and is thought 
to play a major role in the conformational change of PrPC to PrPSc (Prusiner et 
al., 1998). Our data indicate that the α-cleavage takes place at the cell surface, 
but other cellular sites have also been suggested like endosomal/lysosomal 
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compartments and late compartments of the secretory pathway (Walmsley et 
al., 2009; Tveit et al., 2005; Taraboulos et al., 1995; Shyng et al., 1993).  
 

 
Figure 6. Processing of the full length (FL) PrP. The proteolytic α-cleavage within the 
hydrophobic region results in a C-terminal fragment (C1) with intact GPI-anchor and a N-
terminal fragment (N1). Cleavage in the extreme C-terminal end results in the full length PrP 
without GPI-anchor and a C-terminal fragment (C1-S) without GPI-anchor. The alternative β-
cleavage generates a C-terminal fragment (C2) (with intact neurotoxic core) and a N-terminal 
fragment (N2).  

 
Certain PrPC mutations close to or in the α-cleavage site have been 

analyzed. Mutations in the central hydrophobic core, two aa C-terminal to the 
α-cleavage site altered the resistance to proteases, the processing and the α-
cleavage of PrPC (Wegner et al., 2002). Deletion of the three aa in the α-
cleavage site changed the processing of PrP and partially hindered the α-
cleavage (Wik, 2012). Another experiment where the α-cleavage site was 
removed by deleting three or ten aa directly after the α-cleavage site also 
affected the α-cleavage (Mange et al., 2004). When expressed in Tg mice, PrP 
mutants bearing large deletions around the α-cleavage site induced a rapidly 
progressive, lethal phenotype and showed a complete inhibition of the α-
cleavage (Baumann et al., 2007; Li et al., 2007). These results were in 
accordance with the observation in a cell line where a large deletion of the 
hydrophobic part surrounding the α-cleavage site prevented the α-cleavage 
(Sakudo et al., 2005). Point mutations in the cleavage site and replacement of 
the three aa in the α-cleavage site with three alanines did not affect the α-
cleavage (Tveit et al., 2005). In a recent study made by Oliveira-Martins et al. 
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(2010) they used a number of PrPC mutants to examine the tolerance of the α-
cleavage. The α-cleavage was shown to be remarkably tolerant to variations in 
the sequence surrounding the α-cleavage site. The α-cleavage was independent 
of the precise sequence in the cleavage site, and was largely independent of the 
charges and hydrophobicity surrounding the cleavage site. Taken together, 
these results imply that α-cleavage is performed by a α-PrPase that has low 
sequence specificity and is dependent on the size of the region surrounding the 
α-cleavage site. 

 
A number of proteases have been implicated in the α-cleavage process. It 

has been suggested that ADAM10 and TACE (ADAM17) are involved in the 
α-cleavage of PrPC (Vincent et al., 2001; Jimenez-Huete et al., 1998), but 
evidence against the involvement of these metalloproteases in α-cleavage has 
also been reported (Endres et al., 2009; Vincent et al., 2001; Jimenez-Huete et 
al., 1998). Altmeppen et al. (2011) used neuro-specific ADAM10 knockout 
mice to show that ADAM10 was not responsible for the α-cleavage. In fact, 
the C1- and N1 signals were even stronger in these mice but in the experiment, 
the amount of PrPC rather than the presence of ADAM10 correlated with the 
appearance of C1. Recently, ADAM8 was shown to directly cleave PrP in vitro 
and the α-cleavage was greatly diminished in skeletal muscle of ADAM8 
knockout mice (Liang et al., 2012). In conclusion, the α-PrPase still needs to 
be identified.  

 
The function of the α-cleavage is still not known but it could be a way to 

deplete the protein of its potential pathogenicity as the cleavage disrupts the 
neurotoxic domain within the PrP. The two products of α-cleavage, C1 and N1 
have been shown to be biologically active. The N1 fragment has a 
neuroprotective function by modulating the p53 pathway and the N-terminal 
domain has been shown to be crucial for the neuroprotective function of PrP 
(Turnbaugh et al., 2011; Guillot-Sestier et al., 2009). It has also been suggested 
that the N1 fragment could interfere with Aβ-associated toxicity (Guillot-
Sestier et al., 2012). Transgenic mice expressing the C1-fragment, Tg(C1), 
have been shown to not produce any neurological disease or protease resistant 
PrP, not even when challenged by scrapie inoculation (Westergard et al., 
2011). Interestingly, the Tg(C1) mice expressing C1 together with wild-type 
PrP had a dramatically delayed time course to become ill compared with wild-
type mice. These results demonstrate that the C1-fragment can act as an 
inhibitor of PrPSc formation. 
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The second cleavage occurs at the extreme C-terminal end of PrPC close to 
the GPI-anchor (Fig. 6). Analysis has revealed that the cleavage takes place 
between Gly228 and Arg229, three residues away from the GPI-anchor 
attachment site (Taylor et al., 2009; Zhao et al., 2006; Stahl et al., 1990). The 
cleavage results in shedding of full-length (FL) PrP and C1 fragment into the 
extracellular medium (Harris et al., 1993). It has also been shown that these 
cleaved fragments are present in vivo in human cerebrospinal fluid (Borchelt et 
al., 1993; Harris et al., 1993). Recently, it has been shown that ADAM9 in the 
presence of ADAM10 is responsible for ectodomain shedding of PrPC and that 
ADAM10 directly can cleave PrP close to the GPI-anchor (Altmeppen et al., 
2011; Taylor et al., 2009). In addition, lack of ADAM10 activity results in 
increased amounts of PrPC due to its retention inside the cell.  

 
Another cleavage called the β-cleavage occurs between aa residues 89/90 in 

humans, generating a soluble N2 fragment and a GPI-anchored C2 fragment 
(Mange et al., 2004; Jimenez-Huete et al., 1998; Chen et al., 1995), illustrated 
in Fig. 6. The β-cleavage preserves the cytotoxic and fibrillogenic core that is 
critical for conversion of PrPC to PrPSc. The C2 fragment corresponds to the 
protease resistant core or PrPSc and the pathogenic isoform has been shown to 
be strain specific (Nicot & Baron, 2010). In a recent study it was found that 
production of the C2 fragment is strongly cell- and tissue dependent (Dron et 
al., 2010). The β-cleavage is mediated by reactive oxygen species (ROS) as 
has been shown by increased β-cleavage when exposing cells expressing PrPC 
to H2O2 in the presence of Cu2+ (Watt & Hooper, 2005; Watt et al., 2005; 
McMahon et al., 2001). Observations also indicate that lack of β-cleavage 
correlates with an increased sensitivity to oxidative stress in cells and could 
implicate that β-cleavage as an early step in the cellular response to oxidative 
stress.  

1.3.4 Exosomes 

Shedding of PrPC outside the cell is mainly driven by the α-cleavage releasing 
the N1 fragment and the extreme C-terminal cleavage releasing FL PrP and C1 
fragment to the medium. In addition to this, it has been shown that PrPC and 
PrPSc are released in association with exosomes (Vella et al., 2007; Leblanc et 
al., 2006; Fevrier et al., 2004).  
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Figure 7. Simplified schematic illustration of the sorting of PrP in multivesicular bodies (MBVs) 
and exosomes. PrP is internalized into early endosomes and inward budding of endosomes into 
their lumen forms internal vesicles. MVBs can fuse with the plasma membrane and the internal 
vesicles are then released extracellularly as exosomes. Alternatively, MVBs can fuse with 
lysosomes. Full length (FL) PrP and cleaved PrP into C-terminal fragments (C1) are indicated.  
 

Exosomes are small membrane vesicles, around 50- to 100-nm in diameter, 
formed intracellularly by invagination of the membrane of endocytic 
compartments, leading to vesicle-containing endosomes called multivesicular 
bodies (MBVs) (Stoorvogel et al., 2002) illustrated in Fig. 7. Exosome 
secretion into the extracellular matrix occurs upon fusion of MBVs with the 
cell membrane thus releasing their internal exosomes outside the cell. A wide 
variety of cultured cell types have been reported to secrete exosomes (Fevrier 
et al., 2005). A large number of proteins and lipids are enriched in exosomes 
and among them are Tsg101 and Alix, components of the endosomal sorting 
complexes. Other cytosolic proteins common in exosomes are chaperone 
proteins like Hsp90 and Hsc70, cytoskeletal proteins (actin, tubulin, moesin) 
and annexins (Fevrier et al., 2005). There are several suggested functions for 
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exosomes and some examples are roles in cell-to-cell signaling, removal of 
unwanted molecules and transfer of proteins and lipids between cells.  

 
In three separate studies using different cell systems, it was demonstrated 

that exosomes from prion-infected cells could initiate prion propagation in 
recipient cells (Alais et al., 2008; Vella et al., 2007; Fevrier et al., 2004). 
Exosomes from infected cells could also produce prion disease when 
inoculated into mice (Vella et al., 2007; Fevrier et al., 2004). Moreover, it has 
been shown that exosomes containing PrPC can be isolated from cerebrospinal 
fluid (Vella et al., 2008). After inward budding of the plasma membrane, as the 
initial step in the constitutive cycling between the plasma membrane and 
endocytic compartments, PrP retains its GPI-anchor. Consistent with this, it 
was shown that exosome associated PrP is GPI-anchored (Vella et al., 2007). 
These data suggests that exosomes could be a way to spread prions and are 
interesting particles in prion infectivity.  

 

1.3.5 Function of PrPC 

Although PrP was discovered almost thirty years ago and has been extensively 
studied, its physiological role is still not ensured. Establishing the normal 
function of PrP could contribute to the understanding of prion diseases and the 
mechanisms behind them. Several lines of PrP-knockout (PrP0/0) mice have 
been created and investigated (Manson et al., 1994; Bueler et al., 1993) and is 
one way to clarify the functions of PrPC. Mice lacking PrPC do not show any 
obvious phenotype and they develop normally and have a normal lifespan. The 
only marked phenotype of PrP0/0 mice is their resistance to prion infection. 
However, some of these PrP0/0 mice have been reported to have small 
phenotypic abnormalities like sleep disturbances and altered circadian rhythms 
(Steele et al., 2007; Tobler et al., 1996).  

 
Another way to gain insight into the function of PrPC is to identify proteins 

that interact with and bind to PrPC. Identified interactors are for example 
molecules involved in adhesion (Santuccione et al., 2005; Gauczynski et al., 
2001; Schmitt-Ulms et al., 2001), trafficking (Parkyn et al., 2008) and ion 
channel activity (Kleene et al., 2007).  
 

Several functions for PrPC have been proposed over the years. Some 
examples are involvement in long-term memory (Shorter & Lindquist, 2005; 
Nishida et al., 1997), anti-apoptotic activities (Bounhar et al., 2001), cell 
communication via exosomes (Fevrier et al., 2004) signal transduction 
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(Mouillet-Richard et al., 2000) and protection of cells from oxidative stress 
(Milhavet & Lehmann, 2002). Each of the octarepeat-residues in PrPC binds 
Cu2+ and this suggests that PrPC could be involved in copper metabolism 
(Jackson et al., 2001; Brown et al., 1997).  

1.4 Prions, PrPSc 

1.4.1 Cellular biology  

PrPSc, the abnormal isoform or PrP was suggested to be the constituent of the 
prion agent in the beginning of the 1980s. PrPSc is detected by limited protease 
digestion that results in a protease resistant molecule of around 142 amino 
acids referred to as PrP27-30. The protease resistant core can form aggregates 
and amyloids (Prusiner et al., 1983) but it has been demonstrated that the 
amyloid properties of PrPSc are not an obligatory feature of prion diseases 
(Wille et al., 2000). It has also been shown that not all PrPSc molecules are 
resistant to protease digestion (Gambetti et al., 2008) and the protease resistant 
fragments can have different resistant cores giving rise to shorter fragments 
when treated with proteases. Highly purified PrPSc is also recognized by its 
insolubility in detergents and by infectivity in animal bioassays.  

 
Figure 8. Model of the conversion of PrPC (left) to PrPSc (right). The PrPSc are suggested to 
contain a parallel left-handed β-helical structure. (Modified from Wille H et. al. PNAS 2002 Mar 
19;99(6):3563-8) 

 
The key event in the pathogenesis of prion diseases is the conformational 

change of the PrPC to PrPSc, which involves drastical changes in the 
configuration and biochemical properties of the protein. Using Fourier-
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transform infrared (FTIR) spectroscopy it was demonstrated that PrPC is 
composed of 47% α-helix and only 3% β-sheet (Pan et al., 1993). In contrast, 
the PrPSc consisted of 43% β-sheet and 30% α-helix (Fig. 8). Because PrPSc is 
insoluble and forms aggregates it has been hard to determine the atomic 
structure of PrPSc. However, through crystallographic studies together with 
computational modeling insight have been gained into the atomic structure of 
PrPSc and a parallel left-handed β-helical fold has been suggested (Govaerts et 
al., 2004; Wille et al., 2002), illustrated in Fig.8.  

1.4.2 Propagation and amplification assays 

The precise mechanism by which infectious PrPSc induce conformational 
changes in PrPC is not known. Two different models have been proposed to 
explain the self-propagating conversion of PrPC to PrPSc (Fig. 9).  
 

 
Figure 9. Model for the conversion of PrPC to PrPSc. A. The refolding model predicts that PrPC 
refolds under the influence of an exogenous PrPSc molecule. B. The seeding model postulates that 
PrPC and PrPSc are in equilibrium with PrPC strongly favored. Once the seed is present, 
polymerization can efficiently take place. Fragmentation of the polymer increases the number of 
ends for the recruitment of monomers. (From Aguzzi A, Polymenidou M, Cell 2004; Jan 
23;116(2):313-27)  

 
The template-assisted model (also called the refolding model) predicts that the 
conversion of PrPC is induced by exogenous formed PrPSc and is possibly 
catalyzed by an enzyme or a chaperone (Prusiner, 1991). A high energy barrier 
may prevent spontaneous conversion of PrPC into PrPSc. The nucleated-
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polymerization model (also called the seeded nucleation model) postulates that 
the isoforms are in equilibrium and reversible but with the PrPSc monomer 
much less stable and PrPC strongly favored (Jarrett & Lansbury, 1993). Once 
the nucleus has formed, monomeric PrPC adopt the conformation of PrPSc and 
can efficiently add to the nucleus.  

Conversion of PrPC to PrPSc in cell-free systems 
In vitro conversion of PrPC to PrPSc was initially demonstrated in a cell-free 
system in which radioactively labeled PrPC became partially protease resistant 
when it was incubated with brain-derived PrPSc (Kocisko et al., 1994). In 2001, 
Soto and colleagues described a new type of cell-free conversion called 
protein-misfolding cyclic amplification (PMCA) (Saborio et al., 2001). In a 
PMCA reaction, normal brain extracts are used as a source of PrPC and mixed 
with small quantities of brain homogenate from TSE-infected animals (or 
partially purified PrPSc). The amplification process then involves repeated 
cycles of incubation and sonication resulting in highly efficient amplification 
of the PrPSc conformation. Diluting the product in one reaction with fresh PrPC 
can increase the sensitivity and this also totally eliminates the original input of 
PrPSc. This method is highly sensitive for detection of PrPSc in tissues, blood 
and environmental samples.  

 

1.4.3 Prion strains and species barrier 

One of the remarkable features of prion diseases is the existence of distinct 
prion strains. The strains consist of isolates that can generate distinct 
phenotypes in identical hosts and the clinical and biochemical properties can be 
conserved through several passages in rodent models (Pattison & Millson, 
1961). To explain this, it was proposed that prion strains are a result from the 
conformational variability of PrP (Prusiner, 1991).  Analysis of protease- 
resistant prion protein that was isolated from infected animals with different 
phenotypes showed distinct biochemical variations (Legname et al., 2006; 
Telling et al., 1996; Bessen & Marsh, 1992a). The variations included different 
glycosylation patterns, electrophoretic mobility of the protease resistant 
fragments, conformational stability and extent of protease resistance. The 
different prion strains can also be distinguished by distinct incubation time and 
patterns of neuropathology. The strains cannot be encoded by the primary 
structure in the PrP as they can be serially propagated in mice with identical 
PrP coding sequence (Fig. 10). The strains can then be re-isolated in mice after 
passage in other species with different PrP primary structure.  
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Figure 10. Propagation of prion strains. Standard criteria for characterizing and differentiating 
strains include the incubation time (length of arrow), neuropathology (marked brain area) and 
electrophoretic mobility after proteolysis (fragment pattern in Western blot, vertical bars). 
Distinct biochemical and biological properties of a single strain is retained after serial passage in 
the same host. (Modified from J Collinge, A R Clark, Science 2007; 318:930-936) 

 
Two examples of biologically defined prion strains are the hyper (HY) and 

drowsy (DY) strains of TME in Syrian hamsters (Bessen & Marsh, 1992b). 
After serial passages from the same inoculation of infectious material into 
Syrian hamsters the incubation period became stable in two different groups 
with different clinical signs and histopathological changes. Also, it was found 
that the PK-resistant core of PrPSc from DY and HY differed in their 
electrophoretic mobility, implying that the two strains had different 
conformations. Similarly, distinct human PrPSc have been identified that are 
associated with different biochemical and pathological properties of CJD 
(Korth et al., 2003; Collinge et al., 1996). Recently, it was also demonstrated 
that recombinant PrP refolded into different amyloid conformations gave rise 
to primary prion strains, that, when inoculated into mice resulted in different 
strains (Colby et al., 2009). The incubation periods in mice were dependent on 
the conformational stability of the primary recombinant PrP amyloid.  
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The finding that a particular strain can be transmitted between two species 
with different PrP sequence, without changing its strain-specific properties, 
implies that the same conformation can be imposed on different PrP sequence. 
The mechanisms behind this occurrence are not known and add to the 
difficulty in assessing the risk of interspecies spread of different prion strains 
in sheep, cervids and cattle. 
 

1.4.4 The protein-only hypothesis 

 
The idea that the prion is the sole component responsible for prion diseases has 
been controversial since the “protein-only” hypothesis was suggested many 
years ago (Griffith, 1967). A number of lines of evidence support this 
hypothesis. For example, Alper et al. (1967) demonstrated that procedures that 
destroy nucleic acids, such as high doses of ionizing radiation and UV-light, 
did not inactivate the infectious material. Also, the PrPSc and scrapie infectivity 
co-purify and highly purified preparations of PrPSc can transmit the disease 
(Prusiner et al., 1984; Bolton et al., 1982). Moreover, mutations in the PRNP 
has been genetically linked to inherited prion diseases and overexpression of 
mutant Prnp in mice produces TSEs (Hsiao et al., 1990). Strong evidence 
supporting the “protein-only” hypothesis came from the demonstration that 
Prnp knockout mice were resistant to scrapie infection. The cell-free 
conversion of PrPC into PrPSc and the PMCA technique also added evidence to 
the hypothesis. Refolding PrP into an infectious conformation in vitro has been 
considered to be the final proof of the “protein-only” hypothesis. In 2004, 
synthetic prions were produced in vitro and injection of this material into Tg 
mice induced a TSE (Legname et al., 2004). Unfortunately, the recombinantly 
produced prions were only transmissible to Tg mice overexpressing PrP and 
not to wt mice. However, in a recent work a recombinant prion was created 
that caused prion disease approximately 130 days after inoculation in wild-type 
mice (Wang et al., 2010).  
 

Despite compelling evidence for the prion hypothesis, several questions of 
prion infectivity remain. One question is whether the replication of prions 
requires a cellular co-factor. If a co-factor is needed it could for example act as 
a catalyst for conversion of PrPC to PrPSc, help stabilizing the conformation of 
PrPSc or participate in the fragmentation of PrPSc. A number of experimental 
evidence exists that demonstrates the involvement of a co-factor. For example, 
purified PrPC was not converted in PMCA studies when mixed with highly 
purified PrPSc (Saborio et al., 1999) but conversion was restored when 
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complete brain homogenate (normal) was added which suggest that factors 
present in brain homogenate are essential for conversion. Studies have also 
shown that natural or synthetic RNA can facilitate propagation of PrPSc in 
hamster (Deleault et al., 2003) but do not promote the propagation of mouse 
and vole PrPSc molecules (Deleault et al., 2010). 
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2  Present investigation 

2.1 Aim of the thesis 

The overall aim of this thesis was to study the function of the cellular prion 
protein and to characterize the genetic and molecular features of two different 
prion diseases.  
 
In particular the studies were aimed to:  
 

Ø Investigate the mechanisms for shedding and proteolytic cleavages of 
the cellular prion protein, in order to gain further insights into the 
function of the normal prion protein and pathogenesis of prion diseases 
(paper I). 

 
Ø Characterize the molecular properties of Nor98 atypical scrapie in order 

to compare the disease to classical scrapie and to elucidate if the disease 
was associated with a specific genetic background (paper II). 

 
Ø Examine the presence of sequence variants in the prion protein from 

deer and elk in Scandinavia and to compare those with the sequence 
variants associated with chronic wasting disease in North American 
cervids  (paper III). 
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2.2 Results and discussion 

This section summarizes the main results of Papers I-III that constitute this 
thesis, together with additional discussions and unpublished data. 

2.2.1 Paper I: Separate mechanisms act concurrently to shed and release the 
prion protein from the cell. 

 
The ability of a protein to possess infectious information has major biological 
implications. Therefore, defining the mechanisms behind the molecular 
background of prion propagation is important and will require knowledge of 
the structure, processing, transport and physiological functions of the PrPC. 
Factors influencing the two different cleavages of PrPC is a critical issue since 
the cleavages and its products are likely to have important biological functions 
and are probably also involved in the pathogenesis of PrPSc. Another major 
question is the spread and transport of both PrPC and PrPSc between cells.    
 

It has earlier been shown that PrPC is post-translationally processed, and in 
normal brain, PrPC can be found both as a full-length (FL) PrP and processed 
to a C-terminal PrP fragment (C1) and a N-terminal fragment (N1). Previous 
studies have shown that PrPC is cleaved between residues K110H111M112 
(human numbering) during its normal processing (Zhao et al., 2006; Chen et 
al., 1995). This cleavage is referred to as the α-cleavage. The pathogenic form, 
PrPSc, seems to have an intact α-cleavage site and is cleaved at an alternative 
residue around 20 aa N-terminal to the α-cleavage site. One hypothesis is that 
the α-cleavage disrupts the region necessary for the conformational change of 
PrPC to PrPSc and thereby prevents the disease. Whereas the majority of PrPC is 
bound to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor, 
secreted forms of the protein have been identified. PrPC molecules have also 
been shown to cycle between the plasma membrane and endocytic 
compartments inside the cell (Harris, 1999).  

 
Studies of PrP in vitro have added much knowledge to our understanding of 

PrPC, PrPSc and transmission of prions. In paper I, we used an eukaryotic 
expression system, based on the semliki forest virus (SFV) vector together with 
mammalian cells, which has been proven to be an efficient protein expression 
system. The SFV expression vector was originally described by Kaariainen et. 
al. (1975). Briefly, the SFV genome is a single-stranded, positive RNA (i.e. 
functions as a mRNA), which encodes both structural, and nonstructural viral 
proteins.  The vector pSFV1 is based on a full-length cDNA clone of SFV in 
which the coding region of the structural genes has been deleted (the 26S 
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promoter is retained) but the nonstructural coding region is preserved which is 
required for the replicase complex. The gene of interest, in this case the ORF 
of the PRNP, is cloned in the place of the structural genes. In the absence of 
the genes coding for viral coat proteins, viral RNA cannot be packed into 
infectious viral particles. The mRNA is transcribed in vitro and transfected into 
cells where it serves as template for the synthesis of, in our case, the different 
PrP constructs. The cell lysate and the cell medium are then analyzed for the 
presence of PrP. 

 
In paper I, the main focus was to analyze the different PrPC fragments 

released from the cell into the extracellular medium. By defining the given N- 
and C-terminal fragments generated in the medium, the different cleavage 
events of PrPC taking place at the cell membrane will be reflected. The results 
presented in paper I suggest that PrPC is concurrently shed outside the cell via 
three separate mechanisms. The first mechanism releases the N1 fragment via 
the α-cleavage and the second mechanism releases the FL-S and the C1-S 
(soluble fragments lacking the GPI-anchor) by proteolytic cleavage in the 
extreme C-terminal. The third mechanism is a slow process that releases a GPI-
anchored fraction of PrPC in association with exosomes.  

 
In order to analyze the α-cleavage, the mutant PrPΔ121-123 was created by 

deleting three aa (corresponding to the amino acids KHV) encompassing the α-
cleavage site. When the α-cleavage site was deleted, the accumulated N1 
fragment in the cell medium was decreased by about 50%. When the cell lysate 
was analyzed, a decreased amount of the C1 fragment was found in the PrPΔ121-

123 expressing cells. Further, in our experimental system used in paper I, the 
high level of expression enabled a short pulse-labeling approach to determine 
the time-course for the processing of PrPC. In the cell lysate a 45% decrease in 
the rate of the α-cleavage was seen in the PrPΔ121-123 expressing cells. 
Together, these results indicate that deletion of the three aa in the α-cleavage 
site hindered the α-cleavage and also that the proteases involved in the α-
cleavage process possess sequence specificity. It has previously been reported 
that the α-cleavage is independent of the precise sequence in the α-cleavage 
site (Oliveira-Martins et al., 2010; Tveit et al., 2005). Differences in the 
protease activity could be one reason for the diverging observations of the 
proteolytic processing between cell lines, alternatively, the α-PrPase may be 
constituted of different proteases that are able to possess α-cleavage activity.  

 
The cellular site at which the α-cleavage takes place has been discussed and 

late compartments of the secretory pathway, endosomal/lysosomal 
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compartments and in lipid rafts have been suggested (Walmsley et al., 2009; 
Tveit et al., 2005; Taraboulos et al., 1995). Controversy regarding the 
importance of the GPI anchor for the α-cleavage exists and it has both been 
shown that the GPI-anchor is not a prerequisite for the α-cleavage (Walmsley 
et al., 2009; Tveit et al., 2005) but that the α-cleavage is dependent on being 
anchored to a membrane (Oliveira-Martins et al., 2010). Furthermore, PrPC can 
be cleaved N-terminal to the α-cleavage site generating a C2 fragment. This 
cleavage has been shown to take place at the cell surface (Watt et al., 2005). In 
the expression system used in paper I, the N1-fragment could not be detected 
in the cell lysate, which suggests that the α-cleavage took place at the cell 
surface releasing the N1 fragment directly from the cells into the extracellular 
medium.  

 
In paper I, shedding of the majority of PrPC to the medium was due to a 

cleavage at the very C-terminal end, only a few amino acids from the GPI-
anchor. The cleavage resulted in shedding of FL-S and C1-S. A pulse chase 
experiment was done in order to see if the deletion of the three aa in the α-
cleavage site also would interfere with the proteolytic cleavage in the extreme 
C-terminal end. The experiment showed that shedding of the PrPΔ121-123 was 
not affected by the deletion in the α-cleavage site.  

 
  A minor fraction of released PrPC in the cell medium was migrating as 

GPI-anchored proteins as seen in gel electrophoresis. This minor fraction was 
released in association with exosomes, as isolated by differential 
ultracentrifugation. Exosomes can be purified using filtration and 
ultracentrifugation techniques and given their small size (around 50-100 nm), 
exosomes can be visualized only by electron microscopy after they have been 
purified from cell culture media or body fluids (Raposo et al., 1996). A large 
number of proteins and lipids are enriched in exosomes and the most common 
exosomal proteins are used to characterize the exosomes after purification. In 
paper I, exosomes recovered by ultracentrifugation were characterized by 
western immunoblotting together with the exosome specific marker Tsg101. 
The morphology of the exosomes was determined by scanning electron 
microscopy (SEM) and transmission electron microscopy (TEM). The SEM 
technique uses backscattered (or reflected) electrons whereas in TEM the 
electrons are transmitted through the sample. In the samples from cell culture 
medium, vesicles with the size and morphology of exosomes were recovered. 
When staining the samples with anti-PrP immunogold the PrP were shown to 
be associated with exosomes. 
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The proteases involved in the cleavage events of PrPC have been 
controversially discussed. Several enzymes in the ADAM family have been 
suggested and also members of calcium-dependent calpain proteases (Hachiya 
et al., 2011; Vincent et al., 2001; Jimenez-Huete et al., 1998). In paper I, the 
α-cleavage was not affected when metalloprotease inhibitors were used, which 
demonstrated that metalloproteases were not responsible for the α-cleavage as 
previously suggested. This is in line with newly presented results (Altmeppen 
et al., 2011; Endres et al., 2009). Instead, the metalloprotease inhibitors 
interfered with the protease-mediated shedding, showing that metalloproteases 
are involved in the shedding event. Interestingly, the amount of GPI-anchored 
PrP was increased in the cell medium from cells treated with metalloprotease 
inhibitors. This increase was probably due to a change in the route of PrP 
associated with exosomes or an effect of more PrP being present in the 
membrane and thus accessible for inclusion in exosomes.  

 
Taken together, the results in paper I show that PrPC is released from the 

cell by three different mechanisms. The first mechanism releases an N-terminal 
fragment (N1) via the α-cleavage, a second by proteolytic cleavage in the 
extreme C-terminal end generating GPI-anchorless FL-S and C1-S fragments, 
and a slower third process releasing a GPI-anchored PrPC in an exosomal 
fraction. It was also shown that a deletion in the α-cleavage site inhibits the α-
cleavage and also that the α-cleavage likely takes place at the cell surface. 
Finally it was shown that metalloproteases were not involved in the α-cleavage 
of PrPC but instead responsible for the protease-mediated shedding and that 
PrPC could be shed in association with exosomes. These results provide 
important information and add further knowledge to the functional aspects of 
PrPC and possible roles in the pathogenesis of prion diseases. 

  

2.2.2 Paper II: Characterization of proteinase K-resistant N- and C-terminally 
truncated PrP in Nor98 atypical scrapie.  

Classical scrapie has been recognized in sheep populations for more than 200 
years and it has been shown that the disease has a clear link between 
susceptibility and genotype (Dawson et al., 1998). However, in 1998, a newly 
identified form of scrapie was reported in Norway and it was subsequently 
named Nor98 (Benestad et al., 2003). The new disease was distinct from 
classical scrapie with most cases appearing singly in flocks and affecting 
animals with genotypes considered to be highly resistant to classical scrapie. 
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In paper II, the proteinase K (PK) resistant PrP fragments from two 
Swedish cases of Nor98 atypical scrapie were characterized with regard to their 
molecular features. The fragmental pattern was analyzed by immunoblot 
mapping using a panel of antibodies to PrP directed to different epitopes 
spanning the PrP. The glycoprotein profiles of classical scrapie and Nor98 
displayed a clear difference in their banding patterns after PK treatment. 
Classical scrapie has a characteristic three banding pattern with di-, mono-, and 
unglycosylated PrP bands. The most notable difference in the Nor98 samples, 
compared with the banding pattern of scrapie, was a prominent fast migrating 
band determined to be 7 kDa and was therefore designated Nor98-PrP7. This 
band has been reported to be 11-12 kDa (Arsac et al., 2007; Nentwig et al., 
2007; Gretzschel et al., 2006; Benestad et al., 2003) or 8 kDa (Nentwig et al., 
2007). The disagreement about the size of this low molecular band is most 
likely due to different electrophoretic conditions or due to different PK 
conditions. Recently, the low molecular fragment was suggested to consist of 
two separate PK resistant fragments (Götte et al., 2011). In paper II, the 
antigenic composition of Nor98-PrP7 revealed that this fragment comprised a 
midregion of PrP from around aa residue 85 to 148, corresponding to about 7 
kDa. Furthermore, the Nor98-PrP7 band reacted with mAb L42 but not with 
mAb 6H4, which is reported to recognize an epitope partially overlapping the 
epitope of mAb L42. Indeed, mAb 6H4 appear to be more dependent of a 
conformational epitope of PrP than a linear epitope (unpublished data). This 
was evident when analyzing PrP fragments without a GPI-anchor. In these 
unpublished experiments, mAb L42 reacted with PrP fragments without a GPI-
anchor, in contrast to mAb 6H4 that only reacted with PrP fragments 
containing an intact GPI-anchor. These findings are consistent with that the 
Nor98-PrP7 fragment is a result of PK truncation in both the N- and C-terminal 
parts of PrP. The truncation will result in that the Nor98-PrP7 lacks the GPI-
anchor and could be the reason for why mAb 6H4 was not recognizing this 
band. In addition, deglycosylation did not change the distinct electrophoretic 
profile of Nor98-PrP7, which further prove that the small fragment corresponds 
to a central region of PrP that does not contain the glycosylation sites. N- and 
C-terminally truncated fragments spanning the midregion of PrP have only 
been observed in the genetic prion disorder Gerstmann-Sträussler-Scheinker 
disease. In addition, the small fragment in GSS and the Nor98-PrP7 fragment 
cover a region that can form amyloid fibrils partially resistant to PK digestion 
(Salmona et al., 2003; Tagliavini et al., 2001). However, no mutations were 
found in the Nor98-affected sheep that could be associated with a genetic 
explanation for the disease.   
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A previously unidentified PK-resistant C-terminal PrP fragment of around 
24 kDa was detected and its PK-resistance was investigated. After 
deglycosylation this fragment migrated as a 14 kDa polypeptide and was 
designated PrP-CTF14.  Its size and its interaction with C-terminal antibodies 
towards the C-terminal part of PrP and also its sensitivity to deglycosylation 
suggested that this fragment extended to the GPI-anchor. Interestingly, this 
band was in addition to mAb L42, recognized by mAb 6H4. This is in line with 
our new findings that mAb 6H4 recognize a conformational epitope. In 
addition, the existence of two PK-resistant PrP fragments, Nor98-PrP7 and 
PrP-CTF14, that share an overlapping region suggest that at least two distinct 
PrP conformations with different PK-resistant cores are present in brain ex-
tracts from Nor98 affected sheep.  

 
In addition to these two bands, PK resistant bands migrating to masses of 

33, 28 and 15 kDa were detected with antisera towards the mid-region of PrP.  
Neither the 15 kDa nor the 28 kDa fragment shifted in electrophoretic mobility 
after deglycosylation suggesting that these two fragments are C-terminally 
truncated. Despite the size of these fragments, the PK resistant material failed 
to react with antibodies recognizing epitopes suggested to be present on these 
fragments. In view of the findings for 6H4, these antibodies might also 
recognize conformational epitopes instead of linear. Also, it has been shown 
that PrP can maintain its tertiary structure although the sample had been boiled 
and treated with denaturants (Yuan et al., 2005). It has also been shown that 
the core structure of amyloid fibrils can be packed so closely that even water 
molecules are excluded (Nelson et al., 2005). It is therefore possible that 
certain epitopes could be inaccessible in the PK resistant fragments of Nor98.  

 
In conclusion, the existence of two PK resistant fragments that share an 

overlapping region suggests that at least two distinct PrP conformations are 
present in the brain extracts from Nor98-affected sheep. Also, when analyzing 
the PK resistance, Nor98 PrP showed a reduced resistance compared to 
classical scrapie. The different banding pattern and PK resistance suggests 
different conformations of the classical scrapie and Nor98 PrP. The findings in 
paper II, together with observations of a distinct epidemiology and the lack of 
association with genetic changes suggests that Nor98 could be the result of an 
age-related spontaneous prion disease.  
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2.2.3 Paper III: Polymorphisms and variants in the prion protein sequence of 
European moose (Alces alces), reindeer (Rangifer tarandus), roe deer 
(Capreolus capreolus) and fallow deer (Dama dama) in Scandinavia. 
 

Chronic wasting disease (CWD) is an emerging prion disease of mule deer, 
white-tailed deer, elk, and moose. The efficiency by which CWD is spread 
suggests that transmission occurs primarily by horizontal route. Previous 
studies have revealed an association between polymorphisms in the prion 
protein sequence and susceptibility to CWD. Presently, the disease occurs only 
in parts of USA and Canada but has been found in South Korea via import 
from Canada (Kim et al., 2005). During the 1980s a complex wasting 
syndrome in Swedish moose, Moose Wasting Syndrome (MWS), was 
described. The diseased animals showed signs of central nervous disturbances, 
lesions in mucosal membranes and intestines and atrophied lymphoid organs. 
Unusual behaviors like circling, no fear of man and anorexia were displayed. 
However, contemporary pathological investigations indicated no association 
with a spongiform encephalopathy. 

 
 In paper III the genetic diversity of the ORF in the PRNP and the aa 

sequence of Scandinavian cervids were analyzed and compared with variations 
described in the North American cervid population. A unique variant in the 
European moose PrP codon 109 was found and both homozygous (K/K or 
Q/Q) and heterozygous (K/Q) genotypes were shown. In contrast, Alaskan 
moose and other cervids sequenced in paper III were homozygous for 109K/K. 
The 109 codon is situated in a positively charged cluster, which is highly 
conserved between species and only four aa N-terminal to the α-cleavage site. 
Human PrP sequence variants in this cluster are associated with a GSS 
phenotype (Hsiao et al., 1989) and transgenic mice carrying mutations in the 
region developed neurodegenerative diseases spontaneously (Hegde et al., 
1999).  

  
 In order to elucidate if there was any link between the K109Q variant and 

the MWS animals, a single-nucleotide polymorphism (SNP) analysis was 
performed. Samples collected during the outbreak of MWS were used together 
with time matched healthy animals. The observed genotype proportion of the 
heterozygous K/Q was higher among the MWS animals compared to the 
healthy (0.46 and 0.35 respectively). When comparing the proportion of the 
genotypes A/C to C/C, a significantly greater proportion of A/C was found in 
the MWS animals than in healthy animals, 0.93 and 0.71, respectively. These 
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data could suggest a possible association between MWS and the K109Q 
polymorphism. 

 
In reindeer, codon 225 varied with either heterozygous SY or homozygous 

YY or SS animals. In comparison, the codon 225 in mule deer is polymorphic 
but with 225S and 225F where the heterozygous 225SF variant were linked to 
reduced susceptibility. All species in paper III were homozygous for Met at 
position 132. This position corresponds to codon 129 in humans and in Rocky 
Mountain elk the 132MM individuals were over-represented among CWD-
positive animals (O'Rourke et al., 1999).  

 
There is currently no evidence that CWD exist in cervids in Scandinavia. 

Approximately 13,000 brain stem samples have been collected from cervids of 
different species in the EU and Norway and no TSE positive results have been 
found (EFSA, 2010). Despite this, examining the PRNP genetic diversity is of 
great interest as an introduction of CWD among wild species is possible. It has 
been shown that distinct CWD strains exists (Angers et al., 2010) and 
interspecies transmission can alter CWD host range and the potential of 
interspecies transmission of CWD will increase as the disease spreads. Also, as 
the TSE agents have the potential to cross the species barrier it is a possibility 
that cervids in Scandinavia could be exposed to scrapie prions. To date, most 
studies and experimental work have suggested that the potential for CWD 
transmission to humans is low. A still ongoing multi-year study in non-human 
primates reported results that suggest that human may be resistant to some 
strains of CWD (Race et al., 2009). Further, in a recent study, a CWD isolate 
from white-tailed deer was inoculated into Tg mice expressing human PrP but 
no signs of disease were observed in the mice (Wilson et al., 2012).  

 
Taken together, the PrP sequence of European moose, reindeer, roe deer 

and fallow deer in Scandinavia has high homology to the PrP sequence of 
North American cervids. This study also confirmed that the Scandinavian 
cervids carries polymorphisms that are compatible with a susceptibility to 
CWD.  A unique aa variant was found at position 109 in the PrP of European 
moose. Also, a difference in the observed genotype proportions of 
heterozygous and homozygous animals at codon 109 were found in the MWS 
animals compared to healthy animals.  
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3 Conclusions and future perspectives 
Defining the mechanisms behind the formation of PrPSc from PrPC has become 
one of the central issues in understanding the pathogenesis of prion diseases. It 
is likely that the conformational diversity found in PrPSc reflects a possible 
conformational diversity necessary for the function of PrPC. In relation to this, 
establishing the physiological role of PrPC is highly important as the protein 
may fail to carry out its normal function when converted to the diseased 
isoform. And, as stated by the nobel laureate Kurt Wütrich in Munich 2003, 
“PrPC is the key”, in response to the numerous experiments done exclusively 
on the disease-associated PrPSc. Knowledge about the cleavages that occur in 
PrPC is an important section in this part since these cleavages are likely to play 
an important role both in normal function for PrPC but also for the conversion 
into PrPSc and pathogenesis of prion diseases. Blocking the conversion of PrPC 
to PrPSc would be a good practical therapeutic approach for preventing prion 
diseases. One hypothesis is for example that the α-cleavage disrupts the region 
necessary for the conformational change and thereby prevents the formation of 
PrPSc. Defining the proteases involved in the cleavages could provide novel 
approaches for therapeutic interventions against prion diseases.  
 

In this thesis, the proteolytic cleavages and shedding of the cellular prion 
protein are investigated in order to gain further insight into the function and 
intercellular transmission of PrPC. Here, it is shown that PrPC can be shed into 
the extracellular medium by three different mechanisms. In future work, these 
three mechanisms are important to observe when analyzing the different 
cleavages of PrPC and also for getting the complete view of the processing 
when performing experiments with PrPC. In this thesis, the proteases involved 
in the different cleavages were studied and different inhibitors were used. 
These inhibitors only partly interfered with proteases involved in the shedding 
of the PrPC. This probably reflects the very complex systems involved in the 
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cellular processing of PrPC. Earlier findings also point to the importance of 
knowledge about the cell culture model used in studies of PrP as different cell 
lines can possess differences in their specific protease activities (Zhao et al., 
2006). The use of in vitro models is a powerful tool but it is also reasonable to 
be critical against inconsistent or contradictory results. However, this does not 
mean that the results are wrong or not useful and careful considerations of 
these inconsistencies could instead give new insights. An example of this is the 
set of experiments performed in this thesis to investigate the role of exosomes 
in PrPC processing. Overexpression of PrP might for example lead to release of 
PrP in association with exosomes as a consequence of removal of unwanted 
molecules via exosome shedding, which is one of their suggested functions. 
Further investigations into the roles of PrP in exosomes need to be done. So 
far, exosomes have been shown to contain an ever increasing number of 
proteins and the characteristics of exosomes are still not completely reliable. A 
protein that is only present in exosomes would be a good marker for 
characterization of exosomes together with new techniques to visualize 
exosomes. Cryo-TEM is a form of TEM where the sample is studied at 
cryogenic temperatures and the structure of the sample remains native, as no 
dehydration is needed. This technique could be used more in the future when 
working with exosomes. Interesting future investigations would also be for 
example to include additional protease inhibitors, not only for metalloproteases 
but also for calpain and other proteolytic enzymes, to finally determine which 
protease(s) that are responsible for the different cleavages. In regard to this, an 
experimental setup could be used in which the aa sequence of interest, for 
example the aa region around the α-cleavage site, is inserted between two 
molecules used for detection. This construct is then recombinantly expressed 
and the model substrate containing the α-cleavage site will then be subjected to 
different cleavage enzymes.  

 
During the last decade, active surveillance programs for TSEs in small 

ruminants have been performed in Europe. In many countries, this has led to 
the detection of cases of Nor98 atypical scrapie. In the active surveillance for 
TSEs in sheep in Sweden a number of Nor98 atypical scrapie have been found. 
The influence of PrP polymorphisms on the susceptibility to scrapie has earlier 
been investigated and certain genotypes, such as VRQ/VRQ are known to be 
highly susceptible while the ARR/ARR are considered resistant. One concern 
in relation to this has been that Nor98 affected sheep have had genotypes, 
which are considered to be resistant to scrapie infection. This has turned out to 
be problematic, as many countries have adopted control programs that promote 
breeding for the Scrapie-resistant genotype. The origin of Nor98 is unknown 
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but it is suggested that it may represent a spontaneous TSE of sheep, as 
affected Nor98 sheep generally are older than scrapie infected sheep and only 
single Nor98 cases in a flock are detected. This together with other knowledge 
has led to the view that Nor98 is not transmissible to humans and animals. 
However, it was recently shown that samples containing Nor98 infectivity 
could be PrPSc-negative (Andreoletti et al., 2011). These results indicate that 
the exposure risk to Nor98 may be higher than commonly believed and also 
that the prevalence of Nor98 is underestimated in the affected flocks. Also, in a 
study made by Le Dur et. al. (2005) it was reported that Nor98 efficiently 
could be transmitted to Tg mice expressing ovine PrP. Finally, the risk of 
Nor98 to cross species barrier that naturally limits the transmission risk is 
insufficiently investigated and underline further investigations. And, in regard 
to control programs, it is important to see if the disease occurs sporadically or 
if it can be transmissible.  

 
The origin and mode of transmission of CWD is unknown but based on 

epidemiological data, the transmission is thought to occur horizontal. Research 
has recently shown that the disease can be transmitted by contaminated soil 
and also that infected deer´s saliva can contain infectivity (Mathiason et al., 
2006; Miller et al., 2004). The European food Safety Authority presented a 
survey aimed at detecting the possible presence of CWD in wild and farmed 
cervids in the EU and Norway. In line with this, a recommendation was made 
to investigate the PRNP genetic diversity of European cervids and to compare 
it with variations described in the North American cervid population. Here, it 
was shown that PrP genotypes exist in cervids in Scandinavia that are similar 
to the PrP genotypes of North American cervids. This confirms that cervids in 
Scandinavia have a PRNP genetic background that is compatible with CWD. 
In the 1980s, a wasting syndrome in Swedish moose (MWS) was described. 
Today, there is still no definite answer to the underlying cause of that 
syndrome. Pathological investigations indicated no associations with a TSE 
disease at that time. Here, we show that a K109Q polymorphism in European 
moose could be associated with MWS. However, further studies need to be 
done and it would be interesting to carry out more genetic analyses on the 
historical MWS samples. It would also be interesting to analyze brain material 
collected during the time of outbreak to see if today’s methods for diagnosis 
can demonstrate a connection to a TSE disease.  

 
The interaction of PrPC with Aβ-peptides from the amyloid precursor 

protein (APP) has been demonstrated in several studies (Chen et al., 2010; 
Lauren et al., 2009). Despite this, the functional relevance of an interaction 
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between them is still unclear. Both PrP and APP are membrane proteins that 
are subjected to complex proteolytic processing and they are also released from 
cells by similar proteolytic activities. Both have been shown to be associated 
with exosomes and pre-fibrillar intermediates mediate toxicity in both 
Alzheimer´s disease (AD) and prion diseases. It would be interesting to use our 
expression system and co-express the proteins and then analyze the different 
cleavage patterns and shedding products as well as the association with 
exosomes for both PrP and APP.  

 
In summary, the proteolytically cleavages and shedding of the PrPC have 

been investigated in this thesis. Also, the molecular properties of Nor98 and 
the genetic diversity within cervids in Scandinavia have been examined. 
Throughout the study, it has been evident that it is crucial to evaluate both the 
methods and analysis used in the different projects. In addition to this, the 
antibodies used for detection of PrP are important to critically evaluate since 
antibodies claimed to recognize the same epitope not necessarily are functional 
in certain conditions.  

 
Although several issues remain in the field of prion research, the present 

results will be one part in the continued hard work of solving these questions. 
Hopefully one day the mystery of PrP, its normal cellular function and its role 
in disease will be solved. But for now, there are still plenty of questions to 
answer. 
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4 Populärvetenskaplig sammanfattning 
 
Prionsjukdomar eller transmissibla spongiforma encefalopatier är en grupp 
dödliga och överförbara sjukdomar som kan drabba både människor och djur. 
Sjukdomarna orsakas av ett speciellt smittämmne som kallas prioner. Själva 
ordet prion är en förkortning av proteinlik infektiös partikel och detta 
smittämne skiljer sig från andra smittämnen eftersom ingen nukleinsyra 
påvisats i samband med sjukdomen. Individer som insjuknar får en 
demensliknande sjukdomsbild med symtom som koordinations- och 
beteendestörningar, minnesförlust och depression. Sjukdomarna ger inte 
upphov till någon reaktion från kroppens immunförsvar eftersom 
prionproteiner finns naturligt i framförallt nervceller hos alla däggdjur. Det 
cellulära, normala prionproteinet har fått beteckningen PrPC där C står för 
cellulär. Funktionen hos PrPC är ännu okänd, men allt talar för att det har en 
viktig biologisk funktion eftersom genen för prionproteinet är väldigt 
välkonserverad mellan arter. Några exempel på föreslagna funktioner är 
igenkänning, signalering, kopparbindning med flera. 

 
Genom en ännu okänd mekanism så kan PrPC genomgå en förändring och 

bilda det sjukliga prionproteinet som betecknas PrPSc där Sc står för scrapie. 
Det är alltså samma protein men i en helt ny form och med helt nya 
egenskaper. Proteinet blir väldigt motståndskraftigt mot nedbrytning och PrPSc 
ansamlas i cellerna. PrPSc kan även fungera som mall och göra så att normala 
prionproteiner får en felaktig konformation. De nya egenskaperna är bland 
annat att prionerna är extremt motståndskraftiga mot proteaser, UV-ljus, 
kemikalier, värme m.m. Man har visat att en syntes av det normala, cellulära 
prionproteinet är nödvändigt för sjukdom. 
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För att kunna förhindra prionsjukdomar är det viktigt att förstå proteinets 
normala funktion. I avhandlingen har bland annat olika klyvningar av 
prionproteinet analyserats. Studierna har även påvisat att prionproteinet kan 
utsöndras samtidigt från cellen via tre olika mekanismer. Två av mekanismerna 
utgörs av två olika klyvningar medan den tredje mekanismen involverar 
exosomer. Exosomer är väldigt små cell-liknande blåsor som skulle kunna vara 
en viktig partikel för prionproteinets normala funktion, men även viktig i fråga 
om smittspridning.  

 
Nor98 är en prionsjukdom hos får som identifierades för första gången i 

Norge 1998, därav namnet. Sverige har haft ett flertal fall av Nor98 de senaste 
åren. Till skillnad från scrapie som är en smittsam prionsjukdom hos får, har 
man hittills inte hittat några bevis för att Nor98 smittar mellan djur. Eftersom 
ursprunget till sjukdomen fortfarande är okänd är det viktigt att försöka ta reda 
på mer om denna sjukdom. I avhandlingen har de genetiska och molekylära 
egenskaperna hos Nor98 analyserats och jämförts med scrapie. I studien 
framkom att Nor98 antagligen representerar en spontan prionsjukdom. Det 
påvisades även att Nor98 förmodligen inte har någon genetisk bakgrund som 
ger upphov till sjukdomen och att den molekylärt skiljer sig från scrapie.  

 
Chronic wasting disease (CWD) är en smittsam prionsjukdom som drabbar 

hjortdjur i Nordamerika. I en av studierna som presenteras i denna avhandling 
har vi analyserat den gen som kodar för prionproteinet hos skandinaviska 
hjortdjur. I studierna framkom att denna gen är väldigt lik den som kodar för 
prionproteinet hos Nordamerikanska hjortdjur och som kan sammankopplas 
med en risk att smittas av CWD. Hos älgar hittade vi dessutom en helt unik 
variant i sekvensen som kodar för prionproteinet. Denna variant skulle 
eventuellt kunna kopplas till en älgsjukdom som fanns i Sverige under mitten 
av 1980-talet och i början av 1990-talet.   
 

Idag finns varken läkemedel eller vaccin tillgängligt för att bota eller hindra 
prionsjukdomar. Resultaten som framkommit i denna avhandling är viktiga 
eftersom de kan vara intressanta ledtrådar till prionproteinets funktion och 
också för förståelse av smittspridning och omvandling till den sjukliga 
varianten av prionproteinet. 
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