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Abstract 
The dialog between experimentalist and modeler in catchment hydrology has been 

minimal to date. The experimentalist often has a highly detailed yet highly qualitative 

understanding of dominant runoff processes—thus there is often much more information 

content on the catchment than we use for calibration of a model. While modelers often 

appreciate the need for ‘hard data’ for the model calibration process, there has been little 

thought given to how modelers might access this ‘soft’ or process knowledge. We present 

a new method where soft data (i.e., qualitative knowledge from the experimentalist that 

cannot be used directly as exact numbers) are made useful through fuzzy measures of 

model-simulation and parameter-value acceptability. We developed a three-box lumped 

conceptual model for the Maimai catchment in New Zealand, a particularly well-studied 

process-hydrological research catchment. The boxes represent the key hydrological 

reservoirs that are known to have distinct groundwater dynamics, isotopic composition 

and solute chemistry. The model was calibrated against hard data (runoff and 

groundwater-levels) as well as a number of criteria derived from the soft data (e.g. 

percent new water, reservoir volume, etc). We achieved very good fits for the three-box 

model when optimizing the parameter values with only runoff (Reff=0.93). However, 

parameter sets obtained in this way showed in general a poor goodness-of-fit for other 

criteria such as the simulated new-water contributions to peak runoff. Inclusion of soft-

data criteria in the model calibration process resulted in lower Reff-values (around 0.84 

when including all criteria) but led to better overall performance, as interpreted by the 

experimentalist’s view of catchment runoff dynamics. The model performance with 

respect to soft data (like, for instance, the new water ratio) increased significantly and 



 3

parameter uncertainty was reduced by 60% on average with the introduction of the soft 

data multi-criteria calibration. We argue that accepting lower model efficiencies for 

runoff is ‘worth it’ if one can develop a more ‘real’ model of catchment behavior. The 

use of soft data is an approach to formalize this exchange between experimentalist and 

modeler and to more fully utilize the information content from experimental catchments. 

 

 

Introduction 
Catchment hydrology is at a cross-roads. While complex descriptions of the age, origin 

and pathway of surface and subsurface stormflow abound in the literature (reviewed 

recently by Bonell [1998]), most catchment modeling studies have not been able to fully 

use this information for model development, calibration and testing. As a result, process 

hydrological studies of dominant runoff producing processes and model studies of runoff 

generation are often poorly linked. Recently there has been a tendency away from fully-

distributed, physically-based models back to conceptual models due to concerns that the 

small-scale physics may not be appropriate at the scale of model (grid) applications and 

the inability to determine physical parameters a priori. These issues give rise to problems 

like of overparameterisation, parameter uncertainty and model output uncertainty [Beven, 

1993; 2001]. While conceptual models may be much more simplified and lumped, they 

offer the potential for development based on process understanding of key zones or 

reservoirs of catchment response. A problem in conceptual modeling of catchment 

hydrology is that parsimonious models, which may allow identification of parameter 

values through calibration against runoff, in general are too simple to allow a realistic 
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representation of the main hydrological processes and, thus, provide only limited 

possibilities for internal model testing. As interest in the geochemical dimensions of 

streamflow modeling increases, reservoir (or box model) conceptual approaches that 

explicitly treat volume-based mixing and water (and ultimately tracer) mass balance 

become increasing useful [Harris et al., 1995; Hooper et al., 1998; Seibert et al., 2002a]. 

Spatial distinction into different zones is motivated for many catchments based on, for 

instance, different hydrochemical functioning [Cirmo and McDonnell, 1997] or 

differences in groundwater dynamics [Seibert et al., 2002b]. As such, box models with 

explicit reservoir volumes have indeed a physical basis, because water and tracer mass 

balances can be accounted for explicitly during each model step. However, there are 

important issues yet to be solved concerning the use of box models for representation of 

solute transport such as the consideration of preferential flow or incomplete mixing. 

A major obstacle in moving forward with conceptual modeling approaches is how 

to fully utilize experimental data for internal calibration and validation. Currently, the use 

of this field data for model calibration is often limited beyond simple streamflow 

information despite the general acceptance that internal state information is necessary for 

ensuring model consistency. The usefulness of having various criteria for assessment of 

model performance is widely accepted [Kuczera and Mroczkowski, 1998]. When 

multiple criteria are used for calibration or validation, this has often meant only the use of 

two or three so-called hard data criteria (e.g., runoff and groundwater levels) as compared 

to only one criterion (i.e., runoff) [e.g., Kuczera, 1983; Hooper et al., 1988; Refsgaard, 

1997; Kuczera and Mroczkowski, 1998; Seibert, 2000]. The willingness to use only hard 

data is a hindrance to moving forward. The dilemma is clear: modelers recognize that 
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more criteria are desirable but in most cases there are no suitable hard data available. 

Others have commented on the dilemma that we have; on one hand, a knowledge of 

catchment behavior by the experimentalist that is highly complex and highly qualitative, 

but on the other hand the need for simplification when developing model structures 

caused by data and computational limitations [Beven, 1993]. While some groups have 

used this perceptual model [Beven, 1993] to guide the construction of the model 

elements, little has been done to use this kind of data in the model calibration. The few to 

do this include Franks et al. [1998] who used maps of surface saturated area to constrain 

parameter ranges for TOPMODEL runs and Franks and Beven [1997] who used fuzzy 

measures for evapotranspiration. 

The hydrologist’s perceptual model is often a highly detailed yet qualitative 

understanding of dominant runoff processes. Thus, there exist in addition to hard data 

(streamflow hydrograph, well record) ‘soft data’ about catchment hydrology. Soft data 

are a rather different type of information than traditional hard data measures. Soft data 

are often ‘spotty’, discontinuous and numerically approximate. Soft data can be defined 

as qualitative knowledge from the experimentalist that cannot be used directly as exact 

numbers but that can be made useful through fuzzy measures of model-simulation and 

parameter-value acceptability. Soft data may be based on ‘hard’ measurements but these 

measurements require some interpretation or manipulation by a hydrologist before being 

useful in model testing. While fuzzy, these soft measures can be exceedingly valuable for 

indicating ‘how a catchment works’. Fuzzy measures, which implement the concept of 

partial truth with values between completely true and completely false, have been found 

to be useful in hydrological model calibration [Seibert, 1997; Aronica et al., 1998; 
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Hankin and Beven, 1998]. Aronica et al. [1998], for instance, used a fuzzy-rule based 

calibration motivated by highly uncertain flood information. A fuzzy measure varies 

between zero and one and describes the degree to which the statement ‘x is a member of 

Y’ or, in our case, ‘this parameter set is the best possible set’ is true.  

We argue that soft data represent a new dimension to the model calibration 

process that might: (1) enable a dialog between experimentalist and modeler, (2) be a 

formal check on the ‘reasonableness’ and consistency of internal model structures and 

simulations, and (3) specify realistic parameter ranges often ignored in today’s automatic 

calibration routines. When calibrating a conceptual rainfall-runoff model manually, some 

of this qualitative understanding might implicitly influence the calibration. The search for 

optimal parameters is thus restricted to certain parameter values and the modeler might 

visually inspect simulated internal variables such as groundwater levels and consider how 

reasonable these simulations are. Model parameters in conceptual models are not directly 

measurable. Parameters may be related to measurable quantities but they are effective 

values for a much larger scale than the measurement scale. However, for some 

parameters, the field hydrologist experimentalist might reject or prefer values within 

certain ranges based on his/her knowledge of the catchment and its behavior during and 

between events. Usually the search of parameter values by calibration is constrained only 

by the specification of feasible ranges. The concept of soft data enables one to specify a 

narrower desirable range for a number of parameters. During calibration, the model is 

‘punished’ for values outside these desirable ranges, but such values may still be chosen 

by the calibration if they lead to better fits. 
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The explicit use of soft data has two advantages: (1) the goodness-of-fit criteria 

are stated a priori, while still being subjective, and (2) the method can be used in 

automatic calibration routines. In other words, the procedure injects some experimentalist 

common sense into the automatic calibration process. Similarly, the use of soft data can 

be seen as a proactive way to reduce parameter uncertainty where the modeler and 

experimentalist together specify additional criteria to judge model simulations. As such 

the soft data approach developed in this paper is a way to specify model performance 

criteria ‘up front’. This complements methods used to quantify parameter uncertainty and 

its effects such as the generalized uncertainty estimation (GLUE) approach [e.g. Freer et 

al., 1996] or the other philosophical approach using the Pareto optimal set methodology 

for defining parameter sets that are in some way optimal [e.g. Gupta et al., 1999].  

This paper explores the new philosophy and approach for development of more 

realistic models of catchment behavior using soft data where multiple criteria are used to 

constrain the model calibration. We argue that this method is the necessary dialog that 

should occur between the modeler and the experimentalist to enable a better process 

representation of catchment hydrology in conceptual runoff models. We use the well-

characterized Maimai watershed (recently reviewed by McGlynn et al. [2002]) as the 

testing ground for these new ideas. This paper: (1) presents a new three-box model of 

headwater catchment response based on an extension of ideas developed in Seibert et al. 

[2002a], (2) incorporates a number of soft-data measures from experimental studies at the 

catchment for model calibration, and (3) assesses the value of soft data relative to 

traditional hard information measures for model calibration. While the paper does not 

advocate the use of soft data over hard data, we make the case that soft data may be an 
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important augmentation to hard data for model calibration and should be actively sought 

out where available. 

Material and methods 

The Maimai watershed 

Maimai M8 is a small 3.8 ha study catchment located to the east of the Paparoa Mountain 

Range on the South Island of New Zealand. Slopes are short (<300 m) and steep (average 

34o) with local relief of 100-150 m. Stream channels are deeply incised and lower 

portions of the slope profiles are strongly convex. Areas that could contribute to storm 

response by saturation overland flow are small and limited to 4-7 % [Mosley, 1979; 

Pearce et al., 1986]. Mean annual precipitation is approximately 2600 mm, producing an 

estimated 1550 mm of runoff. The summer months are the driest; monthly rainfall from 

December to February averages 165 mm and for the rest of the year between 190 to 270 

mm. On average, there are 156 rain days per year and only about 2 snow days per year 

[Rowe et al., 1994]. In addition to being wet, the catchments are highly responsive to 

storm rainfall. Quickflow comprises 65% of the mean annual runoff and 39% of annual 

total rainfall [Pearce et al., 1986]. The period of record used for model simulation in this 

study was August-December, 1987. There were 11 major runoff events during this period 

with a maximum runoff of 6 mm/h. Additional to rainfall and runoff data, groundwater 

levels, extracted from the tensiometer data in McDonnell [1989, 1990], were available for 

two locations (one in the riparian and one in the hollow zone). Mean monthly values of 

potential evaporation estimated by L. Rowe [1992, pers.comm.] were distributed using a 

sine curve for each day [J. Freer, 2000, pers. comm.]. 
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The Maimai M8 watershed is the quintessential headwater research catchment: it 

is underlain by a firmly compacted poorly impermeable conglomerate and seepage losses 

to deep groundwater are negligible (estimated at 100 mm/yr based on 25 years of water 

balance data). The wet and humid climatic environment, in conjunction with topographic 

and soil characteristics, results in the soils normally remaining within 10% of saturation 

[Mosley, 1979]. As such, the catchment shows clear and unambiguous catchment-wide 

response to storm rainfall. The thin nature of the soils promotes the lateral development 

of root networks and channels. Soil profiles reveal extensive macropores and preferential 

flow pathways at vertical pit faces which form along cracks and holes in the soil and 

along live and dead root channels [Mosley 1979]. Lateral root channel networks are 

evident in the numerous tree throws that exist throughout the catchments. Preferential 

flow also occurs along soil horizon planes and the soil-bedrock interface.  

Perceptual model of the Maimai watershed 

M8 has been the site of ongoing hillslope research by several research teams since the 

late 1970s. These studies have facilitated the development of a very detailed yet 

qualitative perceptual model of hillslope hydrology, reviewed recently by McGlynn et al. 

[2002]. While dye tracer studies by Mosley [1979] showed that storm rainfall follows 

preferential flow pathways at the hillslope scale, subsequent water isotopic tracing studies 

in the catchment by Pearce et al. [1986] and Sklash et al. [1986] showed (paradoxically) 

that there was little if any event water in the stream during stormflow periods. Thus, 

stored soil water and groundwater comprise the majority of channel stormflow. 

McDonnell [1990] developed a perceptual model to explain the mechanism of stormflow 

generation by constraining the dominant processes using recording tensiometer 
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observations, isotope tracing and various other chemical and hydrometric approaches. For 

small events of less than about 15 mm rainfall, McDonnell et al. [1991] found that the 

riparian zone (i.e., the near-stream valley bottom) could account for the volume of old 

water in the channel hydrograph. During larger events, McDonnell [1990] found that 

hillslope hollows (i.e., topographic convergent zones on the slopes) were the dominant 

runoff producing zones where new water moved to depth and created a perched water 

table at the soil-bedrock interface. Lateral pipeflow then formed along the soil bedrock 

interface [McDonnell et al., 1998], conveying quantities of old water laterally downslope 

sufficient in quantity and quality to explain measured old water volumes. Topographic 

convergence of flowpaths from planar hillslopes to the hollows enabled hollows to be 

well-primed for rapid conversion of matrix to pressure potentials. Soil water isotopic 

composition [McDonnell et al., 1991] and chemical composition [Grady and Elsenbeer, 

2000, pers. comm.] all followed a similar pattern of distinct and unambiguous response 

zones and inter-storm reservoirs: hillslopes, hollows and riparian zones. These zones 

display very different groundwater dynamics [McDonnell, 1990] and group clearly, based 

on their isotopic characteristics. Data in McDonnell et al. [1991], although not fully 

appreciated at the time of publication, revealed, using a cluster analysis, the three distinct 

isotopic groupings from suction lysimeter data extracted from 11 devices across the 

catchment. Finally, according to the perceptual model of McDonnell et al. [1991] flow 

occurs from the hillslope zone to the hollow zone and from there to the riparian zone 

before contributing to runoff. The soil catena sequences observed in the catchment by 

McKie [1978] confirm this perception based on soil characteristics.  
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Conceptual three-box model 

The conceptual model is based on the three reservoirs identified from the experimental 

studies at M8: riparian, hollow and hillslope zones (Fig. 1). Water is simulated to flow 

from the hillslope zone into the hollow zone and from the hollow zone into the riparian 

zone. Outflow from the riparian zone forms the flow in the stream. Most importantly, and 

most novel for this model, is the formulation used to model the unsaturated and saturated 

storage. Due to the shallow groundwater (groundwater levels 0 – 1.5 m below the ground 

surface) growth of the (transient) saturated zone occurs at the expense of the unsaturated 

zone thickness. Thus, a coupled formulation of the saturated and unsaturated storage was 

used, as proposed by Seibert et al. [2002a]. In this formulation, the amount of saturated 

storage determines the maximum space for unsaturated storage. 

The maximum amount of saturated storage (with the groundwater table reaching 

the ground surface), Smax, is computed as product of porosity, p, and soil depth, zmax, (see 

Table 1 for a list of all model parameters). Based on the calculated actual value of the 

saturated storage, S, the maximum unsaturated storage at drainage equilibrium (‘field 

capacity’), Umax, is computed (Eq. 1). Similarly the amount of water stored in the 

unsaturated zone below wilting point, Umin, is computed (Eq. 2). 

( )SScU −= maxmax  (1) 

( )SSdU −= maxmin  (2) 

S, U and Umin represent volumes of water per unit ground area, whereas the model 

parameters c and d are dimensionless. From equations 1 and 2, it follows that c 

corresponds to field capacity divided by porosity and d corresponds to wilting point 

divided by porosity. 
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For the unsaturated zone, an approach similar to that used in the HBV model 

[Bergström, 1995] is used. The amount of rainfall, P, is divided into recharge to 

groundwater, R, and addition to the storage in the unsaturated zone using a non-linear 

function (Eq. 3, β [-] is a shape factor). Evaporation from the soil, Eact, is estimated based 

on the actual storage in the unsaturated zone, U, and the potential evaporation, Epot 

(Eq. 4). 

β
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Outflow from the hillslope and riparian reservoir is computed as a simple linear function 

of the groundwater level in each box, zriparian, zhollow and zhillslope [m above bedrock]. The 

groundwater levels are computed from the saturated storage using a porosity parameter 

for each box. The hollow reservoir is given an additional threshold-based linear function 

based on the McDonnell [1990; pp. 2830 Fig 10] perceptual model (Eq. 5-7): 

hillslopehillslopehillslope zkQ ,1=  (5) 

( ) thresholdhollowthresholdhollowhollowthresholdhollowhollow

thresholdhollowhollowhollowhollow

zzifzzkzkQ
zzifzkQ

>−+=

≤=

,2,1

,1  (6) 

riparianriparianriparian zkQ ,1=  (7) 

The use of a threshold in the hollow reservoir is also motivated by field observations 

reported by McDonnell et al. [1998] that indicate large fluxes through macropores along 

the bedrock-soil interface. The threshold level, zthreshold, corresponds to the level at which 

these fluxes become significant, whereby transient water table develops in the hollow 

during events and initiates a lateral pipeflow at in the lower soil profile. 
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Based on rainfall, simulated runoff (Qi) and simulated evaporation (Eact), the 

amount of unsaturated and saturated storage in each box is updated for each time step. In 

the case of falling groundwater levels, a certain amount of saturated storage changes its 

status to ‘unsaturated’. The change of storage in the saturated zone (ΔS) equals the 

difference between recharge (for the riparian and hollow box including lateral inflow) 

and runoff plus a portion of the change, which is the amount of water changing its status 

from saturated to unsaturated (Eq. 8). Eq. 8 can be rearranged to allow direct calculation 

of ΔS (Eq. 9) and computation of the corresponding change in unsaturated storage due to 

groundwater level change, ΔUgc (Eq. 10). 

ScEQRS act Δ+−−=Δ  (8) 

c
EQRS act

−
−−

=Δ
1

 (9) 

ScU gc Δ−=Δ  (10) 

When the groundwater level rises, an amount of unsaturated storage in a similar 

way alters its status to ‘saturated’ (Eq.s 11-13).  

S
U

UcEQRS act Δ+−−=Δ
max

 (11) 

max

1
U

Uc

EQRS act

−

−−
=Δ  (12) 

S
U

UcU gc Δ−=Δ
max

 (13) 

The fraction U/Umax appears in these equations since drainage equilibrium 

(U=Umax) cannot be assumed when the water table rises. When the water table falls, on 
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the other hand, drainage equilibrium can be expected in the drained soil layer and 

U/Umax=1 (Eqs. 8-10). 

Important assumptions and simplifications of the three-box model include the 

following: (1) no lateral flow is assumed to take place in the unsaturated zone of 

individual reservoir boxes (based on matric potential data from previous experimental 

work [McDonnell, 1990] that shows downward hydraulic gradients in the unsaturated 

zone between and during events), (2) no bypass flow from hillslope reservoir to the 

stream is allowed (again based on experimental work of Mosley [1979] that examined 

topographic convergence in the colluvial filled hollows), (3) no substream or hyporheric 

exchange is considered between the channel and the riparian zone. This last assumption 

may be a gross simplification based on recent comments by Bencala [2000], and our 

group is actively researching the issue of hyporheric exchange at Maimai [McGlynn, 

2002, pers.comm.]. A preliminarily guess, however, is that the amount of in the Maimai 

M8 catchment may be quite limited, due to the tight nature of the underlying substrate 

and the fact that the stream flows on bedrock for much of its length. Finally, whilst these 

assumptions and simplifications are supposed to be appropriate for the Maimai M8 

catchment, we do not advocate that they are universally applicable. The model structure 

is guided by experimental findings and application of any model and articulation of 

box/reservoir numbers, configurations and characteristics would be framed on a 

catchment-by-catchment basis. It is also important to recognize that the important step of 

relating the model boxes to actual landscape units, which is a prerequisite for comparing 

internal simulations with observations, is not trivial and may in many catchments be more 

difficult than at Maimai where landforms are fairly simple. 
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Utilization of soft data 

Given the relatively large number of parameters (16) in the three-box model, the 

information contained in the hard data (runoff and two groundwater-level series) is 

insufficient for the identification of parameter values through calibration. Consequently, 

parameter uncertainty would be expected to be large. Soft data enable additional 

judgment of model simulations in more ways and more process-based ways than using 

only the available hard data. For instance, the experimentalist might have some 

observations concerning the range in which groundwater levels fluctuate within a given 

box (based on field campaign information or observations made over some irregular time 

periods) or the contribution of new water to peak flow (from event-based isotope tracing 

studies). Soft data can be used in two ways to constrain the calibration: (1) to evaluate 

aspects of the model simulations for which there is no hard data available and (2) to 

assess how reasonable the parameter values are based on field experience (Table 2). 

When comparing model simulations or parameter values with soft data, there may 

be a relatively wide range of acceptable simulations or values. Furthermore, there might 

be a range of values that fall between ‘fully acceptable’ and ‘not acceptable’ based on the 

experimentalist’s experience in the field and other synoptic measurements. Fuzzy 

measures of acceptance can be used to consider these ranges [Franks et al., 1998]. For 

each soft data type, we defined a trapezoidal function (Equation 14) to compute the 

degree of acceptance from the corresponding simulated quantity or parameter value. This 

trapezoidal function is a simple way to map experimentalist experience into a quantity, 

which then can be optimized (Fig. 2). This approach recognizes that there is uncertainty 

in even the experimental data [Sherlock et al., 2000]—using a fuzzy membership 
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function like this trapezoidal form enables the modeler-experimentalist dialog to 

explicitly recognize this. 
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In this study, we used soft data measures for a number of groundwater level measures in 

the three boxes. Evaluation rules were developed using Equation 14 to judge model 

performance with regard to minimum and maximum groundwater levels as well as the 

frequency of levels being above specified level (Table 3). The values for these rules were 

motivated by field studies reported in McDonnell [1990] for the same August-December 

1987 period where groundwater responses in the riparian and hollow zones were 

quantified with recording tensiometers that show distinctly different wetting, filling, 

draining behavior. Riparian zones were characterized by rapid conversion of tension to 

pressure potential (i.e., rapid conversion of unsaturated zone to a saturated zone by 

storage filling and water table rise from below). Water tables were sustained in this zone 

for 1-2 days following the cessation of rainfall. These data enabled the soft data measures 

of minimum and maximum groundwater levels and frequency of levels above a specified 

level (listed in Table 3) to be defined. The hollow zone response was much more 

sensitive to rainfall inputs: conversion of unsaturated zone to transient saturation 

occurred within the few hours of the hydrograph rising limb and pore pressure recession 

rates closely matched stream and subsurface-trench hydrograph recession rates. Soft data 
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for the hillslope positions were gathered from previous throughflow pit analysis by 

Mosley [1979] where he continuously recorded pit outflow from a number of distinct 

linear hillslope segments. Hillslope sections (unlike hollows and riparian zones) show 

very infrequent water table development—when water tables were present, they were 

restricted vis-à-vis the soft data measure classification (see numbers in Table 3). Here 

again, the soil catena sequences as mapped by McKie [1978] confirm these 

interpretations. Hillslope soils show no evidence of any gleying whereas gley appears in 

the hollow zone and is most dominant in the riparian zone. 

Table 3 includes also a number of soft-data rules including isotope hydrograph 

separation-derived new-water estimates (at peakflow). Values for these rules were based 

on results from hydrograph separations reported in McDonnell [1989] and McDonnell et 

al. [1991]. These evaluation rules allowed computing of a degree of acceptance with 

respect to the simulated new-water. The new-water percentages varied, of course, from 

event to event and some storms did not have rain isotopic concentration suitable for using 

the two-component mass balance separation technique. The flexibility of the soft data is 

such that even for isolated measures from field campaigns or experiments, rules may be 

developed to guide the model calibration process. The isotope hydrograph separation soft 

data are particularly useful since the M8 catchment has such large (and repeatable) old 

water contributions to peakflow. This measure is a tremendous perceptual constraint on 

how a conceptual box model may allow flow of new water into the channel during 

events. We view this use of isotopic data as one of the first formal attempts to include 

isotope-based hydrograph separation results into a model exercise. While a few studies in 

the past have used stream isotope concentrations through time for model calibration and 
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testing [Hooper et al., 1988; Seibert et al., 2002a], there are no studies we are aware of 

that make use of computed new water ratios. O-18 time series could be used directly (i.e., 

as hard data), but often the observed signal is weak and observed time series are short and 

discontinuous (for review see Buttle [1994]). In many cases it might, thus, be more 

suitable to use information derived from the observations such as the new-water 

contribution to peak flow. This is an example for soft data which is based on hard data, 

but where interpretation by a hydrologist is needed to transform the actual measurements 

into data, which might be imprecise as it is in the case of the new-water contributions to 

peak flow. Given the fact that much such information exists for experimental catchments 

around the world, we see much potential in moving forward with soft data calibration in 

the future.  

For a number of the parameters a degree of acceptance was computed. 

Acceptance in this instance is defined as the degree to which parameter values agree with 

the field experience and the perceptual model of the catchment. These acceptance values 

varied again from one, if the value was within the desirable ranges and decreased towards 

zero with increasing deviations from this range (Table 3). For example, we allowed 

values from 1 to 10 percent for the spatial fraction of the riparian zone (i.e., the variable 

source area in this case), but the degree of acceptance was one only for values between 3 

and 7 percent (based on mapped saturated areas in the M8 catchment reported in Mosley 

[1979]). Based on the individual parameters the acceptability of a certain parameter set 

was computed as the geometric mean of the respective degrees of acceptance. 
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Quantifying the acceptability and value of hard and soft data 

We quantified the acceptability of calibrations using hard data (A1) using the Nash and 

Sutcliffe [1970] efficiency measure, Reff, and the relative volume error, VE, for the runoff 

simulations. Following Lindström [1997], a value of 0.1 is chosen for the weighing 

coefficient, ω, which determines the relative emphasis on the volume error. The 

coefficient of determination, r2, was used to assess the hard-data performance of the 

simulations for the groundwater levels in the riparian and the hollow zone, and A1 is 

computed as average of these different goodness-of-fit measures (Equation 15). 

( )22
1 2

1
ripariangwhollowgwEeff rrVRA +−= ω  (15) 

Using the coefficient of determination, r2, we did not force the model to exactly fit the 

observations, but allowed for an offset and a different amplitude. We argue that it is the 

dynamics rather than the exact levels that should be used from this kind of data where we 

compare the observed level at one location with a simulated average behavior of an entire 

zone. By utilizing also soft data, there is no need to ‘over fit’ the model to the levels 

obtained from tensiometer observations at a few observation locations – in our case one 

point in the hollow zone and another mid-way up the main valley bottom in the riparian 

zone. 

Acceptability of the model simulations using soft data (A2) was computed as 

arithmetic mean of the 15 evaluation rules of the soft data regarding groundwater levels 

and contribution of new water (Table 3). The arithmetic mean was used in this instance 

since the geometric mean is less suitable when values can become zero. Acceptability of 

the parameter values based on soft data (A3) was computed as the geometric mean of the 

nine evaluation rules of the different parameters (Table 3). 
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The overall acceptability, A, of a parameter set was computed as a weighted 

geometric mean (Equation 16). Values of 0.4, 0.4 and 0.2 were chosen for n1, n2, and n3 

respectively to place more emphasize on the acceptability with regard to the simulations. 

1321321
321 =++= nnnwithAAAA nnn  (16) 

The selection of the weights n1, n2, and n3 determines which solution along the pareto-

optimality sub-space will be found. The trade-offs between the various criteria can be 

studied using different weights [Seibert and McDonnell, 2002].  

We quantified the value of the soft data by testing how the measures helped in 

ensuring internal model consistency and reducing parameter uncertainty. First we 

examined how model performance, as judged by the various criteria, varied when the 

model was calibrated considering a varying set of criteria. Second, we compared the 

magnitude of parameter uncertainty when calibrating against only runoff and when 

calibrating against different combinations of criteria. We used a genetic algorithm, as 

described by Seibert [2000], for model calibration. This algorithm, which mimics 

evolution, includes stochastic elements such as the randomly generated initial set of 

parameter sets and the partly random generation of offsprings during the ‘evolution’ of 

parameter sets. Thus, the calibrated parameter values may vary for different calibration 

trials, when different parameter sets result in similar good simulations according to the 

goodness-of-fit measure. This makes this optimization algorithm suitable to address 

parameter uncertainty using the variation of calibrated parameter values as a measure of 

parameter identifiability. Sixty calibration trials, each using 2500 model runs, were 

performed for each goodness-of-fit measure and the best 50 (of 60) parameter sets were 

used for further analysis of model performance and parameter identifiability.  
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Results 

Model output  

The model was able to reproduce observed runoff during the Aug-Dec period (Fig. 3). 

Model simulations calibrated with only hard data runoff values led to very good fits, with 

a model efficiency of 0.93. Notwithstanding, while high model efficiency was obtained 

with the runoff-only (hard data) calibration, goodness-of-fit statistics for percent new 

water and soft groundwater measures for example, were very poor (Fig. 4). This is not a 

new finding—hydrologists have known for years that getting a model to reproduce a 

hydrograph is not necessarily a robust test of how accurate or ‘real’ the model structure 

might be. Parameter ranges were poorly constrained when hard data only were used for 

calibration and the agreement of the calibrated parameter values with the 

experimentalist’s knowledge was less than 0.4 (Fig. 4).  

If one examines the simulated groundwater levels for each of the three boxes for 

the runoff-only calibration, several different response patterns are produced—each with a 

high model efficiency for runoff (Fig. 5a-c). In Figure 5a, the riparian and hollow box fail 

to behave like observed reservoir dynamics reported in McDonnell [1990], with too much 

water in the hollow box, especially between events. Figure 5b is an example where each 

of the three boxes filled and drained too quickly. Figure 5c shows an appropriate riparian 

box response but poor representation of the hollow zone, which is drained to quickly too. 

This is a compelling example of how relying only on the traditional single-criteria, hard-

data model calibration can produce ‘right answers for the wrong reasons’. It each case, 

without the insight of soft data, one may have been tempted to assume that the model 

worked well given the high model efficiency for the runoff. 
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As additional hard and soft data were entered into the model calibration, the 

model efficiency for runoff decreased (from the 0.93 value to 0.84) but goodness-of-fit 

for the process description (based on soft groundwater, percent-new-water and 

parameter-value data) increased dramatically (Fig. 4 and 6). The combined objective 

function A (Eq. 16) increased from 0.46 to 0.79 when adding A2 and A3 to the calibration. 

In general, the variability in the various goodness-of-fit measures decreased when more 

criteria were included into the calibration. Most importantly perhaps, the groundwater 

dynamics simulated with a parameter set obtained by this multi-criteria calibration are in 

keeping with experimental observations on reservoir response. The goodness-of-fit of the 

groundwater level simulations increased from 0.53 to 0.82 for the hard data and from 

0.34 to 0.60 for the soft data, for parameter sets optimized using the combination of all 

criteria compared to the simulations using parameter sets calibrated to only runoff. 

The three-box model captured the water level dynamics extracted from the 

tensiometer data for both the riparian and the hollow box (Fig. 7) as also indicated by 

high r2-values. It should be noted that using the coefficient of determination, r2, we 

emphasized the dynamics and did not force the model to exactly fit the point observations 

(we allowed for an offset and a different amplitude). We also tested an alternative 

goodness-of-fit measure, which corresponded to the coefficient of determination, but with 

the constraint that the slope of the regression line was fixed to a value of one, i.e., we still 

allowed for an offset but not for differences in amplitude. In that way the model was 

forced to better reproduce the amplitudes, which were observed at the two points in the 

catchment (see dotted lines in Fig. 7). Other results such as overall model performance 
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did not change significantly when using the alternative goodness-of-fit measure for the 

hard groundwater data. 

The simulation with the best overall performance caused a somewhat reduced 

model efficiency for runoff but displayed more ‘realistic’ internal dynamics (Figure 6). 

Figure 6 also shows the decrease of unsaturated storage through the event, indicative of 

the coupled formulation of saturated and unsaturated storage. We argue that this 

formulation is an important and new feature of the three-box approach because it is a 

more realistic conceptualization of the unsaturated-saturated storage interactions given 

the shallow groundwater. 

Parameter uncertainty 

For each parameter, 50 different values were obtained by the different calibration trials. 

The range between the 0.1 and 0.9 percentile divided by the median was computed for 

each parameter as a measure of parameter uncertainty. The ratio between these values 

obtained from multi-criteria calibrations and those derived from runoff-only calibrations 

indicated a general reduction of parameter uncertainty (i.e., the variation of calibrated 

parameter values decreased) when adding different criteria, but results varied from model 

parameter to model parameter (Fig. 8). When optimizing the combination of all criteria 

(A1, A2 and A3) the ratio varied between 0.03 and 0.65. The median was 0.4, implying that 

using all criteria helped to reduce parameter uncertainty on average by 60% relative to 

the single criterion calibration against only runoff. The reduction of parameter 

uncertainty was most obvious for the coefficients of the linear outflow equations, despite 

the fact that no ‘desirable’ parameter ranges were specified for these parameters. 

Including hard groundwater data or soft data for new-water contribution to peak runoff 
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also reduced parameter uncertainty, but not as significantly as for the combination of all 

criteria. 

Discussion 

On the experimentalist’s contribution to model development and calibration 

The compilation of evaluation rules for model performance such as shown in Table 3 

force the experimentalist to put numbers to his or her qualitative knowledge. This has 

been lacking in catchment hydrology for years. Dunne [1983], Klemeš [1986] and many 

others have called for experimentalists and modelers to unite—but this has been very 

slow in happening. We argue that the soft data discussions are a formal attempt at 

addressing Klemeš’s and Dunne’s challenge. The soft data numbers may themselves 

reflect some considerable uncertainty (as shown recently in experimental work by 

Sherlock et al. [2000]). The soft data approach also requires a number of subjective 

decisions, such as the specification of the evaluation rules and the weighing of the 

different objective functions. Nevertheless, we argue that the use of these data is still 

better than the alternative of neglecting this knowledge and using only hard data in the 

calibration process! While automatic model calibration has many advantages compared to 

the time-consuming manual trial-and-error method, others have argued that the automatic 

calibration reduces the modeling to simply a curve fitting exercise. Boyle et al. [2000] 

proposed a method to combine the strengths of manual and automatic calibration methods 

recognizing that one goodness-of-fit measure is not sufficient to judge the fit of observed 

and simulated runoff series. The use of soft data is another step in the direction of 

infusing hydrological reasoning in automatic calibration. Our work complements the 

work of Boyle et al. [2000] by offering other forms of data to embrace in the calibration 
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process—information that often languishes in the data banks of experimental watersheds 

around the world, that hitherto have not yet been brought into the formal modeling 

process. We think that the reasons for this are due to the fact that modelers perceive this 

information to be too qualitative and not robust enough to be useful in any quantitative 

way. While we would agree that these soft data measures are often fuzzy, they are the 

type of data needed to move to more realistic simulations of catchment behavior. 

Furthermore, while not superior to hard data, soft data represent an untapped source of 

information available for calibration. 

Types of soft data 

The soft data measures used in this paper vary from static measures (e.g., the spatial 

extent of the riparian zone) to data on groundwater level variations and highly integrated 

measures like the percent of new water at peakflow. We expect that if this soft data 

approach were attempted in other experimental catchments, choice of soft data measures 

could, and would, be different. In fact, the point is that ‘one should use what one has on 

hand’ for their catchment. Admittedly there is a plethora of ad hoc decisions to be made 

when using soft data measures to evaluate model performance. However, this should not 

discourage the modeler to heed these decisions by the experimentalist. Not using any of 

these data may be the poorest subjective decision of all. 

The results of isotopic hydrograph separations have the advantage that the new-

water contribution is an integrated measure of catchment response and offers much 

constrain on the perceptual model of runoff generation. Few studies to date have used 

isotope data in model calibration—despite the now common use of this in watershed 

analysis [Kendall and McDonnell, 1998]. Hooper et al. [1988] used continuous stream O-
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18 to calibrate the Birkenes model—another simple conceptual box model of runoff 

response. Similarly, Seibert et al. [2002a] have used continues stream O-18 for model 

testing. In the present study, we use the new water ratio for discrete events rather than a 

continuous time series of O-18. Unlike Scandinavia where previous attempts have been 

made, the Maimai catchment shows several periods of rainfall ‘cross-over’ with stream 

baseflow and groundwater because of the lower amplitude of the seasonal O-18 

variations—making continuous time series modeling less valuable. Nevertheless, the 

new-water soft-data measure is an example of making the most of data available for a 

given situation. In many catchment studies, additional (soft) data may be available that 

could be used to constrain model simulations. In snow-dominated environments, for 

instance, snow cover information may be used. In cases where the expansion and 

contraction of surface-saturated areas is important (and considered in the model), 

knowledge of the maximal portion of the catchment that might become saturated can be 

used. Franks et al. [1998] derived information on the extent of saturated areas from 

remote sensing and this information helped to constrain parameter values of 

TOPMODEL. In most cases measurements on the extent of saturated areas are not 

available, but hydrological reasoning and field experience might allow specifying a range 

of reasonable values (e.g. based on topography). The extent and spatial distribution of 

saturated areas might also be derived from vegetation and soil information [Güntner et 

al., 1999]. 

Overall performance and internal consistency improvements with soft data 

The model performance based on the various criteria varied between the parameter sets, 

which had been calibrated using different combinations of these criteria (Fig. 4). 
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Calibration against only one or two criteria resulted in poor simulations according to the 

other criteria, which were not used for calibration. For example, the best parameter sets 

according to runoff (with a median efficiency 0.92) were poor in their ability to correctly 

reproduce hard and soft groundwater levels (median r2 =0.41 and median μgw =0.29). 

While the calibration against all criteria did not provide the best fits according to single 

criteria, the best overall performance was obtained in this way, as judged by the hard and 

soft data. Thus, while the runoff model efficiency dropped from 0.92 to 0.84 (median 

values) moving from ‘no soft data’ to ‘all soft data’, important process descriptors like 

the contribution of new water to peak runoff were much better reproduced (median 

μnew water=0.8 compared to 0.67), compared to the calibration using only hard data (A1, 

runoff and groundwater). 

Even in catchments where there is some groundwater-level data available as hard 

data for comparison, this data often only represents a limited number of locations. In our 

case we had data on groundwater levels from only two locations. We assumed that the 

dynamics were representative for each zone, but not necessarily for the mean depth to 

groundwater and the amplitude of the level variations. By using the coefficient of 

determination as goodness-of-fit measure for the hard groundwater data we did force the 

model to reproduce the dynamics, but used soft data to constrain the groundwater level 

simulations with regard to their absolute values and amplitudes. Results did not change 

significantly when using an alternative goodness-of-fit measure, which required the 

model to also reproduce the amplitude of the hard groundwater data. Probably results 

would have changed if we had used a goodness-of-fit measure that evaluated the 

simulated levels also with regard to their absolute values, but given the fact that the hard 
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groundwater data only represented one location in each zone, such a strong constraint 

would not have been warranted. 

On the value of soft information 

Runoff simulation for the Maimai watershed is relatively easy by comparison to many 

other catchments since there is only minimal seasonality and soils are highly transmissive 

and underlain by impermeable substrate. Previous TOPMODEL simulations at the site 

[Beven and Freer, 2001] and the present study have all achieved good fits for streamflow. 

However, simply modeling runoff with a high efficiency is of course not a robust test of 

model performance. Our work shows that sometimes lower Reff-values are ‘the price we 

have to pay’ to obtain a better overall model performance and better adherence to the 

perceptual model of runoff generation. The question then becomes: Is this runoff 

efficiency reduction worth accepting in order to achieve a better conceptualization with 

respect to the soft data available? We argue from data presented in this paper that it is 

indeed worth accepting lower runoff-efficiency values if one can develop a more ‘real’ 

model of the catchment. The parameter set determined by using several criteria for 

calibration (based on hard and soft data) will in most cases lead to a poorer fit of 

simulated and observed catchment, but move the model to one that better captures the 

key processes that the experimentalist feels is important in controlling catchment 

response. 

While this paper deals mostly with soft data and multi-criteria calibration, it 

should be stated that soft data first helped guide the box model construction. The three 

boxes chosen represent the experimentalist’s objective definition of the key runoff 

producing reservoirs in the catchment based on observed water table dynamics, well 



 29

chemistry and soil/groundwater isotopic composition. The unsaturated-saturated zone 

coupling in the model was implemented because in catchments like Maimai, with shallow 

soils (~1.5 m) and impermeable substrate, tensiometric observations often highlight the 

importance of unsaturated zone conversion to transient groundwater during events. 

Future applications of the three-box model and soft data strategy to other catchments 

though, need to make these decisions according to their conceptualization of runoff 

generation processes at their locale. There are certainly other box configurations that 

could be envisioned. Again, the point is here that the first step, before using soft data for 

calibration, is the construction of a model that is appropriate for the catchment of 

concern. We believe the explicit volume-based box structure is a way forward and we are 

actively re-working this structure for other watersheds.  

Lastly, we should acknowledge that this exercise has changed the way that we 

might conduct the next field campaign at Maimai. Future experiments need to move away 

from detailed hillslope transect and point-scale studies and more towards capturing the 

first order controls on different landscape units. Groundwater-streamflow relationships 

may provide further guidance on how to discretize key catchment reservoirs and how to 

parameterize their response function. We would envision new experiments comparing the 

well response in different landscape units to streamflow—with the direction and 

magnitude of hysteresis as the objective measure of unit response [Seibert et al., 2002b]. 

The model work in this paper has also emphasized the importance of the soil’s drainable 

porosity or specific yield on water table responses in the different landscape units. New 

experimental work at Maimai should put more weight on the estimation of this variable 

and its variation with location and depth. 
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Concluding remarks 
The study used multi-criteria soft data for model development and for internal calibration 

and validation. We show that conceptual modeling of catchment hydrology can include 

identification of parameter values through calibration against hard and soft data. We 

believe that this approach is the way forward for development of more realistic models of 

catchment behavior using soft data where multiple criteria can now be used to constrain 

the model in various ways. These soft data are a representation of qualitative knowledge 

from the experimentalist, which cannot be used directly as exact numbers but is made 

useful through fuzzy measures of model-simulation and parameter-value acceptability. 

We argue that the necessary dialog that must occur between the modeler and the 

experimentalist can be made explicit in this way. We propose that this approach is also 

useful for comparing the value of different field measurements that experimentalists 

might make in support of modeling. We are currently exploring other types of soft data 

(e.g. mean residence time data) as we move to larger watershed scales and begin to 

incorporate conservative mixing between reservoirs. Our main message in this work is 

that rather than being ‘right for the wrong reasons’, a better process representation of 

catchment hydrology in conceptual runoff modeling should be ‘less right, for the right 

reasons’.  
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Tables 
 

 
Table 1. List of parameters used in the three-box model 
 
Parameter Description Unit 
zmax Soil depth a [mm] 
c Parameter corresponding to water content at field capacity 

divided by porosity 
[-] 

d Parameter corresponding to water content at wilting point 
divided by porosity 

[-] 

β Shape coefficient determining groundwater recharge [-] 
k1,riparian Outflow coefficient, riparian box [h-1] 
k1, hollow Outflow coefficient, hollow box, lower outflow [h-1] 
k2, hollow Outflow coefficient, hollow box, upper outflow [h-1] 
k1, hillslope Outflow coefficient, hillslope box [h-1] 
zthreshold Threshold storage for contribution from upper outflow in the 

hollow box 
[mm] 

p Porosity a [-] 
friparian Areal fraction of the riparian zone [-] 
fhollow Areal fraction of the hollow zone [-] 
a Different values were allowed for riparian, hollow and hillslope box 
 

 

Table 2. The three different ways of evaluating model acceptability based on hard data 
(A1) and soft (A2 and A3) data. 

 

 Acceptability according to … Example Measure 

A1 Fit between simulated and 
observed data 

Runoff Efficiency 

A2 Agreement with perceptual 
(qualitative) knowledge 

New water 
contribution 

Percentage of peak flow 
for certain events 

A3 Reasonability of parameter 
values 

Spatial extension of 
riparian zone 

Fraction of catchment 
area 
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Table 3. Evaluation rules based on soft data used for model calibration (the values for ai 
define the trapezoidal function used to compute the degree of acceptance, see Eq. 14) 

 
Type of soft 
information 

Specific soft information a1 a2 a3 a4 Motivation  

870930 18.00 0.03 0.06 0.12 0.15 McDonnell et al. [1991] 
871008 3.00 0.05 0.13 0.31 0.40 “ 
871010 17.00 - 0 0.03 0.06 “ 
871013 11.00 0.17 0.23 0.35 0.41 “ 
871113 19.00 - 0 0.03 0.06 “ 

New water 
contribution to peak 
runoff [-] 

871127 8.00 0.04 0.07 0.13 0.16 “ 

Maximum hillslope 0 0.2 0.5 0.7   Mosley [1979] 
Maximum hollow 0 0.5 0.75 1     McDonnell [1990] 
Minimum hollow 0 0.05 0.1 0.2   “ 

Range of groundwater 
levels, min./max. 
fraction of saturated 
part of the soil [-] Minimum riparian 0.05 0.1 0.3 0.5   “ 

Hillslope, above 0.5 during events - 0 0.1 0.3  Mosley [1979] 
Hollow above 0.7 during events - 0 0.1 0.2  McDonnell [1990] 
Hollow above 0.9 during events - - 0 0.1  “ 
Riparian above 0.2 0.6 0.8 1 1   “ 

Frequency of 
groundwater levels 
above a certain level 
(as fraction of soil) [-] 

Riparian above 0.9 during events 0 0.25 0.75 1   “ 

Parameter values Fraction of riparian zone [-] 0.01 0.03 0.07 0.10 Mosley [1979] 
 Fraction of hollow zone [-] 0.05 0.10 0.15 0.20 McDonnell [1990] 
 Porosity in hillslope zone [-] 0.45 0.6 0.7  0.75 McDonnell [1989] 
 Porosity in hollow zone [-] 0.45 0.55 0.65 0.75 “ 
 Porosity in riparian zone [-] 0.45 0.5 0.6 0.75 “ 
 Soil depth for hillslope zone [m] 0.1 0.3 0.8 1.5 McDonnell et al. [1998] 
 Soil depth for hollow zone [m] 0.5 1 2 2.5 “ 
 Soil depth for riparian zone [m] 0.15 0.4 0.75 1 “ 
 Threshold level in hollow zone, 

fraction of soil depth [-] 
0 0.1 0.4  1 McDonnell [1990] 

McDonnell et al. [1991] 
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Figure captions 
 

1. Structure of the three-box model developed for the Maimai M8 watershed including 

hillslope, hollow and riparian zone reservoirs. (P: precipitation, E: evaporation, z: 

groundwater level above bedrock, zmax: maximal groundwater level above bedrock, 

U: unsaturated storage).   

2. Framework for formalized dialog between experimentalist and modeler using a 

trapezoidal function as a means of assigning values to the soft data. 

3. Accumulated rainfall, runoff model error, and observed and simulated runoff for the 

period September-December 1987. Measured data is shown as dashed line. The 

simulation of runoff (solid line) is based on the calibration using only runoff data.  

4. Goodness-of-fit measures for runoff, groundwater levels (as derived from the 

tensiometer data), new water ratios, soft groundwater measures, and parameter-value 

acceptability for calibrations against various combinations hard and soft information 

(see text for definition of the different optimization criteria). The symbol shows the 

median of 50 calibration trials and the vertical lines indicate the range of these trials. 

The shaded area relates to the traditional calibration approach using only runoff data 

and highlights the problem of internal consistency when calibrating against only 

runoff. 

5. Three model runs with different parameter sets resulting in different groundwater 

dynamics. All three parameter sets had been calibrated to observed runoff and gave a 
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almost similar goodness-of-fit (model efficiency ~0.93). None of the three sets of 

groundwater time series agrees with the perceptual model of the watershed. 

6. Simulation with best overall performance. Accumulated rainfall, simulated 

unsaturated storage and simulated groundwater levels (m above bedrock), as well as 

observed and simulated runoff. The model efficiency for runoff is 0.84 and the 

simulated groundwater dynamics agree in general with the perceptual model. 

7. Comparison of groundwater level simulations (dashed line) for the riparian and the 

hollow box and levels extracted from tensiometer observations (solid line) (levels are 

here given in m below ground surface). The dotted line shows the simulated 

groundwater levels when using the alternative goodness-of-fit criteria.  

8. Reduction of parameter uncertainty by using additional calibration criteria compared 

to a single-criterion calibration. The ratio (νmulti / νsingle, where ν is the range between 

the 0.1 and 0.9 percentile divided by the median) is shown for all 16 model 

parameters and the median ratio is shown to the right. A ratio below one (dashed line) 

indicates a reduction of parameter uncertainty. The vertical bars show the ratio when 

using the combination of all criteria, and the symbols show the ratio for different 

combinations of criteria based on hard and soft data. 



 40

Figures  

 

Hillslope box

Riparian box
Runoff

Umax

U

P E

P E

Umin

P E

Hollow box

Figure 1  
 
 
 
 
 
 
 
Fig. 1. 



 41

 
 

Experimentalist Modeler
Evaluation rules

Values for evaluation 
rules ( )ai

a1 a4

a2

0

1
Degree of
acceptability

Simulated variable or 
parameter value  

 
 
 
 
 
 
 
 
Fig. 2 



 42

 

 
 
 
 
 
Fig. 3 

28-Sep 8-Oct 18-Oct 28-Oct 7-Nov 17-Nov 27-Nov

0

2

4

6

Q
 [m

m
/h

]

0

200

400

600
A

cc
um

ul
at

ed
 ra

in
fa

ll 
[m

m
]

-1

-0.5

0

0.5

1

M
od

el
 e

rro
r 

(Q
si

m
-Q

ob
s)

 [m
m

/h
]

Observed Q
Simulated Q



 43

 
 

Optimized criteria

0

0.2

0.4

0.6

0.8

1

G
oo

dn
es

s-
of

-fi
t m

ea
su

re

A1, A2 and A3
A1 and A2

Q and new water

Q and soft GW A1 Q

Runoff efficiency
GW hard
GW soft
Parameter values
New water

 
 
 
 
 
 
 
 
Fig. 4 



 44

28-Sep 8-Oct 18-Oct 28-Oct 7-Nov 17-Nov 27-Nov

0

1

2
0

1

2

G
ro

un
dw

at
er

 le
ve

l [
m

] 0

1

2

Hillslope
Hollow
Riparian

(a)

(b)

(c)

 
 
 
 
 
 
 
 
 
Fig 5. 



 45

28-Sep 8-Oct 18-Oct 28-Oct 7-Nov 17-Nov 27-Nov

0

2

4

6

Q
 [m

m
/h

]

0

1

2

G
ro

un
dw

at
er

 le
ve

l [
m

]

0

200

400

U
ns

at
. s

to
ra

ge
 [m

m
]

0

200

400

600

A
cc

um
ul

at
ed

 ra
in

fa
ll 

[m
m

]

Observed Q
Simulated Q

Hillslope
Hollow
Riparian

 
 
 
 
Fig. 6 
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