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Effects of silvicultural treatments in young Scots pine-dominated 
stands on the potential for early biofuel harvest 

Abstract
The overall objective of the work underlying this thesis was to increase knowledge 
regarding growth of young Scots pine (Pinus sylvestris L.) - dominated mixed forests in 
northern Sweden and the potential for combining early biofuel harvest in such stands 
while leaving crop trees for future harvests. For this purpose, several studies were 
made. Biomass functions for the fractions stem (including bark), branches, foliage 
and whole trees were created for Scots pine, Norway spruce (Picea abies (L. Karst.), 
downy birch (Betula pubescens Ehrh.) and silver birch (Betula pendula Roth), based on 
measurements of the sampled trees in six young and dense stands (I). Growth and 
yield was studied for 8-11 years at four experimental sites (stand ages 17-20 years at 
start) in which density treatments (pre-commercial thinning, PCT, to 3 000 stems ha-1 
and no-thinning; control, C) and fertilization treatments (N fertilization at 100 kg 
ha-1 every 6th year or annually: F1 and F2, respectively) had been applied alone and 
in two combinations (C+F1, C+F2 and PCT+F1). During the observation period 
total biomass yield was 58 - 79% higher (up to in total 100 ton ha-1 DW) in the dense, 
unthinned stands (>11 000 stems ha-1) than in the PCT stands. Fertilizing every 
year did not give significantly higher biomass production than the two fertilization 
applications. The 500 - 2 700 largest trees ha-1 showed significantly higher values of 
measured size parameters following treatment C+F2 compared to the unthinned 
control (C), but not to the PCT treatment, indicating that stand density only had 
minor effects on growth of the largest trees (II). When allocation patterns were 
analysed after six years, the only significant between-treatment differences found for 
Scots pine trees of various size classes were among the smallest trees (with a diameter 
at breast height, DBH, <5 cm). These trees had slenderer stems (lower DBH/height 
ratios) and lower relative proportions of branches and foliage in the dense, unthinned 
stands than in the PCT stands (III). By studies in older PCT-trials it was found that 
branch diameter decreased with both increasing stand density and increasing height 
at the time of PCT, and the living crown (crown length/tree height) ratio decreased 
with increases in height at thinning and density (IV). In addition, mortality rates after 
PCT were low (consistently <5%) for trees in stands of all investigated densities and 
heights, even in stands with >9 000 stems ha-1. Further, the trees that died (and hence 
were most severely affected by competition) were the smallest trees (DBH<5 cm), and 
timing of PCT had only marginal effects on the risk of mortality (V).

The main conclusion from the results is that substantial amounts of biofuel can be 
harvested from pine-dominated young stands at appropriate times, if conventional 
PCT is omitted, while still retaining appropriate numbers of crop trees for subsequent 
main harvests.

Key words: Allocation patterns, Betula spp., biomass functions, branch characteristics, 
mortality, Picea abies (L. Karst), Pinus sylvestris (L.), production, young dense mixed 
stands
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Svensk sammanfattning 

Det övergripande målet med arbetet har varit att öka kunskapen om hur tillväxt av 
biomassa och stamved i unga talldominerade (Pinus sylvestris L.) blandskogar påverkas 
av stamtäthet och näringstillförsel och om tidig skörd av bioenergi kan kombineras 
med avverkning även av konventionella sortiment i senare beståndsskeden. Fem 
studier har gjorts, baserade på äldre befintliga och nya fältförsök i norra Sverige. 
Biomassafunktioner baserade på mätningar på provträd från sex olika bestånd har tagits 
fram för fraktionerna stam (inklusive bark), grenar, barr och blad samt för hela trädet 
för tall, gran (Picea abies (L. Karst.) och björk (Betula sp.) (I). Tillväxt och produktion 
följdes i fyra fältförsök under 8-11 år (II). Bestånden var 17-20 år vid försökets början, 
de behandlingar som ingick var beståndstäthet (antingen röjt till 3 000 stammar per 
hektar, PCT, eller oröjd kontroll, C, med ca 13 000 st/ha) samt gödsling (kvävegödsel 
(N) motsvarande 100 kg N per hektar vart 6:e år med början år 1997 (behandling F1), 
eller årlig gödsling (F2). Gödslingen kombinerades med beståndstätheten i följande 
kombinationer; C, C+F1, C+F2, PCT samt PCT+F1. Totalproduktion av biomassa 
var 58-79% högre (motsvarande upp till totalt 100 ton torrvikt per hektar) i den täta 
oröjda och intensivgödslade skogen jämfört med de röjda behandlingarna. Gödsling 
varje år resulterade inte i signifikant högre totalproduktion jämfört med att gödsla vart 
6:e år. Förklaringen antas vara den ökade konkurrensen om ljus i de täta bestånden, 
det extra kvävet kunde inte utnyttjas till barr- och bladtillväxt eftersom ljuset i stället 
blev den begränsande faktorn. De 500 till 2 700 största träden i de oröjda försöksleden 
resulterade i signifikant högre värden inom försöksled C+F2 jämfört med träden i 
behandling C, men inte jämfört med träd från de röjda behandlingarna. Detta ger 
en indikation av att beståndstäthet endast hade marginell effekt på tillväxten för de 
största träden. När allokeringsmönster (hur andelen grenar, barr och stam förhåller sig 
till varandra) hos tall analyserades sex år efter det att fältförsöken etablerats, var det 
bara för de minsta träden (med brösthöjdsdiameter < 5 cm) som det fanns signifikanta 
skillnaden mellan försöksled (III). De minsta träden i de täta behandlingarna var 
slankare (kvoten mellan diameter och höjd var lägre) och de hade även mindre andel 
grenar och barr jämfört med träd från röjda behandlingar. Analyser gjordes även av 
grenar hos tall i äldre röjningsförsök (IV). Det visade sig att grendiametern var mindre 
hos träd som röjts till fler stammar per hektar, och när röjningen gjorts när beståndet 
var högre. Andel levande krona (grönkronans längd i förhållande till trädets höjd) 
minskade också vid högre röjningshöjd och högre stamtäthet. Avgångar i ungskogar 
analyserade även (V) och generellt visade det sig att endast < 5 % av träden dött inom 
det studerade materialet, oavsett röjningshöjd eller antal stammar per hektar, även vid 
stamtätheter på > 9 000 stammar per hektar. De träd som dött var de minsta träden i 
bestånden med en diameter i brösthöjd på < 5 cm, och tidpunkten för röjning hade 
bara marginell effekt på risken för avgång. En övergripande slutsats av arbetet är att 
det är möjligt att tidigt skörda betydande mängder biomassa/bioenergi från unga och 
täta blandbestånd och samtidigt ha kvar lämpligt många utvecklingsbara träd per ha 
för framtida avverkningar.

Nyckelord: Allokeringsmönster, biomassafunktioner, björk (Betula sp.), gran (Picea 
abies (L. Karst.), grenkaraktärer, mortalitet, Pinus sylvestris L., produktion, täta unga 
blandskogar
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1. Introduction 

1.1 Increased need for biomass to substitute fossil fuels and 
reduce greenhouse gas emissions

Targets for reducing greenhouse gas (GHGs) emissions in the United Nations 
framework convention on climate change and the Kyoto protocol (Anon., 
1997) have substantially affected national and regional goals for energy use. 
Notably, the European Commission for climate action, and the European 
climate change program, have issued a “20-20-20” goal, meaning that in EU 
countries, by the year 2020: emissions of greenhouse gases should decrease by 
20%, at least 20% of the energy should be renewable, and energy efficiency 
should increase by 20% (Anon., 2009a; Anon., 2009b). Further, the report 
from the Swedish Commission for Oil Dependence presented in 2006 stated 
that by 2020 Sweden should produce at least 40% more biofuel than in 2005 
(Anon., 2006), since such fuel can partly replace the use of fossil fuels (Chum 
& Overend, 2001), and hence reduce greenhouse gas emissions (Schneider & 
McCarl, 2003; Solomon & Luzadis, 2009; Zhang et al., 2009). This has raised 
interest in increasing the production and use of forest biomass. Today by-
products from sawmills and the pulp and paper industry are used for bioenergy 
(Nordfjell et al., 2008).The use of biofuels in Sweden has already increased 
substantially, from close to 10% of the total energy supply in the 1980s (Anon., 
2008a) to 20% in 2008 (Anon., 2010a). Since branches and tree tops already 
are used to a large extent as biofuel from thinnings and final cuttings there is 
further need for forest biofuel.

In Sweden, young forests with <15 m heights cover about 18% of the 
forest area and could potentially yield 5 million ton DW harvests annually 
(Nordfjell et al., 2008). Young forests are therefore major potential sources of 
biofuel, which should be exploited to help meet globally increasing needs for 
raw material for biofuel production (Grebner et al., 2009; Heikkilä et al., 2009; 
Larsson et al., 2009; Wilkerson & Perlack, 2009). 
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1.2 Boreal forests – Large areas with potential for supplying 
forest raw material and biofuel

The taiga or boreal forest forms a huge belt across North America and Eurasia 
south of the Acrtic tundra (Begon et al., 1996). Boreal forest covers about 
29% of all forest land, and accounts for about 73% of the coniferous forest of 
the world (Kuusela, 1990). About 55% of the land area in Sweden is regarded 
as productive forest land (Anon., 2010), most of which is boreal forest. The 
dominant tree genera found in the boreal forest are evergreen conifers, 
including spruce (Picea), pine (Pinus), fir (Abies) and larch (Larix). Broadleaves 
present are birch (Betula), aspen (Populus), alder (Alnus), mountain ash (Sorbus) 
and willow (Salix); all species adapted to a short growing season (Farjon, 
2010). The climate in the boreal forest has a mean temperature exceeding 10 
°C for between one and four months, but frequently wide annual temperature 
variations (Walter, 1985). The boreal forest can be divided into maritime, 
continental and high-continental sub-zones, of which the continental zone 
is most extensive (Kuusela, 1990). Annual precipitation ranges from 400 – 
1 000 mm, and mainly falls at sub-zero temperatures as snow, thus snow 
conditions must be taken into consideration when planning new silvicultural 
regimes. The climate is classified as humid, as the evapotranspiration does 
not generally exceed the precipitation (Havranek & Tranquillini, 1995). Lakes, 
bogs and marshes are common in the boreal forest (Raven et al., 1992) and 
in Sweden about 4.5 million hectares (11% of Swedish land area) is defined 
as bogs and marshland (Anon., 2010a). The boreal forest zone was covered 
by ice during the last continental glaciation, and glacial fluvial sands, gravels, 
moraine loams and clays are now the major soil fractions. Sands and gravels, 
poor in nutrients, are covered by podzolized soils with a top layer of partly 
decomposed litter and raw acid humus (Kuusela, 1990). The work presented 
in this thesis focused on sites in the boreal forest of northern Sweden, but 
similar conditions with dense young coniferous forests also prevail in other 
Nordic countries in Europe, Russia and parts of North America.  
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2. Growth and management of young 
forests

2.1 Leaf Area Index (LAI) 

Several studies have shown that growth rates of forest stands are proportional 
to the amount of intercepted sunlight (Madgwick & Olson, 1974; Kellomaki 
et al., 1979; Linder, 1985; West, 2006), and several authors consider the 
importance of the relation between amount of foliage and biomass production 
(Tirén, 1927; Teskey et al., 1995), and leaf area index (LAI) to be the best 
indicator of this variable (Kozlowski et al., 1991; Duursma et al., 2003; Montes 
et al., 2007). Wood production has been found to be linearly correlated to LAI 
in young loblolly pine stands, but after canopy closure only needles in the 
upper part of the crown are photosynthetically active (Vose & Allen, 1988). 
Similar findings of low photosynthesis rates in the lower parts of the canopy 
have been found by several other authors (Kira et al., 1969; Woodman, 1971a; 
Ceulemans & Saugier, 1991; Hari et al., 1991). Stand growth rates peak at a 
specific stand density, which represent the upper limit of productivity for the 
specific site and environmental conditions (Will et al., 2001).  Total production 
is significantly higher in dense stands (Pettersson, 1992a;  Johansson, 1993; 
Pettersson, 1993a;) and total production of biomass is also influenced by site 
conditions; growth is relatively slow in poor sites (Hägglund & Lundmark, 
1977; Harcombe, 1987). 

2.2 Nutrition

Water and nutrient availability influence the total production of foliage in a 
stand, and hence the amount of radiation that can be intercepted (Mooney, 
1972; Linder, 1987; Gower et al., 2001). Hence, fertilization with nitrogen 
(generally the limiting nutrient) has been shown to increase the production of 
needles in coniferous forests (Tamm, 1991). Further, fertilization also increases 
the photosynthetic activity per unit area of needles, due to the consequent 
increases in their nitrogen and chlorophyll contents (Linder & Troeng, 1980). 
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  A proper nutrient balance is essential for optimum growth of a plant. The 
required nutrients can be divided into major elements (nitrogen, phosphorus, 
calcium, potassium, iron, sulfur and magnesium) and trace elements (boron, 
copper, manganese, molybdenum, chlorine and zinc) (Dickison, 2000; Mengel 
& Kirkby, 2001). Due to the requirements of metabolic mechanisms and 
activities of both plant enzymes and microorganisms for carbon and nitrogen, 
carbon uptake is dependent on nitrogen availability and vice versa (Pate et 
al., 1979; Oaks, 1995; Whitehead et al., 2001; Yamaya & Oaks, 2004; Osler 
& Sommerkorn, 2007). Nitrogen is the fourth most common element in 
plant tissues, and an essential component of chlorophyll and enzymes involved 
in photosynthesis, other enzymes and proteins, DNA and many metabolites, 
therefore nitrogen is a key element for plants (Tamm, 1991; Mengel & Kirkby, 
2001; Oijen & Levy, 2004; Gruber & Galloway, 2008; Pallardy, 2008). Inorganic 
nitrogen is usually taken up by higher plant roots in the form of nitrate (NO

3
-)  

and ammonium (NH
4
+) ions. Uptake of nitrogen in organic form (glycine) 

has also been observed, in both field and laboratory studies; up to 42% of the 
nitrogen absorbed by Scots pine and Norway spruce trees was taken up in 
organic form in a study by Näsholm et al., (1998).

Forest growth in boreal areas is strongly limited by nutrient availability 
(Linder, 1987; Tamm, 1991; Högberg et al., 2006a). Forest production and 
nutrition have, thus, been intensively studied, and in many field experiments 
fertilization has been shown to increase forest production (Romell & 
Malmström, 1945; Tamm, 1985; Helmisaari & Helmisaari, 1992; Saarsalmi 
& Mälkönen, 2001; Nilsen, 2001; Nohrstedt, 2001; Jacobson & Pettersson, 
2010). In addition, a balanced nutrient status enhances plants’ pests resistance 
(Saarsalmi & Mälkönen, 2001), and fertilization can increase the size and 
number of needles (Tamm, 1991; Bergh et al., 1999) as well as reduce needle 
mortality (Bergh et al., 1999). However, nitrogen (ammonium) fertilizer is 
produced by the Haber-Bosch process, which is energy demanding (Hägg, 
1989) and quite costly. Furthermore, potential environmental problems, 
such as eutrophication of terrestrial and aquatic systems, acidification and 
stratospheric ozone losses (Galloway et al., 2003), must be taken into account 
when considering fertilization. In addition, repeated or intense fertilization 
may adversely affect wood properties, resulting (for instance) in lower wood 
density, smaller fibres and thinner cell walls in Scots pine trees (Roturier, 2004; 
Jaakkola et al., 2006). Proportions of sapwood may also increase following 
fertilization and thinning (Mörling & Valinger, 1999). Therefore, effects of 
fertilization must be well understood and it must be applied with care.
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2.3 Stand structure in young forests

In stands established by planting, the variations in heights and diameters are 
small (Fahlvik, 2005). The goal is often to generate, and maintain, a stand 
dominated by a single species; in Swedish forestry the conifers Scots pine and 
Norway spruce are the dominant species planted (Anon., 2010a). However, 
broadleaved species, e.g. silver birch (Betula pendula Roth) and downy birch 
(Betula pubescens Ehrh.), often regenerate naturally in the same regeneration 
areas (Karlsson, 2001). To obtain a conifer stand that is more or less uniform 
and even-aged with trees of approximately the same height, one or several 
pre-commercial thinning (PCT) operations are generally applied (see below) 
to reduce densities of trees of other species as well as natural generated pines/
spruces, and competition between trees (Fahlvik, 2005).  

In contrast, a naturally established stand, e.g. following seeding from 
seed trees, is more often heterogeneous and often results in a mixed forest, 
which may have wide height and diameter distributions as a result of plants 
establishing over several years (Lyly & Saksa, 1982; Fahlvik, 2005; Miina 
& Saksa, 2008). Variations in competition from weeds and broad-leaves in 
the establishment phase, together with variations in soil properties, also 
contribute to within-stand variation (Saksa, 1992; Kuuluvainen et al., 1993; 
George et al., 1997). Naturally established stands also often have clustered 
spatial distributions of plants as a result of variations in site variables, such as 
soil moisture and nutrient availability (Kozlowski et al., 1991; Fahlvik, 2005). 
Nevertheless, heterogeneous stands may have a final structure similar to that of 
planted monocultures, especially if appropriate PCT and thinning operations, 
with selection for high quality stems, are applied (Fahlvik, 2005).  

The success of natural regeneration and subsequent stand structure are 
dependent not only on site conditions, but also on the amount and quality 
of seeds produced (Hagner, 1962; Karlsson, 2000a; Karlsson, 2001; Wennstrom 
et al., 2002). Seed production is not regular and for many forest tree species 
varies widely between years (Kozlowski et al., 1991). Further, the amounts 
of seeds produced differ among species, for example birches can generally 
produce large numbers of seeds and have efficient seed dispersal mechanisms 
(Hagner, 1962; Karlsson, 2001). Hence, cone production is generally lower in 
northern Sweden than in southern Sweden, and at higher altitudes (Hagner, 
1958).

Use of mixed heterogeneous forest stands (with, for example, birch shelter 
over spruce) may also help to increase production and decrease the risks 
for frost damage (Mård, 1996; Bergquist, 1998; Johansson, 2001). However, 
as shown by Pretzsch (2009), results may differ substantially. Some studies 
have found minor differences in production between monocultures and 
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mixed stands (Jonsson, 1962; Pukkala et al., 1994; Linden & Agestam, 2003; 
Agestam et al., 2005). Some have found above ground production to be 
highest in pure stands (Kelty, 1992), but others have found it to be highest 
in mixed stands (Assmann, 1970; Pukkala et al., 1994; Mård, 1996; Frivold 
& Kolström, 1999; Linden & Agestam, 2003).The differences in results can 
be explained by the overall effects of diverse factors (such as tree species, 
stand and site characteristics and climate factors) that affect (negatively or 
positively) productivity (Pretzsch, 2009). It has been shown that birch has 
somewhat deeper root system compared to spruce (Sirén, 1955) and may 
have the possibility to take up nutrients from deeper horizonts (Fisher, 1990). 
Brandtberg et al. (2000) found higher base content  in the forest floor of 
mixed stands of spruce and birch, and further that the difference may occur 
without difference in rooting depth. The spatial and temporal stratification of 
roots or foliage may also reduce competition for limiting resources such as 
light and nutrients in mixed stands since different species use different niches 
(Kelty, 1992). Examples of such reductions in competition include variations 
in utilization (and transmittance) of light, based on crown features, by different 
tree species (Terborgh, 1985; Canham et al., 1994). Variations in the vertical 
distribution of root systems may also result in increased resource availability, 
and hence reduce below-ground competition, providing illustrative support 
for ecological niche theory (McKay & Malcolm, 1988). There are also 
differences in volume increment changes during rotation periods for different 
species. For conditions relevant for this thesis it has been concluded that birch 
has a higher increment than spruce until the age of about 35-50 years, but 
thereafter spruce trees have higher volume increment (Mård, 1997; Frivold & 
Kolström, 1999).

2.4 Conventional silviculture of young stands 

In the 1950’s, when the clear-felling system and planting was substantially 
extended in Sweden (Anon., 2002; Bäckström, 1984), PCT became a standard 
operation in silvicultural management (Anon., 2002). During 1950-1970 
chemical treatment with herbicides to kill deciduous trees was introduced in 
addition to manual (axes, knives) and motor-manual (brush saw) operations 
(Fahlvik, 2005; Ligné et al., 2005a). The herbicides against deciduous trees 
were generally forbidden by the law in 1983 (Björk, 1994). Since almost all 
other forestry treatments have been rationalised and mechanised, but PCT is 
still carried out with a motor-manual brush saw in the same way as during 
the last 50 years, the relative cost of PCT has steadily increased (Glöde & 
Bergkvist, 2003; Ligné et al., 2005b). PCT can be characterized by the way 
removed stems are selected. Overall, a major difference is between selective 
and geometric (schematic) thinning, selective thinning being based on the 
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positions and properties of the individual trees while in geometric thinning 
trees are cut in a specific pattern, e.g. rows or corridors (Bergström, 2009; 
Johansson & Gullberg, 2002). However, PCT is not always carried out, partly 
because it is considered expensive; the operation has direct costs but provides 
no immediate revenues (Fällman, 2005). Regimes including PCT at several 
steps will, of course, be even more expensive. Thus, although PCT is justified 
by calculations showing that it will pay back by the time of the first commercial 
thinning, many forest owners still omit it (cf. Fällman, 2005). However, due to 
the high costs associated with PCT, together with the problems arising from 
omitting it (dense stands and increasing height), and difficulties in attracting 
personnel for doing motor manual and hard work, new techniques for PCT 
or whole tree thinning have started to emerge (Ligné et al., 2005b; Bergström, 
2009; Bergström et al., 2007).

In the 1970s, PCT was applied in about 200 000 hectares of young forest 
in Sweden each year. It was regulated by the Swedish Forestry Act of 1979, 
and consequently in the 1980s the area subjected to PCT increased to about 
300 000 hectare year-1 (Anon., 2004). However, in 1994 the Forestry Act was 
changed (Anon., 1995) and PCT was no longer regulated. In the late 1990’s 
the area annually subjected to PCT had fallen again, to 201 000 hectares 
(Anon., 2000a), although it subsequently rose again, to close to 370 000 ha in 
2008 (Anon., 2009c).

PCT has the following aims. Firstly, to avoid strong competition between 
stems in the stand, and hence increase the growth of individual trees (Anon., 
2000b; Albrektson et al., 2008). Secondly, to increase quality, by releasing 
the best quality trees, for later commercial thinning and finally clear-cutting 
(Björkman, 1877; Wahlgren, 1914; Anon., 1968; Anon., 2000b). Thirdly, to 
select tree species, e.g. keeping the most productive species for the specific 
site, in mixed stands (Jäghagen & Sandström, 1994; Anon., 2000b; Albrektson 
et al., 2008). Fourthly, to create stable stands, avoiding damage to the main 
stems caused by whipping (Saksa & Miina, 2007), moose (Härkönen et al., 
2008) and snow pressure (Valinger et al., 1994; Nykänen et al., 1997; Päätalo 
et al., 1999). The number of stems left in conifer-dominated stands after PCT 
in Sweden varies, between around 1 400-3 400 stems ha-1, depending on site 
quality and tree species (Anon., 2000b). 

Responses of trees to PCT depend on stand densities, and stands’ growth 
rates also depend on their age (Pettersson, 1992b) and thinning intensity 
(Braastad & Tveite, 2000). Generally, PCT is applied to young stands, when 
the mean height exceeds 1.3 m (usually as a single operation when the stand 
is 2-3 m tall in Scots pine and Norway spruce stands) (Anon., 2000b;  Fahlvik, 
2005). However, in very dense regenerations it may be necessary to carry 
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out a first PCT (plant cleaning) operation when the seedlings are small, 
approximately 0.5 m tall. Such cleaning is often used to release planted or 
naturally regenerated conifer seedlings from strong competition by numerous 
naturally regenerated broadleaves and conifers (Andersson, 1993;  Anon., 2000b; 
Albrektson et al., 2008). Since the broadleaved trees often continue to compete 
with the conifer seedlings through sprouting (Ligne et al., 2005a), additional 
PCT operations are often required (Andersson, 1984; Andersson, 1993). 

Browsing by moose (Alces alces) on Scots pine is another serious damage 
in young forests in Sweden (Lavsund, 1989). Since moose most frequently 
browse trees up to approx. 4 m tall, forest managers often wait until the stand 
reaches “moose-safe height”, an arithmetic mean height of 4-5 meters (Anon., 
2000b), before they apply PCT.  Thus, variations in site quality, tree species 
and the risk for damage, caused for instance by browsing moose may all affect 
the PCT regimes chosen by forest owners.

2.5 Stand structure and timing of pre-commercial thinning

Stand structure is  influenced (in addition to site characteristics) by events 
from early stand development onwards (Lutz & Halpern, 2006; Jäghagen, 1997; 
Nilsson & Albrektson, 1994), notably the timing of PCT may affect diverse 
tree characteristics, such as stem form, the living crown ratio and diameter at 
breast height, DBH (Pettersson, 1993b). Options applied in plantation forestry, 
such as thinning methods, spacing and species, will therefore affect the stand 
characteristics (Nilsson & Gemmel, 1993). Notably, the stand density and 
timing of PCT affect the saw timber quality more for Scots pine (Pettersson, 
1996; Agestam et al., 1998; Huuskonen & Hynynen, 2006; ) than Norway 
spruce (Nilsson & Gemmel, 1993; Pettersson, 1993). 

Although the overall aim of PCT is to obtain high quality material, 
several studies indicate that stem quality is higher following later (at a higher 
tree height) PCT (Salminen & Varmola, 1990; Ruha et al., 1997; Varmola & 
Salminen, 2004; Fahlvik et al., 2005). Good stem form, i.e. small taper (the 
DBH/height ratio), is associated with high stem densities (Jäghagen, 1997; 
Agestam et al., 1998), and high stand density is also related to high branch 
mortality and hence high live crown heights and low living crown ratios 
(Larson, 1963; Johansson, 1992; Mäkinen, 1996; Fahlvik et al., 2005). Further, 
the quality of wood is strongly dependent on knot characteristics of the 
stem (Nylinder, 1959; Salminen & Varmola, 1993;), and there is a connection 
between the quality of sawn timber and the largest branch in the lowest part 
of the stem (Persson, 1976; Persson, 1977; Persson et al., 1995). Hence, knot 
and branch characteristics are fundamental aspects of the Swedish system 
for grading sawn timber (Anon., 1999; Anon., 2008b and they are strongly 
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affected by silvicultural practices. By keeping stands dense, higher quality 
stems could be produced (Persson, 1976; Persson, 1977; Persson et al., 1995). 
However, there is also a risk in dense stands that the preferred species and 
crop trees of best potential quality may be severely adversely affected by 
competition or other damaging agents (cf. Karlsson et al., 2002). There are also 
indications that artificial pruning may be necessary for high quality timber 
production, as delayed thinning limits possibilities for reducing the knottiness 
of the stems (Mäkinen, 1999). 

2.6 Stand structure and competition

When stem densities become sufficiently high to induce competition for 
resources, mortality due to suppression will occur (Heding, 1969; Ford & 
Diggle, 1981; Kobe et al., 1995; Kobe & Coates, 1997; Jäghagen, 1997; Lutz & 
Halpern, 2006). Kobe and Coates (1997) define suppression as  “survival under 
low growth rates”, i.e. a state in which growth is inhibited as a consequence 
of competition (for light) (Kobe & Coates, 1997; Satoo & Madgwick, 1982). 
During these circumstances with light being limiting, low or even negative 
rates of photosynthesis can be observed. The consumption of organic matter 
by respiration is then larger than the production by photosynthesis (Satoo & 
Madgwick, 1982). One essential aspect of competition is its dependence on 
the size of individual trees in relation to neighbouring trees; a small tree close 
to a big tree will be more severely affected by competition between them 
than the big tree (Goff & West, 1975; Ford & Diggle, 1981; Weiner & Thomas, 
1986; Kobe et al., 1995; Jäghagen, 1997; Pretzsch, 2009). It is often noted that 
competition between trees starts at the time of canopy closure (Cannell et al., 
1984; Messier et al., 1989; Eichhorn, 2010), although competition may also 
occur earlier (Ford & Diggle, 1981; Peet & Christensen, 1987).  

The shading from neighbouring trees in a dense stand restricts amounts of 
available light in the lower part of the canopy, resulting in reductions in the 
living crown ratio (Larson, 1963; Vanninen, 2004) and (hence) photosynthesis 
(Woodman, 1971b; Harcombe, 1987; Grossnickle, 2000). Furthermore, death 
rates are higher among shaded individuals, regardless of age (Harcombe, 1987), 
although shade-tolerant species can survive even in low light conditions, 
while less shade-tolerant species cannot survive long periods of suppression, 
i.e. low growth rates (Kobe & Coates, 1997; Pretzsch, 2009). Hence, Nilsson 
and Gemmel (1993) found that competition for light starts earlier for Scots 
pine (due to relatively rapid crown growth) than for Norway spruce. Further, 
Erefur et al. (2008) found that light requirements could not be moderated by 
improving nutrient supplies when seedlings of  Scots pine and Norway spruce 
were grown under shelter (150 and 500 stems ha-1) for four years.
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Natural mortality as an effect of competition, or self-thinning, is a 
process caused by increasing size of neighbouring trees, aging and decreasing 
tolerance of light deficiency, and is an example of natural selection in forest 
stands (Westoby, 1984; Zeide, 2010). The self-thinning rule (cf. Westoby 
1984) states that this imposes a “density-dependent upper boundary of stand 
biomass for even-aged pure plant stands in a given environment” (Bi et al., 
2000). In addition, large trees accumulate more biomass than suppressed trees 
(Jäghagen, 1997); the increments of suppressed trees progressively decline 
and the differences in size between suppressed and larger trees progressively 
increase. In commercial forestry, this pattern is most likely to appear in stands 
with large differences in tree size, for example naturally regenerated stands 
with significant differences in height among the trees originating from the 
spread in times of establishment, or stands with in-growth, where the in-
growth population is likely to suffer from competition in later stages (Weiner 
& Thomas, 1986).
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3. New possibilities for new silvicultural 
regimes for young stands

The goal to reduce use of fossil fuel and thus greenhouse gas (GHGs) emissions, 
and consequently increases in demands for renewable energy, has led to new 
ideas for improving production and use of bioenergy. The Swedish Forestry 
Act of 1994 dropped the obligation to undertake PCT, and the area of young, 
dense stands in Swedish forests increased (Anon., 2000a). In recent years, there 
have been increasing demands to increase biomass production in the forests 
to provide material for bioenergy (Grebner et al., 2009; Heikkilä et al., 2009). 
These demands have also prompted the development of new regimes for the 
silvicultural management of young forests that provide possibilities for biomass 
harvests, which may even generate a direct income. For such energy harvests, 
the utility of thinning in rows or corridors has been tested (Bergström, 2009). 
These new silvicultural possibilities and potential regimes for young stands 
have raised needs for further knowledge about total biomass production 
during early stages (and methods to estimate production), aboveground 
allocation patterns in different stands, the development of stands and analysis 
of risks connected with dense stand silviculture and biofuel harvests.

3.1 Biomass functions 

Biofuels from the forest consist of logging residues, stumps, wood with no 
industrial use and industrial by-products, and short-rotation products (Anon., 
2000a). The production of wood biomass as a third marketable forest product, 
besides timber and pulpwood, requires new silvicultural regimes. Therefore, 
there is a need for biomass functions adjusted for forests with high stand 
density. Additionally, biomass functions are used for estimating sizes of specific 
fractions in evaluations of carbon budgets and ecosystem productivity in 
forest stands (Monserud et al., 2006; Litton et al., 2007; Case and Hall, 2008). 
Numerous equations have been developed for various tree species, and there 
are functions for estimating both whole tree biomass and diverse components, 
both above- and below-ground (Madgwick & Kreh, 1980; Albrektson et al., 
1984; Marklund, 1988; Johansson, 1999; Bond-Lamberty et al., 2002; Zianis et 
al., 2005; Muukkonen & Mäkipää, 2006). However, these biomass equations 
are not based on, and therefore not adapted for, young, dense boreal forests 
that are suitable for forest fuel harvests.
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The use of stand tables and regressions are the most common procedure for 
estimation of biomass and volume in forest stands (Baskerville, 1972). Reviews 
of regression equations for estimating biomass show that most use diameter at 
breast height (DBH), tree height, or a combination of these variables (Young, 
1976; Hitchcock & McDonnell, 1979). Satoo and Madgwick (1982) discuss 
the utility of different variables for estimating biomass, and conclude that 
DBH and tree height are suitable variables for estimating both stem and total 
tree biomass. In addition, they note that DBH is not sufficient, as a single 
variable, to predict the biomass of the canopy. Tadaki (1966) reached the same 
conclusion, and that regression constants for crown components are affected 
by growth stage, stand density and site conditions. 

3.2 Damage risks and analysis 

There are several risks, for both abiotic and biotic damage, connected with 
treatments (or no treatment) of young forests. For example, leaving stands 
unmanaged until they are ready for commercial thinning increases risks 
for damage by snow pressure (Valinger et al., 1994). Various stand and tree 
characteristics influence the risk of such damage, e.g. tree taper, tree species 
and stand density (Persson, 1972; Lohmander & Helles, 1987; Peltola et al., 
1997; Nykänen et al., 1997; Päätalo et al., 1999). PCT increases the possibility 
for the remaining main stems to increase diameter growth and become more 
stable and resistant to snow pressure (Nykänen et al., 1997; Päätalo et al., 1999). 
However, during the first winters following thinnings in dense stands there 
may still be a risk for damage from snow pressure (Valinger et al., 1994). 

When stand growth is estimated mortality predictions are required 
in addition to information on the likely growth and harvest parameters 
(Harcombe, 1987). Hence, algorithms for stand establishment, used to estimate 
and predict forest development, usually include three major variables: growth, 
harvest and natural mortality (Fridman & Ståhl, 2001).

The problem is that mortality is variable, and thus difficult to predict 
(Lee, 1971; Monserud & Sterba, 1999), especially for suppressed trees, which 
are especially sensitive to competition for light and thus have high rates of  
mortality (Heding, 1969; Goff & West, 1975; Ford & Diggle, 1981; Kobe et al., 
1995; Jäghagen, 1997; Kobe & Coates, 1997; Lutz & Halpern, 2006; Ulvcrona 
et al., 2010). 
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All trees are dependent on the availability of light, nutrients and water, and 
the competition for these resources depend on the individual tree in relation 
to other close standing trees in the stand (Pretzsch, 2009). Furthermore, 
ecological and climatic aspects such as altitude, different terrestrial biomes, soil 
characteristics, length of growing season, temperature sum and precipitation all 
effect the particular stand and thereby the possibilities for growth (Kozlowski, 
1991). For the forest owner’s point of view, it is important to consider 
different characteristics of each stand, when it comes to decisions regarding 
stand development. From different aspects, such as tree species and diameter 
distribution, stand density and site index, different long time until the stand 
should be harvested for bioenergy will come into the question.
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4. Objectives

The overall objectives of the work underlying this thesis were to evaluate the 
possibilities for increasing biomass production for bioenergy harvests while 
leaving trees of high potential timber quality in young, dense Scots pine-
dominated mixed stands in northern Sweden. Specific goals were to:

•	Construct biomass functions based on data acquired from sampled trees 
in dense and sparse Scots pine-dominated mixed stands in northern 
Sweden (I). The main objective for these biomass functions was to 
estimate biomass production (II).

•	Estimate the total biomass production for Scots pine, Norway spruce 
and birch, based on the constructed functions, when different treatments 
are applied, including: no-thinning with no fertilization, fertilization 
every six years, or every year; and PCT (to 3 000 stems ha-1) with no 
fertilization or fertilization every six years (II).

•	Analyse density and fertilization treatment-related differences in allocation 
patterns, i.e. differences in stem form, allocation to branches and needles 
(III).

•	Analyse effects of PCT at different tree heights and stand densities on 
branch characteristics, stem form, living crown ratios and DBH for Scots 
pine (IV).

•	Analyse density-related effects of competition and mortality risks for 
Scots pine (V). 
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5. Material and Methods

5.1 Study areas

Sites

For the first study, biomass sampling was carried out in six young, Scots pine-
dominated stands on mineral soils in northern Sweden (Figure 1, Paper I) 
where the altitude varied between 20 m a.s.l. – 220 m a.s.l, and site index 
(dominant height at 100 years of age) for Scots pine varied between 18-
24 m according to definitions made by Hägglund & Lundmark (1977). The 
length of the growing season, defined as number of days when the daily mean 
temperature exceeded 5 °C was 120-180 days. The mean annual precipitation 
during the period from establishment of the studied stands (in 1997) to the 
final measurements (in 2008) considered here was 700-800 mm (Degerön, 
Kulbäcksliden and Renfors, data from Gagnet not available) (Anon. 2010b), 
compared to 700-800 mm for the climatic reference period (1961-1990) for 
the actual sites (Anon., 2011). For further details, see Table 1, Paper I.

For the second study, total biomass production was estimated at four sites 
used in a field experiment in northern Sweden - Degerön, Kulbäcksliden 
and Renfors close to Vindeln, Västerbotten - and Gagnet, close to Sollefteå, 
Ångermanland. Biomass was sampled at the sites before the field experiment 
was established, in 1997 at all sites except Gagnet (1998) (Figure 1, Paper 1). 
The altitude at these sites varied from 125 m a.s.l. (Gagnet) to 195 m a.s.l. 
(Renfors) and the site index, H

100
, was estimated using site factors according 

to definitions made by Hägglund & Lundmark (1977) to be between 18 
m (Renfors) and 24 m (Gagnet). All sites were on mineral soil, and the soil 
texture varied between sandy loam (Degerön) and loamy sand (Kulbäcksliden 
and Renfors) according to definitions made by Hägglund & Lundmark (1987). 
The field vegetation at the sites was dominated by bilberry (Vaccinium myrtillus 
L.) according to definitions made by Hägglund & Lundmark (1977), see Table 
1, Paper II, for further details. All stands were naturally regenerated, mixed and 
Scots pine-dominated. Other tree species present were Norway spruce, Birch 
(Betula pendula Roth and B. pubescens Ehrh.), hereafter named birch. Further, 
scattered willow (Salix ssp.), mountain ash (Sorbus aucuparia L.), aspen (Populus 
tremula) and grey alder (Alnus incana L.) were found.
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The tree species distribution at the time of establishment of the field 
experiment was about 59-99% for Scots pine, 2-13% for Norway spruce 
and 1-39% for deciduous spieces, based on basal area in the dense stands. 
In the PCT-treatments the tree species distribution was 84% Scots pine, 5% 
Norway spruce and 11% birch. The diameter distribution was not normally 
distributed for the dense stands (Figure 1). The third study was carried out 
in the sites Degerön, Kulbäcksliden and Renfors described in study I and II 
above. The fourth study was carried out at two sites: Norrliden (latitude 64º 
21’ N) and Stugun (63º 17’ N), both located in northern Sweden. Both sites 
were included in “Group 2” of an experimental series, established by the 
late Professor Dr. S-O Andersson and described below (Karlsson & Ulvcrona, 
2010), intended to assess effects of the timing of selective PCT. The Norrliden 
site was naturally regenerated using Scots pine seed trees after final felling in 
1956, while the Stugun site was regenerated by direct Scots pine seeding after 
prescribed burning in 1958. 

The fifth study was based on analyses of 9 924 Scots pine trees from, in 
total, 94 plots at 26 experimental sites, spanning latitudes 57º 56’ N - 65 º 9’ N 
in Sweden (Figure 1, Paper V). All of these plots were included in “Group 1” 
of the experimental series established by S-O Andersson during 1953-1972, 
intended to assess effects of selective PCT, or “Group 2” (intended to assess 
effects of its timing, as mentioned above) (Karlsson & Ulvcrona, 2010). 

Field experiment sites in Vindeln and Gagnet

In study II, five 900 m2 experimental plots were used, each measuring 45 
× 20 m or 30 × 30 m (except for one plot, treatment C, in Gagnet that 
measured 20 x 20 m) depending on stand characteristics, with 5-m buffer 
zones, at each of the sites (blocks) listed above (Degerön, Kulbäcksliden, 
Renfors and Gagnet). Two plots (and the respective buffer zones) at each site 
had been subjected to PCT, to leave 3 000 trees ha-1, while the others were 
left unthinned (control, C). At each site, one of the PCT plots (designated 
PCT+F1) and one of the C plots (designated C+F1) were fertilized from 
1997 (Degerön, Kulbäcksliden and Renfors), 1998 (Gagnet), 2003 (Degerön, 
Kulbäcksliden and Renfors) or 2004 (Gagnet) onwards. F1 and F2 refer to N 
fertilization at 100 kg ha-1 every 6th year and annually, respectively, from the 
establishment of the field experiment, using Skog-AN + Superba Mikromix 
in 1997-2001, and Skog-CAN granula (Yara International ASA) thereafter 
(Table 2, Paper II).  Fences to protect the sites from moose were erected in 
1998 at Degerön and Kulbäcksliden. Sprouts (<1.3 m) have been cleaned in 
the PCT-treatments since the establishment of the field experiment.
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Figure 1. DBH (mm) distribution and number of stems ha-1 at the establishment of the 
experiment in 1997 to the left, and after eight years in year 2005 to the right. Sites included 
are Degerön, Kulbäcksliden and Renfors. The dense treatments C, C+F1 and C+F1 in the 
upper part of the figure, and the PCT and PCT+F1 treatments in the lower part of the figure. 
Abbreviations as in Table 1.
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The stands at Renfors and Kulbäcksliden were established in 1977, while 
those at Gagnet and Degerön were established in 1979 and 1980,  respectively, 
so the stands were 17-20 years old when the experiments were established 
in 1997 (Degerön, Kulbäcksliden and Renfors) and 1998 (Gagnet). The 
arithmetic mean DBH in the dense stands was somewhat lower in Degerön 
in 1997 (16-19 mm) than in Renfors and Kulbäcksliden (21-26 mm) and 
Gagnet (36-41 mm).  No significant differences were found in dominant 
height (4.3 m-7.2 m), but it was greatest at Gagnet. The number of stems in 
the unthinned stands varied from 8 600 (Renfors) to 24 867 (Degerön). For 
further details, see Table 3 in Paper II. 

5.2 Biomass sampling  and biomass functions
For study I, trees were sampled for biomass analyses on three occasions in 
total, 1997/1998 (Claesson et al., 2001), 2003/2004 and finally in spring 2010. 
On the first occasion, in 1997-1998, trees from all six sites were sampled and 
analysed (Claesson et al., 2001), but on the following two occasions only trees 
from the plots established close to Vindeln and described above (for study II) 
were sampled. For study III, allocation patterns of Scots pine were analysed 
six years after establishment of the field experiment using the trees sampled 
for biomass analysis (study II) in 2003-2004.

On each occasion a number of trees were sampled, aiming to select trees 
representing their respective stands, with the same DBH distribution as the 
stands, ignoring damaged trees. The DBH, height and crown length of all 
trees were measured, and their crowns were divided into four strata of equal 
length. A sample branch was collected from each stratum, and six discs along 
the stem were collected (Figure 2, Paper I). For the smallest trees, the BH disc 
overlapped with the 30% disc; as such, only five discs were cut from these trees. 
Discs and branches were weighed in the field to obtain their fresh weights, 
placed in air-tight plastic bags and stored in a freezer (-20 °C) until they were 
dried in a ventilated oven at 85 °C for 48 h (branches and foliage). The discs 
were dried for ≥48 h to constant dry weight (DW). When drying discs after 
the second sampling (2003/2004), an increase in DW between consecutive 
weighing occasions were observed, although the discs were always weighed 
immediately after they were taken from the oven. The reason for this was the 
migration of water from larger to smaller discs, even though a ventilated oven 
was used. Therefore, small discs and large discs were separated before drying 
thereafter.

Biomass functions were constructed for the fraction stem including bark, 
branches including bark, foliage, and dead branches. Additionally functions 
for the whole tree including all fractions mentioned above were constructed.
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The biomass functions were constructed based on regression models (study 
I). A number of different variables were evaluated and accepted variables 
were significant at p≤0.05. All variables were transformed with the natural 
logarithm to obtain constant variance. To avoid multicollinearity, each variable 
was used only once in each regression (Tamhane & Dunlop, 2000). When 
retransforming the results, correction for logarithmic bias was calculated 
according to Finney (1941). For the selected functions, analysis of residuals 
was made as the difference between estimated DW (g) and calculated DW (g) 
for sample trees as the mean value (g) per DBH –class (cm).

5.3 Tree and stand measurements (I-III)

DBH was measured from one direction of the tree at the height of 1.3 m. 
After establishment, all field inventories for study II were done in autumn 
(September and October) after the growing season. The first inventory (1997) 
was done using callipers and a dot list, while Haglöf® Mantax Digitech® 
callipers (Haglöf Sweden AB, Långsele) were used for the second inventory. 
Height measurements were acquired using a height pole in 1997 and a digital 
hypsometer (Vertex®; Haglöf Sweden AB, Långsele) thereafter.

To ensure that all trees measured in the stand were only measured once 
in each inventory, measurement tapes were used to create ca. 5 m corridors 
through the plots. When a tree was measured, the stem was marked. The DBH 
of all trees >1.3 m tall in the net-plot, including sprouts of birch and aspen, 
was measured. The height of a number of sample trees in each plot (40-
80) was also recorded (the nine largest trees of each species, and a number 
representing actual DBH-classes). Using height and DBH data acquired from 
these trees, all trees in the respective plots were assigned individual heights for 
each treatment and species using equations presented by Näslund (1936), see 
further study (II) equation 5.

Damaged trees were registered, but seriously damaged trees were not 
selected for height measurements. Standing dead trees were also recorded.  

Biomass production (study II) was estimated using biomass functions 
from study I. Total and annual production of biomass and stem volume were 
estimated for both an early period and a later period. Annual growth during 
each period was estimated as the increase in size parameters, for all trees 
(including trees that were dead at the end of each period) and living trees 
from the beginning of each analysed period; the increases were then divided 
by the number of vegetation seasons between inventories.
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Size parameters of the 500 (corresponding to a typical number of stems per 
ha at final cut), 1500 (corresponding to a typical number of stems per ha after 
a conventional first thinning following after PCT) and 2 700 largest trees per 
ha (corresponding to the density in the PCT-plot with the highest mortality 
since the start of the experiment) at the end of the experimental period 
were compared between treatments for the sites Degerön, Kulbäcksliden and 
Gagnet. In addition, sizes of 2 700 trees per ha, marked as trees that could be 
left after a selective first thinning, were compared between-treatments and 
to the sizes of the 2 700 largest trees per ha. Only healthy trees with no 
damage were selected for this analysis. Analysis of variance was then applied 
to evaluate the effects of the treatments with sites as blocks (random effects). 
For all statistical tests, p ≤0.05 was considered to be significant. 

Foliage analyses 

To detect potential nutrient imbalances due to fertilization (study I, II and 
III), samples of foliage (shoots from current year+1, C+1) from three Scots 
pine and three Norway spruce trees representing each treatment and site were 
collected for analysis, in February, from the third branch of the top shoot 
on the south side of the crown using secateurs on a pole. The needles were 
dried in a ventilated oven (85 °C), and samples of needles from each tree were 
weighed using a laboratory balance (0.005 g). Pooled samples of equal weight 
representing each combination of species, treatment and site were then formed, 
and their elemental contents were analysed at the Swedish University of 
Agricultural Sciences, Umeå, using an Elan 6100 ICP/MS-DRC instrument 
and a 2400CHN Element Analyzer (both supplied by PerkinElmer, Norwalk, 
Connecticut, USA).

5.4 Old PCT-experiments (IV-V)

In total, field experiments were established in more than 150 stands all over 
Sweden in the S-O Andersson series. Most of the stands are Scots pine and 
Norway spruce stands, for further details, see Karlsson & Ulvcrona (2010). Data 
acquired from measurements of trees in plots established in field experiments 
by late Professor Dr. S-O Andersson in 1950’s to 1980’s were used for two 
of the studies (IV and V). In study IV branch characteristics were analysed in 
two Scots pine stands of Group 2 (intended to assess effects of the timing of 
selective PCT), while in Study V mortality was analysed in Scots pine stands 
of both Groups 1 (intended to assess effects of selective PCT) and 2 (Karlsson 
& Ulvcrona, 2010). 



33

Selective PCT experimental plots (Group 1) were divided into subgroups 
a, and b. Sub-group 1a was established during 1953-1961 at 28 sites in Sweden, 
24 with pure Scots pine stands to which no thinning, or selective PCT to 
1 500, 2 500, 3 000, 4 000, 5 000 or 6 000 stems ha-1 was applied. Sub-group 
1b were established during 1970-1985 with no-thinning or PCT to 600, 
1 000, 1 400, 1 800, 2 500 and 3 200 stems ha-1. The PCT timing was also 
varied, by applying it at heights ranging from 0.5 m to 7.5 m. In total 16 sites 
with Scots pine, and 10 sites with Norway spruce experiments were included 
in group 1b (Karlsson & Ulvcrona, 2010). 

The main objective of the Group 2, timing of selective PCT, experiments 
was to study the combined effects of the number of stems after PCT and the 
timing of PCT. Four timings (defined as the mean height of the remaining 
stems) were chosen: <1.5 m or 1.5-2.0 m (T1), 2.0-3.5 m (T2), 3.5-5.5 m 
(T3) and 5.5-7.5 m (T4). The number of stems ha-1 after PCT was 1 000, 
1 800 and 2 500 at fertile sites (site index >26 m), and 600, 1 000 and 1 800 
stems ha-1 on poorer sites (Karlsson & Ulvcrona, 2010).

5.5 Branch characteristics (IV)

Branch characteristics were analysed in study IV, in which 5 067 branches 
in 1 041 whorls of the 90 trees were measured in stands pre-commercially 
thinned to 600, 1 000 and 1 800 stems ha-1 and at heights of 1.5, 3, 5 and 7 m. 
Branch diameters were measured, perpendicular to the branch axis, using an 
electronic slide calliper (with ± 0.03 mm accuracy); living branches over bark 
and dead branches under bark.

5.6 Mortality (V)

Individual mortality were analysed in study V, in which 9 924 Scots pine 
trees from 26 PCT-experiments comprising a total of 94 plots were analysed. 
Experiments from groups 1 (spacing experiments) and 2 (timing of PCT 
experiments) of the dataset were used (Karlsson & Ulvcrona, 2010) and 
selection of plots was made on the basis of whether data on the number 
of stems before PCT was available. The field experiments analysed were 
established between 1953 and 1972 in Sweden (57º-66º N) and evaluated 
about 8-23 years after PCT. A majority of the stands examined were established 
by natural regeneration and a few stands were established by direct seeding, 
planting, or prescribed burning followed by natural regeneration The PCT-
treatment factors included stand density and height at the time of PCT. The 
stand densities varied between 600 stems ha-1 and >9 000 stems ha-1 before 
PCT. The height at the time of PCT varied between 1 m and 8 m. 
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Not all DBH-classes were represented at all sites with respect to mortality 
at different heights at PCT, stem density before PCT and stem density after 
PCT. Therefore the variable “site” was not included in the model. Mortality 
in this study refers to the proportion of dead trees out of the total number of 
stems after PCT. Mortality was calculated as the mean value for each class and 
site and thereafter analysed with variance analyses (study V). 
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6. Results and Discussion

6.1 Biomass functions (I, II)

Biomass functions for estimating the dry weight (DW) of the above-ground 
parts of whole trees (including stem, dead and alive branches and foliage) and 
the fractions stem including bark, alive branches and foliage were derived 
using data acquired from the sample trees. No significant correlation between 
the DW of the dead branches fraction and DBH was observed. Therefore, no 
biomass function for this fraction was constructed. A number of variables and 
combinations of variables were tested, and the most suitable for estimating 
all fractions was found to be ln DBH * ln Tree Height. DBH and tree height 
have also been found by other authors to be suitable for estimating biomass 
(Young, 1976; Hitchcock & McDonnell, 1979; Sato o & Madgwick, 1982). The 
variable ln (DBH * crown length) was found to be suitable for estimating the 
DW of the branches and foliage fractions. Similar results, with improvements 
in regressions for predicting crown parameters by adding the living crown 
ratio, have also been previously reported for pine and spruce (Marklund, 
1988), shortleaf pine (Pinus echinata) (Loomis et al., 1966), Virginia pine (Pinus 
virginiana) and radiata pine (P. radiata) (Madgwick, 1979; Madgwick & Kreh, 
1980).

All these variables (DBH, tree height and crown length) are easy to 
measure, and thus advantageous for estimating DW biomass. Analyses of the 
residuals (the estimated weight - true weight) indicated low values for all 
species, treatments and fractions (Study I, Figure 3-6). The biomass functions 
were then used to estimate the total biomass (DW) for the stands examined 
in study II. 
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6.2 Biomass production (II)

About 14-17 m3 ha-1 of the stem volume and 10-12 ton ha-1 total biomass 
(50%), and about 15 400 or 80% of the number of stems, where cut and left 
in the forest during the PCT-operation at the time of establishment of the 
experiment (Figure 2). The no-thinning treatment resulted in about 58%-
78% higher yield than the PCT-treatments, in accordance with previous 
studies (Pettersson, 1993a) (Figure 3 and Table 1). These results are based on 
the living trees at the end of the experimental period. If the stems left in the 
forest at PCT was included in the analyses  the total yield was 68.4 ton ha-1 
(PCT) and 73.7 ton ha-1 (PCT+F1). In addition, for the 1 500 largest trees per 
ha, the C+F2 treatment yielded the highest values for all measured parameters 
and the C treatment the lowest values (Figure 4). The same pattern was 
found for the 500 largest trees per hectare, with the exception with highest 
value for branches in treatment PCT+F1. Significant differences between 
these two treatments were found for total biomass, biomass of the stem, 
branches, foliage, basal area and arithmetic mean diameter.  No significant 
between-treatment differences were found for stem volume and arithmetic 
height. Results from study II show that the C+F2 treatment resulted in 79% 
higher yield compared to PCT 3 000 stems ha-1, and 129% higher yield than 
PCT to 1 500 stems ha-1 (Figure 5). These results indicate the potential for 
increasing biomass production by solely leaving a higher number of stems 
after PCT, or harvesting biofuel at a dominant height of about 8-10 m. For 
biomass production per diameter class from the time for establishment of 
the experiment and eight years later, see Figure 6. Figure is based on results 
from the sites of Degerön, Kulbäcksliden and Renfors. Also when analysing 
the 2 700 largest trees, corresponding to the PCT-treatments (some of the 
originally 3 000 stems were dead in the end of the experimental period), 
the same result was found with no significant difference for stem biomass or 
arithmetic mean height. The lowest values were again found for treatment C, 
and the highest for treatment C-F2, with significant differences between these 
treatments for total biomass, biomass of the stem, branches, foliage and basal 
area. The C+F1 treatment also resulted in significantly higher foliage biomass 
than treatment C, and the C+F2 treatment significantly higher values than the 
two PCT-treatments. The annual growth was higher during the first period, 
both for treatment C and C+F2. The decrease during the later period was 
however larger in treatment C (25%), compared to C+F2 (1.7%). This might 
explain the differences observed for the 2 700 largest trees in the end of the 
experimental period, whereas in study III, significant differences were only 
observed for the smallest trees (Table 1). 
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Figure 2. Number of stems upper left, total biomass DW (ton ha-1), upper right, stem volume 
(m3 ha-1) lower left and basal area (m2 ha-1) lower before and after PCT treatment. Abbreviations 
as in Table 1.

Figure 3. Study II. Biomass of different fractions at the end of the experimental period from the 
sites Degerön, Kulbäcksliden and Gagnet and different treatments. Abbreviations as in Table 1.
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Table 1. Study II.  Annual growth and yield of total biomass, stem volume and basal area for each 
period defined as early period (1997-2002/2003, all sites included), later period (2002/2003-
2008, all sites included, Renfors with data from 2005) and full period (1997-2008, all sites 
included, Renfors with data from 2005) and for each inventory, and the difference in yield 
between start to end. F-C is the difference between the fertilized treatment and the control (C 
and PCT, respectively). The additive yield by F is kg, m3 and m2, respectively per kg N added 
during the experimental period. Comparisons are made by treatmenta and period or time. 
Means with different letters are different at the 0.05 level of significance according to Tukey´s 
multiple comparison test

Treatment Annual growth Yield Effect of Fertilizer 

 Early  Later Full Start End
early

End 
late/exp.

Difference 
in yield: 
End - start

F - C Additive 
yield by F

Biomass 
ton ha-1

C 6.2ab 4.6b 5.2bc 26.2a 57.2a 79.4ab 53.2b - - 
C+F1 6.7a 6.5ab 6.4ab 27.0a 60.5a 92.3a 65.3ab 12.1 60.5
C+F2 8.0a 7.9a 7.5a 23.8a 63.5a 100.4a 76.9a 23.7 21.6
PCT 4.0c 5.3ab 4.5c 9.8b 29.5b 56.0c 46.3b - -
PCT+F1 4.6bc 6.0ab 5.1bc 10.5b 33.2b 62.9b 52.4b 6.1 30.5

Stem vol. 
m3 ha-1

C 10.7ab 8.0 9.0bc 41.0a 94.4ab 142.6abc 92.3bc - -

C+F1 12.0a 10.1 10.7ab 42.8a 102.8a 158.4ab 108.7ab 16.4 0.08

C+F2 13.8a 12.4 12.2a 37.3a 105.8a 177.8a 125.8a 33.5 0.03

PCT 6.3c 8.3 7.1c 15.7b 46.7c 98.1d 73.3c - -

PCT+F1 7.4bc 9.3 8.2bc 17.0.b 54.2b 104.5c 83.8bc 10.5 0.04

Basal area 
m2 ha-1

C 2.0bc 1.3 1.6b 13.1a 23.2a 29.2a 16.1b - -
C+F1 2.2b 1.5 1.8ab 13.2a 24.4a 31.5a 18.3ab 2.2 0.01
C+F2 2.9a 1.7 2.2a 11.7a 26.1a 34.4a 22.8a 6.7 0.01
PCT 1.4d 1.3 1.3b 5.1b 11.9b 18.5b 13.4b - -
PCT+F1 1.5cd 1.5 1.4b 5.7b 13.3b 20.5b 14.8b 1.4 0.01

a 

C = dense stand with no fertilization

C+F1 = dense stand and fertilization 100 kg N ha-1 1997 and 2003 (Degerön, Renfors, Kul-
bäcksliden) and 1998 and 2004 (Gagnet)

C+F2 = dense stand with 100 kg N ha-1 year-1 

PCT = pre-commercial thinning 3 000 stems ha-1

PCT+F1 = pre-commercial thinning and fertilization 100 kg N ha-1 1997 and 2003 (Degerön, 
Renfors, Kulbäcksliden) and 1998 and 2004 (Gagnet). 
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Figure 4. Study II. Total biomass, and the different fractions stem, branch and foliage of the 1 500 
largest trees ha-1 for each treatment. Sites included are Degerön, Kulbäcksliden and Gagnet, and 
results are from the end of the experimental period. Abbreviations as in Table 1.
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Abbreviations as in Table 1.
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Figure 6. Total biomass DW ton ha-1 per DBH (mm) class at the establishment of the experiment 
in 1997 to the left, and after eight years in year 2005 to the right. Sites included are Degerön, 
Kulbäcksliden and Renfors. The dense treatments C, C+F1 and C+F1 in the upper part of the 
figure, and the PCT and PCT+F1 treatments in the lower part of the figure. Abbreviations as 
in Table 1. 
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A comparison for the difference between the 2 700 largest trees and 2 
700 selected trees remaining after biofuel harvest was also done. Significant 
differences were only found for branches and foliage. For branches, the 
PCT+F1 treatment resulted in the highest value, and the C+F1 treatment 
the second highest (significantly higher, in both cases, than treatment C). For 
foliage, the only significant difference was between treatments C and C+F2. 
These results indicate that the largest trees continued to grow even in the 
dense stand, and that combining bioenergy harvests with leaving stems in the 
stand for future thinnings is feasible. These results correspond with previous 
findings (Watkinson et al., 1983; Weiner & Thomas, 1986).
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The fertilizer given two times during the experimental period resulted in 
more biomass, higher basal area and higher volume per kg N added than the 
annual fertilization treatment (Table 1), although the intensive fertilization 
resulted in (insignificantly) higher production, possibly because maximum 
LAI had already been reached in the stands, hence further fertilization could 
not increase LAI any further (Ceulemans & Saugier, 1991).

It seems likely that the selected fertilization level of 100 kg N ha-1 year-1 was 
not optimal for these Scots pine-dominated stands. Similar results have been 
found by other authors (Tamm, 1985; Jacobson & Nohrstedt, 1993; Aber et 
al., 1995; Tamm et al., 1999; Högberg et al., 2006b), possibly due to reductions 
in foliar Mg:N and Ca:Al ratios resulting from increases in anion mobility 
followed by increased cation leaching losses (Aber et al., 1995). Another 
possible explanation is associated with the negative influence on myccorrhizae 
and consequent reductions in the ability of the tree roots to take up nutrients 
(Jacobson & Nohrstedt, 1993). However, mycorrhizae were not analyzed in 
the studies this thesis is based upon, so effects of fertilization treatments in 
young, dense mixed forests in this respect remain to be investigated. 

Repeated additions of N have also been found to cause no serious nutrient 
deficiencies and (non-significant) increases in growth by Jacobson & Pettersson 
(2001).  However, Aber et al. (1995) found reductions in tree growth and 
increased tree mortality with increasing nitrogen additions. Further, they 
reportedly caused decreased Mg:N and Ca:Al ratios in the foliage, which 
might be one explanation for the decreased tree growth (Aber et al., 1995). 
Results from other field studies indicate that intensive fertilization can 
significantly increase increments of Norway spruce (Tamm, 1985; Stockfors et 
al., 1997; Bergh et al., 1999; 2005).  

Clearly, when adding nutrients it is important to detect any deficiencies in 
foliage (Linder, 1995). Therefore foliage was analysed during the experiments 
considered here. Needle samples have been collected and analysed since 1999. 
In 2005, increased levels of nitrogen were found in needles from fertilized trees, 
but the difference in this respect between treatments C and C+F2  was only 
close to significant (p=0.056) for Scots pine. For Norway spruce significant 
differences were detected between treatments C+F2 and C (p=0.016), PCT 
(p=0.049) and PCT+F1 (p=0.026). For Norway spruce significant differences 
between the C+F2 and PCT+F1 were also found for foliage boron contents 
(p=0.012) (Table 2).
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Treatments Nutrient Target value Scots pine Norway spruce
mg g-1 mg g-1 1999 2005 1999 2005

C N 15-25 12.80 11.73 14.43 11.53
C+F1 12.37 12.80 10.97 13.13
C+F2 13.03 16.47 13.07 18.57
PCT 12.70 13.10 13.13 12.90
PCT+F1 12.80 11.93 13.37 12.10

C P >1.5-2.0 1.32 1.41 2.05 2.26
C+F1 1.35 1.51 2.08 1.73
C+F2 1.37 1.39 1.99 1.72
PCT 1.39 1.40 2.00 1.71
PCT+F1 1.45 1.40 1.77 1.58

C K >6-8 4.82 2.66 6.77 3.26
C+F1 4.47 4.31 6.21 4.74
C+F2 4.85 3.89 6.30 3.26
PCT 4.66 3.79 6.46 2.95
PCT+F1 5.31 3.14 5.64 3.59

C Ca >3-4 2.96 4.45 6.62 4.36
C+F1 3.49 5.40 4.74 6.05
C+F2 3.10 3.98 5.59 3.12
PCT 3.49 4.09 4.56 3.50
PCT+F1 3.34 4.21 5.21 4.78

C Mg >0.7-1.1 0.95 0.83 0.86 0.66
C+F1 0.91 0.72 0.79 0.69
C+F2 0.85 0.72 0.92 0.51
PCT 0.87 0.89 0.94 0.63
PCT+F1 0.85 0.83 0.98 0.76

C S >1.9-2.2 0.83 2.92 1.03 3.38
C+F1 0.89 2.08 0.89 3.09
C+F2 0.89 2.35 0.91 3.17
PCT 0.92 2.07 0.87 3.09
PCT+F1 0.88 2.89 0.87 2.88

C B 0.008-0.025 0.003 0.003 0.007 0.005
C+F1 0.007 0.007 0.006 0.009
C+F2 0.010 0.010 0.010 0.010
PCT 0.005 0.005 0.007 0.003
PCT+F1 0.010 0.010 0.007 0.009

Table 2. Study I, II, III, Nutrient levels in needle samples of Scots pine and Norway spruce trees 
collected in February 1999 and 2005 for each treatmenta (except for P and B; results for samples 
from 2002). Target values summarized from Brække (1994). Numbers in bold font within these 
target values

aAbbreviations as in Table 1.
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The findings of higher DW total biomass in the dense, unthinned stands 
are also supported by other studies. By doing a pre-commercial thinning 
leaving 1 000, 1 600 or 2 200 stems per hectare at dominant heights of 3, 6 
and 9 m respectively, a remarkable loss of merchantable wood production was 
detected 23-25 years later in the 1 000 stems per hectare treatment for Scots 
pine (Varmola & Salminen, 2004). The growing stock can thus be decreased 
by heavy thinnings, and leaving too few stems per hectare may result in 
losses of merchantable yields at stand level (Huuskonen & Hynynen, 2006). 
Differences in density may also lead to differences in increments, with higher 
annual growth during the first period in the dense stand, compared to the 
PCT-treatments. The difference was smaller during the later period, possible 
as an effect of increased competition in the dense stand, and also increased 
foliage in the PCT-treatments. 

Similar results was also found by others, for instance, Nilsson and Albrektson 
(1994) recorded higher increments in stands with 40 000 stems per ha than 
in stands with 10 000 stems per ha to ages up to 10 years. However, in the 
following six years, increment was higher in the stands with 10 000 stems 
per hectare (Nilsson & Albrektson, 1994), obviously because competition 
increased more strongly in the denser stands. Similar results have been reported 
by Agestam et al. (1998), in a comparison of stands with stem densities of 1 
600 and 6 400 stems per hectare. The relative growth of height and diameter 
is often found to be lower in a denser stand, even for larger trees (Nilsson, 
1994). Early, intensive PCT (resulting in wide spacing) reportedly induces 
the strongest diameter increment responses (Pettersson, 1993b; Huuskonen 
& Hynynen, 2006), while higher densities after PCT result in higher total 
yields but smaller mean diameters (Pettersson, 1993a). An increase in volume 
production was also found up to 14-16 m in dominant height

 
for densities 

varying from 500 - 4 000 stems after PCT. For stand densities >4 000, the 
increase by stem density was significantly less pronounced (Pettersson, 1996).

6.3 Allocation patterns (III)

In study III, only the smallest Scots pine trees in the stand were found to be 
significantly affected by the stand density or fertilizing treatments in terms of: 
the DBH/height ratio; stem weight/total weight ratio; weights of branches, 
foliage and dead branches (relative to total weight); and crown length/tree 
height ratio (Figures 7). These results are also supported by previous studies, in 
which more biomass was found to be allocated to stem wood in suppressed 
trees and trees in dense stands (Nilsson & Albrektson, 1993; Mäkinen & 
Vanninen, 1999).  Nilsson and Gemmel (1993) also found that increased 
competition increased the allocation to stem growth and decreased allocation 
to needles in young Norway spruce and Scots pine trees. 
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Allocation patterns can also be changed by changing abiotic factors, such 
as irrigation and fertilization. Irrigation has the potential to increase biomass 
distribution to fine roots and decrease biomass to foliage relative to other plant 
parts. Fertilization has the potential to increase biomass allocation to coarse 
roots, tap roots and branches, with accompanying reductions in allocation to 
fine roots and foliage (King et al., 1999). 

6.4 Time of pre-commercial thinning and branch characteristics (IV)

Both DBH and the living crown to height ratio decreased with increasing stand 
density, and the height/DBH ratio increased with increasing stand density 
for Scots pine trees in stands in which PCT to 600, 1 000 and 1 800 stems 
ha-1, at various tree heights (1.5, 3, 5 and 7 m), had been applied. The same 
results were generally also found for increased height at PCT. Branch diameter 
decreased with increases in stand density, and decreased with increases in 
height at the time of PCT (Figure 8). These results correspond with previous 
findings that increases in stand densities and reductions in crown length are 
associated with more cylindrical trees (Larson, 1963). More pronounced taper 
was also recorded 5-10 years after thinning from below (removing 65% of 
basal area at a stand height of 12-15 m) than in trees from unthinned stands 
by Karlsson (2000b). 

Figure 7. Study III. Above-ground allocation patterns presented as percentages of each fraction 
relative to total weight for Scots pine trees DBH <50 mm in the dense stands (to the left) and in 
the PCT-stand (to the right) after biomass sampling in 2003/2004 (spring) in the sites Degerön, 
Kulbäcksliden and Renfors.
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For Scots pine, high stand densities result in both slower branch develop-
ment and decreased DBH increments (Huuskonen & Hynynen, 2006). 
Branch diameter in the lower part of the stem has also been found to decrease 
with increasing stand density (Persson, 1976; Persson, 1977; Salminen & 
Varmola, 1993; Karlsson et al., 2002; West, 2006), and increases in height at 
PCT (Fahlvik et al., 2005).

Agestam et al. (1998) found that trees in naturally generated Scots pine 
stands had higher quality than those in planted stands, in accordance with 
other findings that planted Scots pine trees usually become more branchy than 
naturally generated trees (Salminen & Varmola, 1993), and dense spacing results 
in higher quality (Persson, 1977; Uusvaara, 1991; Persson et al., 1995). These 
findings might be due to high densities resulting in adequate competition in 
the seedling and sapling stages. Uusvaara (1991) also provides an explanation 
regarding the development of branches, being affected not only by spacing, 
but also the homogeneity of the stand. Increases in branch diameter have also 
been associated with increases in site fertility and decreases in stand density 
(Fryk, 1984; Lämsä et al., 1990; Uusvaara, 1991; Mäkinen, 1996; Mäkinen & 
Colin, 1999).

Figure 8. Study V. Branch diameter (mm) at different whorl heights (m), and stand densities 600, 
1 000 and 1 800 stems ha-1 from Norrliden, above, and Stugun, below.
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6.5 Risk of mortality (V)

When one or more resources required by a population falls below a critical 
level, density-dependent intra-specific competition occurs (Ford & Diggle, 
1981; Peet & Christensen, 1987; Zeide, 2010) accompanied by increased 
mortality risks. However, overall mortality for the time period in the Scots pine 
trees examined here was found to be low, <5% even in the stand with >9 000 
stems ha-1 and the smallest trees in the stand died. Similar findings, of highest 
mortality among small trees, have been previously reported by Pettersson 
(1992b), Monserud and Sterba (1999) and Ulvcrona et al., (2010), and (in a 
study of forest structure and associated changes up to 38 years after a clear-cut 
in Oregon, USA) by Lutz and Halpern (2006). Higher total mortality was also 
found 15 years after planting in the stands with 40 000 stems per ha than in 
those with 10 000 stems per ha examined by Nilsson & Albrektson (1994). 
Similar results have also been found by He and Duncan (2000). 

The results regarding the DBH distribution among dead trees correspond 
well with other studies, which have concluded that much less xylem is 
produced in suppressed trees than in dominant trees, leading to increasing 
differences between the smallest and larger trees in the stand (Kozlowski & 
Peterson, 1962). Weiner and Thomas (1986) postulated that mortality is related 
to the relative size of a particular tree in the stand, rather than the absolute 
size. However, in an analysis of DBH-related mortality of Norway spruce in 
mixed stands with a large sample size (n=26 699), a U-shaped distribution was 
obtained, with about 7% mortality for trees with DBH < 5 cm, declining to 
less than 2% for DBH-classes up to 70 cm, but increasing again to ca. 5% for 
trees with DBH >70 cm (Monserud & Sterba, 1999). When the larger trees 
were further analysed, 15 out of 21 dead trees were found to be older than 
140 years, and for the remaining six trees the mortality rate was below 2%, 
equal to that of trees of with DBH of 35-65 cm. These findings correspond 
well with several other studies (Goff & West, 1975; Buchman et al., 1983; 
Harcombe, 1987; Ulvcrona et al., 2010). 

Trees receiving more light have been found to have more efficient needles 
(Vanninen, 2004), and the characteristic drought tolerance of Scots pine 
needles could be acquired at the expense of shade tolerance in the species 
(Hansen et al., 2002). When crowns become shaded, their competitive 
capacity for water and nutrients will decrease. The following inhibition of 
photosynthesis reduces the supply of carbohydrates, and thus cambial and root 
growth, leading to decreased absorption of water and nutrients (Kozlowski 
et al., 1991).Therefore, suppressed trees will have reduced growth rates and a 
higher risk of mortality (Waring, 1987; Kenkel, 1988; Kozlowski et al., 1991; 
Kobe et al., 1995; Pretzsch, 2009). The cambium will also produce xylem for 
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a shorter time in a suppressed tree compared to a dominant tree (Kozlowski 
& Peterson, 1962). These findings can also be connected to the findings from 
study II, that annual growth was lower in the dense stands during the later 
period than in the first period, while annual growth in the PCT-treated stands 
increased during the later period due to the increase in foliage biomass. 

Further, Pettersson (1992) found differences in mortality between Scots 
pine and Norway spruce. For Scots pine, higher mortality was found in the 
densest stands considered, while for Norway spruce no clear differences in 
mortality were detected among stands with densities ranging from 2 500 to 
6 000 stems ha-1 (Pettersson, 1992b).  
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7. Conclusion and management 
implications

7.1 Major findings

The results indicate that total biomass yields could be substantially increased 
by omitting conventional PCT. The total biomass (stem including bark, 
branches dead and alive and foliage) yield at the end of experiment was 59% - 
78% higher in the dense stands (up to in total ~ 100 DW ton ha-1) than in the 
sparse PCT stands, and fertilization further increased total biomass production. 
However, annual fertilization was not the most cost-effective option for these 
Scots pine-dominated stands, since it did not raise yields more than adding 
fertilizer twice during the experimental period. 

The highest annual increment was found in the dense stands during the 
early period, as an effect of stand density. During the later period, increased 
competition for light in the dense stands resulted in lower increments, but 
increases in foliage in the PCT-plots resulted in higher increments than in 
the early period. These observations provide indications of the relationships 
between leaf area index, light conditions and increments in the stands. To 
optimize the management of dense stands it is thus important for biofuel 
to be harvested before competition for resources (light) becomes too severe. 
Further studies should reveal appropriate time windows.

A further result was that the size distribution (arithmetic mean height and 
DBH, and the fractions total biomass, stem biomass and volume, biomass of 
branches and foliage) of the 500-2 700 largest trees did not differ between the 
dense and PCT stands, indicating that the larger trees in the dense stands were 
not affected during the experimental period by competition from the small 
trees, but fertilizer resulted in the largest trees becoming larger. 

Regarding the estimation of total biomass in the stand, biomass functions 
based on sample trees from dense stands provided better estimates of total 
biomass than biomass functions based on sample trees from stands treated with 
pre-commercial thinning (Marklund, 1988). Further, since the residuals (true 
weights-estimated weights) were small, the constructed biomass functions 
should be robust for these species.
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Regarding above ground allocation patterns, no significant between-
treatment differences were found for Scots pine trees DBH >50 mm, and it was 
concluded that these trees were not affected by stand density or fertilization to 
the same extent as trees DBH <50 mm, for which some significant treatment-
related differences were found. The smallest trees from the dense stands were 
significantly taller at the same DBH, had higher stem weight/total weight 
ratios, fewer branches (both alive and dead), less foliage and shorter crowns. 

The results from the study of branch characteristics indicate that late PCT 
and increases in stand density reduce branch diameters, suggesting that the 
number of stems left after PCT affect tree size and shape more strongly than 
its timing. It was further concluded that the smallest trees in the stands are 
most strongly affected by competition and mortality. Overall, mortality was 
low in the studied stands and there were sufficient living, healthy trees in them 
to ensure adequate growth and stem numbers up to first thinning.

Based on these results it seems possible to apply a substantial biofuel harvest 
in dense young stands at a tree height of ca. 8-10 m. After such a harvest the 
goal could be to continue to manage the stands appropriately for later timber 
and pulp wood harvests. 

7.2 Needs for further research

After harvesting in dense stands there might be a risk of damage by wind 
and snow, thus further research regarding damage after bioenergy harvests in 
young dense stands is required. The stands analysed in studies I, II and III were 
thinned in 2009, at a dominant height of 9 m and the results regarding damage 
over longer time periods due to snow and wind have not yet been analysed.

Further, economic aspects have not been considered in the parts of the 
project this thesis is based upon, but need to be addressed thoroughly, especially 
in relation to the timing of harvest. Issues related to harvesting technology 
also need to be addressed. Research and interest regarding biofuel harvest 
in dense forests have increased and new types of harvesting equipment have 
been developed for this type of harvesting in young dense forests (Bergström, 
2009), but their utility and optional applications require further analysis.

The results reported here are based on analyses of Scots pine-dominated 
mixed forests on stands with site index 18-24 in northern Sweden, and 
further research is needed to identify the optimum stand density for stands 
with different site index, and the optimum combination of harvest, thinning 
and fertilization programs. Finally, effects of other combinations of tree species 
and stand densities need to be further analysed. 
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