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SUMMARY

In this paper, research on dietary fibre and cell-wall polysaccharides in chaenomeles fruits is reported and

summarised.

The dietary fibre in fruits of 12 genotypes of Japanese quince (Chaenomeles japonica) and 1 geno-

type of flowering quince (C. speciosa) was prepared using two different methods: the Alcohol Insoluble

Solid (AIS) method; and the AOAC method for total as well as for soluble and insoluble fibre. The two

methods resulted in significantly different estimates, however, no interaction was found between the

methods and the genotypes studied. For content of total dietary fibre, three main groups were distin-

guished, one containing a low amount of fibre (3 genotypes, 28–30 g/100 g dry matter); one containing a

moderate amount of fibre (9 genotypes, 30–36 g/100 g dry matter) and an isolated genotype (C. speciosa)

that contained a high amount of fibre (38 g/100 g dry matter). The amount and the nature of monomeric

sugars in the constituent polysaccharides of the fibre were determined after total hydrolysis of the AIS

and the TDF (Total Dietary Fibre). The fibre contained mostly pectic and cellulosic polysaccharides.

A sequential extraction scheme allowed the separation of the cell-wall material into its major com-

ponents (cellulose, pectins and hemicelluloses). The AIS was composed of 30 g pectins, 8 g hemicelluloses

and 60 g cellulosic residue/100 g AIS. In 100 g entire dry fruit (800 g entire fresh fruit) there were 11 g

pectins, 3 g hemicelluloses and 18 g cellulosic residue. Pectins were mostly located in the flesh of the

fruit. Pectins were more efficiently extracted with hot dilute acid than with other extraction media. Pectins

had a high degree of methylation (DM) and a low degree of acetylation (DAc). No difference was found

in the quantity of polysaccharides extracted from two Japanese quince genotypes, or in the composition

of these constituent polysaccharides.

The physico-chemical properties of pectins extracted from two genotypes of Japanese quince were

studied. On average, the fruits contained 11 g pectins/100 g dry fruit corresponding to 1.4 g pectins/100

g fresh fruit. Pectins were sequentially extracted, and the cells from the flesh of the fruits were observed

with a confocal laser scan microscope. Although the dilute acid conditions were the most efficient for

extraction of pectins, pectins extracted by water or potassium oxalate had higher (> 600 ml/g) intrinsic

viscosities than pectins extracted by dilute acid (< 400 ml/g). Anionic exchange chromatography was

performed on the acid-extracted pectins. The pectins were composed of four populations, the first being

mainly composed of arabinans, the second of homogalacturonans and the third of rhamnogalacturonans.

The composition of the fourth population differed depending on the genotype studied.
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INTRODUCTION

In this paper, recently published research (Thomas et al. 2000, Thomas 2001, Thomas & Thibault 2002)

on dietary fibre and cell-wall polysaccharides in chaenomeles fruits is summarised and discussed.

Because of the potential health benefits of foods rich in dietary fibre (e.g. protection against cardio-

vascular diseases, diabetes, obesity, colon cancer) many Western countries have recommended an in-

creased consumption of such food as part of their dietary guidelines. This knowledge has also resulted in

efforts to find new sources of dietary fibre and more research has been devoted to investigations aimed at

revealing fibre composition.

A potential new fruit crop presently being domesticated is Japanese quince (Chaenomeles japonica)

(Rumpunen 2002). The distinctive aroma (Lesinska et al. 1988) and the acid juice are the primary prod-

ucts after processing of the fruits. However, the comparatively large amount of dietary fibre and soluble

polysaccharides in the fruits (Golubev et al. 1990) also makes this crop a promising candidate for the

manufacture of dietary fibre-containing food products and pectins. Juice and aroma processing residues

thus need to be evaluated.

In the beginning of a breeding programme, it is important to obtain information on the variation in

different quality characteristics of the fruits, which in the end will enable efficient selection of varieties.

Neither the variation in content of dietary fibre between genotypes nor the composition and distribution

of the constituent monomeric sugars of the fibre has previously been investigated for chaenomeles fruits.

We studied the total dietary fibre content in 13 genotypes using two different methods: the Alcohol

Insoluble Solid (AIS) method and the Association of Official Analytical Chemists (AOAC) method (Prosky

et al. 1988, AOAC Methods 1990, 1992). The amount and the nature of monomeric sugars in the con-

stituent polysaccharides were determined and the composition of the different parts of the fruit was

analysed (Thomas et al. 2000).

Based on the fibre content of the fruits, homogeneous groups of genotypes were revealed. Such a

variation could be taken into account when selecting varieties for fruit production and manufacture of

fibre-rich products and pectins. Therefore, it was interesting to find out if this variation could be ascribed

to a variation in quantity or composition of pectins, hemicelluloses or cellulose (Thomas & Thibault

2002). Furthermore, due to their gelling properties, pectins are often used as an additive in the food

industry (E440). It was therefore of interest also to determine some of the chemical and physico-chemical

properties of the pectins in Japanese quince.

In the genus Chaenomeles, the fruit develops from an inferior ovary, where the hypanthium is com-

pletely fused to the ovary. The fleshy part of the fruit corresponds to the hypanthium and the fruit is thus

a “false fruit”. Using the terminology epicarp, mesocarp and endocarp could therefore be misleading.

The common vocabulary: skin, flesh, and carpels, is therefore used in our research when referring to the

different parts of the fruit.

MATERIALS AND METHODS

Plant material

The fruits were sampled from non-replicated genotypes (selected seedlings) in the collection kept at

Balsgård–Department of Horticultural Plant Breeding, Swedish University of Agricultural Sciences,

Kristianstad, Sweden. The collection was gathered from partly domesticated populations in commercial

orchards or from botanical gardens. All fruits were picked at the same developmental stage, when the

seeds in the fruits had turned brown, indicating fruit maturity.

After picking, seeds were removed and the fruits from 12 genotypes of Japanese quince (NV1944,

RG822, NV1410, NV1718, NV1597, D3122, NV1473, NV19108, NV152, D694, NV9392, NV1511),

and one genotype of flowering quince (C. speciosa, RG840) were sliced and freeze-dried. For genotypes

D694, NV1511, NV9392 and RG822, the different tissue zones (skin, carpels and flesh) were manually
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separated from the freeze-dried fruits and weighed for a detailed study of the content and composition of

polysaccharides in each tissue zone. Another batch of entire fruits of genotypes RG822 and NV9392 was

frozen immediately after picking.

Preparation of alcohol insoluble solids (AIS)

Freeze-dried fruit material (20 g flesh, 7 g carpels, 1 g skin and 10 g of entire fruit) was cut into small

pieces (~5 mm diameter). It was then homogenized in 800, 200, 100 and 400 ml boiling ethanol, respec-

tively (at an 80% final concentration of ethanol) in order to inactivate possible endogenous enzymes and

remove alcohol-soluble solids. After boiling for 20 min, the residue was filtered through a G4 sintered

glass (average pore diameter: 5–15 µm) and washed with 70% ethanol until a sugar-free extract was

obtained. The residue was washed successively with 96% ethanol (3 times) and acetone (3 times), then

air-dried overnight at 40 °C, vacuum-dried for 12 h at 40 °C, and weighed (AIS).

Preparation of dietary fibre

Freeze-dried fruit material was cut into small pieces (~0.5 mm diameter) in liquid nitrogen. The dietary

fibre was measured gravimetrically after removing the non-fibre constituents by enzymatic degradation

as described in the AOAC method. Duplicates (2 x 1 g) in a phosphate buffer (0.08 M, pH 6) were

analysed for soluble (SDF) and insoluble (IDF) dietary fibre. Samples were treated with a thermostable

a-amylase (Termamyl 120L, Novo Nordisk A/S, Denmark) and then digested with a protease (P 5380,

Sigma Aldrich, France) and an amyloglucosidase (E.C. 3213, Megazyme, Ireland) to remove protein and

starch, respectively. SDF and IDF were separated by filtration (G4 funnel). The retentate (IDF) was first

dried by solvent exchange, then under vacuum overnight at 40 °C. The filtrate containing SDF was

recovered after alcoholic precipitation with 4 volumes of 96% ethanol, then dried by solvent exchange

under vacuum overnight at 40 °C. A control was performed following the same procedure. An estimated

content of Total Dietary Fibre (TDF) was then obtained as the combined values of SDF and IDF after

corrections for proteins and the control had been made.

Sequential extraction of pectins

Sequential extraction of pectins from AIS (Figure 1) was based on the method described by Bertin et al.

(1988). The extraction volume was adjusted to 60 ml/g of AIS and kept constant along the whole extrac-

tion sequence. Each extraction step was repeated three times. AIS was first treated with water at 25 °C for

30 min (pH was adjusted to 4.5 with 0.1 M KOH). The slurry was filtered through a G4 sintered glass.

Filtrates from the three consecutive extractions were pooled. If necessary, the pH was re-adjusted to 4.5

with 0.1 M KOH or HCl, and a filtration was performed through a 3 µm millipore membrane. The extract

was concentrated, dialysed against deionised water at 4 °C (until the conductivity of dialysate was less

than 3 µS) and freeze-dried. The extract was named ‘water-soluble pectins’: P
W

. The residue of P
W

 was

then treated three times with 1% potassium oxalate (adjusted to pH 4.5 with 1 M HCl) at 25 °C for 30

min. The slurry was filtered through a G4 sintered glass. Filtrates from the three consecutive extractions

were pooled, treated as described above and named ‘oxalate-soluble pectins’: P
O
. The residue of P

O
 was

further treated with hot dilute hydrochloric acid (0.05 M, 85 °C) for 30 min. After each extraction and

prior to filtration, the pH of the slurry (~1.3) was adjusted to 4.5 with 1 M KOH. The slurry was filtered

through a G4 sintered glass. Filtrates from the three consecutive extractions were pooled, treated as

above and named ‘dilute-acid-soluble pectins’: P
H
. The residue of P

H
 was then treated with cold dilute

alkali (0.05 M, 4 °C) for 30 min. The slurry was filtered through a G4 sintered glass. Filtrates from the

three consecutive extractions were pooled, treated as above and named ‘dilute-alkali-soluble pectins’:

P
OHa

. The final residue (R
P
) was washed with 50% ethanol until the conductivity of the filtrate was less

than 10 µS. It was then dried by solvent exchange, stored overnight at 40 °C, vacuum-dried for 12 h at 40

°C, and then weighed.
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Figure 1. Scheme for extraction of pectins (P) and hemicelluloses (HC) fractions from Japanese quince cell-wall

material.

Sequential extraction of hemicelluloses

The extraction method was based on the method described by Selvendran & O’Neill (1987) and the

extraction scheme is shown in Figure 1. The bulk of pectins was extracted as previously described but

omitting the acid extraction, thus P
W

, P
O
, P

OHb
 (‘dilute-alkali-soluble pectins without a previous acidic

extraction step’ were named P
OHb

) were obtained. Solutions of increasing concentration of alkali (1 M

KOH and 4 M KOH, both containing 0.020 M NaBH
4
) were then used to extract under argon the

hemicelluloses named HC
1
 and HC

4
. The slurries were filtered through G4 sintered glasses. Filtrates
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filtration was performed through a 3 µm millipore membrane. The extracts were concentrated, dialysed

against deionised water at 4 °C (until the conductivity of dialysate was less than 3 µS) and freeze-dried.

The final residue (R
HC

) was then washed with 50% ethanol until conductivity of the filtrate was lower

than 10 µS. It was then dried by solvent exchange, stored one night at 40 °C, one day at 40 °C under

vacuum, and then weighed.

Chemical analysis

All values are reported on a dry weight basis, and analyses were performed in duplicate.

Moisture

The moisture of the freeze-dried fruits and of the extracts was determined as the weight loss after vacuum

drying at 40 °C until a constant weight was obtained. The moisture of the AIS and residues was calculated

as the weight loss after drying at 120 °C for 3 h.

Protein content

Nitrogen was determined by the semi-automatic Kjeldal method and protein content was estimated as N

x 6.25.

Ash content

Ash was determined as the weight loss after incineration overnight at 550 °C followed by 1 h at 900 °C.

Analysis of uronic acids and neutral sugar by colorimetry

Insoluble samples were submitted to a 1 h prehydrolysis with 13 M H
2
SO

4
 at 25 °C (Seaman et al. 1954)

followed by a 3 h hydrolysis with 1 M H
2
SO

4
 at 100 °C. Soluble samples (0.1 ml of 1 mg/ml pectin

solutions) were treated with 0.05 M NaOH (1.9 ml) for 30 min at room temperature and neutralised with

1 ml 0.1 M HCl before analysis. Uronic acids were determined as ‘anhydrogalacturonic’ acid by colorim-

etry (Blumenkrantz & Asboe-Hansen 1973, Thibault 1979). The difference in response of glucuronic

acid (GlcA) and galacturonic acid (GalA) in the presence and absence of tetraborate was used for their

measurement (Renard et al. 1999). GlcA and GalA (Sigma-Aldrich, L’isle d’abeau, France) were used as

standards. Neutral sugars were determined by colorimetry with orcinol (3,5-dihydroxytoluene) after cor-

rection for the interference due to uronic acids (Tollier & Robin 1979). Ara was used as a standard.

Analysis of neutral sugars by GLC

All samples were hydrolysed in 1 M H
2
SO

4
 (3 h, 100 °C) for measurement of individual neutral sugars

(Englyst & Cummings 1984), with an additional pre-treatment with 13 M H
2
SO

4
 (1 h, 25 °C) for insolu-

ble materials (AIS, R
P
 and R

HC
) (Seaman et al. 1954). The sugars were reduced to their corresponding

alditols by adding 3 M NH
3
 containing NaBH

4
 (10 mg). Reduction was performed for 1 h at 40 °C. The

excess of sodium borohydride was then destroyed by adding 2 x 0.05 ml glacial acetic acid. Acetylation

was performed with acetic anhydride (2 ml, 20 min at room temperature) in the presence of 1-methyl

imidazole (0.2 ml) as a catalyst. Acetylation was stopped with 5 ml deionized water and the acetylated

alditols were partitioned between dichloromethane (1.5 ml) and water. The aqueous phase was removed

and two additional washings with 5 ml deionized water were performed. The samples were then analysed

by GLC on an OV-225 (30 m x 0.32 mm) column at 200 °C, using hydrogen as the carrier gas and a flame

ionization detector. Inositol was used as the internal standard.

Degrees of methylation and acetylation

The method used to measure methanol and acetic acid was described by Lévigne et al. (2002). 5 mg

pectins were saponified for 2 h at room temperature in 1 ml of a 0.4 M NaOH solution in 80% isopropa-
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nol. The supernatant obtained by centrifugation at 7000 g for 10 min was neutralized using a Maxi-

Clean™ IC-H 0.5 ml device (Alltech) and analysed by HPLC equipped with a Merck-Superspher end-

capped C18 cartridge (25 x 0.4 cm) column thermostated at 25 °C and equipped with a Merck C18 guard

cartridge (0.4 x 0.4 cm). The eluent was 0.004 M H
2
SO

4
 (0.7 ml/min). Maleic acid was used as an internal

standard. The degrees of methylation (DM) and acetylation (DAc) were calculated as molar ratios of

methanol and acetic acid, respectively, to galacturonic acid.

Anion exchange chromatography

Solutions (50 ml) of pectins (2 mg/ml) were loaded on a column (37 x 2.6 cm) of DEAE Sepharose CL-

6B (Amersham Pharmacia, Uppsala, Sweden) equilibrated and eluted at room temperature with 500 ml

of a 0.05 M sodium succinate buffer (pH 4.5) at 1.27 ml/min. Pectic material bound to the gel was then

eluted by increasing the ion strength of the buffer. A linear gradient (1500 ml) from 0 to 0.4 M NaCl in

0.05 M sodium succinate buffer was applied to the column. The column was then washed with 380 ml of

0.4 M NaCl in 0.05 M sodium succinate buffer. The fractions (12.7 ml) were assayed colorimetrically for

galacturonic acid and neutral sugars. The purified pectin fractions were extensively dialysed against

deionised water and freeze-dried.

High-performance size-exclusion chromatography (HPSEC) and viscosity measurements

Pectins (5 mg/ml) were solubilized overnight at room temperature under gentle shaking in a 0.05 M

NaNO
3
 solution containing 0.02% NaN

3
. They were then filtered through a 0.45 µm membrane (Millipore,

Millex, HV). A sample of 50 µl of the filtered solution was loaded on the HPSEC-Viscotek system. High-

performance size exclusion chromatography (HPSEC) was performed at 25 °C in a PL aquagel-OH

mixed 8 µm column (Polymer laboratories, 300 x 7.5 mm) equipped with a PL aquagel -OH 8 µm guard

column (Polymer laboratories, 50 x 7.5 mm) eluted at 1 ml/min with 0.05 M NaNO
3
 containing 0.02%

NaN
3
. The column was mounted in series with an UV detector (SpectraSERIES UV100) and with paral-

lel-coupled RI (ERC 7517A) and Viscotek (T-50A, Viscotek) detectors. Data acquisition was carried out

using the Trisec (Viscotek) software.

Viscometry measurements were also made using an Ubbelhode capillary viscometer (0.46 mm)

thermostated at 25 °C. Pectins (2 mg/ml) were solubilized overnight at room temperature under gentle

shaking in a 0.05 M NaNO
3
 solution containing 0.02% NaN

3
. They were then filtered through a 0.45 µm

membrane (Millipore, Millex, HV). Intrinsic viscosity was calculated by extrapolating to C=0 the Huggins

(1) and Kraemer (2) equations:

(1)  η
red 

= η
spe 

/ C = [η] + λ
H 

C [η]
2

(2)  η
inh 

= ln (η
r 
/ C) = [η] - λ

K 
C [η]

2

with : η
r
   = related viscosity C   = concentration (g/ml)

η
inh

 = inherent viscosity [η] = intrinsic viscosity (ml/g)

η
red

 = reduced viscosity λ
H
  = Huggins coefficient

η
spe

 = specific viscosity λ
K
  = Kraemer coefficient

Microscopy

Thin sections (about 1 mm) of fruit tissues (flesh, carpels and skin) were cut by hand and coloured (10

min) with 0.02% acridine orange (CI 46005) in a 0.1 M phosphate buffer (pH 7). Images of the cell-walls

were collected by a Zeiss LSM 410 confocal inverted microscope (Zeiss, Le Pecq, France) used in epi

mode with a 40 x 1.2 water-immersion objective. A 488 nm argon ion laser was used to excite the dye. A
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Table 1. Composition of dietary fibres (g/100 g dry matter) in chaenomeles fruits (Thomas et al. 2000).

Genotypes AIS TDFa SDFa IDFa Dmb Fibre meanc Groupsd

C. japonica

NV1944 27.8 29.1 9.0 20.1 10.1 28.4 a

RG822 29.2 30.4 7.3 23.1 12.4 29.8 a

NV1410 29.4 30.9 8.5 22.4 8.8 30.2 a

NV1718 32.9 34.8 7.6 27.2 8.7 33.9 b

NV1597 31.9 36.7 9.1 27.6 10.8 34.3 bc

D3122 34.0 35.5 8.3 27.2 12.3 34.8 bc

NV1473 32.8 37.1 9.1 28.0 10.5 34.9 bc

NV19108 32.6 37.5 10.2 27.3 9.5 35.1 bc

NV152 33.8 37.0 10.4 26.5 10.5 35.4 bc

D694 35.9 35.9 6.5 29.4 10.9 35.8 bc

NV9392 35.0 37.3 8.6 28.6 11.9 36.1 c

NV1511 34.3 38.0 10.1 27.9 10.5 36.2 c

C. speciosa

RG480 37.5 39.2 9.2 30.0 14.3 38.4 d

Mean 32.9 35.3 8.8 26.6 10.9 34.1

SE of mean 0.8 0.9 0.3 0.8 0.4 0.8

aResults were obtained from duplicates, SE < 2%, bg dry matter/100 g fresh matter, cmean of AIS + TDF,
dFischer’s multiple range test (protected least significant difference, PLSD)

Long Pass filter (LP 515) allowed collection of fluorescence emission higher than 515 nm. Attenuation

was kept constant (30) during the sequential extraction of the pectins. It was increased to 100 during

observation of the unstained flesh tissue and to 1000 during observation of the wax layer covering the

skin. The same conditions of contrast and brightness were used for all observations. Sequences of 25 x-

y optical sections were collected at increments of 1µm in the z-axis. Images were captured by the Carl

Zeiss LSM software.

Statistical analysis

A multiway analysis of variance (ANOVA) was performed on the data. For each significant factor, a

multiple range test (Fischer’s least significant difference (LSD) procedure) was used.

RESULTS

Dietary fibre

The total dietary fibre was extracted using two different methods: the Alcohol Insoluble Solid method,

which provides a measure of alcohol insoluble solids (AIS), and the Association of Official Analytical

Chemists method (AOAC), which results in measurements of soluble dietary fibre (SDF) and insoluble

dietary fibre (IDF). The AIS value was then compared with the total dietary fibre (TDF) value, which was

obtained by combining the values of SDF and IDF.

The amount and the nature of monomeric sugars in the constituent polysaccharides were also deter-

mined after total hydrolysis of the fibre fractions. Furthermore, the composition of the fibre from differ-

ent parts of the fruit was studied.

Dietary fibre in the entire fruit

Table 1 summarises the content of AIS and dietary fibre in the fruits of the 13 genotypes. In the whole

fruit, the AIS represented an average of 33 g/100 g dry matter and 3.6 g/100 g fresh matter. These results
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Figure 2. Images of the different tissue-zones of the fruits observed with a CLSM (x40/1.2). Samples were stained

with acridine orange.

2a) flesh, 25 focal planes, C 369, B9845, At 30, P 8.

2b) flesh, 1 focal plane, C 369, B9845, At 100, P 8.

2c) carpels, C 369, B9845, At 10, P 8.

2d) carpels, same focal plane as (c) (variation on the x-y axis), C 369, B9845, At 30, P 8.

2e) skin observed on the external surface, 1 focal plane, C 369, B9845, At 1000, P 8.

2f) same sample of skin as (e) observed on the internal surfaces, 1 focal plane, C 369, B9845, At 30, P 8.

C = contrast, B = brightness, At = attenuation, P = pinhole

2a 2c 2e

2b 2d 2f

are much higher than those obtained for apple by Massiot et al. (1994) and Renard et al. (1991), where

the AIS represented only 12.6 g/100 g dry matter of the entire fruit and 2 g/100 g fresh weight of the flesh.

In the whole fruit, the TDF represented an average of 35 g/100 g dry matter (8.8 g SDF + 26.6 g IDF)

and 3.9 g/100 g fresh fruit. This result is much higher than that obtained for apple by Renard et al. (1991)

which was 1.7 g TDF/100 g fresh fruit.

The two methods for analysing dietary fibre (AIS and AOAC) resulted in significantly different

estimates (Thomas et al. 2000). Fibre content was significantly higher when determined by the AOAC

method compared to the AIS method, but there was no interaction between the samples and the methods

(Thomas et al. 2000). Thus, it is possible to use any method to estimate dietary fibre and the ranking of

genotypes should be consistent. Multiple range tests resulted in three homogeneous groups (Table 1).

Group one, with a low content of fibre (NV1410, NV1944 and RG822); group two, with a moderate level

of fibre (NV9392, D3122, D694, NV1473, NV1511, NV152, NV1597, NV1718 and NV19108); and

group three with an isolated genotype (RG480, the only sample of C. speciosa).
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Table 2. Distribution of weight, AIS and TDF  in different tissue zones of two selected genotypes of Japanese

quince (Thomas et al. 2000).

Genotype D694 NV1511

Weight
a

AIS
a

TDF
ab

Weight
a

AIS
a

TDF
ab

Zone IDF SDF TDF IDF SDF TDF

Skin 7 3.2 3.3 0.5 3.8 6 2.4 2.6 0.5 3.1

Flesh 71 19.3 14.4 10.9 25.3 70 18.0 13.0 6.8 19.8

Carpels 22 13.5 10.6 3.1 13.7 24 14.8 13.2 3.9 17.1

Entire fruit 100 36.0 28.3 14.5 42.8 100 35.2 28.8 11.2 40.0

(calculated)

Entire fruit 100 35.9 29.4 6.5 35.9 100 34.3 27.9 10.1 38.0

(determined)

a
g/100 g dry matter of the entire fruit, 

b
results were obtained from duplicates, SE < 2%

Dietary fibre in skin, flesh and carpels

The different tissue zones of genotype RG822 were observed in their initial state with a confocal laser

scan microscope (Figure 2a–f). Figures 2a and 2b show a transverse section of the flesh of the fruit. The

cells of the flesh have a spherical shape of about 50 µm diameter. The closer to the vessels, the smaller the

cells (Figure 2b). Some cells have been broken by the freezing of the initial material or during the prepa-

ration of the thin layer. There are few intercellular spaces, their number probably depending on fruit

maturity. Figures 2c and 2d show two images (distinct on the x–y axis) of the same focal plane of a

longitudinal section of the carpels of the fruits. The cells of the carpel have an elongated shape. Their

length varies from 90 to 180 µm and their width is about 18 µm. The sample was taken in the coalescing

zone of the carpels. Therefore, two distinguishable orientations of the cells can be observed in the same

focal plane (z axis). The cells of the carpels have a thick cell-wall and no intercellular spaces can be

observed. Figures 2e and 2f show two views of the same sample of the fruit skin. The outer surface is

covered by a wax layer, which has no specific organisation (Figure 2e). The cells of the skin can be seen

on the inner surface of the skin (Figure 2f). They have a spherical shape of about 25 µm diameter and

have a thick cell-wall. No intercellular spaces can be observed.

The flesh was the major fruit tissue, representing more than 70 g/100 g dry fruit. Skin and carpels

comprised 7 and 23 g/100 g dry fruit, respectively (Table 2). The tissues of the fruit differed in their

content of AIS and TDF. The flesh contained less cell-wall material (28 g/100 g dry flesh) than the skin

and carpels (48 and 64 g/100 g dry zone, respectively). As the flesh represented 70 g/100 g dry fruit, most

of the dietary fibre (52 g/100 g extracted fibre) was contained in the flesh. Experimental results obtained

for the entire fruits of genotypes D694 and NV1511 were very close to those calculated using the distri-

bution of weight for the different zones after dissection.

Neutral and acidic sugars in the dietary fibre of the entire fruits

Content of total acidic sugars and neutral sugars was 76 g/100 g estimated as AIS and 78 g/100 g esti-

mated as TDF (Tables 3 and 4). Other components could be proteins, substituents of the pectins (acetic

acid, methanol) and non-sugar cell-wall constituents such as polyphenols or lignin. A comparison of non-

cellulosic glucose in TDF and AIS showed that starch was at most a minor component.

For both materials (AIS and TDF), on average 27 g total sugars/100 g dry matter of the whole dry

fruit was obtained. Acidic sugars represented on average 21 g/100 g AIS and 24 g/100 g TDF and neutral

sugars 55 g/100 g AIS and 54 g/100 g TDF (Tables 3 and 4). These results were similar to those obtained

for apple by Bittner et al. (1982) (acidic sugars: 18.7 g/100 g AIS, neutral sugars: 58.9 g/100 g the AIS).
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Table 3. Content and composition of sugars and protein in AIS of chaenomeles fruits (Thomas et al. 2000).

Sugar composition
bc

Genotype Yield
a

Rha Fuc Ara Xyl Man Gal Glc
c

Glc
nc

GalA Tot. Prot.
b

C. japonica

NV1944 27.8 1.2 0.7 10.9 7.7 1.9 7.0 27.1 2.9 24.6 81.7 6.7

RG822 29.2 1.2 0.7 10.2 8.0 1.8 6.1 30.0 2.0 21.0 78.6 8.0

NV1410 29.4 1.0 0.6 6.1 5.4 2.1 4.9 26.8 1.8 23.5 67.5 7.3

NV1718 32.9 0.9 0.6 8.2 7.3 1.7 4.7 25.8 1.5 20.9 77.3 5.3

NV1597 31.9 1.1 0.7 9.4 9.3 1.8 5.8 25.6 3.2 23.1 79.8 5.7

D3122 34.0 1.0 0.6 12.0 9.5 1.8 7.9 27.4 2.3 19.1 72.8 5.1

NV1473 32.8 0.8 0.4 7.0 7.1 1.5 4.4 24.7 1.0 20.7 73.8 5.8

NV19108 32.6 0.8 0.5 7.3 8.6 1.6 4.0 27.1 1.4 21.2 83.9 6.2

NV152 33.8 0.8 0.6 9.4 5.9 1.9 7.2 24.9 1.5 21.6 72.3 5.5

D694 35.9 0.7 0.6 8.3 6.2 2.1 9.7 25.3 1.8 17.9 72.3 5.2

NV9392 35.0 0.8 0.5 8.7 8.3 2.0 7.4 26.7 1.8 18.5 74.6 4.7

NV1511 34.3 1.0 0.6 8.5 8.1 1.9 6.1 26.7 1.9 22.6 71.6 6.5

C. speciosa

RG480 37.5 1.0 0.5 7.0 8.1 2.7 4.4 32.6 1.8 20.5 80.8 5.4

Mean 32.9 1.0 0.6 8.7 7.7 1.9 6.1 27 1.9 21.2 75.9 6.0

SE of mean 0.8 0.0 0.0 0.5 0.3 0.1 0.5 0.6 0.2 0.5 1.3 0.3

a
g/100 g dry fruit, 

b
g/100 g AIS, Glc

c
 = cellulosic glucose, Glc

nc
 = non cellulosic glucose, 

c
results were obtained

from duplicates, SE < 5%

Table 4. Content and composition of sugars and protein in TDF of chaenomeles fruits (Thomas et al. 2000).

Sugar compositionbc

Genotype Yielda Rha Fuc Ara Xyl Man Gal Glc
c

Glc
nc

GalA Tot. Prot.b

C. japonica

NV1944 29.1 1.2 0.6 7.9 6.8 4.0 6.7 26.8 3.0 29.2 86.2 nd

RG822 30.4 1.2 0.6 6.7 7.8 4.1 4.7 28.4 2.5 23.9 79.9 nd

NV1410 30.9 1.1 0.6 5.9 6.8 4.3 5.8 25.9 2.9 26.8 80.2 nd

NV1718 34.8 0.9 0.4 3.0 11.4 2.6 2.6 25.4 1.8 23.6 71.7 nd

NV1597 36.7 1.0 0.5 6.2 12.2 3.5 4.6 26.4 2.4 23.5 80.2 nd

D3122 35.5 0.8 0.6 8.1 9.0 3.4 6.8 25.0 2.1 23.8 79.6 nd

NV1473 37.1 0.9 0.5 5.1 10.0 3.7 4.1 25.9 1.9 23.2 75.1 nd

NV19108 37.5 0.9 0.5 4.1 9.8 3.3 3.4 27.3 2.0 25.5 76.8 nd

NV152 37.0 0.9 0.6 7.0 7.2 4.0 6.5 24.1 2.8 26.5 79.6 nd

D694 35.9 0.9 0.6 6.0 9.2 3.9 7.4 28.0 3.3 19.6 79.0 nd

NV9392 37.3 0.8 0.5 6.3 9.2 3.4 7.0 26.1 2.2 20.2 75.6 nd

NV1511 38.0 0.9 0.5 5.3 8.1 3.7 5.6 24.3 2.5 23.8 74.8 nd

C. speciosa

RG480 39.2 1.1 0.6 5.1 6.8 4.2 4.0 28.6 2.3 25.3 77.9 nd

Mean 35.3 1.0 0.5 5.9 8.8 3.7 5.3 26.3 2.4 24.2 78.2 nd

SE of mean 0.9 0.0 0.0 0.4 0.5 0.1 0.4 0.4 0.1 0.7 1.0 nd

ag/100 g dry fruit,bg/100 g TDF, Glc
c
 = cellulosic glucose, Glc

nc
 = non cellulosic glucose, cresults were obtained

from duplicates, SE < 5%
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Table 5. Content and composition of sugars in SDF of chaenomeles fruits (Thomas et al. 2000).

Sugar composition
b

Genotype Yield
a

Rha Fuc Ara Xyl Man Gal Glc
t

GalA Tot.

C. japonica

NV1944 9.0 1.5 0.4 14.2 1.0 7.7 5.8 2.4 62.2 95.1

RG822 7.3 2.1 0.4 10.7 1.2 8.6 4.9 2.0 57.9 87.9

NV1410 8.5 1.7 0.4 9.0 0.9 8.3 4.5 3.5 55.5 83.6

NV1718 7.6 1.4 0.3 4.6 0.6 4.9 2.5 1.6 51.7 67.6

NV1597 9.1 1.4 0.3 12.9 0.7 8.1 4.8 2.0 56.4 86.7

D3122 8.3 1.1 0.3 15.7 0.7 8.1 6.0 1.9 56.5 90.5

NV1473 9.1 1.3 0.3 8.2 0.6 8.3 3.5 1.7 58.1 81.8

NV19108 10.2 1.5 0.3 6.3 0.6 6.0 2.8 1.8 60.7 79.9

NV152 10.4 1.3 0.3 10.7 0.5 6.6 4.9 1.6 57.8 83.8

D694 6.5 1.1 0.3 10.9 0.6 7.8 4.9 2.1 47.7 75.3

NV9392 8.6 0.9 0.3 7.4 0.6 4.8 4.2 2.0 40.7 60.8

NV1511 10.1 1.1 0.3 7.7 0.6 7.7 4.4 1.6 56.1 79.6

C. speciosa

RG480 9.2 2.2 0.3 9.9 1.1 8.0 4.7 1.5 71.6 99.4

Mean 8.8 1.4 0.3 9.9 0.7 7.3 4.5 2.0 56.4 82.5

SE of mean 1.2 0.4 0.0 3.2 0.2 1.3 1.0 0.5 7.3 10.5

a
g/100 g dry fruit, 

b
g/100 g SDF, Glc

t
 = total glucose

The total sugar content for IDF was 77 g/100 g and for SDF 83 g/100 g (Tables 5 and 6). In the IDF,

the other constituents may be polyphenols and lignin, whereas the pectin substituents may be in the SDF.

The total sugar content of the IDF was similar to that obtained for apple by Renard et al. (1991) (77 g/100

g IDF), whereas the total sugar content of the SDF, 83g/100 g, was much higher than that described for

apple by Renard et al. (1991) (68 g/100 g SDF). The main component (Table 5) of the SDF was GalA (56

g/100 g SDF). SDF also contained an important amount of Ara (10 g/100 g SDF), Gal (4 g/100 g SDF),

and Man (7 g/100 g SDF). These results are very close to the results obtained for apple by Renard et al.

(1991) except for the Man content, which was higher in chaenomeles fruits. This implies that SDF was to

a large extent composed of pectic substances. IDF was to a large extent contained glucose (38 g/100 g

IDF) and xylose (11 g/100 g IDF). This implies that IDF was to a large extent composed of cellulose and

hemicelluloses, such as xyloglucans (Table 6).

For further quantification of plant cell-walls the AIS method for measuring dietary fibre was se-

lected. This was because oligosaccharides and other low molecular or alcohol-soluble products could be

solubilized from the AIS sugars, whereas water-soluble polymers, such as pectins, remained in the resi-

due. However, the AIS method involves coprecipitation of intracellular components such as proteins,

nucleic acids, polyphenols and starch. The method may also give rise to artefacts due to collapse effects

of the cell-walls when dehydrated by ethanol (Selvendran & O’Neill 1987). The AIS samples obtained

are therefore difficult to hydrolyse and the amount of sugar analysed could be underestimated. However,

measurement of SDF and IDF by the AOAC method may also give rise to artefacts since the method

includes incubations in warm, neutral to alkaline conditions that can lead to degradation of pectins by b-

elimination (Albersheim et al. 1960, Massiot et al. 1988).

Neutral and acidic sugars in the dietary fibre of the different tissue zones of the fruit

The sugar composition of the AIS was determined for each tissue zone of two genotypes of Japanese

quince (Table 7). For the genotype D694, the carbohydrate content was 39, 92 and 74 g/100 g AIS of the
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Table 6. Content and composition of sugars in IDF of chaenomeles fruits.

Sugar composition
b

Genotype Yield
a

Rha Fuc Ara Xyl Man Gal Glc
c

Glc
nc

GalA Tot.

C. japonica

NV1944 20.1 1.0 0.8 5.0 9.4 2.4 7.1 38.7 3.3 14.5 82.2

RG822 23.1 1.0 0.6 5.4 9.9 2.7 4.7 37.3 2.7 13.2 77.4

NV1410 22.4 0.8 0.7 4.8 9.0 2.8 6.3 35.8 2.7 15.9 78.8

NV1718 27.2 0.7 0.4 2.6 14.4 2.0 2.6 32.5 1.9 15.8 72.8

NV1597 27.6 0.8 0.5 4.0 16.0 1.9 4.5 35.1 2.5 12.7 78.1

D3122 27.2 0.7 0.6 5.7 11.5 2.0 7.1 32.7 2.1 13.8 76.2

NV1473 28.0 0.7 0.5 4.1 13.0 2.2 4.3 34.4 2.0 11.8 73.0

NV19108 27.3 0.7 0.6 3.3 13.2 2.2 3.7 37.6 2.1 12.3 75.6

NV152 26.5 0.8 0.7 5.6 9.8 2.9 7.1 33.6 3.3 14.2 78.0

D694 29.4 0.9 0.7 5.0 11.1 3.0 8.0 34.3 3.6 13.3 79.8

NV9392 28.6 0.7 0.6 5.9 11.7 3.0 7.9 33.9 2.3 14.0 80.1

NV1511 27.9 0.8 0.6 4.4 10.8 2.2 6.1 33.2 2.9 12.1 73.1

C. speciosa

RG480 30.0 0.7 0.6 3.6 8.6 3.0 3.8 37.4 2.5 11.0 71.2

Mean 26.6 0.8 0.6 4.6 11.4 2.5 5.6 35.1 2.6 13.4 76.6

SE of mean 2.9 0.1 0.1 1.0 2.2 0.4 1.8 2.1 0.5 1.5 3.3

a
g/100 g dry fruit, 

b
g/100 g IDF, Glc

c
 = cellulosic glucose, Glc

nc
 = non cellulosic glucose,

dry fruit zone in the skin, flesh and carpels, respectively. It was similar for the genotype NV1511 (50, 89

and 72 g/100 g AIS of the dry fruit zone). These results were very close to those obtained by Massiot &

Renard (1997) for apple (skin: 47, flesh: 87 and carpels: 72 g/100 g AIS of the dry zone) and suggest that

the content of cell-wall polysaccharides was higher in the flesh than in the skin. The low level of carbo-

hydrates in the epidermis zone may be due to the presence of cutin-like substances (Massiot et al. 1994).

Analysis of the AIS indicated that the carbohydrate polymers were mostly pectic polysaccharides

and glucans: GalA: 13–28 g/100 g, Ara: 5–12 g/100 g, Gal: 2–15 g/100 g, Glc: 12–31 g/100 g. Most of

the GalA, 80%, was located in the flesh of the fruit whereas 15% was in the carpels and 5% in the skin of

genotype D694. Results were similar for the genotype NV1511 (flesh 89%, carpels 8%, and skin 3%

GalA). Moreover, Ara and Gal, the main non-cellulosic sugars, were also mainly located in the flesh in

the fruits of genotype D694: Ara 83% and Gal 91%. Results were similar for the genotype NV1511: 81%

and 90% for Ara and Gal, respectively. Almost 100% of the non-cellulosic glucose was also contained in

the flesh. These results are in agreement with the distinction between SDF and IDF for each zone of the

fruits (Table 2). Per 100 g SDF of the entire fruit, an average of 68 g was located in the flesh and was

mostly composed of GalA, Ara and Gal (39, 13 and 5 g/100 g total sugars in SDF for D694 and 62, 8 and

5 g/100 g total sugars in SDF for NV1511).

AIS from the skin contained only 12.1 g Glc/100 g AIS (15.0 g for NV1511), whereas that from the

flesh and the carpels contained about 30 g Glc/100 g AIS each. These results are in agreement with the

distribution of soluble and insoluble fibre. Of the total extracted IDF, 78% was located in the carpels

(Table 2). This insoluble fibre was composed of cellulosic glucose (43 g/100 g IDF for both D694 and

NV1511) and xylose (25 and 24 g/100 g IDF for D694 and NV1511, respectively). Thus, in the carpel

zone, glucose arose from insoluble polymers, cellulose and hemicellulosic polymers such as xyloglucans,

which had also been found in apple (Renard et al. 1990).
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Table 7. Content and composition of sugars and proteins in  AIS of  different tissue zones in  Japanese quince fruits

(C. japonica) genotypes D694 and NV1511.

Sugar composition
b

Genotype Yield
a

Rha Fuc Ara Xyl Man Gal Glc
c

Glc
nc

GalA Tot. Prot.
b

D694

Skin 3.5 0.5 0.3 6.0 1.7 1.0 3.0 12.1 0.0 14.0 38.6 11.3

Flesh 19.3 1.1 0.8 11.5 5.0 3.3 14.7 29.7 3.3 22.1 91.5 6.2

Carpels 13.5 0.6 0.0 5.6 18.7 1.2 3.6 30.8 0.0 13.0 73.5 2.8

Entire fruit
c

36.0 0.9 0.5 8.8 9.8 2.3 9.5 28.5 1.8 18.0 80.0 5.4

NV1511

Skin 2.4 0.9 0.4 7.9 2.0 1.2 3.4 15.0 0.0 19.2 50.0 11.5

Flesh 18.0 1.0 0.8 10.5 4.9 2.4 9.9 29.3 2.2 27.7 88.7 7.4

Carpels 14.8 0.7 0.2 5.4 17.4 1.2 2.3 25.4 3.6 15.4 71.6 3.4

Entire fruit
c

35.2 0.9 0.5 8.2 10.0 1.8 6.3 26.7 2.6 21.9 78.9 6.0

a
g/100 g dry fruit, 

b
g/100 g AIS, Glc

c
 = cellulosic glucose, Glc

nc
 = non cellulosic glucose, 

c
calculated

Protein values (5.2–6.5 g/100 g AIS and 5.2–4.3 g/100 g IDF of the entire fruit) were in the same

range as those previously reported for apple by Massiot et al. (1994), Renard et al. (1991), Voragen et al.

(1983) and Claye et al. (1996). The skin contained a higher proportion of proteins.

Ash was measured in each sample (results not shown). The amount of ash in the AIS and the IDF

was very low (< 1%, except in the skin, where it represented about 1% of the AIS or IDF), whereas ash in

SDF was about 9% due to the phosphate buffer used for enzymic degradation (Sungsoo et al. 1997).

Cell-wall polysaccharides

In the sequential procedure that was used to extract pectic polysaccharides from the cell-walls (Figure 1),

water solubilises pectins that are not strongly linked to the cell-wall. Potassium oxalate is presumed to

solubilise pectins linked to the cell-wall by ionic interactions (Selvendran & O’Neill 1987). Dilute acid

and dilute alkali solubilise pectins that are more strongly linked to the cell-wall (ester linkages, covalent

linkages...). Hemicelluloses were extracted using a different sequential method, avoiding the acidic ex-

traction step in order to minimize degradation of the hemicelluloses. Alkaline degradation (peeling) of

hemicelluloses was also minimized by using sodium borohydride (Selvendran & O’Neill 1987). At each

extraction step of the two sequences, the insoluble residues were not dried to avoid further irreversible

collapse of cell-walls, which could hinder the subsequent extractions. Therefore, no intermediate yields

could be calculated.

At each extraction step, the cells of the flesh were observed (using a confocal laser scan microscope)

and compared with their initial state. A check was first made to ensure that no autofluorescence was

present by observing unstained cells of the flesh. Fluorescence was thus a result of staining with acridine

orange, a metachromatic dye employed as a fluorochrome to display the presence of anions (Conns

1990). In our study it was chosen as an indicator for the presence of pectins in the cell-wall.

Cell-wall polysaccharides in the entire fruit

The results of the sequential extraction of the entire fruits and different tissue zones of genotypes RG822

and NV9392 are presented in Table 8. The sum of the weight of the extracted cell-wall polysaccharides

and the final residues was > 80%, indicating that only a small amount was lost during the extractions,

except (perhaps) for the flesh and the skin, for which recoveries were lower. This suggests that some
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oligosaccharides or some non-carbohydrate material may have been lost during dialysis of the extracts or

during the successive extractions.

The pectins (P
W

+P
O
+P

H
+P

OHa
) represented 31 and 29 g/100 g AIS for genotypes RG822 and NV9392,

respectively. Water solubilized 18.6 and 18.1% of the total extracted pectins for genotypes RG822 and

NV9392, respectively and potassium oxalate 5.9 and 6.3%. Pectins weakly linked to the cell-wall repre-

sented less than 25% of the total extracted pectins, whereas pectins solubilized by dilute acid represented

53.7 and 56.3% of the total extracted pectins for genotypes RG822 and NV9392, respectively. An addi-

tional quantity of pectins could be extracted by a dilute alkali (21.8 and 19.4% of total extracted pectins

for genotypes RG822 and NV9392, respectively).

The quantities of pectins extracted by water and oxalate were equivalent in sequences A and B, and

were lower than pectins extracted by hot dilute acid. Moreover, the total quantity of pectins extracted by

water, oxalate, hot dilute acid and cold dilute alkali was higher than the total quantity of pectins extracted

with water, oxalate and cold dilute alkali (when no acidic extraction was performed). P
W

+P
O
+P

H
+P

OHa
 =

38 g/100 g AIS of the flesh for both RG822 and NV9392 and P
W

+P
O
+P

OHb
 = 31 and 24 g/100 g AIS of the

flesh of RG822 and NV9392, respectively. Thus, pectins were more efficiently extracted when a step

including hot dilute acid was used in the extraction scheme. This result is in agreement with studies on

beets (Rombouts & Thibault 1986) and grapes (Saulnier & Thibault 1987), but disagrees with results

obtained for carrots (Massiot et al. 1988) and apples (Massiot et al. 1994).

The hemicelluloses represented a very small proportion of total extracted polysaccharides: HC
1
+HC

4

= 8.5 and 8.1 g/100 g AIS of the entire fruits of the genotypes RG822 and NV9392, respectively. No

precipitation of the hemicelluloses occurred during neutralisation of HC
1
 and HC

4
 with HCl, and it was

possible to extract slightly higher quantities of hemicelluloses with 1M KOH than with 4M KOH.

The cellulosic residues represented more than 56 g/100 g AIS. No significant difference in content

of pectins or hemicelluloses was observed between the two genotypes studied, but NV9392 had a higher

content of cellulosic residue than RG822 (R
P
 = 56 and 63 g/100 g AIS, and R

HC
 = 62 and 67 g/100 g AIS

for RG822 and NV9392, respectively).

Cell-wall polysaccharides in the different tissue zones

The cells in the fruit flesh had a distorted shape after preparation of AIS (Figure 3a), probably due to the

20 min boiling in ethanol. The quantity of intercellular spaces had, however, not increased, and the

Table 8. Distribution of cell-wall polysaccharides extracted from different tissue zones in fruits of two selected

genotypes of Japanese quince (C. japonica), RG822 and NV9392 (Thomas & Thibault 2002).

Pectins
c
 (Sequence A) Hemicelluloses

c 
(Sequence B)

Genotype Weight
a

AIS
b

P
W

P
O

P
H

P
OHa

∑P R
P

P
OHb

HC
1

HC
4
∑P+HC R

HC

RG822

Skin 7.9 45.7 7.7 1.9 19.9 8.2 37.7 42.0 21.7 5.3 4.1 40.7 54.0

Flesh 68.0 27.3 3.6 1.9 11.9 4.5 21.9 73.0 10.8 4.6 2.8 23.7 76.0

Carpels 24.1 51.4 2.5 1.5 14.6 6.3 24.9 71.0 7.5 3.8 3.6 18.9 58.0

Entire fruit
d

100.0 34.6 5.7 1.8 16.5 6.7 30.7 56.1 16.3 4.9 3.6 32.3 62.3

NV9392

Skin 9.2 48.0 7.4 1.9 20.1 8.1 37.5 51.0 14.8 5.8 4.7 34.6 62.0

Flesh 66.0 30.2 3.0 1.5 10.6 2.8 17.9 77.0 6.8 3.8 1.4 16.5 81.0

Carpels 24.8 61.6 3.0 2.2 18.3 3.6 27.1 69.0 10.2 3.8 3.1 22.3 43.0

Entire fruit
d

100.0 39.6 5.2 1.8 16.2 5.6 28.8 63.1 11.2 4.8 3.3 26.3 67.2

a
g/100 g dry fruit, 

b
g/100 g tissue zone, 

c
g/100 g AIS, 

d
calculated
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Figure 3. Images of the flesh of the fruits observed with a CLSM (x40/1.2)

during the sequential extraction of pectins. Samples were stained with acri-

dine orange.

3a) flesh after preparation of the AIS, 25 focal planes, C 369, B 9845, At 30,

P 8.

3b) flesh cells after water extraction of the pectins, 25 focal planes, C 369, B

9845, At 30, P 8.

3c) flesh cells after oxalate extraction of the pectins, 25 focal planes, C 359,

B 9845, At 30, P 8.

3d) flesh cells after acid extraction of the pectins, 25 focal planes, C 369, B

9845, At 30, P 8.

C = contrast, B = brightness, At = attenuation, P = pinhole

3a 3b 3c

3d

fluorescence was strong. After water or oxalate extraction, the topology of the tissue did not change

(Figure 3b and c). The cells had a distorted shape, the number of intercellular spaces had not increased

and fluorescence was strong, indicating that pectins were still present in the residue.

After the acidic extraction (Figure 3d), the topology of the tissue was completely changed. The cells

were separated and the fluorescence had decreased dramatically, indicating that pectins had been re-

moved from the cell-wall.

Pectins and hemicelluloses in different tissue zones of the fruit

On average, 66% of the extracted pectins came from the flesh, 10% from the skin and 24% from the

carpels (Table 8). For genotype RG822, P
W

+P
O
+P

H
+P

OHa
 was 37.7, 20.9 and 24.9 g/100 g AIS in the flesh,

carpels and skin, respectively. The cellulosic residue represented more than 70 g/100 g AIS in the skin

and the carpels. The amounts of pectins extracted from the skin, flesh or carpels differed slightly, depend-

ing on the extraction medium used. On average, 11, 7, 63 and 19% pectins were solubilised from the skin,

whereas 20, 5, 53 and 22% pectins were solubilised from the flesh, and 15, 9, 58 and 19% pectins were

solubilised from the carpels, with water, oxalate, HCl and KOH, respectively. The results were similar for

genotype NV9392.

The flesh contained higher quantities of hemicelluloses (9.4 and 10.5 g/100 g AIS of the flesh for

genotypes RG822 and NV9392, respectively) than the carpels (7.4 and 5.2 g/100 g AIS of the carpels for

genotypes RG822 and NV9392, respectively) or the skin (7.4 and 6.9 g/100 g AIS of the flesh for geno-

types RG822 and NV9392, respectively). Cellulosic residues represented the main part of the AIS. The

quantities of cellulosic residue were higher in the skin (71 and 69 g R
P
/100 g AIS of the skin for geno-

types RG822 and NV9392, respectively) and the carpels (73 and 77g R
P
/100 g AIS of the carpels for
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Figure 4. Content of cell-wall polysaccharides (on dry matter basis) in the two selected genotypes of Japanese

quince (C. japonica), RG822 and NV9392.

genotypes RG822 and NV9392, respectively) than in the flesh of the fruit (42 and 51 g R
P
/100 g AIS of

the flesh for genotypes RG822 and NV9392, respectively). The calculated and experimental results were

in rather good agreement.

Cell-wall polysaccharides in Japanese quince fruits

A summary of the different quantities of polysaccharides in the fruits and tissues of the two Japanese

quince genotypes RG822 and NV9392 is shown in Figure 4. On average, it was possible to extract 11.0

g pectins and 3.1 g hemicelluloses from 100 g dry fruit, and 22.2 g of cellulosic residues were obtained.

Pectins and hemicelluloses came essentially from the flesh of the fruit (65.7 and 62.5%, respectively),

whereas the cellulose was mainly located in the carpels (46.9%) and in the flesh (40.4%).

Composition of the pectins

The composition of the P
W

, P
O
, P

H
, P

OHa
 and P

OHb
 is given in Table 9. In every extract from each tissue zone

of the two genotypes RG822 and NV9392, UA, Rha, Ara and Gal were the main sugars detected, indicat-

ing that pectins were the main polysaccharides in these extracts. Neutral sugars represented from 7.7 to

29.6 g/100 g extract, and acidic sugars from 38.3 to 68.5 g/100 g extract. Total neutral and acidic sugars

in the pectins represented on average 70 g/100 g extract. Other constituents may be substituents of the

pectins (methanol, acetic acid), proteins and others. Pectins extracted from the carpels seemed to contain

fewer non-sugar components (74 g sugars/100 g extract, on average) than the flesh (70 g sugars/100 g

extract, on average) or the skin (65 g sugars/100 g extract, on average). This result was in agreement with

the high content of protein in the AIS of the skin (Table 7).

Independent of origin (tissue zone), hot dilute acid solubilised material rich in Ara and Gal. Approxi-

mately 80% and 60% of the Ara and of the Gal, respectively, were solubilised in this step. This suggests

that these pectins (P
H
) have more or longer side-chains than the others (P

W
, P

O
, P

OHa
), which is in agree-

ment with results reported by Massiot et al. (1994). It has been claimed (Selvendran et al. 1985) that P
O

may originate from the middle lamella, whereas P
H
 comes from the primary cell-wall. In every extract of

the various tissue zones of the two genotypes studied here, the molar ratio between uronic acids and

rhamnose (UA/Rha) was not very high (44 on average), indicating that pectins had a low proportion of
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Table 9. Composition of sugars, and degrees of methylation (DM) and acetylation (DAc) of pectins extracted from

different tissue zones of two selected genotypes of Japanese quince (C. japonica),  RG822 and NV9392.

Sugar composition
bc

Zone Extract Yield
a

Rha Fuc Ara Xyl Man Gal Glc UA
d

DM DAc

RG822

P
W

2.5 0.7 0.3 9.2 1.5 0.7 5.0 3.5 54.1 73 5

P
O

1.5 0.6 0.0 5.7 0.5 0.0 2.0 0.0 45.0 68 6

Skin P
H

14.6 1.1 0.2 19.4 0.7 0.1 5.6 1.7 38.3 73 7

P
OHa

6.3 1.2 0.2 3.4 1.0 0.0 4.3 1.2 46.7 4 2

P
OHb

7.5 0.8 0.0 5.9 0.5 0.0 2.4 0.4 54.6 8 3

P
W

7.7 0.9 0.2 7.6 0.9 1.4 4.7 3.0 49.0 71 3

P
O

1.9 1.0 0.1 6.7 0.8 0.2 3.7 2.3 43.2 64 3

Flesh P
H

19.9 1.2 0.2 12.6 1.0 0.3 6.3 1.3 54.8 61 3

P
OHa

8.2 2.1 0.3 3.9 1.9 0.0 8.1 1.2 48.2 7 1

P
OHb

21.7 1.3 0.2 7.7 0.6 0.0 5.5 0.4 52.2 7 1

P
W

2.6 0.8 0.2 8.4 1.1 1.6 4.2 2.8 61.5 70 7

P
O

1.9 0.7 0.0 4.9 0.5 0.5 2.2 1.1 58.0 60 4

Carpels P
H

11.9 1.4 0.2 15.9 0.7 0.0 5.4 1.1 48.4 60 8

P
OHa

4.5 1.8 0.2 3.1 1.6 0.0 6.5 0.8 56.3 4 3

P
OHb

10.8 1.2 0.1 6.9 0.3 0.0 3.0 0.1 60.7 5 3

NV9392

P
W

3.0 0.5 0.6 7.8 3.9 0.8 4.6 8.6 43.6 73 6

P
O

2.2 0.6 0.2 6.1 1.3 0.5 3.1 2.6 58.0 63 4

Skin P
H

18.3 1.3 0.2 14.8 0.7 0.0 6.0 2.2 42.0 60 5

P
OHa

3.6 1.6 0.2 3.5 1.4 0.0 6.2 1.7 40.1 7 2

P
OHb

10.2 0.7 0.2 7.5 0.6 0.0 3.2 1.0 51.8 7 3

P
W

7.4 0.8 0.3 10.5 1.7 2.0 7.9 4.7 44.7 80 5

P
O

1.9 0.7 0.2 5.0 0.8 0.8 4.6 2.1 54.2 65 3

Flesh P
H

20.1 0.9 0.2 16.4 0.7 0.4 9.4 1.5 43.4 59 4

P
OHa

8.1 1.6 0.3 5.5 0.8 0.0 13.6 0.7 55.4 4 1

P
OHb

14.8 1.0 0.0 6.8 0.1 0.0 5.8 0.0 55.7 < 1 1

P
W

3.0 0.6 0.2 8.7 1.6 2.3 5.7 3.6 59.6 74 9

P
O

1.5 0.5 0.0 3.5 0.4 0.2 2.2 0.9 66.0 62 5

Carpels P
H

10.6 1.3 0.2 17.9 0.4 0.0 7.2 1.4 51.4 57 8

P
OHa

2.8 2.0 0.2 2.7 1.1 0.0 8.2 0.8 50.7 4 3

P
OHb

6.8 0.9 0.0 5.7 0.3 0.0 3.4 0.0 68.5 5 3

ag/100 g AIS, bg/100 g extract, cresults were obtained from duplicates, SE < 5%, dUA = uronic acids, GlcA < 5%

regions carrying side-chains. These ratios decreased from oxalate- or water-soluble pectins to dilute-

acid- or dilute-alkali- soluble pectins (P
OHa

). This result is in agreement with those found for apple by

Renard et al. (1990). It suggests that dilute-acid-soluble pectins had a higher proportion of

rhamnogalacturonans than water- or oxalate-soluble pectins, but a lower proportion of rhamnogalacturonans

than dilute alkali-soluble pectins (P
OHa

). As alkali-soluble pectins contained lower amounts of neutral

sugars than acid-soluble pectins, dilute alkali-soluble pectins may be substituted with many short neu-

tral-sugar side-chains, whereas acid-soluble pectins may have fewer but longer side-chains.
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The molar ratio between uronic acids and rhamnose was the lowest for P
OHa

, independent of origin,

whereas it was intermediate for P
OHb

. Sorting the molar ratios, the following chain was obtained:

P
OHa

<P
H
<P

OHb
<P

W
<P

O
, suggesting that pectins extracted with dilute alkali after an acidic treatment (P

OHa
)

had a higher proportion of rhamnogalacturonans than those extracted with dilute alkali alone (P
OHb

).

Dilute acid may have degraded side-chains, thus giving dilute alkali the possibility to liberate pectins

with short side chains. Without acidic treatment, only less branched pectins can be liberated. The yield of

pectins extracted with dilute alkali alone (P
OHb

) was approximately half that obtained with hot dilute acid

followed by a dilute alkali extraction (P
H
 + P

OHa
). Moreover, alkali extraction following acidic extraction

yielded a rather low amount of polysaccharides (from 2.8 to 8.2 g/100 g AIS). These results indicate that

acid-labile linkages seemed to play a major role for the extraction of pectins. More Ara was extracted by

dilute alkali alone (P
OHb

) than by dilute alkali following an acidic extraction (P
OHa

). This was probably due

to the acidic hydrolysis of arabinose moieties into small oligomers. By contrast, Xyl and Gal were more

efficiently extracted in P
OHa

 than in P
OHb

.

Pectins from the flesh, carpels and skin seemed to have similar proportions of rhamnogalacturonans,

as suggested by the constancy of the molar ratios between uronic acids and rhamnose. Pectins from the

carpels had a slightly higher proportion of GalA compared to pectins from the flesh or the skin. Massiot

et al. (1994) found that pectins from the carpels of apple also had a higher GalA content than those from

the flesh, and that pectins from the carpels and the skin had a similar GalA content.

Tables 8 and 9 show that the AIS of entire fruits of genotypes RG822 and NV9392 not only con-

tained the same amount of pectins (P
W

+P
O
+P

H
+P

OHa
 was 31 and 29 g/100 g AIS for RG822 and NV9392,

respectively), but also that the composition of these pectins was very similar (71 and 68 g sugars/100 g

extract for RG822 and NV9392, respectively). Thus, the difference observed in dietary fibre content of

the two genotypes could not be attributed to the pectins.

The degrees of methylation and acetylation of pectins are given in Table 9. The degree of acetylation

was calculated assuming only pectins were acetylated. Pectins had a high DM (range: 59–80) and a low

DAc (range: 1–9). As anticipated, pectins extracted with alkali had low DM (< 8) and low DAc (< 3).

There was no difference between the two genotypes studied in these traits.

Composition of the hemicelluloses

The composition of the different extracts of hemicelluloses is given in Table 10. Some glucuronic acid

has been found in some hemicelluloses (Selvendran & O’Neill 1987). In the hemicelluloses extracted

from Japanese quince, less than 5 g GlcA/100 g UA was detected. The main constituent sugars of the

extracts were Xyl, Man, Gal and Glc. These sugars are normal representatives of hemicellulosic frac-

tions. The total acidic sugars represented less than 5 g/100 g extract. On average, total neutral sugars

represented more than 50 g/100 g extracts except in the skin, where they represented only 46 g/100 g

extract. Some non-carbohydrate constituents, such as proteins or polyphenols, may also have been present

in the extracts of the skin.

Hemicelluloses extracted with 1 M KOH and those extracted with 4 M KOH differed in composition

of monosaccharides. HC
1
 contained high proportions of Xyl, probably deriving from xylans, whereas

HC
4
 contained high proportions of Man, probably deriving from mannans. These results were similar to

those obtained for the cauliflower by Femenia et al. (1999).

Hemicelluloses still contained some GalA (from 2.3 to 5 g/100 g extract) and Rha (from 0.4 to 1 g/

100 g extract), indicating that some pectic material remained associated with the hemicelluloses.

The flesh contained the highest quantity of hemicelluloses. There was no major difference between

the hemicelluloses from the different tissue zones of the fruit. However, the hemicelluloses from the

carpels contained more Xyl than those from the flesh, and hemicelluloses from the flesh contained more

Glc than hemicelluloses from the carpels and skin. No difference in the composition and quantity of

hemicelluloses was observed between the two genotypes studied.
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Table 10. Composition of sugars of hemicelluloses extracted from different tissue zones of two selected genotypes

of Japanese quince (C. japonica),  RG822 and NV9392.

Sugar composition
bc

Zone Extract Yield
a

Rha Fuc Ara Xyl Man Gal Glc UA
d

RG822

Skin HC
1

3.8 0.7 1.6 6.1 12.4 3.2 7.1 14.9 3.2

HC
4

3.6 0.6 0.9 4.4 4.7 4.5 5.3 9.3 2.7

Flesh HC
1

5.3 0.5 3.3 4.2 22.0 2.0 10.7 29.3 2.6

HC
4

4.1 1.0 1.7 4.5 9.9 13.7 10.8 22.5 3.5

Carpels HC
1

4.6 0.6 1.7 3.2 36.0 2.9 6.8 16.2 5.4

HC
4

2.8 0.6 1.7 2.7 16.8 9.9 8.4 20.1 2.5

NV9392

Skin HC
1

3.8 0.5 1.9 4.2 16.3 4.5 8.5 20.6 2.3

HC
4

3.1 0.6 0.6 4.8 6.9 7.0 6.9 13.2 3.2

Flesh HC
1

5.8 0.4 3.1 4.2 25.6 3.0 11.1 29.5 2.7

HC
4

4.7 0.8 1.6 4.5 10.0 12.8 11.1 21.3 2.3

Carpels HC
1

3.8 0.5 1.7 2.8 32.0 3.5 6.6 17.1 4.8

HC
4

1.4 0.6 1.8 2.8 24.0 6.1 7.5 17.8 3.7

a
g/100 g AIS, 

b
g/100 g extract, 

c
results were obtained from duplicates, SE < 5%, 

d
UA = uronic acids, GlcA < 5%

Cellulosic residues

The composition of monosaccharides in the cellulosic residues is given in Table 11. Residues mostly

consisted of neutral sugars, particularly Glc. Total neutral and acidic sugars represented only 34 and 55 g/

100 g of R
P
 and R

HC
, respectively, in the skin of RG822, and 26 and 53 g/100 g of R

P
 and R

HC
, respec-

tively, in the skin of NV9392. The residue of the skin also contained many non-carbohydrate constitu-

ents.

Some GalA (from 4.3 to 15.5 g/100 g extract) remained in the residues, showing that pectins were

still present in the final residues. The composition of R
P
 was very close to that of R

HC
. However, R

HC

contained more uronic acids (12 g UA/100 g extract, on average) than R
P
 (6 g UA/100 g extract, on

average) underlining the fact that the acidic extraction step was the most efficient in extracting pectins.

There was no major difference between the cellulosic residues from the different tissue zones of the

fruit. However, the same differences observed for the hemicelluloses were also observed for the cellulosic

residues. Thus, cellulosic residues from the carpels contained more Xyl than those from the flesh and the

skin, and cellulosic residues from the flesh contained more Glc than cellulosic residues from the carpels

and skin. This indicates that some hemicelluloses may be linked to the cellulose.

The different tissue zones of genotype NV9392 contained higher amounts of cellulosic residues than

the different tissue zones of genotype RG822. However, residues from the different tissue zones of geno-

type NV9392 had a lower content of polysaccharides compared to the residues from the different tissue

zones of genotype RG822. The difference in dietary fibre content of the two genotypes was thus not due

to their constituent polysaccharides.

Physico-chemical properties of pectins extracted from entire fruits of Japanese quince

The composition of pectins extracted by water, oxalate and dilute acid from entire frozen fruits was

similar to what has previously been described for the fractionated pectins in different tissues. The physico-

chemical properties of the P
W

, P
O
 and P

H
 were studied using the HPSEC-Viscotek system. The recovery

of the polysaccharides after filtration was higher than 95% (results not shown), indicating that no
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Table 11. Composition of sugars of cellulosic residues from different tissue zones of two selected genotypes of

Japanese quince (C. japonica),  RG822 and NV9392 (Thomas & Thibault 2002).

Sugar composition
ab

Zone Extract Rha Fuc Ara Xyl Man Gal Glc UA
c

RG822

Skin R
P

0.5 0.3 1.8 4.2 0.9 2.3 17.6 5.9

R
HC

0.9 0.5 8.1 4.6 0.6 3.6 20.8 15.5

Flesh R
P

0.8 0.9 1.6 7.8 2.8 5.9 49.6 8.6

R
HC

1.0 0.8 4.1 5.2 1.3 5.7 44.7 11.3

Carpels R
P

0.5 0.3 1.0 16.3 1.8 2.3 36.6 5.9

R
HC

0.8 0.3 5.1 13.7 1.1 3.3 37.6 9.1

NV9392

Skin R
P

0.3 0.2 1.1 3.1 1.1 1.4 14.8 4.3

R
HC

0.8 0.4 7.8 4.2 0.9 3.9 20.6 14.7

Flesh R
P

0.7 0.9 1.9 8.3 3.5 7.7 39.6 5.4

R
HC

1.0 0.6 6.0 4.4 2.3 9.1 40.0 15.4

Carpels R
P

0.4 0.2 0.9 19.9 1.3 2.2 30.0 5.7

R
HC

0.5 0.1 3.2 20.3 0.7 2.3 28.8 7.4

a
g/100 g extract, 

b
results were obtained from duplicates, SE < 5%, 

c
UA = uronic acids, GlcA < 5%

polysaccharides were lost during filtration. Refractometric, viscosimetric and UV profiles of the P
W

, P
O

and P
H
 are shown in Figures 5a to 5c for genotype RG822 and in Figures 5d to 5f for genotype NV9392.

The UV profiles showed that there were no UV-absorbing substances in the P
W

 and P
O
.

Physico-chemical properties of P
W

The chromatographic profiles showed that the P
W

 consisted of at least two populations (Figures 5a and

5d). The first of these was eluted between 5.8 and 8.2 ml. It represented 25 and 32% of the total injected

polysaccharides for genotypes RG822 and NV9392, respectively. The intrinsic viscosity of this popula-

tion was 1399 and 1446 ml/g for genotypes RG822 and NV9392, respectively. The second constituent

population of the P
W

 was eluted between 8.2 and 10.1 ml. It represented 8 and 15% of the total injected

polysaccharides for genotypes RG822 and NV9392, respectively. The intrinsic viscosity of this popula-

tion was 106 and 72 ml/g for genotypes RG822 and NV9392, respectively. The intrinsic viscosity of the

whole population of the P
W

 was also determined. It was 1109 and 1071 ml/g for genotypes RG822 and

NV9392, respectively. These results are very high compared to intrinsic viscosity estimates of acid-

extracted apple pectins, which are usually between 250 and 470 ml/g (Cros et al. 1996, Axelos & Thibault

1991). Moreover, the chromatographic yields were low (32 and 47% of the total injected polysaccharides

for genotypes RG822 and NV9392, respectively). Some polysaccharides may thus have remained bound

to the column. Therefore, intrinsic viscosity of the P
W

 was also measured with an Ubbelohde capillary

viscometer (Figures 6a and 6c). Results (Table 12) showed that the intrinsic viscosity (804 and 647 ml/g

for genotypes RG822 and NV9392, respectively) was still higher than those described in the literature for

acid-extracted apple pectins.

Physico-chemical properties of P
O

The chromatographic profiles showed that the PO consisted of three populations (Figures 5b and 5e). The

first of these was eluted between 5.8 and 8.2 ml. It represented 32% of the total injected polysaccharides

for both genotypes RG822 and NV9392. The intrinsic viscosity of this population was 1141 and 1104 ml/

g for genotypes RG822 and NV9392, respectively. The second population of the P
O
 was eluted between
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Figure 5. Viscosimetric, refractometric and UV profiles of pectins, P
W

 (a and d), P
O
 (b and e) and P

H
 (c and f)

extracted from entire frozen fruits of genotypes RG822 (a to c) and NV9392 (d to f).

8.2 and 10.1 ml. It represented 26 and 10% of the total injected polysaccharides for genotypes RG822

and NV9392, respectively. The intrinsic viscosity of this population was 76 and 113 ml/g for genotypes

RG822 and NV9392, respectively. The intrinsic viscosity of the whole population of the P
O
 was also

determined. It was 641 and 840 ml/g for genotypes RG822 and NV9392, respectively. These results were

lower than those obtained for the P
W

, but they were still very high compared to those described in litera-

ture for acid-extracted apple pectins (Cros et al. 1996, Axelos & Thibault 1991). As for the P
W

, the

chromatographic yields were low (58 and 42% of the total injected polysaccharides for genotypes RG822

and NV9392, respectively). Some polysaccharides may thus have remained bound to the column. There-

fore, intrinsic viscosity of the P
O
 was also measured with an Ubbelohde capillary viscometer (Figures 6b

and 6d). Results (Table 12) showed that intrinsic viscosity was still very high (564 and 687 ml/g for
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Figure 6. Intrinsic viscosity of  P
W

 (a and c) and P
O
 (b and d) for genotypes RG822 (a and b) and NV9392 (c and

d).

genotypes RG822 and NV9392, respectively).

Physico-chemical properties of P
H

The UV profiles of the P
H
 (Figures 5c and 5f) showed that a few proteins were eluted at the same reten-

tion time as the first population of pectins (from 6.6 to 8.4 ml). This population represented 27 and 28%

of the total injected polysaccharides for genotypes RG822 and NV9392, respectively. The intrinsic vis-

cosity of this population was 332 and 376 ml/g for genotypes RG822 and NV9392, respectively. The

second population of the P
H
 was eluted between 8.4 and 9.7 ml. It represented 41 and 42% of the total

injected polysaccharides for genotypes RG822 and NV9392, respectively. The intrinsic viscosity of this

population was 83 and 104 ml/g for genotypes RG822 and NV9392, respectively. Finally, the third popu-

lation of the P
H
 was eluted between 9.7 and 10.8 ml. It represented 26 and 25% of the total injected

polysaccharides for genotypes RG822 and NV9392, respectively. The intrinsic viscosity of this popula-

tion was 11 and 12 ml/g for genotypes RG822 and NV9392, respectively. The intrinsic viscosity of the

whole population of the P
H
 was also determined. It was 167 and 199 ml/g for genotypes RG822 and

NV9392, respectively. These results were lower than for P
W

 and P
O
. The intrinsic viscosities were also

low compared to those described in literature for acid-extracted apple pectins (Cros et al. 1996, Axelos &

Thibault 1991). In contrast to the yields of P
W

 and P
O
, the chromatographic yield of P

H
 was high (94 and
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Table 12. Intrinsic viscosity of pectins P
W

 and P
O
 extracted from fruits of two Japanese quince (C. japonica)

genotypes, RG822 and NV9392.

Pectins Genotype [η] (ml/g) λ
H

λ
K

P
W

RG822 804 0.71 0.08

P
W

NV9392 647 0.75 0.06

P
O

RG822 564 0.35 0.14

P
O

NV9392 687 0.43 0.12

95% of the total injected polysaccharides for genotypes RG822 and NV9392, respectively).

As the highest quantity of pectins was extracted by dilute acid, the properties of the P
H
 were further

investigated by anion-exchange chromatography. The profiles obtained are shown in Figure 7. For both

genotypes, four main fractions were separated (F1 to F4 and F’1 to F’4 for genotypes RG822 and NV9392,

respectively). The recoveries during chromatography were 96 and 95% for the neutral sugars of the P
H
 of

genotypes RG822 and NV9392, respectively, and 113 and 120% for the GalA constituent of the P
H
 of

genotypes RG822 and NV9392, respectively. Yields and compositions of the fractions are given in Table

13.

The first fraction represented 29 and 32% of the P
H
 of genotypes RG822 and NV9392, respectively.

It was mainly composed of neutral sugars (33.4 and 49.3 g/100 g F1 and F’1, respectively). Ara and Gal

were the main sugars detected, indicating that F1 and F’1 were composed of arabinans, galactans and/or

arabinogalactans.

The second fraction represented 16 and 19% of the P
H
 of genotypes RG822 and NV9392, respec-

tively. It was mainly composed of GalA (57.2 and 64.5 g/100 g F2 and F’2 respectively). Its UA/Rha

molar ratio (161 and 182 for F2 and F’2, respectively) and its DM (93 and 82 for F2 and F’2, respec-

tively) were high, indicating that this population was mainly composed of highly methylated

homogalacturonans.

The third fraction was the main one. It represented 32 and 45% of the P
H
 of genotypes RG822 and

NV9392, respectively. It was also mainly composed of GalA (71.8 and 75.6 g/100 g F3 and F’3, respec-

tively) but had a higher rate of Rha than the F2 and F’2 fractions. The molar ratio of UA/Rha was 25 and

27 for F3 and F’3, respectively, indicating that these fractions contained a higher proportion of

rhamnogalacturonans than F2 and F’2. The DM was lower than for F2 and F’2 (52 and 58 for F3 and F’3,

respectively).

The P
H
 of the two genotypes was very similar regarding the yields and compositions of the first three

fractions. The fourth fraction was, however, different for the two genotypes. It represented 23% of the P
H

of genotype RG822 whereas it represented only 4% of the P
H
 of genotype NV9392. F4 was mainly

composed of GalA (71 g/100 g F4), whereas GalA represented only 35% of F’4. The DM of F4 and F’4

were 18 and 38, respectively, and the DAc were 2 and 4, respectively.

DISCUSSION

The different parts of the fruits of Japanese quince contained large amounts of dietary fibre. The fibre

from the flesh represented an average of 53 g per 100 g total extracted fibre of the dry fruit, whereas that

from the skin and the carpel zones represented 9 and 38 g, respectively.

Although the two analytical methods (AIS and AOAC) resulted in significantly different values, no

interaction between genotype and method was found. Any method could thus be used to screen chaenomeles

fruits for dietary fibre and produce a valid ranking of genotypes. The fibre content varied from 28 to 38 g

per 100 g dry matter, depending on genotype. This is a considerable variation, which must be taken into
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Table 13. Yield and composition of sugars in fractions obtained by anion exchange chromatography of pectin P
H
,

extracted from  fruits of Japanese quince (C. japonica) genotypes RG822 and NV9392.

Sugar composition
b

Fraction Yield
a

Rha Fuc Ara Xyl Man Gal Glc
t

GalA Tot. DM DAc

RG822

F1 29 0.3 0.3 27.6 0.8 0.4 3.3 0.7 1.2 34.6 nd nd

F2 16 0.3 0.1 0.7 0.3 0.3 0.7 0.5 57.2 60.1 93 3

F3 32 2.2 0.2 1.6 1.0 0.2 2.2 0.6 63.8 71.8 52 7

F4 23 1.3 0.1 0.7 0.4 0.2 0.8 0.4 71.0 74.9 18 2

NV9392

F’1 32 0.4 0.1 38.9 1.0 0.7 6.1 2.1 1.7 51.0 nd nd

F’2 19 0.3 0.1 0.7 0.4 0.3 0.8 0.5 64.5 67.6 82 4

F’3 45 2.1 0.2 1.6 0.8 0.2 2.1 0.8 67.8 75.6 58 6

F’4 4 1.4 0.0 0.9 0.7 0.6 1.1 0.9 35.0 40.6 38 4

a
g/100 g P

H
, 

b
g/100 g fraction, Glc

t
 = total glucose, nd = not determined

Figure 7. Elution profiles of the pectin P
H
, extracted from entire frozen fruits of Japanese quince (C. japonica)

genotypes RG822 (a) and NV9392 (b), on a DEAE Sepharose CL-6B column, eluted by a 50 mM sodium succi-

nate buffer (pH 4.5) and a linear gradient of NaCl in 50 mM sodium succinate buffer.
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account when selecting varieties for fruit production, manufacture of fibre-rich food products and pectins.

As the fruits were sampled at an apparently equivalent stage of development, it is likely that most of the

variation revealed was due to genotypic differences. However, to fully investigate the environmental

contribution to the variation it would be necessary to sample fruits from plants grown in replicated field

trials. Furthermore, it is interesting to note that the sample of flowering quince (C. speciosa) contained

the largest amount of fibre. More genotypes of this species would need to be studied before it is possible

to draw any conclusions about the significance of this finding.

The study of the cell-wall polysaccharides of Japanese quince was performed in two stages: i) prepa-

ration of AIS and ii) sequential extraction of AIS. The AIS method is commonly used to isolate cell-wall
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materials (Selvendran et al. 1985). Although this method has some drawbacks, it is considered suitable

for fruits and vegetables that contain low amounts of starch, intra-cellular proteins and polyphenols

(Selvendran et al. 1985, Selvendran & O’Neill 1987). The proteins in the AIS (4–12%) could be ascribed

to cell-wall proteins or co-precipitated intracellular proteins. The extraction scheme allowed the separa-

tion of the cell-wall material into its major components (mainly cellulose, pectins and hemicelluloses).

The AIS of entire fruits was composed of 30 g pectins, 8 g hemicelluloses and 60 g cellulosic residue/100

g AIS. Every 100 g entire dry fruit (800g entire fresh fruit) contained 11 g pectins, 3 g hemicelluloses and

18 g cellulosic residue. The recovery of polysaccharides was high (86.8% and 91.9% for genotypes

RG822 and NV9392, respectively), indicating that little material was lost during the extraction. It is also

important to note that: 1) pectins were mostly located in the flesh of the fruits, 2) the core mostly con-

tained cellulose and 3) the skin was quite rich in non-fibre compounds (such as lipids and proteins). In

terms of content of polysaccharides and their composition, there was no apparent difference between the

two genotypes studied.

Sequential extraction is generally used for fractionation of pectins. Following water extraction, Ca
++

chelators such as ethylenediamine tetraacetate (EDTA) or cyclohexane-trans-1,2 diamine tetraacetate

(CDTA), are often used to extract pectins. However, it has been  shown (Mort et al. 1991) that CDTA or

EDTA may remain associated with the pectins, even after extensive dialysis against distilled water. Thus,

oxalate was used to overcome this problem. Water and oxalate (pH 4.5, 25 °C) solubilised a low amount

of pectins (6 and 2 g/100 g AIS for water and oxalate, respectively) but the conditions were not degradative

and pectin structure was preserved. Indeed, a very high and unusual intrinsic viscosity was measured for

these pectins. Further investigation of their gelling properties and fine structure would be interesting,

although the yields were low in these conditions.

By contrast, dilute acid solubilised a high quantity of pectins (17 g/100 g AIS). These extraction

conditions were, however, degradative. They are known to break some covalent linkages, especially

those involving Ara residues. Indeed, the quantity of Ara residues separated by anion exchange chroma-

tography (F1 and F’1) was significant. The P
H
 had a rather low intrinsic viscosity and a lower molar ratio

of UA/Rha than the P
W

 and the P
O
. This result was in agreement with those described for apple by

Massiot et al. (1994). Once purified, the main fraction of the P
H
 (F3 and F’3) had a molar ratio for UA/

Rha, in agreement with that of the P
H
, indicating that they contained a higher proportion of

rhamnogalacturonans than the P
W

 or the P
O
. The P

H
 was composed of four populations, the first (F1 and

F’1) being mainly composed of arabinan, the second of homogalacturonans, the third of

rhamnogalacturonans and the fourth differing depending on the genotype studied.

Subsequent treatment of the remaining cell-wall with alkali liberated some additional pectins (6 g/

100 g AIS), probably through limited ß-elimination reactions of methyl galacturonate residues. Simulta-

neously, most of the methyl ester and acetyl groups were removed. At this stage, not all the pectins were

removed from the AIS, its UA content being 5 and 7 g/100 g AIS for genotypes NV9392 and RG822,

respectively. These results are similar to those obtained for sugar beet pulp (Rombouts & Thibault 1986

and Bertin et al. 1988).

Pectins extracted under non-alkaline conditions (P
W

, P
O
 and P

H
) had a high degree of methylation

and a low degree of acetylation. Pectins extracted by a chelating agent are believed to be complexed

mainly with Ca
++

 (Selvendran et al. 1985). However, oxalate-soluble pectins often have a high content of

methyl ester groups (Renard et al. 1990, Ros et al. 1998) and Table 9 shows that the DM of P
O
 was high

(> 60%). A complexation through cations would only be possible if the methoxyl groups were block-

esterified, which has to be confirmed.

During the extractions, recovery of each sugar was close to 100%. However, Ara and Rha had a

substantially lower yield (on average 74 and 73% for Ara and Rha, respectively). Analysis of the sugar

composition of polysaccharides involved acidic hydrolysis. The various stabilities of the monosaccharides

liberated, as well as those of the different linkages involved, would have required different optimum
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conditions for hydrolysis. A long and harsh hydrolysis step destroys some of the Ara, whereas a short and

mild hydrolysis underestimates the Rha. Thus, the conditions should ideally be determined and optimised

for each material. Our conditions were optimised for the AIS (Thomas et al. 2000) and applied to all

samples, as a compromise. Therefore, Rha and Glc may be underestimated in all the extracts. Ara was

also underestimated due to the extraction method, which included an acidic step. Indeed, below pH 3,

hydrolysis occurred for the labile arabinofuranoside linkages by which many of the neutral polysaccharides

are joined to the rhamnogalacturonan backbone (Selvendran et al. 1985). Some Ara may thus be elimi-

nated during dialysis of the extracts.

Genotype NV9392 had a higher AIS content than genotype RG822. However, no difference was

found in the quantity of polysaccharides extracted from the AIS of the two genotypes or in the composi-

tion of these constituent polysaccharides. The difference in AIS content may thus be attributed to non-

polysaccharidic material such as polyphenols or organic acids that may be “trapped” in the cell-walls.

However, this study involved only two genotypes. More genotypes must be analysed to confirm our

results.

CONCLUSION

Fruits of Japanese quince contain high amounts of dietary fibre and pectins. On average 32 g dietary fibre

can be extracted from 100 g dry fruit. This is higher than from apple, for which only about 13 g can be

extracted from 100 g dry fruit (Massiot et al. 1994). On average 11 g pectins can be extracted from 100 g

dry fruit (corresponding to 1.4 g/100 g fresh fruit) of Japanese quince. This is higher than or similar to

apples, from which 0.5 to 1.6 g pectins can be extracted per 100 g fresh fruit (Thakur et al. 1997). The

pectins extracted from fruits of Japanese quince may have valuable properties as indicated by their high

intrinsic viscosity, high DM and low DAc. Further investigations should be devoted to determining the

fine structure of the pectins and characterising their physico-chemical properties in detail, including their

gelling properties.
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